高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析

合集下载

(完整word)高考电磁感应中“单、双棒”问题归类经典例析

(完整word)高考电磁感应中“单、双棒”问题归类经典例析

电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。

(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。

2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度为多大?3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化? (2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。

导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导Bv 0L adb轨所在平面垂直,导轨的电阻很小,可忽略不计。

电磁感应中单双棒问题

电磁感应中单双棒问题

v0
v共
O
t
4.两个规律
(1)动量规律 两棒受到安培力大小相等方向相反, 1 系统合外力为零,系统动量守恒.
m 2 v 0 (m 1 m 2)v 共
v0 2
(2)能量转化规律
系统机械能的减小量等于内能的增加量. (类似于完全非弹性碰撞)
两2 1棒m 产2v生02 焦2 1 耳(热m 之1比m :2)v共 2Q+ 1 Q R 1 Q2 R2
O
t
5.最终特征: 匀速直线运动(a=0)
6.两个极值
FB R
(1) 最大加速度:
当v=0时:
am
F
mg
m
f
(2) 最大速度:
r
F
当a=0时:aFFBmgF B2l2v g0
m
m m(Rr)
vm(Fm B2gl)2(Rr)
7.几种变化 (1) 电路变化
F
(2)磁场方向变化
B
F
(3) 导轨面变化(竖直或倾斜) (4)拉力变化
v(m/s)
20
F
16
12
8
4
F(N)
0 2 4 6 8 10 12
解:(1)加速度减小的加速运动。 (2)由图线可知金属杆受拉力、安培力和阻力作用,
匀速时合力为零。
FF 安 f
感应电动势 E BL 1 v
F
感应电流 I=E/R (2)
安培力 F 安 B B 2 I L 2 v L / 3 R v(m/s)
匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻
可忽略。让ab杆沿导轨由静止开始下滑,导轨和金属杆接触 良好,不计它们之间的摩擦。
(1)由b向a方向看到的装置如图2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;

电磁感应中的单双棒问题(解析版)-2024年高考物理压轴题专项训练

电磁感应中的单双棒问题(解析版)-2024年高考物理压轴题专项训练

压轴题 电磁感应中的单双棒问题1.电磁感应中的单双棒问题在高考物理中占据着举足轻重的地位,是考查学生对电磁感应现象和力学知识综合运用能力的关键考点。

2.在命题方式上,电磁感应中的单双棒问题通常会以综合性较强的题目形式出现,结合电磁感应定律、安培力、牛顿第二定律等知识点,考查学生对电磁感应现象中导体棒的运动状态、受力情况、能量转化等问题的理解和分析。

题目可能要求考生分析导体棒在磁场中的运动轨迹、速度变化、加速度大小等,也可能要求考生求解导体棒产生的感应电动势、感应电流等物理量。

3.备考时,考生应首先深入理解电磁感应的基本原理和单双棒问题的特点,掌握电磁感应定律、安培力、牛顿第二定律等相关知识点的应用。

同时,考生需要熟悉各种类型题目的解题方法和技巧,例如通过分析导体棒受力情况、运用动量定理和能量守恒定律等方法求解问题。

考向一:不含容单棒问题模型规律阻尼式(导轨光滑)1、力学关系:F A =BIl =B 2l 2v R +r ;a =F A m =B 2l 2vm (R +r )2、能量关系:12mv 20-0=Q3、动量电量关系:-BI l ⋅Δt =0-mv 0;q =n ΔϕR +r =Bl ⋅ΔsR +r电动式(导轨粗糙)1、力学关系:F A =B (E -E 反)R +r l =B (E -Blv )R +rl ;a =F B -μmg m =B (E -Blv )m (R +r )l -μg 2、动量关系:BLq -μmgt =mv m -03、能量关系:qE =Q +μmgS +12mv 2m4、稳定后的能量转化规律:I min E =I min E 反+I 2min (R +r )+μmgv m5、两个极值:(1)最大加速度:v =0时,E 反=0,电流、加速度最大。

I m =ER +r;F m =BI m l ;a m =F m -μmg m (2)最大速度:稳定时,速度最大,电流最小。

电磁感应中的单杆和双杆问题(习题,答案)

电磁感应中的单杆和双杆问题(习题,答案)

电磁感应中“滑轨”问题归类例析一、“单杆”滑切割磁感线型 1、杆与电阻连接组成回路例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置 (1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。

(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。

例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m ,上、下两端各有一个电阻R 0=1 Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B =2T.ab 为金属杆,其长度为L =0.4 m ,质量m =0.8 kg ,电阻r =0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度达到最大的过程中,上端电阻R 0产生的热量Q 0=0.375J(已知sin37°=0.6,cos37°=0.8;g 取10m /s2)求: (1)杆ab 的最大速度;(2)从开始到速度最大的过程中ab 杆沿斜面下滑的距离;在该过程中通过ab 的电荷量.关键:在于能量观,通过做功求位移。

2、杆与电容器连接组成回路例3、如图所示, 竖直放置的光滑平行金属导轨, 相距L , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 从高h 处由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用.求金属棒下落的时间? 问金属棒的做什么运动?棒落地时的速度为多大?例4、光滑U 型金属框架宽为L ,足够长,其上放一质量为m 的金属棒ab ,左端连接有一电容为C 的电容器,现给棒一个初速v 0,使棒始终垂直框架并沿框架运动,如图所示。

最新高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析word版本

最新高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析word版本

高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。

(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。

2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 为多大?3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化?(2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。

导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cdBv 0L adb的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。

电磁感应中的单杆和双杆问题(习题,答案)

电磁感应中的单杆和双杆问题(习题,答案)

电磁感应中“滑轨”问题归类例析一、“单杆”滑切割磁感线型 1、杆与电阻连接组成回路例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置 (1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。

(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。

例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m ,上、下两端各有一个电阻R 0=1 Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B =2T.ab 为金属杆,其长度为L =0.4 m ,质量m =0.8 kg ,电阻r =0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度达到最大的过程中,上端电阻R 0产生的热量Q 0=0.375J(已知sin37°=0.6,cos37°=0.8;g 取10m /s2)求: (1)杆ab 的最大速度;(2)从开始到速度最大的过程中ab 杆沿斜面下滑的距离;在该过程中通过ab 的电荷量.关键:在于能量观,通过做功求位移。

2、杆与电容器连接组成回路例3、如图所示, 竖直放置的光滑平行金属导轨, 相距L , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动.现让ab 从高h 处由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用.求金属棒下落的时间?问金属棒的做什么运动?棒落地时的速度为多大?例4、光滑U 型金属框架宽为L ,足够长,其上放一质量为m 的金属棒ab ,左端连接有一电容为C 的电容器,现给棒一个初速v 0,使棒始终垂直框架并沿框架运动,如图所示。

2012高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析.

2012高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析.

电磁感应中“单、双棒”问题归类例析 2015-3-15一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab垂直导轨放置(1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势差。

(2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以及ab发生的位移x。

2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m的金属棒ab可紧贴导轨自由滑动.现让ab由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度为多大?3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ、MN光滑,相距l 0.5m,处在同一水平面中,磁感应强度B=0.8T的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S将电动势E =1.5V、内电阻r =0.2Ω的电池接在M、P两端,试计算分析:(1)在开关S刚闭合的初始时刻,导线ab的加速度多大?随后ab的加速度、速度如何变化?(2)在闭合开关S后,怎样才能使ab以恒定的速度υ =7.5m/s沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题: 1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。

导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示.两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B.设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd静止,棒ab有指向棒cd的初速度v0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。

电磁感应中“单、双棒”问题归类例析

电磁感应中“单、双棒”问题归类例析

电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。

(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。

2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动棒落地时的速度为多大3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 lm ,处在同一水平面中,磁感应强度B =的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =Ω,导轨电阻不计.导轨间通过开关S 将电动势E =、内电阻r =Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大随后ab 的加速度、速度如何变化(2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。

导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。

最新高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析

最新高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析

高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。

(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。

2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 为多大?3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化?(2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。

导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd Bv 0L adb的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。

高考物理二轮专题复习 电磁感应中“单 双棒”问题归类例析

高考物理二轮专题复习 电磁感应中“单 双棒”问题归类例析

高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab垂直导轨放置(1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势差。

(2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab发生的位移x。

2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为的金属棒ab可紧贴导轨自由滑动.现让ab由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动棒落地时的速度为多大3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ、MN光滑,相距5.0l m,处在同一水平面中,磁感应强度B=的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab的质量m =、电阻R=Ω,导轨电阻不计.导轨间通过开关S将电动势E =、内电阻r =Ω的电池接在M、P两端,试计算分析:(1)在开关S刚闭合的初始时刻,导线ab的加速度多大随后ab的加速度、速度如何变化(2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =s 沿导轨向右运动试描述这时电路中的能量转化情况(通过具体的数据计算说明). 二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。

导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。

高三复习电磁感应中的导轨类问题导体棒归类梳理

高三复习电磁感应中的导轨类问题导体棒归类梳理

电磁感应中的导轨类问题
一、单棒问题。

1.无外力、无摩擦单棒,外阻R,内阻r (阻尼单棒)
(1)安培力的特点
安培力为阻力,并随速度减小而减小。

22
B B l v
F BIl R r ==
+
(2)加速度随速度减小而减小
22()B F B l v a m m R r ==
+
(3)运动特点:a 减小
的减速运动,最后停止 (4)能量关系:
2
0102
mv Q -=内外阻热量之比
R
r
Q R
Q r =。

2.有外力、有摩擦单棒
安培力为阻力,并随速度增大而增大
最终运动:匀速运动 v=0时,有最大加速度 a=0时,有最大速度 能量关系
2
12E m
Fs Q mgS mv μ=++
二、双棒问题
1.无外力等距双棒(无摩擦)
安培力大小
222112
B B l (v v
)
F BIl
R R
-==
+
2.无外力不等距双棒
最终特征:回路中电流为零
1122
Bl v Bl v
两棒安培力不相等,动量不守恒。

对两棒分别用动量定理
能量转化情况:
3.有外力等距双棒
稳定时都做匀加速直线运动,产生恒定电流
4.有外力不等距双棒。

专题13 电磁感应中的单杆、双杆和导体框问题(讲义)原卷版-【高频考点解密】2024年高考物理二轮

专题13  电磁感应中的单杆、双杆和导体框问题(讲义)原卷版-【高频考点解密】2024年高考物理二轮

专题13电磁感应中的单杆、双杆、导线框问题01专题网络.思维脑图 (1)02考情分析.解密高考 (2)03高频考点.以考定法 (2) (2) (5) (7)考向1:导体棒平动切割磁感应线的综合问题 (7)考向2:导体棒旋转切割磁感应线的综合问题 (8)考向3:线框进出磁场类问题的综合应用 (9)考向4:双杆在导轨上运动的综合应用 (10)04核心素养.难点突破 (11)05创新好题.轻松练 (16)新情境1:航空航天类 (16)新情境2:航洋科技类 (18)新情境3:生产生活相关类 (19)一、电磁感应中的单杆模型1.单杆模型的常见情况质量为m、电阻不计的单杆ab以一定初速度v0在光滑水平轨道上滑动,两平行导轨间距为L 轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L,拉力F恒定轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L,拉力F恒定F 做的功一部分转化2.在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量。

(1)求电荷量或速度:B I LΔt =mv 2-mv 1,q =I Δt 。

(2)求位移:-B 2L 2v ΔtR 总=0-mv 0,x =v̅Δt 。

(3)求时间:⇒-B I LΔt +F 其他·Δt =mv 2-mv 1,即-BLq +F 其他·Δt =mv 2-mv 1 已知电荷量q ,F 其他为恒力,可求出变加速运动的时间。

⇒-B 2L 2v ΔtR 总+F 其他·Δt =mv 2-mv 1,v̅Δt =x已知位移x ,F 其他为恒力,也可求出变加速运动的时间。

二、电磁感应中的双杆模型1.双杆模型的常见情况(1)初速度不为零,不受其他水平外力的作用质量m b=m a;电阻r b=r a;长度L b=L a质量m b=m a;电阻r b=r a;长度L b=2L a杆b受安培力做变减速运动,杆a受安培力能量质量m b=m a;电阻r b=r a;长度L b=L a摩擦力F fb=F fa;质量m b=m a;电阻r b=r a;长度L b=L a 开始时,两杆受安培力做变加速运动;开始时,若F<F≤2F,则a杆先变加速后匀速运动;b杆F做的功转化为两杆的动能和内能:F做的功转化为两杆的动能和内能(包括电热和摩擦热):进行解决。

高考的物理二轮专题复习:电磁感应中“单、双棒”问题归类例析

高考的物理二轮专题复习:电磁感应中“单、双棒”问题归类例析

高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。

(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。

2、杆与电容器连接组成回路例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 度为多大?3、杆与电源连接组成回路例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化?(2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).二、双杆问题:1、双杆所在轨道宽度相同——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。

导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cdBv 0L adb的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?例5、如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。

高三物理辨析电磁感应现象中的双金属棒问题

高三物理辨析电磁感应现象中的双金属棒问题

辨析电磁感应现象中的双金属棒问题电磁感应现象中的双金属棒问题一般可以分为四种情况,具体分析如下。

一、两棒都只在安培力作用下运动的双金属棒问题。

例1.两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。

导轨上面横放着两根导体棒a 和b ,构成矩形回路,如图1所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒b 静止,棒a 有指向棒b 的初速度v0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当a 棒的速度变为初速度的3/4时,b 棒的加速度是多少?分析:(1)a 、b 两棒产生电动势和受力情况如图2所示。

a 、b 两棒分别在安培力作用下做变减速运动和变加速运动,最终达到共同速度,开始匀速运动。

由于安培力是变化的,故不能用功能关系求焦耳热;由于电流是变化的,故也不能用焦耳定律求解。

在从初始至两棒达到速度相同的过程中,由于两棒所受安培力等大反向,故总动量守恒,有mv mv 20=根据能量守恒,整个过程中产生的总热量2022041)2(2121mv v m mv Q =-=(2)设a 棒的速度变为初速度的3/4时,b 棒的速度为v1,则由动量守恒可知10043mv v m mv +=由于两棒产生的感应电动势方向相同,所以回路中的感应电动势1043BLv v BL E -=,感应电流为 R E I 2=此时棒所受的安培力 IBL F =,所以b 棒的加速度为 m F a =由以上各式,可得 m R v L B a 4022=二、两棒除受安培力外,还受拉力F 作用的双金属棒问题。

例2.如图3所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T 的匀强磁场与导轨所在平面垂直,导轨电阻忽略不计,导轨间的距离L=0.20m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理二轮专题复习:电磁感应中“单、双棒〞问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如下图,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置〔1〕假设在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。

〔2〕假设无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。

2、杆与电容器连接组成回路例2、如下图, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动.现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何局部的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度为多大?3、杆与电源连接组成回路例3、如下图,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析:〔1〕在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化?〔2〕在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况〔通过具体的数据计算说明〕.二、双杆问题:1、双杆所在轨道宽度一样——常用动量守恒求稳定速度例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。

导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如下图.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余局部的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开场时,棒cd 静止,棒ab 有指向棒cd 的Bv 0L adb初速度v 0.假设两导体棒在运动中始终不接触,求:〔1〕在运动中产生的焦耳热最多是多少.〔2〕当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?例5、如下图,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。

导轨间的距离l=0.20m 。

两根质量均为m=0.10kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R =0.50Ω。

在t =0时刻,两杆都处于静止状态。

现有一与导轨平行、大小为0.20N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动。

经过t =5.0s ,金属杆甲的加速度为a =1.37m/s 2,问此时两金属杆的速度各为多少?2、双杆所在轨道宽度不同——常用动量定理找速度关系例6、如下图,abcd 和a /b /c /d /为水平放置的光滑平行导轨,区域内充满方向竖直向上的匀强磁场。

ab 、a /b /间的宽度是cd 、c /d /间宽度的2倍。

设导轨足够长,导体棒ef 的质量是棒gh 的质量的2倍。

现给导体棒ef 一个初速度v 0,沿导轨向左运动,当两棒的速度稳定时,两棒的速度分别是多少?3、磁场方向与导轨平面不垂直例7、如下图,ab 和cd 是固定在同一水平面内的足够长平行金属导轨,ae 和cf 是平行的足够长倾斜导轨,整个装置放在竖直向上的匀强磁场中。

在水平导轨上有与导轨垂直的导体棒1,在倾斜导轨上有与导轨垂直且水平的导体棒2,两棒与导轨间接触良好,构成一个闭合回路。

磁场的磁感应强度为B ,导轨间距为L ,倾斜导轨与水平面夹角为θ,导体棒1和2质量均为m ,电阻均为R 。

不计导轨电阻和一切摩擦。

现用一水平恒力F 作用在棒1上,从静止开场拉动棒1,同时由静止开场释放棒2,经过一段时间,两棒最终匀速运动。

忽略感应电流之间的作用,试求:〔1〕水平拉力F 的大小;〔2〕棒1最终匀速运动的速度v 1的大小。

a /三、轨道滑模型例8、如下图,abcd 为质量m 的U 形导轨,ab 与cd 平行,放在光滑绝缘的水平面上,另有一根质量为m 的金属棒PQ 平行bc 放在水平导轨上,PQ 棒右边靠着绝缘竖直光滑且固定在绝缘水平面上的立柱e 、f,U 形导轨处于匀强磁场中,磁场以通过e 、f 的O 1O 2为界,右侧磁场方向竖直向上,左侧磁场方向水平向左,磁感应强度大小都为B ,导轨的bc 段长度为L ,金属棒PQ 的电阻R ,其余电阻均可不计,金属棒PQ 与导轨间的动摩擦因数为μ,在导轨上作用一个方向向右,大小F ==mg 的水平拉力,让U 形导轨从静止开场运动.设导轨足够长.求:(1)导轨在运动过程中的最大速度υm(2)假设导轨从开场运动到到达最大速度υm 的过程中,流过PQ 棒的总电量为q ,那么系统增加的内能为多少?练习:1、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m ,上、下两端各有一个电阻R 0=1 Ω,框架的其他局部电阻不计,框架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B =2T.ab 为金属杆,其长度为L =0.4 m ,质量m =0.8 kg ,电阻r =0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开场下滑,直到速度到达最大的过程中,上端电阻R 0产生的热量Q 0=0.375J(sin37°=0.6,cos37°=0.8;g 取10m /s2)求: (1)杆ab 的最大速度;(2)从开场到速度最大的过程中ab 杆沿斜面下滑的距离;在该过程中通过ab 的电荷量.2、光滑U 型金属框架宽为L ,足够长,其上放一质量为m 的金属棒ab ,左端连接有一电容为C 的电容器,现给棒一个初速v 0,使棒始终垂直框架并沿框架运动,如下图。

求导体棒的最终速度。

3、如下图,两根间距为l 的光滑金属导轨(不计电阻),由一段圆弧局部与一段无限长的水平段局部组成.其水平段加有竖直向下方向的匀强磁场,其磁感应强度为B,导轨水平段上静止放置一金属棒cd,质量为2m,电阻为2r.另一质量为m,电阻为r 的金属棒ab,从圆弧段M 处由静止释放下滑至N 处进入水平段,圆弧段MN 半径为R,所对圆心角为60°,求: 〔1〕ab 棒在N 处进入磁场区速度多大?此时棒中电流是多少? 〔2〕 cd 棒能到达的最大速度是多大? 〔3〕ab 棒由静止到达最大速度过程中,abCv 0系统所能释放的热量是多少?4、如下图,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。

导轨间的距离l=0.20m 。

两根质量均为m=0.10kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R =0.50Ω。

在t =0时刻,两杆都处于静止状态。

现有一与导轨平行、大小为0.20N的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动。

经过t =5.0s ,金属杆甲的加速度为a =1.37m/s 2,问此时两金属杆的速度各为多少?电磁感应中“单棒、双棒〞问题归类例析答案一、单棒问题:1.单棒与电阻连接构成回路: 例1.解析:〔1〕ab 运动切割磁感线产生感应电动势E ,所以ab 相当于电源,与外电阻R 构成回路。

∴U ab =BLV BLV RR R 322=+〔2〕假设无外力作用那么ab 在安培力作用下做减速运动,最终静止。

动能全部转化为电热。

221mv Q =。

由动量定理得:mv Ft =即mv BILt =,It q =∴BL mv q =。

BL mv R BLx R It q ==∆==2323ϕ,∴2223L B mvR x =。

2、杆与电容器连接组成回路例2 .解析:ab 在mg 作用下加速运动,经时间 t ,速度增为v ,a =v / t 产生感应电动势 E=Bl v电容器带电量 Q=CE=CBl v ,感应电流I=Q/t=CBL v/ t=CBl a 产生安培力F=BIl =CB2 l 2a ,由牛顿运动定律 mg-F=ma ma= mg - CB 2 l 2a ,a= mg / (m+C B 2 l 2)∴ab 做初速为零的匀加直线运动, 加速度 a= mg / (m+C B 2 l 2) 落地速度为 3、杆与电源连接组成回路例3.解析〔1〕在S 刚闭合的瞬间,导线ab 速度为零,没有电磁感应现象,由a 到b 的电流A rR EI 5.10=+=,ab 受安培力水平向右,此时瞬时加速度乙 甲F2222l CB m mghah v +==2000/6s m mL BI m F a ===ab 运动起来且将发生电磁感应现象.ab 向右运动的速度为υ时,感应电动势Blv E =',根据右手定那么,ab 上的感应电动势〔a 端电势比b 端高〕在闭合电路中与电池电动势相反.电路中的电流〔顺时针方向,rR E E I +-='〕将减小〔小于I 0=1.5A 〕,ab 所受的向右的安培力随之减小,加速度也减小.尽管加速度减小,速度还是在增大,感应电动势E 随速度的增大而增大,电路中电流进一步减小,安培力、加速度也随之进一步减小,当感应电动势'E 与电池电动势E 相等时,电路中电流为零,ab 所受安培力、加速度也为零,这时ab 的速度到达最大值,随后那么以最大速度继续向右做匀速运动.设最终到达的最大速度为υm ,根据上述分析可知:0m E Bl υ-=所以 1.50.80.5m E Bl υ==⨯m/s=3.75m/s . 〔2〕如果ab 以恒定速度7.5υ=m/s 向右沿导轨运动,那么ab 中感应电动势5.75.08.0'⨯⨯==Blv E V=3V由于'E >E ,这时闭合电路中电流方向为逆时针方向,大小为:2.08.05.13''+-=+-=r R E E I A=1.5A直导线ab 中的电流由b 到a ,根据左手定那么,磁场对ab 有水平向左的安培力作用,大小为5.15.08.0''⨯⨯==BlI F N=0.6N所以要使ab 以恒定速度5.7=v m/s 向右运动,必须有水平向右的恒力6.0=F N 作用于ab . 上述物理过程的能量转化情况,可以概括为以下三点: ①作用于ab 的恒力〔F 〕的功率:5.76.0⨯==Fv P W=4.5W②电阻〔R +r 〕产生焦耳热的功率:)2.08.0(5.1)(22'+⨯=+=r R I P W=2.25W③逆时针方向的电流'I ,从电池的正极流入,负极流出,电池处于“充电〞状态,吸收能量,以化学能的形式储存起来.电池吸收能量的功率:''1.5 1.5P I E ==⨯W=2.25W由上看出,'''P P P +=,符合能量转化和守恒定律〔沿水平面匀速运动机械能不变〕. 二、双杆问题:1、双杆所在轨道宽度一样——常用动量守恒求稳定速度例4.解析:ab 棒向cd 棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流.ab 棒受到与运动方向相反的安培力作用作减速运动,cd 棒那么在安培力作用下作加速运动.在ab 棒的速度大于cd 棒的速度时,回路总有感应电流,ab 棒继续减速,cd 棒继续加速.两棒速度到达一样后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以一样的速度v 作匀速运动.〔1〕从初始至两棒到达速度一样的过程中,两棒总动量守恒,有mv mv 20=根据能量守恒,整个过程中产生的总热量2022041)2(2121mv v m mv Q =-=〔2〕设ab 棒的速度变为初速度的3/4时,cd 棒的速度为v 1,那么由动量守恒可知:10043mv v m mv +=。

相关文档
最新文档