电磁感应双棒问题
电磁感应双杆问题含电容器问题
电磁感应双杆问题+含电容器电路1、“双杆”在等宽导轨上向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。
2.“双杆”在等宽导轨上同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时,相当于两个电池反向串联。
3. “双杆”中两杆在等宽导轨上做同方向上的加速运动。
“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。
4.“双杆”在不等宽导轨上同向运动。
“双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。
典型例题1. 如图所示,间距为l、电阻不计的两根平行金属导轨MN、PQ(足够长)被固定在同一水平面内,质量均为m、电阻均为R的两根相同导体棒a、b垂直于导轨放在导轨上,一根轻绳绕过定滑轮后沿两金属导轨的中线与a棒连接,其下端悬挂一个质量为M的物体C,整个装置放在方向竖直向上、磁感应强度大小为B的匀强磁场中。
开始时使a、b、C都处于静止状态,现释放C,经过时间t,C的速度为v1、b的速度为v2。
不计一切摩擦,两棒始终与导轨接触良好,重力加速度为g,求:(1)t时刻C的加速度值;(2)t时刻a、b与导轨所组成的闭合回路消耗的总电功率。
模型:导体棒等效为发电机和电动机,发电机相当于闭合回路中的电源,电动机相当于闭合回路中的用电元件2. (2003年全国理综卷)两根平行的金属导轨,固定在同一水平面上,磁感强度B=0.05T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计.导轨间的距离l=0.20 m.两根质量均为m=0.10 kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω.在t=0时刻,两杆都处于静止状态.现有一与导轨平行、大小为0.20 N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动.经过t=5.0s,金属杆甲的加速度为a=1.37 m/s2,问此时两金属杆的速度各为多少?3. 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。
电磁感应的双棒问题(陈乐辉)
陈乐辉
clh542@
江西省吉安县立中学
高三物理备课组
规律 杆 MN 做变减速运动, 杆 稳定时, 两杆的加 PQ 做变加速运动,稳定 分析 速度为零, 两杆的 时,两杆的加速度为零, 速度之比为 1:2 以相等的速度匀速运动
陈乐辉
clh542@
江西省吉安县立中学
高三物理备课组
B N
c b
clh542@
陈乐辉
江西省吉安县立中学
高三物理备课组
解析: (1)刚开始运动时回路中的感应电流为:
Blv0 E 1 0.5 10 I 2.5 A Rb Rc Rb Rc 11
刚开始运动时C棒的加速度最大:
BIl 1 2.5 0.5 a 12.5 m 2 s mc 0.1 B
江西省吉安县立中学
高三物理备课组
陈乐辉
clh542@
江西省吉安县立中学
高三物理备课组
两根导体在导轨上滑动
初速度不为零,不受其他水平外力作用 光滑平行导轨 光滑不等距导轨
示意 图
质量 m1=m2, 电阻 r1=r2 长度 L1=L2
质量 m1=m2, 电阻 r1=r2, 长度 L1=2L2.
a c L1 b
陈乐辉 clh542@
B
L2 d
F
江西省吉安县立中学
高三物理备课组
解:(1)设刚进入稳定状态时ab棒速度为v1,加速度 为a2,cd棒的速度为v2,加速度为a2,则 a
vab v1 a1t, vcd v2 a2t
BL[( v2 4v1 ) (a 2 4a1 )t ] E I 5R 5R
陈乐辉
clh542@
江西省吉安县立中学
电磁感应双杆问题
电磁感应双杆问题(排除动量范畴)1.导轨间距相等例3. (04广东)如图所示,在水平面上有两条平行导电导轨MN 、PQ ,导轨间距离为l 。
匀强磁场垂直于导轨所在平面(纸面)向里,磁感应强度的大小为B 。
两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为1m 、2m 和1R 、2R ,两杆与导轨接触良好,与导轨间的动摩擦因数为μ。
已知:杆1被外力拖动,以恒定的速度0υ沿导轨运动,达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略。
求此时杆2克服摩擦力做功的功率。
解法1:设杆2的运动速度为v ,由于两杆运动时,两杆间和导轨构成的回路中的磁通量发生变化,产生感应电动势 )(0v v Bl E -= ①感应电流 21R R EI += ②杆2作匀速运动,它受到的安培力等于它受到的摩擦力,g m BlI 2μ= ③ 导体杆2克服摩擦力做功的功率 gv m P 2μ= ④ 解得 )]([2122202R R lB gm v g m P +-=μμ ⑤解法2:以F 表示拖动杆1的外力,以I 表示由杆1、杆2和导轨构成的回路中的电流,达到稳定时,对杆1有 01=--BIl g m F μ ①对杆2有 02=-g m BIl μ ② 外力F 的功率 0Fv P F = ③以P 表示杆2克服摩擦力做功的功率,则有01212)(gv m R R I P P F μ-+-= ④ 由以上各式得 )]([212202R R l B g m v g m P g +-=μμ ⑤2. 导轨间距不等例4. (04全国)如图所示中1111d c b a 和2222d c b a 为在同一竖直平面内的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。
导轨的11b a 段与22b a 段是竖直的,距离为1l ;11d c 段与22d c 段也是竖直的,距离为2l 。
11y x 和22y x 为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为1m 和2m ,它们都垂直于导轨并与导轨保持光滑接触。
(完整版)电磁感应中双杆模型问题答案
电磁感应中双杆模型问题一、 在竖直导轨 上的“双杆滑动”问题1.等间距型如图 1 所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒 导轨紧密接触且可自由滑动,先固定 a ,释放 b ,当 b 速度达到 10m/s 时,再释放 a ,经 1s 时间 a的速度达到 12m/s ,则:A 、 当 va=12m/s 时, vb=18m/sB 、当 va=12m/s 时, vb=22m/sC 、若导轨很长,它们最终速度必相同D 、它们最终速度不相同,但速度差恒定【解析】因先释放 b ,后释放 a ,所以 a 、b 一开始速度是不相等的,而且 b 的速度要大于 a 的速度, 轨所围的线框面积增大,使穿过这个线圈的磁通量发生变化,使线圈中有感应电流产生,利用楞次定律和安培定则判 断所围线框中的感应电流的方向如图所示。
再用左手定则判断两杆所受的安培力, 对两杆进行受力分析如图 1。
开始两 者的速度都增大,因安培力作用使 a 的速度增大的快, b 的速度增大的慢,线圈所围的面积越来越小,在线圈中产生了 感应电流;当二者的速度相等时,没有感应电流产生,此时的安培力也为零,所以最终它们以相同的速度都在重力作 用下向下做加速度为 g 的匀加速直线运动。
在释放 a 后的 1s 内对 a 、b 使用动量定理,这里安培力是个变力,但两杆所受安培力总是大小相等、方向相反的, 设在 1s 内它的冲量大小都为 I ,选向下的方向为正方向。
当 棒先向下运动时, 在 和 以及导轨所组成的闭合回路中产生感应电流, 于是 棒受到向下的安培力, 棒受到向 上的安培力,且二者大小相等。
释放 棒后,经过时间 t ,分别以 和 为研究对象,根据动量定理,则有:对 a 有: ( mg + I ) t ·= m v a0,对 b 有: ( mg - I ) t · = m v b - m v b0 联立二式解得: v b = 18 m/s ,正确答案为: A 、 C 。
磁场中的双棒问题研究
电磁感应现象中的“双棒”问题研究黄陂一中 姜付锦“双棒”是电磁感应现象中的一个很重要的模型,因为这个模型所涉及的物理知识有动量、能量、牛顿运动学等高中力学中的主干知识。
笔者试着对这个模型进行了如下的分析与归纳,有不当的地方请各位同仁批评指正。
一、分类1.按棒的长度可分为两类:等宽与不等宽(即一长一短) 2.按启动方式可分为三类:冲量型、恒定外力型、恒定功率型 3.按棒所处轨道的位置可分为三类:水平类、倾斜类、竖直类4.按棒稳定后的状态可分为三类:静止类、匀速直线运动类、匀加速直线运动类 二、规律(仅讨论水平导轨,且导棒的材料相同) 1.等长“双棒”两棒质量均为m ,长度均为L ,电阻均为R ,两间距足够大,所处磁场的磁感应强度为B(1)导轨光滑①冲量型:给棒1一个水平向右的速度0v ,则最终稳定后两棒均匀速直线运动,且速度均为122v v v ==,系统的动量守恒,动能损失204k mv E Q ==,两棒从相对运动到相对静止,相对滑动的距离为022mv s B L =。
v t -图象如下: 01020304050607080900.51V1i V2it i②恒定外力型:对棒1施加一个恒定外力F ,则最终稳定后,两棒均作匀加速直线运动,且两棒的加速度相等2F a m =,两棒的速度之差为一定值1222FRv v v B L=-=,两棒速度之和与时间成正比12Fv v t m+=。
v t -图象如下: 0102030405060708090204060V1i V2it i2 1③恒定功率型:以恒定功率作用在棒1上,则最终两棒的速度趋于无穷大,而两棒的速度差将趋于零,此时对应的外力为无穷小(零),v t -图象如下010203040506070102030V1i V2it i(2)导轨粗糙①冲量型:给棒1初速度0v ,则两棒的运动类型有如下三种情况:10当2202B L v mg Rμ≤时,则只有棒1运动,最终速度减小为零,棒2始终不动,v t -图象如下: 02468101250100V1it i20当2202B L v mg Rμ>时,两棒一起运动,棒2先不动后加速最后减速,棒1一直减速运动,最后均静止。
电磁感应中的单棒、双棒切割问题
开始时,,杆加速,杆运动,产生反电动势,杆运动,电容器充电,杆受安培力,速度减小,电能转化为热能和动做功带来的能量转化为杆杆的动能一部分转化为电势能,一部分转化为内能,一部分耗散.外力和安培力冲17/04/04
F B L =|BLv −E |BLv −Q C 能的转化与守恒是自然界普遍存在的规律,如:电源给电容器的充电过程可以等效为将电荷逐个从原本
开始时,两杆做变加速运
两杆做变加速运动,稳定后两杆做对于直线运动,教科书中讲解了由图像求位移的方法.请你借鉴此方法,根据图示的图像,若电容器电容为,两极板间电压为,求电容器所储存的电场能.
1v −t Q −U
C U 如图所示,平行金属框架竖直放置在绝缘地面上.框架上端接有一电容为的电容器.框架上一
质量为、长为的金属棒平行于地面放置,离地面的高度为.磁感应强度为的匀强磁场与框架平面相垂直.现将金属棒由静止开始释放,金属棒下滑过程中与框架接触良好且无摩擦.开始时电容器不带电,不计各处电阻.求:
.金属棒落地时的速度大小;
.金属棒从静止释放到落到地面的时间.
2C m L h B a b 如图,与水平地面成.和是置于导轨上
,其余电阻可忽略不计.整个装置处在CD EF
金属棒所能达到的最大速度;
1EF v m 在整个过程中,金属棒产生的热量.
2EF Q 光滑的平行金属导轨如图所示,轨道的水平部分位于竖直向上的匀强磁场中,部分的宽度为部分
宽度的倍,、部分轨道足够长,将质量都为的金属棒和分别置于轨道上的段和段,棒位于距水平轨道高为的地方,放开棒,使其自由下滑,求棒和棒的最终速度及回路中所产生的电能.4bcd bc cd 2bc cd m P Q ab cd P h P P Q。
电磁感应单双棒问题PPT课件
.
问电 题磁
单棒问题
感 应 受力情况分析 动力学观点
中 的 运动情况分析 能量观点
导
轨 双棒问题
牛顿定律 平衡条件
动能定理 能量守恒
.
一、单棒问题
基本模型 运动特点 最终特征
阻尼式 电动式
v0 a逐渐减小 静止 的减速运动 I=0
a逐渐减小 匀速 的加速运动 I=0 (或恒定)
发电式
F a逐渐减小 匀速 的加速运动 I 恒定
.
二、无外力双棒问题
基本模型 运动特点 最终特征
无外力 等距式
1
杆1做a渐小 v0 的加速运动
v1=v2
2
杆2做a渐小 I=0 的减速运动
无外力 不等距式
v0
2
1
杆1做a渐小 的减速运动
杆2做a渐小 的加速运动
.
a=0 I=0
L1v1=L2v2
三、有外力双棒问题
.
特点分析:
1.电路特点 导体棒相当于电源,当速度
FB R
r
F
为v时,电动势E=Blv
f
2.安培力的特点
FB
BIl
B
Blv l Rr
=
B 2l2v Rr
v
安培力为阻力,并随速度增大而增大
3.加速度特点
v
a FFB mg F B2l2v g vm
m
m m(Rr)
加速度随速度增大而减小
4.运动特点 a减小的加速. 运动
K Vm =8m/s V终 = 2m/s
F
a
若从金属导体ab从静止下落到接通电 键K的时间间隔为t,ab棒以后的运动 情况有几种可能?试用v-t图象描述。
电磁感应中的双棒运动问题高中物理专题
第9课时电磁感应中的双棒运动问题一、分析要点:1、分析每个棒的受力,棒运动时安培力F :R vL B BIL F 22,F 与速度有关;2、分析清楚每个棒的运动状态→服从规律(牛顿定律、能量观点、动量观点); 3、找出两棒之间的受力关系、速度关系、加速度关系、能量关系等。
二、例题分析:1、两棒一静一动:【例1】如图所示,两根足够长的光滑金属导轨MN 、PQ 间距为l=0.5m ,其电阻不计,两导轨及其构成的平面均与水平面成30°角。
完全相同的两金属棒ab 、cd 分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg ,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B=0.2T ,棒ab 在平行于导轨向上的力F 作用下,沿导轨向上匀速运动,而棒cd 恰好能保持静止。
取g=10m/s 2,问:(1)通过cd 棒的电流I 是多少,方向如何?(2)棒ab 受到的力F 多大?(3)棒cd 每产生Q=0.1J 的热量,力F 做的功W 是多少?2、两棒不受力都运动:满足动量守恒,分析最终状态:【例2】如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为L ,导轨上平行放置两根导体棒ab 和cd ,构成矩形回路。
已知两根导体棒的质量均为m 、电阻均为R ,其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B ,导体棒均可沿导轨无摩擦的滑行。
开始时,导体棒cd 静止、ab 有水平向右的初速度v 0,两导体棒在运动中始终不接触。
求:(1)开始时,导体棒ab 中电流的大小和方向?(2)cd 最大加速度?(3)棒cd 的最大速度?(4)在运动过程中产生的焦耳热?(5)棒cd 产生的热量?(6)当ab 棒速度变为43v 0时,cd 棒加速度的大小?(7)两棒距离减小的最大值?3、一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。
电磁感应中的双棒问题
长兴金陵高中高三物理备课组 主备人:唐梦健1电磁感应中的“双棒”问题一:一静一动例1:如图所示,两条间距l =1m 的光滑金属导轨制成倾角37°的斜面和水平面,上端用阻值为R =4Ω的电阻连接。
在斜面导轨区域和水平导轨区域内分别有垂直于斜面和水平面的匀强磁场B 1 和B 2,且B 1 =B 2=0.5T 。
ab 和cd 是质量均为m =0.1kg ,电阻均为r =4Ω的两根金属棒,ab 置于斜面导轨上,cd 置于水平导轨上,均与导轨垂直且接触良好。
已知t =0时刻起,cd 棒在外力作用下开始水平向右运动(cd 棒始终在水平导轨上运动),ab 棒受到F =0.6-0.2t (N )沿斜面向上的力作用,处于静止状态。
不计导轨的电阻,试求:(1)流过ab 棒的电流强度I ab 随时间t 变化的函数关系;(2)分析并说明cd 棒在磁场B 2中做何种运动;(3)若t =0时刻起,1.2s 内作用在cd 棒上外力做功为W =16J ,则这段时间内电阻R 上产生的焦耳热Q R 多大?二、两根都动例2、如图所示,两固定的竖直光滑金属导轨足够长且电阻不计.两质量、长度均相同的导体棒c 、d ,置于边界水平的匀强磁场上方同一高度h 处.磁场宽为3h ,方向与导轨平面垂直.先由静止释放c ,c 刚进入磁场即匀速运动,此时再由静止释放d ,两导体棒与导轨始终保持良好接触.用a c 表示c 的加速度,E kd 表示d 的动能,x c 、x d 分别表示c 、d 相对释放点的位移.下图中正确的是( )例3.相距L =1.5 m 的足够长金属导轨竖直放置,质量为m 1=1 kg 的金属棒ab 和质量m 2=0.27 kg 的金属棒cd 均通过棒两端的套环水平地套在金属导轨上,如图(a)所示,虚线上方磁场方向垂直纸面向里,虚线下方磁场方向竖直向下,两处磁场磁感应强度大小相同.ab 棒光滑,cd 棒与导轨间动摩擦因数为μ=0.75,两棒总电阻为1.8 Ω,导轨电阻不计.ab 棒在方向竖直向上、大小按图(b)所示规律变化的外力F 作用下,从静止开始,沿导轨匀加速运动,同时cd棒也由静止释放.(g =10 m/s 2)(1)求出磁感应强度B 的大小和ab 棒加速度的大小;(2)已知在2 s 内外力F 做功40 J ,求这一过程中两金属棒产生的总焦耳热; (3)求出cd 棒达到最大速度所需的时间t 0,并在图(c)中定性画出cd 棒所受摩擦力f cd 随时间变化的图线.课后作业1、如图(a )所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上。
高考物理专题复习-电磁感应现象中的“双棒”问题研究
高考物理专题复习-电磁感应现象中的“双棒”问题研究“双棒”是电磁感应现象中的一个很重要的模型,因为这个模型所涉及的物理知识有动量、能量、牛顿运动学等高中力学中的主干知识。
笔者试着对这个模型进行了如下的分析与归纳,有不当的地方请各位同仁批评指正。
一、分类1.按棒的长度可分为两类:等宽与不等宽(即一长一短)2.按启动方式可分为三类:冲量型、恒定外力型、恒定功率型3.按棒所处轨道的位置可分为三类:水平类、倾斜类、竖直类4.按棒稳定后的状态可分为三类:静止类、匀速直线运动类、匀加速直线运动类二、规律(仅讨论水平导轨,且导棒的材料相同) 1.等长“双棒”两棒质量均为m ,长度均为L ,电阻均为R ,两间距足够大,所处磁场的磁感应强度为B(1)导轨光滑①冲量型:给棒1一个水平向右的速度0v ,则最终稳定后两棒均匀速直线运动,且速度均为0122v v v ==,系统的动量守恒,动能损失204k mv E Q ==,两棒从相对运动到相对静止,相对滑动的距离为022mv s B L =。
v t -图象如下: 010203040506070809000.51V1iV2i t i②恒定外力型:对棒1施加一个恒定外力F ,则最终稳定后,两棒均作匀加速直线运动,且两棒的加速度相等2F a m =,两棒的速度之差为一定值1222FR v v v B L =-=,两棒速度之和与时间成正比12F v v t m+=。
v t -图象如下: 0102030405060708090204060V1iV2i t i21③恒定功率型:以恒定功率作用在棒1上,则最终两棒的速度趋于无穷大,而两棒的速度差将趋于零,此时对应的外力为无穷小(零),v t -图象如下 0102030405060700102030V1iV2i t i(2)导轨粗糙①冲量型:给棒1初速度0v ,则两棒的运动类型有如下三种情况:10当2202B L v mg R μ≤时,则只有棒1运动,最终速度减小为零,棒2始终不动,v t -图象如下:02468101250100V1i t i 20当2202B L v mg Rμ>时,两棒一起运动,棒2先不动后加速最后减速,棒1一直减速运动,最后均静止。
电磁感应中的双棒运动问题高中物理专题
第9课时 电磁感应中的双棒运动问题一、分析要点:1、分析每个棒的受力,棒运动时安培力F :R v L B BIL F 22==,F 与速度有关;2、分析清楚每个棒的运动状态 → 服从规律(牛顿定律、能量观点、动量观点);3、找出两棒之间的受力关系、速度关系、加速度关系、能量关系等。
二、例题分析:1、两棒一静一动:【例1】如图所示,两根足够长的光滑金属导轨MN 、PQ 间距为l =0.5m ,其电阻不计,两导轨及其构成的平面均与水平面成30°角。
完全相同的两金属棒ab 、cd 分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg ,电阻均为R =0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B =0.2T ,棒ab 在平行于导轨向上的力F 作用下,沿导轨向上匀速运动,而棒cd 恰好能保持静止。
取g =10m/s 2,问:(1)通过cd 棒的电流I 是多少,方向如何?(2)棒ab 受到的力F 多大?(3)棒cd 每产生Q =0.1J 的热量,力F 做的功W 是多少?2、两棒不受力都运动:满足动量守恒,分析最终状态:【例2】如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为L ,导轨上平行放置两根导体棒ab 和cd ,构成矩形回路。
已知两根导体棒的质量均为m 、电阻均为R ,其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B ,导体棒均可沿导轨无摩擦的滑行。
开始时,导体棒cd 静止、ab 有水平向右的初速度v 0,两导体棒在运动中始终不接触。
求:(1)开始时,导体棒ab 中电流的大小和方向?(2)cd 最大加速度?(3)棒cd 的最大速度?(4)在运动过程中产生的焦耳热?(5)棒cd 产生的热量?(6)当ab 棒速度变为43v 0时,cd 棒加速度的大小?(7)两棒距离减小的最大值?3、一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加 速度做匀加速直线运动。
专题65 电磁感应中的双棒问题(解析版)
2023届高三物理一轮复习多维度导学与分层专练专题65 电磁感应中的双棒问题导练目标导练内容目标1无外力等距式双棒问题目标2有外力等距式双棒问题目标3无外力不等距式双棒问题目标4有外力不等距式双棒问题模型规律无外力等距式(导轨光滑)1、电流大小:21211212Blv Blv Bl(v v)IR R R R--==++2、稳定条件:两棒达到共同速度3、动量关系:2012()m v m m v=+4、能量关系:2122211m v(m m)v Q22=+共+;1122Q RQ R=有外力等距式(导轨光滑)1、电流大小:1221Blv BlvIR R-=+2、力学关系:11AFam=;22AF Fam-=。
(任意时刻两棒加速度)3、稳定条件:当a2=a1时,v2-v1恒定;I恒定;F A恒定;两棒匀加速。
4、稳定时的物理关系: 12F (m m )a =+;1A F m a =;2112A Bl(v v )F BIlB lR R -==+;121212212(R R )m F v v B l (m m )+-=+无外力不等距式 (导轨光滑)1、动量关系:11110BL I t m v m v -∆=-;2220BL I t m v -∆=-2、稳定条件:1122BL v BL v =3、最终速度:21222122110m L v v m L m L =+;12122122120m L L v v m L m L =+4、能量关系:222101122111222Q m v m v m v =-- 5、电量关系:2202BL q m v =-有外力不等距式 (导轨光滑)F 为恒力,则:1、稳定条件:1122l a l a =,I 恒定,两棒做匀加速直线运动 2、常用关系:111A F F a m -=;222A F a m =;1122l a l a =;1122A A F l F l =3、常用结果:2121221221A l m F F l m l m =+;1222221221A l l m F F l m l m =+; 221221221l a F l m l m =+; 122221221l l a F l m l m =+; 此时回路中电流为:12221221l m F I l m l m B=⋅+与两棒电阻无关一、无外力等距式双棒问题【例1】如图,水平面内固定有两根平行的光滑长直金属导轨,导轨间距为l ,电阻不计。
电磁感应力电综合——双棒问题(答案)
电磁感应力电综合——双棒问题(参考答案)一、选择题1. 【答案】BCD【解析】根据题意可知,两棒组成回路,电流大小相同,故所受安培力等大反向,两棒组成的系统动量守恒,故任何一段时间内,导体棒b 动量改变量跟导体棒a 动量改变量总是大小相等、方向相反,根据能量守恒定律可知,a 动能减少量的数值等于b 动能增加量与系统产生的焦耳热之和,故A 错误,B 正确;对系统由动量守恒定律有2mv 0=(2m +m )v ,对b 棒由动量定理有mv -0=B I -l ·t =Blq ,解得q =2mv 03Bl,根据能量守恒定律,两棒共产生的焦耳热为Q =12×2mv 20-12(2m +m )v 2=mv 203,故C 、D 正确。
2. 【答案】D 。
【解析】解:A 、根据右手定则知:回路中产生沿NMPQM 的感应电流,根据左手定则可知,MN 棒受到的安培力水平向右,PQ 棒受到的安培力也水平向右,且通过两棒的安培力大小相等,所以,两棒受到的安培力冲量大小相等,方向相同,故A 错误;B 、当两棒产生的感应电动势大小相等,相互抵消,回路中感应电流为零时,两棒均做匀速运动,达到稳定状态,设最终MN 棒和PQ 棒的速度大小分别为1v 和2v 。
稳定时,有:12BLv BLv = 得:12v v =对PQ 棒,根据动量定理得:20I mv =-对MN 棒,根据动量定理得:10I mv mv -=-解得:0122vv v ==,1v 水平向左,2v 水平向右,方向相反,故B 错误;C 、设MN 棒产生的焦耳热为Q ,则PQ 棒产生的焦耳热也为Q ,根据能量守恒定律得;2220121112()222Q mv mv mv =-+解得208mv Q =,故C 错误;D 、对PQ 棒,根据动量定理得:20BIL t mv =-通过PQ 棒某一横截面的电荷量为q It =,可得02mv q BL=,故D 正确。
高三物理辨析电磁感应现象中的双金属棒问题
辨析电磁感应现象中的双金属棒问题电磁感应现象中的双金属棒问题一般可以分为四种情况,具体分析如下。
一、两棒都只在安培力作用下运动的双金属棒问题。
例1.两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。
导轨上面横放着两根导体棒a 和b ,构成矩形回路,如图1所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒b 静止,棒a 有指向棒b 的初速度v0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当a 棒的速度变为初速度的3/4时,b 棒的加速度是多少?分析:(1)a 、b 两棒产生电动势和受力情况如图2所示。
a 、b 两棒分别在安培力作用下做变减速运动和变加速运动,最终达到共同速度,开始匀速运动。
由于安培力是变化的,故不能用功能关系求焦耳热;由于电流是变化的,故也不能用焦耳定律求解。
在从初始至两棒达到速度相同的过程中,由于两棒所受安培力等大反向,故总动量守恒,有mv mv 20=根据能量守恒,整个过程中产生的总热量2022041)2(2121mv v m mv Q =-=(2)设a 棒的速度变为初速度的3/4时,b 棒的速度为v1,则由动量守恒可知10043mv v m mv +=由于两棒产生的感应电动势方向相同,所以回路中的感应电动势1043BLv v BL E -=,感应电流为 R E I 2=此时棒所受的安培力 IBL F =,所以b 棒的加速度为 m F a =由以上各式,可得 m R v L B a 4022=二、两棒除受安培力外,还受拉力F 作用的双金属棒问题。
例2.如图3所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T 的匀强磁场与导轨所在平面垂直,导轨电阻忽略不计,导轨间的距离L=0.20m 。
电磁感应中双棒问题
最终两棒具有共同速度
t
4.两个规律
(1)动量规律 两棒受到安培力大小相等方向相反, 1 系统合外力为零,系统动量守恒.
2
v0
m2v0 ( m1 m2 )v共
(2)能量转化规律 系统机械能的减小量等于内能的增加量. (类似于完全非弹性碰撞)
1 1 2 2 m2 v0 ( m1 m2 )v共 +Q 2 2 Q1 R1 两棒产生焦耳热之比: Q2 R2
1 v 3
gR
(3)系统释放热量应等于系统机械能 减少量,故有: (3)系统释放热量应 等于系统机械能减少量 1 2 ,故有: 1 2
Q mv 3mv 2 2
解得
1 Q mgR 3
解析: (1)刚开始运动时回路中的感应电流为:
Blv0 E 1 0.5 10 I 2.5 A Rb Rc Rb Rc 11
刚开始运动时C棒的加速度最大:
BIl 1 2.5 0.5 a 12.5 m 2 s mc 0.1 B
N M c b
(2)在磁场力的作用下,b棒做减速运动,当两棒速 度相等时,c棒达到最大速度。取两棒为研究对象, 根据动量守恒定律有:
M c
b
等距双棒特点分析
1.电路特点 棒2相当于电源;棒1受安培力而加 速起动,运动后产生反电动势. 2.电流特点
v0 1 2
Blv2 Blv1 Bl( v2 v1 ) I R1 R2 R1 R2
随着棒2的减速、棒1的加速,两棒的相对速 度v2-v1变小,回路中电流也变小。 两 个 极 值
mbv0 (mb mc )v
解得c棒的最大速度为:
mb 1 v v0 v0 5 m s mb mc 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应双棒问题
1. 如图所示,两根平行的光滑金属导轨MN、PQ放在水平面上,左端向上弯曲,导轨间距为L,电阻不计。
水平段导轨所处空间存在方向竖直向上的匀强磁场,磁感应强度为B。
导体棒a与b的质量均为m,电阻值分别为R a=R,R b=2R。
b棒放置在水平导轨上足够远处,a棒在弧形导轨上距水平面h高度处由静止释放。
运动过程中导体棒与导轨接触良好且始终与导轨垂直,重力加速度为g。
(1)求a棒刚进入磁场时受到的安培力的大小和方向;
(2)求最终稳定时两棒的速度大小;
(3)从a棒开始下落到最终稳定的过程中,求b棒上产生的内能。
2.如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。
ab、cd是质量均为m的金属棒,现让ab从离水平轨道h高处由静止下滑,设导轨足够长。
试求:
(1)ab、cd棒的最终速度。
(2)全过程中感应电流产生的焦耳热。