2019高考数学不等式:基本不等式
高考数学复习专题 基本不等式 (文 精讲)
专题7.3 基本不等式【核心素养分析】1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题. 【知识梳理】知识点一 基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 知识点二 几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +ab ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b22(a ,b ∈R); (5)2ab a +b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0). 知识点三 算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.知识点四 利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大). 【特别提醒】1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.2.连续使用基本不等式时,牢记等号要同时成立. 【典例剖析】 高频考点一 利用基本不等式求最值【例1】【2020·江苏卷】已知22451(,)x y y x y +=∈R ,则22x y +的最小值是 ▲ .【举一反三】(2020·江苏省南京模拟)函数y =x 2+2x -1(x >1)的最小值为________【方法技巧】利用基本不等式解决条件最值的关键是构造和为定值或积为定值,主要有三种思路: (1)对条件使用基本不等式直接求解.(直接法)(2)针对待求最值的式子,通过拆项(添项)、分离常数、变系数、凑因子等方法配凑出和或积为常数的两项,然后用基本不等式求解.(配凑法)(3)已知条件中有值为1的式子,把待求最值的式子和值为1的式子相乘,再用基本不等式求解.(常数代换法)【变式探究】(2019·天津卷)设x >0,y >0,x +2y =4,则(x +1)(2y +1)xy 的最小值为 .【变式探究】(2020·辽宁省葫芦岛模拟)已知a >0,b >0,且2a +b =ab -1,则a +2b 的最小值为( ) A .5+2 6B .8 2C .5D .9高频考点二 利用基本不等式解决实际问题【例2】【2019·北京卷】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.,,,,,,,,【方法技巧】利用基本不等式解决实际问题的三个注意点 (1)设变量时,一般要把求最大值或最小值的变量定义为函数. (2)解应用题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.【变式探究】(2020·山西省大同模拟)经测算,某型号汽车在匀速行驶过程中每小时耗油量y (L)与速度x (km /h )(50≤x ≤120)的关系可近似表示为y =⎩⎨⎧175(x 2-130x +4 900),x ∈[50,80),12-x60,x ∈[80,120].(1)该型号汽车的速度为多少时,可使得每小时耗油量最少?(2)已知A ,B 两地相距120 km ,假定该型号汽车匀速从A 地驶向B 地,则汽车速度为多少时总耗油量最少?专题7.3 基本不等式【核心素养分析】1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题. 【知识梳理】知识点一 基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 知识点二 几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +ab ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b22(a ,b ∈R); (5)2ab a +b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0). 知识点三 算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.知识点四 利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大). 【特别提醒】1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.2.连续使用基本不等式时,牢记等号要同时成立. 【典例剖析】高频考点一 利用基本不等式求最值【例1】【2020·江苏卷】已知22451(,)x y y x y +=∈R ,则22x y +的最小值是 ▲ . 【答案】45【解析】∵22451x y y +=∴0y ≠且42215y x y -=∴422222222114144+2555555y y y x y y y y y-+=+=≥⋅=,当且仅当221455y y =,即2231,102x y ==时取等号. ∴22xy +的最小值为45. 【举一反三】(2020·江苏省南京模拟)函数y =x 2+2x -1(x >1)的最小值为________【答案】23+2【解析】∵x >1,∴x -1>0,∴y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2.当且仅当x -1=3x -1,即x =3+1时,等号成立.【方法技巧】利用基本不等式解决条件最值的关键是构造和为定值或积为定值,主要有三种思路: (1)对条件使用基本不等式直接求解.(直接法)(2)针对待求最值的式子,通过拆项(添项)、分离常数、变系数、凑因子等方法配凑出和或积为常数的两项,然后用基本不等式求解.(配凑法)(3)已知条件中有值为1的式子,把待求最值的式子和值为1的式子相乘,再用基本不等式求解.(常数代换法)【变式探究】(2019·天津卷)设x >0,y >0,x +2y =4,则(x +1)(2y +1)xy 的最小值为 .【答案】92【解析】(x +1)(2y +1)xy =2xy +x +2y +1xy =2xy +5xy =2+5xy ,∵x >0,y >0且x +2y =4, ∴4=x +2y ≥22xy ,∴xy ≤2,∴1xy ≥12,∴2+5xy ≥2+52=92.【变式探究】(2020·辽宁省葫芦岛模拟)已知a >0,b >0,且2a +b =ab -1,则a +2b 的最小值为( ) A .5+2 6 B .8 2 C .5 D .9【答案】A【答案】∵a >0,b >0,且2a +b =ab -1, ∴a =b +1b -2>0,∴b >2,∴a +2b =b +1b -2+2b =2(b -2)+3b -2+5≥5+22(b -2)·3b -2=5+2 6.当且仅当2(b -2)=3b -2,即b =2+62时取等号.∴a +2b 的最小值为5+26,故选A 。
高考数学一轮复习统考 第7章 不等式 第4讲 基本不等式学案(含解析)北师大版-北师大版高三全册数学
第4讲 基本不等式基础知识整合1.重要不等式a 2+b 2≥012ab (a ,b ∈R )(当且仅当02a =b 时等号成立).2.基本不等式ab ≤a +b2(1)基本不等式成立的条件:03a >0,b >0;(2)等号成立的条件:当且仅当04a =b 时等号成立; (3)其中a +b2叫做正数a ,b 的05算术平均数,ab 叫做正数a ,b 的06几何平均数.3.利用基本不等式求最大、最小值问题 (1)如果x ,y ∈(0,+∞),且xy =P (定值),那么当07x =y 时,x +y 有08最小值2P .(简记:“积定和最小”) (2)如果x ,y ∈(0,+∞),且x +y =S (定值),那么当09x =y 时,xy 有10最大值S 24.(简记:“和定积最大”)1.常用的几个重要不等式 (1)a +b ≥2ab (a >0,b >0); (2)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R );(3)⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22(a ,b ∈R ); (4)b a +a b≥2(a ,b 同号).以上不等式等号成立的条件均为a =b . 2.利用基本不等式求最值的两个常用结论(1)已知a ,b ,x ,y ∈R +,若ax +by =1,则有1x +1y=(ax +by )·⎝ ⎛⎭⎪⎫1x +1y =a +b +by x +ax y≥a +b +2ab =(a +b )2.(2)已知a ,b ,x ,y ∈R +,若a x +b y=1,则有x +y =(x +y )·⎝ ⎛⎭⎪⎫a x +b y =a +b +ay x +bx y≥a+b +2ab =(a +b )2.1.已知a ,b ∈R +,且a +b =1,则ab 的最大值为( ) A .1 B.14 C.12 D.22答案 B解析 ∵a ,b ∈R +,∴1=a +b ≥2ab ,∴ab ≤14,当且仅当a =b =12时等号成立,即ab的最大值为14.故选B.2.已知a ,b ∈(0,1)且a ≠b ,下列各式中最大的是( ) A .a 2+b 2B .2abC .2abD .a +b答案 D解析 ∵a ,b ∈(0,1)且a ≠b ,则显然有a +b >2ab ,a 2+b 2>2ab .下面比较a 2+b 2与a +b 的大小.由于a ,b ∈(0,1),∴a 2<a ,b 2<b ,∴a 2+b 2<a +b .故各式中最大的是a +b .3.下列函数中,最小值为4的是( ) A .y =x +4xB .y =sin x +4sin x(0<x <π)C .y =4e x+e -xD .y =log 3x +log x 3(0<x <1)答案 C解析 A 中x 的定义域为{x |x ∈R ,且x ≠0},函数没有最小值;B 中若y =sin x +4sin x(0<x <π)取得最小值4,则sin 2x =4,显然不成立;D 中由0<x <1,则log 3x ∈(-∞,0),y =log 3x +log x 3=log 3x +1log 3x 没有最小值;C 中y =4e x +e -x =4e x +1e x ≥4,当且仅当4e x =e -x,即x =-ln 2时,函数的最小值为4.故选C.4.(2019·山西晋城模拟)已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( )A.72 B .4C.92 D .5答案 C解析 y =12(a +b )⎝ ⎛⎭⎪⎫1a +4b =12⎝ ⎛⎭⎪⎫5+4a b +b a ≥92⎝ ⎛⎭⎪⎫当且仅当a =23,b =43时等号成立,即1a +4b 的最小值是92.故选C.5.若x ,y 是正数,则⎝ ⎛⎭⎪⎫x +12y 2+⎝ ⎛⎭⎪⎫y +12x 2的最小值是( ) A .3B.72 C .4 D.92答案 C解析 原式=x 2+x y +14y 2+y 2+y x +14x 2≥4.当且仅当x =y =22时取“=”号,即⎝ ⎛⎭⎪⎫x +12y 2+⎝ ⎛⎭⎪⎫y +12x 2的最小值是4. 6.3-aa +6(-6≤a ≤3)的最大值为________.答案 92解析 当a =-6或a =3时,3-aa +6=0;当-6<a <3时,3-a a +6≤3-a +a +62=92, 当且仅当3-a =a +6,即a =-32时取等号.故3-aa +b (-6≤a ≤3)的最大值为92.核心考向突破精准设计考向,多角度探究突破考向一 利用基本不等式求最值 角度1 利用配凑法求最值例1 (1)已知0<x <1,则x (3-3x )取得最大值时x 的值为( ) A.13 B.12 C.34 D.23答案 B解析 ∵0<x <1,∴x ·(3-3x )=13·3x ·(3-3x )≤13⎝ ⎛⎭⎪⎫3x +3-3x 22=34,当且仅当3x =3-3x ,即x =12时,x (3-3x )取得最大值.故选B.(2)设x >0,则函数y =x +22x +1-32的最小值为________.答案 0解析 y =x +22x +1-32=⎝ ⎛⎭⎪⎫x +12+1x +12-2≥2⎝ ⎛⎭⎪⎫x +12·1x +12-2=0,当且仅当x +12=1x +12,即x =12时等号成立.所以函数的最小值为0.通过拼凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形.(2)代数式的变形以拼凑出和或积的定值为目标. (3)拆项、添项应注意检验利用基本不等式的前提.[即时训练] 1.设a ,b 均大于0,a +b =5,则a +1+b +3的最大值为________. 答案 3 2解析 ∵(a +1+b +3)2=a +1+b +3+ 2a +1b +3=9+2a +1b +3,又2a +1b +3≤a +1+b +3=9⎝ ⎛⎭⎪⎫当且仅当a +1=b +3,即a =72,b =32时取“=”, ∴(a +1+b +3)2≤18, ∴a +1+b +3的最大值为3 2.角度2 利用常数代换法求最值 例2 (1)(2019·绵阳诊断)若θ∈⎝ ⎛⎭⎪⎫0,π2,则y =1sin 2θ+9cos 2θ的取值范围为( )A .[6,+∞)B .[10,+∞)C .[12,+∞)D .[16,+∞)答案 D解析 ∵θ∈⎝⎛⎭⎪⎫0,π2,∴sin 2θ,cos 2θ∈(0,1),∴y =1sin 2θ+9cos 2θ=⎝ ⎛⎭⎪⎫1sin 2θ+9cos 2θ(sin 2θ+cos 2θ)=10+cos 2θsin 2θ+9sin 2θcos 2θ≥10+2cos 2θsin 2θ·9sin 2θcos 2θ=16,当且仅当cos 2θsin 2θ=9sin 2θcos 2θ,即θ=π6时等号成立.故选D. (2)已知a +2b =2,且a >1,b >0,则2a -1+1b的最小值为( ) A .4 B .5 C .6 D .8答案 D解析 因为a >1,b >0,且a +2b =2,所以a -1>0,(a -1)+2b =1,所以2a -1+1b=⎝ ⎛⎭⎪⎫2a -1+1b ·[(a -1)+2b ]=4+4b a -1+a -1b ≥4+24b a -1·a -1b =8,当且仅当4b a -1=a -1b,即a =32,b =14时取等号,所以2a -1+1b的最小值是8,故选D.常数代换法求最值的步骤常数代换法适用于求解条件最值问题.运用此种方法求解最值的基本步骤为: (1)根据已知条件或其变形确定定值(常数). (2)把确定的定值(常数)变形为1.(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式. (4)利用基本不等式求解最值.[即时训练] 2.(2020·正定模拟)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________.答案 5解析 由x +3y =5xy ,可得15y +35x=1, 所以3x +4y =(3x +4y )⎝ ⎛⎭⎪⎫15y +35x =95+45+3x 5y +12y 5x ≥135+2 3x 5y ·12y 5x =135+125=5,当且仅当x =1,y =12时取等号,故3x +4y 的最小值是5.角度3 利用消元法求最值例3 (1)(2019·江西上饶联考)已知正数a ,b ,c 满足2a -b +c =0,则acb2的最大值为( )A .8B .2 C.18 D.16答案 C解析 因为a ,b ,c 都是正数,且满足2a -b +c =0,所以b =2a +c ,所以ac b 2=ac 2a +c2=ac 4a 2+4ac +c 2=14a c +ca+4≤124a c ·ca+4=18,当且仅当c =2a >0时等号成立,即acb 2的最大值为18.故选C.(2)已知x >54,则函数y =16x 2-28x +114x -5的最小值为________.答案 5解析 令4x -5=t ,则x =t +54(t >0),∴y =t 2+3t +1t =t +1t +3(t >0),又t +1t≥2(当且仅当t =1时,取“=”),∴y 的最小值为5.通过消元法利用基本不等式求最值的方法消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解.[即时训练] 3.(2019·安徽阜阳模拟)若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b +3ba的最小值为________. 答案 6解析 因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b =1,所以b =aa -1>0,所以a >1,所以a +b +3b a =(a -1)+4a -1+2≥4+2=6,当且仅当a =3时等号成立,所以a +b +3ba 的最小值是6.考向二 求参数值或取值范围例4 (1)(2019·山西长治模拟)已知不等式(x +y )·⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8答案 B解析 (x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a ·x y +y x +a ≥1+a +2a =(a +1)2,当且仅当a ·x y =y x,即ax 2=y 2时“=”成立.∵(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,∴(a +1)2≥9.∴a ≥4,即正实数a 的最小值为4.故选B.(2)当0<m <12时,若1m +21-2m ≥k 2-2k 恒成立,则实数k 的取值范围是( )A .[-2,0)∪(0,4]B .[-4,0)∪(0,2]C .[-4,2]D .[-2,4]答案 D解析 因为0<m <12,所以m (1-2m )=12×2m ×(1-2m )≤12×⎣⎢⎡⎦⎥⎤2m +1-2m 22=18⎝ ⎛⎭⎪⎫当且仅当2m =1-2m ,即m =14时取等号,所以1m +21-2m =1m 1-2m ≥8.又1m +21-2m ≥k 2-2k 恒成立,所以k 2-2k -8≤0,所以-2≤k ≤4.所以实数k 的取值范围是[-2,4].故选D.(1)要敏锐地洞察到已知条件与所求式子的联系,并能灵活地进行转化. (2)利用基本不等式确立相关成立条件,从而得到参数的值或取值范围.[即时训练] 4.设a >0,b >0且不等式1a +1b +ka +b ≥0恒成立,则实数k 的最小值等于( )A .0B .4C .-4D .-2答案 C解析 由1a +1b +ka +b≥0得k ≥-a +b 2ab,又a +b 2ab=a b +b a+2≥4(当且仅当a =b 时取等号),所以-a +b2ab≤-4,因此要使k ≥-a +b2ab恒成立,应有k ≥-4,即实数k 的最小值等于-4.故选C.5.(2019·珠海模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为( ) A .2 B .4 C .6 D .8答案 C解析 解法一:由已知得xy =9-(x +3y ),即3xy =27-3(x +3y )≤⎝⎛⎭⎪⎫x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号,令x +3y =t ,则t >0,且t 2+12t -108≥0,解得t ≥6,即x +3y ≥6.故x +3y 的最小值为6.解法二:∵x +3y =9-xy ≥23xy ,∴(xy )2+23·xy -9≤0,∴(xy +33)(xy -3)≤0,∴0<xy ≤3,∴x +3y =9-xy ≥6,即x +3y 的最小值为6.故选C. 考向三 基本不等式的实际应用例5 (2019·辽宁沈阳质检)某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x )(万元),当年产量不足80千件时,C (x )=13x 2+10x ;当年产量不小于80千件时,C (x )=51x +10000x-1450.每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L (x )(万元)关于年产量x (千件)的函数解析式; (2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?解 (1)因为每件商品售价为0.05万元,则x 千件商品的销售额为0.05×1000x 万元,依题意得,当0<x <80时,L (x )=(0.05×1000x )-⎝ ⎛⎭⎪⎫13x 2+10x -250=-13x 2+40x -250;当x ≥80时,L (x )=(0.05×1000x )-⎝⎛⎭⎪⎫51x +10000x-1450-250=1200-⎝ ⎛⎭⎪⎫x +10000x . 所以L (x )=⎩⎪⎨⎪⎧-13x 2+40x -250,0<x <80,1200-⎝ ⎛⎭⎪⎫x +10000x ,x ≥80.(2)当0<x <80时,L (x )=-13(x -60)2+950.则当x =60时,L (x )取得最大值L (60)=950万元;当x ≥80时,L (x )=1200-⎝⎛⎭⎪⎫x +10000x ≤1200-2x ·10000x=1200-200=1000⎝⎛⎭⎪⎫当且仅当x =10000x,即x =100时取等号,则当x =100时,L (x )取得最大值1000万元.由于950<1000,所以,当年产量为100千件时,该厂在这一商品的生产中所获利润最大,最大利润为1000万元.有关函数最值的实际问题的解题技巧(1)根据实际问题建立函数的解析式,再利用基本不等式求得函数的最值. (2)设变量时一般要把求最大值或最小值的变量定义为函数. (3)解应用题时,一定要注意变量的实际意义及其取值范围.(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.[即时训练] 6.某厂家拟在2020年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(m ≥0)满足x =3-km +1(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2020年生产该产品的固定投入为8万元.每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2020年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大? 解 (1)由题意知,当m =0时,x =1, ∴1=3-k ⇒k =2,∴x =3-2m +1, 每件产品的销售价格为1.5×8+16xx(元),∴2020年的利润y =1.5x ×8+16xx-8-16x -m=4+8x -m =4+8⎝ ⎛⎭⎪⎫3-2m +1-m =-⎣⎢⎡⎦⎥⎤16m +1+m +1+29(m ≥0). (2)∵当m ≥0时,16m +1+(m +1)≥216=8, ∴y ≤-8+29=21,当且仅当16m +1=m +1⇒m =3(万元)时,y max =21(万元). 故该厂家2020年的促销费用投入3万元时,厂家的利润最大为21万元.若a ,b ∈R ,ab >0,则a 4+4b 4+1ab的最小值为________. 答案 4解析 ∵a 4+4b 4≥2a 2·2b 2=4a 2b 2(当且仅当a 2=2b 2时“=”成立), ∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab, 由于ab >0,∴4ab +1ab ≥24ab ·1ab=4 ⎝ ⎛⎭⎪⎫当且仅当4ab =1ab 时“=”成立, 故当且仅当⎩⎪⎨⎪⎧ a 2=2b 2,4ab =1ab 时,a 4+4b 4+1ab的最小值为4. 答题启示利用基本不等式求函数或代数式的最值时一定要注意验证等号是否成立,特别是当连续多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且注意取等号的条件的一致性,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,也是检验转换是否有误的一种方法.对点训练已知a >b >0,求a 2+16b a -b的最小值. 解 ∵a >b >0,∴a -b >0.∴b (a -b )≤⎣⎢⎡⎦⎥⎤b +a -b 22=a 24. ∴a 2+16ba -b ≥a 2+64a 2≥2a 2·64a 2=16. 当a 2=64a 2且b =a -b ,即a =22,b =2时等号成立. ∴a 2+16b a -b 的最小值为16.。
基本不等式完整版(非常全面)
基本不等式完整版(非常全面) 基本不等式专题辅导一、知识点总结1、基本不等式原始形式1) 若 $a,b\in R$,则 $a^2+b^2\geq 2ab$2) 若 $a,b\in R$,则 $ab\leq \frac{a^2+b^2}{2}$2、基本不等式一般形式(均值不等式)若 $a,b\in R^*$,则 $a+b\geq 2\sqrt{ab}$3、基本不等式的两个重要变形1) 若 $a,b\in R^*$,则 $\frac{a+b}{2}\geq \sqrt{ab}$2) 若 $a,b\in R^*$,则 $ab\leq \left(\frac{a+b}{2}\right)^2$总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最大值。
特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。
4、求最值的条件:“一正,二定,三相等”5、常用结论1) 若 $x>0$,则 $x+\frac{1}{x}\geq 2$(当且仅当$x=1$ 时取“=”)2) 若 $x<0$,则 $x+\frac{1}{x}\leq -2$(当且仅当 $x=-1$ 时取“=”)3) 若 $a,b>0$,则 $\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当 $a=b$ 时取“=”)4) 若 $a,b\in R$,则 $ab\leq \frac{a+b}{2}\leq\sqrt{\frac{a^2+b^2}{2}}$5) 若 $a,b\in R^*$,则 $\frac{1}{a^2+b^2}\leq\frac{1}{2ab}\leq \frac{1}{a+b}$特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。
6、柯西不等式1) 若 $a,b,c,d\in R$,则 $(a^2+b^2)(c^2+d^2)\geq(ac+bd)^2$2) 若 $a_1,a_2,a_3,b_1,b_2,b_3\in R$,则$(a_1^2+a_2^2+a_3^2)(b_1^2+b_2^2+b_3^2)\geq(a_1b_1+a_2b_2+a_3b_3)^2$3) 设 $a_1,a_2,\dots,a_n$ 与 $b_1,b_2,\dots,b_n$ 是两组实数,则有$(a_1^2+a_2^2+\dots+a_n^2)(b_1^2+b_2^2+\dots+b_n^2)\geq (a_1b_1+a_2b_2+\dots+a_nb_n)^2$二、题型分析题型一:利用基本不等式证明不等式1、设 $a,b$ 均为正数,证明不等式:$ab\geq\frac{1}{2}(a+b)^2$2、已知 $a,b,c$ 为两两不相等的实数,求证:$a^2+b^2+c^2>ab+bc+ca$3、已知 $a+b+c=1$,求证:$a^2+b^2+c^2\geq\frac{1}{3}$4、已知 $a,b,c\in R^+$,且 $a+b+c=1$,求证:$(1-a)(1-b)(1-c)\geq 8abc$5、已知 $a,b,c\in R^+$,且 $a+b+c=1$,求证:$\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\geq\frac{9}{2(a+b+c)}$题型二:利用柯西不等式证明不等式1、已知 $a,b,c\in R^+$,求证:$\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\geq\frac{(a+b+c)^2}{2(a+b+c)}$2、已知 $a,b,c\in R^+$,求证:$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq 3$3、已知 $a,b,c\in R^+$,且 $abc=1$,求证:$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq a+b+c$4、已知 $a,b,c\in R^+$,求证:$\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq a+b+c$5、已知 $a,b,c\in R^+$,求证:$\frac{a^3}{b^2-bc+c^2}+\frac{b^3}{c^2-ca+a^2}+\frac{c^3}{a^2-ab+b^2}\geq a+b+c$题型三:求最值1、已知 $a,b$ 均为正数,且 $a+b=1$,求 $ab$ 的最大值和最小值。
基本不等式
§1.4 基本不等式 考试要求 1.了解基本不等式的推导过程.2.会用基本不等式解决简单的最值问题.3.理解基本不等式在实际问题中的应用. 知识梳理1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时,等号成立.(3)其中a +b 2叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数. 2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ).(2)b a +a b≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22 (a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎫a +b 22 (a ,b ∈R ).以上不等式等号成立的条件均为a =b .3.利用基本不等式求最值(1)已知x ,y 都是正数,如果积xy 等于定值P ,那么当x =y 时,和x +y 有最小值2P .(2)已知x ,y 都是正数,如果和x +y 等于定值S ,那么当x =y 时,积xy 有最大值14S 2. 注意:利用基本不等式求最值应满足三个条件“一正、二定、三相等”.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)不等式ab ≤⎝ ⎛⎭⎪⎫a +b 22与ab ≤a +b 2等号成立的条件是相同的.( × ) (2)y =x +1x的最小值是2.( × ) (3)若x >0,y >0且x +y =xy ,则xy 的最小值为4.( √ )(4)函数y =sin x +4sin x,x ∈⎝⎛⎭⎫0,π2的最小值为4.( × )教材改编题1.若正实数a ,b 满足a +4b =ab ,则ab 的最小值为( )A .16B .8C .4D .2答案 A解析 因为正实数a ,b 满足a +4b =ab ,所以ab =a +4b ≥24ab =4ab ,所以ab ≥16,当且仅当a =4b ,即a =8,b =2时等号成立.2.函数y =x +1x +1(x ≥0)的最小值为________. 答案 1解析 因为x ≥0,所以x +1>0,1x +1>0, 利用基本不等式得y =x +1x +1=x +1+1x +1-1≥2(x +1)·1x +1-1=1, 当且仅当x +1=1x +1,即x =0时,等号成立. 所以函数y =x +1x +1(x ≥0)的最小值为1. 3.若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________ m 2. 答案 25解析 设矩形的一边为x m ,面积为y m 2,则另一边为12×(20-2x )=(10-x )m , 其中0<x <10,∴y =x (10-x )≤⎣⎢⎡⎦⎥⎤x +(10-x )22=25, 当且仅当x =10-x ,即x =5时,等号成立,∴y max =25,即矩形场地的最大面积是25 m 2.题型一 利用基本不等式求最值命题点1 配凑法例1 (1)已知x >2,则函数y =x +12(x -2)的最小值是( ) A .2 2B .22+2C .2 D.2+2 答案 D解析 由题意可知,x -2>0,∴y =(x -2)+12(x -2)+2≥2(x -2)·12(x -2)+2=2+2,当且仅当x =2+22时,等号成立,∴函数y =x +12(x -2)(x >2)的最小值为2+2. (2)设0<x <32,则函数y =4x (3-2x )的最大值为________. 答案 92解析 ∵0<x <32,∴3-2x >0, y =4x (3-2x )=2[2x (3-2x )]≤2⎣⎢⎡⎦⎥⎤2x +(3-2x )22=92, 当且仅当2x =3-2x ,即x =34时,等号成立. ∵34∈⎝⎛⎭⎫0,32, ∴函数y =4x (3-2x )⎝⎛⎭⎫0<x <32的最大值为92. 命题点2 常数代换法例2 已知x >0,y >0,且4x +2y -xy =0,则2x +y 的最小值为( )A .16B .8+4 2C .12D .6+4 2答案 A解析 由题意可知2x +4y =1,∴2x +y =(2x +y )⎝⎛⎭⎫2x +4y =8x y +2y x +8≥28x y ·2y x+8=16, 当且仅当8x y =2y x,即x =4,y =8时,等号成立, 则2x +y 的最小值为16.命题点3 消元法例3 (2023·烟台模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 答案 6解析 方法一 (换元消元法)由已知得9-(x +3y )=xy =13·x ·3y ≤13·⎝ ⎛⎭⎪⎫x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号. 即(x +3y )2+12(x +3y )-108≥0,令x +3y =t ,则t >0且t 2+12t -108≥0,得t ≥6,即x +3y 的最小值为6.方法二 (代入消元法)由x +3y +xy =9,得x =9-3y 1+y, 所以x +3y =9-3y 1+y +3y =9-3y +3y (1+y )1+y=9+3y 21+y =3(1+y )2-6(1+y )+121+y=3(1+y )+121+y-6≥23(1+y )·121+y-6 =12-6=6,当且仅当3(1+y )=121+y,即y =1,x =3时取等号, 所以x +3y 的最小值为6.延伸探究 本例条件不变,求xy 的最大值.解 9-xy =x +3y ≥23xy ,∴9-xy ≥23xy ,令xy =t ,∴t >0,∴9-t 2≥23t ,即t 2+23t -9≤0,解得0<t ≤3, ∴xy ≤3,∴xy ≤3,当且仅当x =3y ,即x =3,y =1时取等号,∴xy 的最大值为3.思维升华 (1)前提:“一正”“二定”“三相等”.(2)要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(3)条件最值的求解通常有三种方法:一是配凑法;二是将条件灵活变形,利用常数“1”代换的方法;三是消元法.跟踪训练1 (1)(多选)若正实数a ,b 满足a +b =1,则下列说法错误的是( )A .ab 有最小值14B .8a +8b 有最大值8 2C.1a +1b有最小值4 D .a 2+b 2有最小值22答案 AD解析 由1=a +b ≥2ab ⎝⎛⎭⎫当且仅当a =b =12时等号成立, 得ab ≤14,故ab 有最大值14,故A 错误; (a +b )2=a +b +2ab =1+2ab ≤1+214=2⎝⎛⎭⎫当且仅当a =b =12时等号成立, 则a +b ≤2,则8a +8b 有最大值82,故B 正确;1a +1b =a +b ab =1ab ≥4⎝⎛⎭⎫当且仅当a =b =12时等号成立, 故1a +1b有最小值4,故C 正确;a 2+b 2=(a +b )2-2ab =1-2ab ≥12⎝⎛⎭⎫当且仅当a =b =12时等号成立, 所以a 2+b 2有最小值12,故D 错误. (2)已知x >1,则y =x -1x 2+3的最大值为________. 答案 16解析 令t =x -1,∴x =t +1,∵x >1,∴t >0,∴y =t (t +1)2+3=t t 2+2t +4=1t +4t+2≤124+2=16, 当且仅当t =4t,t =2,即x =3时,等号成立, ∴当x =3时,y max =16. 题型二 基本不等式的常见变形应用例4 (1)若0<a <b ,则下列不等式一定成立的是( ) A .b >a +b 2>a >ab B .b >ab >a +b 2>a C .b >a +b 2>ab >a D .b >a >a +b 2>ab 答案 C解析 ∵0<a <b ,∴2b >a +b ,∴b >a +b 2>ab . ∵b >a >0,∴ab >a 2,∴ab >a .故b >a +b 2>ab >a . (2) (2023·宁波模拟)《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB ,设AC =a ,BC =b ,则该图形可以完成的无字证明为( )A.a +b 2≥ab (a >0,b >0) B .a 2+b 2≥2ab (a >0,b >0)C.2ab a +b ≤ab (a >0,b >0)D.a +b 2≤a 2+b 22(a >0,b >0) 答案 D 解析 由图形可知,OF =12AB =12(a +b ), OC =12(a +b )-b =12(a -b ), 在Rt △OCF 中,由勾股定理可得,CF =⎝ ⎛⎭⎪⎫a +b 22+⎝ ⎛⎭⎪⎫a -b 22=12(a 2+b 2), ∵CF ≥OF ,∴12(a 2+b 2)≥12(a +b )(a >0,b >0). 思维升华 基本不等式的常见变形(1)ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22. (2)21a +1b ≤ab ≤a +b 2≤a 2+b 22(a >0,b >0). 跟踪训练2 (2022·漳州质检)已知a ,b 为互不相等的正实数,则下列四个式子中最大的是( )A.2a +bB.1a +1bC.2abD.2a 2+b 2答案 B解析 ∵a ,b 为互不相等的正实数, ∴1a +1b >2ab, 2a +b<22ab =1ab <2ab , 2a 2+b 2<22ab =1ab <2ab, ∴最大的是1a +1b. 题型三 基本不等式的实际应用例5 中华人民共和国第十四届运动会在陕西省举办,某公益团队联系全运会组委会举办一场纪念品展销会,并将所获利润全部用于社区体育设施建设.据市场调查,当每套纪念品(一个会徽和一个吉祥物)售价定为x 元时,销售量可达到(15-0.1x )万套.为配合这个活动,生产纪念品的厂家将每套纪念品的供货价格分为固定价格和浮动价格两部分,其中固定价格为50元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.约定不计其他成本,即销售每套纪念品的利润=售价-供货价格.(1)每套会徽及吉祥物售价为100元时,能获得的总利润是多少万元?(2)每套会徽及吉祥物售价为多少元时,单套的利润最大?最大值是多少元?解 (1)每套会徽及吉祥物售价为100元时,销售量为15-0.1×100=5(万套),供货单价为50+105=52(元), 总利润为5×(100-52)=240(万元).(2)设售价为x 元,则销售量为(15-0.1x )万套,供货单价为⎝ ⎛⎭⎪⎫50+1015-0.1x 元, 单套利润为x -50-1015-0.1x =⎝⎛⎭⎪⎫x -50-100150-x 元,因为15-0.1x >0,所以0<x <150. 所以单套利润为y =x -50-100150-x =-⎣⎢⎡⎦⎥⎤(150-x )+100150-x +100≤100-2(150-x )·100150-x=80,当且仅当150-x =10,即x =140时取等号,所以每套会徽及吉祥物售价为140元时,单套的利润最大,最大值是80元.思维升华 利用基本不等式求解实际问题时,要根据实际问题,设出变量,注意变量应满足实际意义,抽象出目标函数的表达式,建立数学模型,再利用基本不等式求得函数的最值. 跟踪训练3 某公益广告公司拟在一张矩形海报纸(记为矩形ABCD ,如图)上设计三个等高的宣传栏(栏面分别为一个等腰三角形和两个全等的直角梯形),宣传栏(图中阴影部分)的面积之和为1 440 cm 2.为了美观,要求海报上所有水平方向和竖直方向的留空宽度均为2 cm.当直角梯形的高为__________ cm 时,用纸量最少(即矩形ABCD 的面积最小).答案 12 5 解析 设直角梯形的高为x cm , ∵宣传栏(图中阴影部分)的面积之和为1 440 cm 2,且海报上所有水平方向和竖直方向的留空宽度均为2 cm ,∴海报宽AD =x +4,海报长DC =1 440x+8, 故S 矩形ABCD =AD ·DC =(x +4)⎝⎛⎭⎫1 440x +8=8x +5 760x +1 472≥28x ·5 760x+1 472=1925+1 472,当且仅当8x =5 760x, 即x =125时,等号成立.∴当直角梯形的高为12 5 cm 时,用纸量最少.课时精练1.下列函数中,最小值为2的是( )A .y =x +2xB .y =x 2+3x 2+2C .y =e x +e -xD .y =sin x +1sin x ⎝⎛⎭⎫0<x <π2答案 C解析 当x <0时,y =x +2x <0,故A 错误;y =x 2+3x 2+2=x 2+2+1x 2+2≥2,当且仅当x 2+2=1x 2+2,即x 2=-1时取等号,又x 2≠-1,故B 错误; y =e x +e -x ≥2e x ·e -x =2,当且仅当e x =e -x ,即x =0时取等号,故C 正确; 当x ∈⎝⎛⎭⎫0,π2时,sin x ∈(0,1),y =sin x +1sin x ≥2,当且仅当sin x =1sin x ,即sin x =1时取等号,因为sin x ∈(0,1),故D 错误.2.已知a >0,b >0,a +b =2,则lg a +lg b 的最大值为() A .0 B.13 C.12 D .1答案 A解析 ∵a >0,b >0,a +b =2,∴lg a +lg b =lg ab ≤lg ⎝ ⎛⎭⎪⎫a +b 22=0,当且仅当a =b =1时,取等号.∴lg a +lg b 的最大值为0.3.(2021·新高考全国Ⅰ)已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为( )A .13B .12C .9D .6答案 C解析 由椭圆C :x 29+y 24=1,得|MF 1|+|MF 2|=2×3=6,则|MF 1|·|MF 2|≤⎝ ⎛⎭⎪⎫|MF 1|+|MF 2|22=32=9,当且仅当|MF 1|=|MF 2|=3时等号成立.所以|MF 1|·|MF 2|的最大值为9.4.(2023·太原模拟)已知a ,b 为正实数,a +b =3,则1a +1+1b +2的最小值为( ) A.23 B.56 C.12D .4 答案 A解析 因为a +b =3,所以1a +1+1b +2=16⎝ ⎛⎭⎪⎫1a +1+1b +2(a +1+b +2)=16⎝ ⎛⎭⎪⎫b +2a +1+a +1b +2+2≥16⎝⎛⎭⎪⎪⎫2b +2a +1·a +1b +2+2=23, 当且仅当b +2a +1=a +1b +2,即a =2,b =1时,等号成立. 所以1a +1+1b +2的最小值为23. 5.(多选)(2022·衡阳模拟)设a =log 23,b =log 243,则下列关系正确的是( ) A .ab >a +b 2B .ab <a +b 2 C.a +b 2>b aD .ab >b a 答案 BCD解析 易知a >0,b >0,a +b 2=1,a ≠b ,ab <(a +b )24=1,ab >b a⇔a >1,显然成立. 所以a +b 2>ab >b a. 6.(多选)(2023·黄冈模拟)若a >0,b >0,且a +b =4,则下列不等式恒成立的是( )A .0<1ab ≤14B.1a +1b ≥1 C .log 2a +log 2b <2D.1a 2+b 2≤18答案 BD 解析 因为a >0,b >0,所以ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,当且仅当a =b =2时等号成立, 则ab ≤⎝⎛⎭⎫422=4或⎝⎛⎭⎫422≤a 2+b 22,当且仅当a =b =2时等号成立,则1ab ≥14,a 2+b 2≥8,1a 2+b 2≤18, 当且仅当a =b =2时等号成立,则log 2a +log 2b =log 2ab ≤log 24=2,当且仅当a =b =2时等号成立,故A ,C 不恒成立,D 恒成立;对于B 选项,1a +1b =a +b ab =4ab ≥4×14=1, 当且仅当a =b =2时等号成立,故B 恒成立.7.函数y =x 2x +1(x >-1)的最小值为________. 答案 0解析 因为y =x 2-1+1x +1=x -1+1x +1=x +1+1x +1-2(x >-1), 所以y ≥21-2=0,当且仅当x =0时,等号成立.所以y =x 2x +1(x >-1)的最小值为0. 8.(2023·娄底质检)已知a ,b 为正实数,且2a +b =1,则2a +a 2b的最小值为________. 答案 6解析 由已知条件得,2a +a 2b =4a +2b a +a 2b=⎝⎛⎭⎫2b a +a 2b +4≥22b a ·a 2b+4=6, 当且仅当2b a =a 2b ,即a =25,b =15时,取等号.所以2a +a 2b的最小值为6. 9.(1)当x <32时,求函数y =x +82x -3的最大值; (2)已知0<x <2,求函数y =x 4-x 2的最大值.解 (1)y =12(2x -3)+82x -3+32=-⎝ ⎛⎭⎪⎫3-2x 2+83-2x +32. 当x <32时,有3-2x >0, 所以3-2x 2+83-2x ≥2 3-2x 2·83-2x=4, 当且仅当3-2x 2=83-2x,即x =-12时,取等号. 于是y ≤-4+32=-52,故函数的最大值为-52. (2)因为0<x <2,所以4-x 2>0, 则y =x 4-x 2=x 2·(4-x 2)≤x 2+(4-x 2)2=2, 当且仅当x 2=4-x 2,即x =2时,取等号,所以y =x 4-x 2的最大值为2.10.某企业为了进一步增加市场竞争力,计划利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本300万元,每生产x (千部)手机,需另投入成本R (x )万元,且R (x )=⎩⎪⎨⎪⎧10x 2+100x ,0<x <40,701x +10 000x -9 450,x ≥40,通过市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(1)求出今年的利润W (x )(万元)关于年产量x (千部)的函数关系式(利润=销售额-成本);(2)今年产量为多少(千部)时,企业所获利润最大?最大利润是多少?解 (1)当0<x <40时,W (x )=700x -(10x 2+100x )-300=-10x 2+600x -300,当x ≥40时,W (x )=700x -⎝⎛⎭⎫701x +10 000x -9 450-300=-⎝⎛⎭⎫x +10 000x +9 150,∴W (x )=⎩⎪⎨⎪⎧-10x 2+600x -300,0<x <40,-⎝⎛⎭⎫x +10 000x +9 150,x ≥40. (2)若0<x <40,W (x )=-10(x -30)2+8 700,当x =30时,W (x )max =8 700(万元).若x ≥40,W (x )=-⎝⎛⎭⎫x +10 000x +9 150≤9 150-210 000=8 950, 当且仅当x =10 000x时,即x =100时,取等号. ∴W (x )max =8 950(万元).∴今年产量为100千部时,企业所获利润最大,最大利润是8 950万元.11. (2023·湘潭模拟)已知α,β为锐角,且tan α-tan β+2tan αtan 2β=0,则tan α的最大值为( )A.24B.23C.22D. 2 答案 A解析 因为β为锐角,所以tan β>0,由题意可得tan α=tan β1+2tan 2β=12tan β+1tan β≤122=24, 当且仅当tan β=22时取等号, 故tan α的最大值为24. 12.(2022·天津模拟)若a >0,b >0,则(a +b )2+1ab的最小值为________. 答案 4解析 若a >0,b >0,则(a +b )2+1ab ≥(2ab )2+1ab =4ab +1ab≥4, 当且仅当⎩⎪⎨⎪⎧a =b ,4ab =1ab , 即a =b =22时取等号,故所求的最小值为 4.13.《几何原本》中的几何代数法研究代数问题,这种方法是后西方数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称为无字证明.现有图形如图所示,C 为线段AB 上的点,且AC =a ,BC =b ,O 为AB 的中点,以AB 为直径作半圆,过点C 作AB 的垂线交半圆于D ,连接OD ,AD ,BD ,过点C 作OD 的垂线,垂足为E ,则该图形可以完成的无字证明为( )A.a +b 2≤ab (a >0,b >0)B .a 2+b 2≥2ab (a >0,b >0) C.ab ≥21a +1b(a >0,b >0)D.a 2+b 22≥a+b 2(a >0,b >0)答案 C解析 根据图形,利用射影定理得CD 2=DE ·OD ,又OD =12AB =12(a +b ),CD 2=AC ·CB =ab ,所以DE =CD 2OD =aba +b 2,由于OD ≥CD ,所以a +b 2≥ab (a >0,b >0).由于CD ≥DE , 所以ab ≥2aba +b =21a +1b(a >0,b >0).14.(多选)(2022·新高考全国Ⅱ)若x ,y 满足x 2+y 2-xy =1,则() A .x +y ≤1 B .x +y ≥-2C .x 2+y 2≤2D .x 2+y 2≥1答案 BC解析 因为ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22(a ,b ∈R ), 由x 2+y 2-xy =1可变形为(x +y )2-1=3xy ≤3⎝ ⎛⎭⎪⎫x +y 22, 解得-2≤x +y ≤2,当且仅当x =y =-1时,x +y =-2,当且仅当x =y =1时,x +y =2,所以A 错误,B 正确;由x 2+y 2-xy =1可变形为(x 2+y 2)-1=xy ≤x 2+y 22, 解得x 2+y 2≤2,当且仅当x =y =±1时取等号,所以C 正确;因为x 2+y 2-xy =1可变形为⎝⎛⎭⎫x -y 22+34y 2=1, 设x -y 2=cos θ,32y =sin θ, 所以x =cos θ+33sin θ,y =233sin θ, 因此x 2+y 2=cos 2θ+53sin 2θ+233sin θcos θ=1+33sin 2θ-13cos 2θ+13 =43+23sin ⎝⎛⎭⎫2θ-π6∈⎣⎡⎦⎤23,2,所以D 错误.。
新高考(2019)高一数学提高练习3.2基本不等式专题辅导(6)换元消元
基本不等式专题辅导(6)(六)、换元消元法①换元法【解析】:设a +2b =m ,a +b =n ,(m >0,n >0),则a =2n ﹣m ,b =m ﹣n ,即有ba b b a a +++223=5345622562)(2)2(3-=-⋅≥-+=-+-m n n m m n n m n n m m m n . 当且仅当n m 3=,即n b n a )13(,)32(-=-=时.取得等号.【解析】:令1t x ,则22(1)7(1+10544=5t t t t y t t t t-+-++==++).当1->x ,即10t x 时,59y ≥=(当2t 即1x 时取“=”号). 【练习】1、已知实数x ,y 满足2x >y >0,且12121=++-yx y x ,则x +y 的最小值为 . 2、已知0a >,0b >,21a b +=,则11343a b a b +++取到最小值为 . 3、已知实数若x 、y 满足x >y ≥0,则yx y x y x y x -++++24的最小值是 . 4、已知y x ,都是正实数,则y x y y x x +++44的最大值为( ) A .23 B .34 C .25 D .45②消元法 对于含有多个变量的条件最值问题,若直接运用基本不等式无法求最值时,可尝试减少变量的个数,即根据题设条件建立两个变量之间的函数关系,然后代入代数式转化为只含有一个变量的函数的最值问题,即减元(三元化二元,二元化一元).【例3】 已知正实数x ,y 满足xy +2x +y =4,则x +y 的最小值为 .【解析】:∵正实数x ,y 满足42=++y x xy ,∴124+-=x x y (0<x <2). ∴362316)1(2316)1(1)22(6124-=-+⋅+≥-+++=++-+=+-+=+x x x x x x x x x x y x , 当且仅当x =时取等号. (或设y x t +=,代入得一元二次方程,利用判别式可求)【例4】已知a >0,b >0,且2a +b =ab -1,则a +2b 的最小值为( )A .5+2 6B .8 2C .5D .9【解析】∵a >0,b >0,且2a +b =ab -1,∴a =b +1b -2>0,∴b >2, ∴a +2b =b +1b -2+2b =2(b -2)+3b -2+5≥5+22(b -2)·3b -2=5+2 6. 当且仅当2(b -2)=3b -2,即b =2+62时取等号. ∴a +2b 的最小值为5+2 6.故选A.【例5】已知正实数a ,b ,c 满足a 2-2ab +9b 2-c =0,则当ab c 取得最大值时,3a +1b -12c 的最大值为__________.【解析】:由正实数a ,b ,c 满足a 2-2ab +9b 2=c ,得ab c =ab a 2-2ab +9b 2=1a 2-2ab +9b 2ab =1ab +9b a -2≤14,当且仅当a b =9b a ,即a =3b 时,ab c 取最大值14. 又因为a 2-2ab +9b 2-c =0,所以此时c =12b 2,所以3a +1b -12c =1b 141211-22=⎪⎭⎫ ⎝⎛-+≤⎪⎭⎫ ⎝⎛b b b , 故最大值为1. 【练习】1、若正数x ,y 满足x 2+xy ﹣2=0,则3x +y 的最小值是________.2、已知a ,b ,c 均为正数,且abc =4(a +b ),则a +b +c 的最小值为_______.3、若2x >且82x y x =-,则x y +的最小值为( ) A .18 B .15 C .14 D .1.34、若正数y x ,满足0162=-+xy x ,则y x 3+的最小值是( )A .21B .1C .22D .25、若正数b a ,满足121=+b a ,则2112-+-b a 的最小值为( ) A .2 B .2 C .22 D .16、已知正数b a ,满足1=++ab b a ,则b a +2的最小值为7、设z y x ,,为正实数,满足032=+-z y x ,则xzy 2的最小值为。
基本不等式完整版(非常全面)[整理]
基本不等式完整版(非常全面)[整理]
基本不等式可以指几乎所有组成分析和数学的基础。
它可以使许多不同的数学问题变
得更容易理解,因此使用它们进行计算是极其重要的。
基本不等式包括了三类不等式:大
小不等式,加法不等式和乘法不等式。
以下是一些基本的不等式定义。
1、大小不等式:大小不等式表示一个数与另一个数之间的存在或缺失的关系。
例如,如果A > B,则表示A大于B,而A ≤ B表示A小于或等于B,A ≠ B表示A与B之间存
在某种不同。
2、加法不等式:加法不等式表示两个数相加时的结果。
例如,A + B > C的意思是A
与B的和大于C,A + B ≤ C的意思是A与B的和小于或等于C,A + B = C的意思是A
与B的和等于C。
一般地,一个数与另一个数之间的关系可以用不等式来表示,但也可以用不等式来表
示多个数之间的关系:
1、省略不等式:3x + 2y = 4z,这表示3x + 2y至少等于4z的意思。
基本不等式可以用来处理大量数学问题,比如解一元不等式、求函数的极值以及进行
多元函数分析等。
它们对于熟悉数学理论和解决数学问题都极其重要。
高中数学:基本不等式(含答案)
高中数学:必修5 基本不等式一、基础知识1.重要不等式:a 2+b 2≥2ab (a ,b ∈R )一般地,对于任意实数a ,b ,有a 2+b 2≥2ab ,当且仅当______________时,等号成立.2.基本不等式如果a >0,b >0,那么2a bab +≤,当且仅当______________时,等号成立. 其中,2a b+叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数. 因此基本不等式也可叙述为:两个正数的算术平均数不小于它们的几何平均数.3.基本不等式的证明(1)代数法:方法一 因为a >0,b >0,所以我们可以用a ,b 分别代替重要不等式中的a ,b ,得22()()2a b a b +≥⋅,当且仅当a b =时,等号成立.即2a bab +≥( a >0,b >0),当且仅当a =b 时,等号成立. 方法二 因为2222()()2()0a b ab a b ab a b +-=+-=-≥, 所以20a b ab +-≥,即2a b ab +≥,所以2a bab +≤. 方法三 要证2a bab +≥,只要证2a b ab +≥,即证20a b ab +-≥,即证2()0a b -≥,显然2()0a b -≥总是成立的,当且仅当a =b 时,等号成立.(2)几何法:如图,AB 是圆的直径,C 是AB 上一点,AC =a ,BC =b ,过点C 作垂直于AB 的弦DE ,连接AD ,BD .易证Rt Rt ACD DCB △∽△,则CD 2=CA ·CB ,即CD =______________.这个圆的半径为2a b +,显然它大于或等于CD ,即2a bab +≥,当且仅当点C 与圆心重合,即a =b 时,等号成立.2a bab +≤的几何意义:半径不小于半弦.4.重要不等式和均值不等式的常用变形公式及推广公式(1)2b a a b +≥(a ,b 同号);2b aa b +≤-(a ,b 异号). (2)12a a +≥(a >0);12a a+≤-(a <0). (3)114a b a b +≥+(a >0,b >0);22a a b b≥-(a >0,b >0).(4)222a b ab +≤,2()2a b ab +≤,4ab ≤a 2+b 2+2ab ,2(a 2+b 2)≥(a +b )2(,)a b ∈R . (5)12212(,,,,2)nn n a a a a a a a n n n+++≥∈≥∈R N ,.(6)2121212111()()(,,,n n na a a n a a a a a a ++++++≥为正实数,且2)n n ≥∈N ,.5.均值不等式链若a >0,b >0,则2112a b a b+≤≤≤+,当且仅当a =b 时,等号成立.其中211a b +分别叫做a ,b 的调和平均数和平方平均数.6.最值定理已知x >0,y >0,则若x+y 为定值s ,则当且仅当x =y 时,积xy 有最大值24s (简记:和定积最大); 若xy 为定值t ,则当且仅当x =y 时,和x +y有最小值简记:积定和最小).参考答案:重难易错点:一、利用基本不等式判断不等式是否成立要判断不等式是否成立,关键是把握其运用基本不等式时能否严格遵循“一正、二定、三相等”这三个条件.例1.(1)设f (x )=ln x ,0<a <b ,若p =f ),q =()2a b f +,r =12(f (a )+f (b )),则下列关系式中正确的是 A .q =r <pB .p =r <qC .q =r >pD .p =r >q(2)给出下列不等式:①12x x +≥;②1||2x x+≥;③21(0)4x x x +>>;④1sin 2sin x x +≥;⑤若0<a <1<b ,则log a b +log b a ≤-2.其中正确的是______________. 【答案】(1)B ;(2)②⑤.【点析】基本不等式常用于有条件的不等关系的判断、比较代数式的大小等.一般地,结合所给代数式的特征,将所给条件进行转换(利用基本不等式可将整式和根式相互转化),使其中的不等关系明晰即可解决问题.二、利用基本不等式证明不等式利用基本不等式证明不等式的一般思路:先观察题中要证明的不等式的结构特征,若不能直接使用基本不等式证明,则考虑对代数式进行拆项、变形、配凑等,使之达到能使用基本不等式的形式;若题目中还有其他条件,则先观察已知条件和所证不等式之间的联系,当已知条件中含有“1”时,要注意“1”的代换.另外,解题时要时刻注意等号能否取到.例2.(1)已知a >0,b >0,c >0,求证:222a b c a b c b c a++≥++;(2)已知a >b ,ab =2,求证:224a b a b+≥-.观察a-b,a2+b2,可联想到通过加减2ab的方法配凑出(a-b)2,从而化为可使用基本不等式的形式,结合ab =2可使问题得到解决.三、利用基本不等式求最值(1例3.(1)已知f(x)=x+1x+2(x<0),则f(x)有A.最大值为4B.最小值为4 C.最小值为0 D.最大值为0(2)已知0<x<4,则x(4-x)取得最大值时x的值为A.0 B.2 C.4 D.16(3)已知函数f(x)=2x(x>0),若f(a+b)=16,则f(ab)的最大值为_______________;(4)已知a,b∈R,且ab=8,则|a+2b|的最小值是_______________.【答案】(1)D;(2)C;(3)16;(4)8.【点析】利用基本不等式求最值要牢记三个关键词:一正、二定、三相等,即①一正:各项必须为正;②二定:各项之和或各项之积为定值;③三相等:必须验证取等号时条件是否具备.(2使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项、凑项、凑系数等.例4.(1)已知x>0,则函数y=231x xx++的最小值为_______________;(2)若x>1,则函数y=11xx+-的最小值为_______________;(3)若0<x<125,则函数y=x(12-5x)的最大值为_______________.(31”的替换,或构造不等式求解.例5.(1)已知a>0,b>0,a+b=1,则11a b+的最小值为_______________;(2)已知a>0,b>0,11a b+=2,则a+b的最小值为_______________;(3)若正实数x,y满足x+y+3=xy,则xy的最小值是_______________;(4)已知x >0,y >0,x +y +xy =3,则x +y 的最小值是_______________. 【答案】(1)4;(2)2;(3)9;(4)2.【点析】在构造不等式求最值时,既要掌握公式的正用,也要注意公式的逆用.例如,当a >0,b >0时,a 2+b 2≥2ab 逆用就是ab ≤222a b +;2a b+≥ab 逆用就是ab ≤2()2a b +等.还要注意“添项、拆项、凑系数”的技巧和等号成立的条件等.四、基本不等式在实际中的应用利用基本不等式解决应用问题的关键是构建模型,一般来说,都是从具体的几何图形,通过相关的关系建立关系式.在解题过程中尽量向模型2bax ab x+≥(a >0,b >0,x >0)上靠拢. 例6.如图,要规划一个矩形休闲广场,该休闲广场含有大小相等的左右两个矩形草坪(如图中阴影部分所示),且草坪所占面积为18 000 m 2,四周道路的宽度为10 m ,两个草坪之间的道路的宽度为5 m .试问,怎样确定该矩形休闲广场的长与宽的尺寸(单位:m ),能使矩形休闲广场所占面积最小?【答案】当矩形休闲广场的长为140 m ,宽为175 m 时,可使休闲广场的面积最小.【点析】本题容易出现的思维误区:①未能理清草坪边长与休闲广场边长之间的关系;②求出目标函数后不会运用基本不等式求最值,缺乏必要的配凑、转化变形能力,从而无法利用基本不等式求最值,或者不会利用基本不等式等号成立的条件求变量的取值.五、忽略等号成立的条件导致错误例7、函数22()2f x x =+的最小值为_______________.【错解】2222223211()22222x x f x x x x x +++===++≥+++,所以函数()f x 的最小值为2.【错因分析】错解中使用基本不等式时,等号成立的条件为22122x x +=+,即22x +=1,显然x 2≠-1,即等号无法取到,函数()f x 的最小值为2是不正确的. 【正解】()21222+++=x x x f ,令()()t t t g t x t 1,2,22+=≥+=.易知函数()tt t g 1+=在[)∞+,2上六、忽略等号成立的一致性导致错误例8、若x>0,y>0,且x+2y=1,则11x y+的最小值为_______________.基本不等式:基础习题强化1.已知01x <<,则(1)x x -取最大值时x 的值为A B C D 2.若实数,a b 满足323a b +=,则84a b +的最小值是A .B .4C .D .3.若0,0,x y >>且22x y +=,则21x y+的最小值是A .3BC .3D .924.若1a >,则211a a a -+-的最小值是A .2B .4C .1D .35.已知2212,202b m a a n b a -=+>=≠-()(),则m ,n 之间的大小关系是 A .m >nB .m <nC .m =nD .不能确定6.己知,a b 均为正实数,且直线60ax by +-=与直线()3250b x y --+=互相垂直,则23a b +的最小值为 A .12B .13C .24D .257.已知0a >,0b >,11a b a b +=+,则12a b+的最小值为A .4B .C .8D .168.若正数a ,b 满足3ab a b =++,则ab 的取值范围为________________. 9.已知,,a b c +∈R ,且3a b c ++=,则111a b c++的最小值是________________.10.若实数a ,b 满足12a b+=ab 的最小值为________________. 11.设230<<x ,则函数4(32)y x x =-的最大值为________________. 12.已知a >0,b >0,ab =8,则当a 的值为________________时,22log log (2)a b ⋅取得最大值.能力提升13.已知a ,b 都是正实数,且满足2a b ab +=,则2a b +的最小值为A .12B .10C .8D .614.已知1,1a b >>,且11111a b +=--,则4a b +的最小值为 A .13B .14C .15D .1615.已知不等式1)()9ax y x y++≥(对任意正实数x ,y 恒成立,则正实数a 的最小值为 A .8B .6C .4D .216.若正实数,a b 满足1a b +=,则A .11a b+有最大值4 B .ab 有最小值14C .a b +有最大值2D .22a b +有最小值2217.已知0,0a b >>,若不等式3103m a b a b--≤+恒成立,则m 的最大值为 A .4B .16C .9D .318.设实数x ,y 满足2102146x y x y x y +≤⎧⎪+≤⎨⎪+≥⎩,则xy 的最大值为A .252B .492C .12D .1419.已知a >0,b >0,c >0,且a +b +c =1,则111a b c++的最小值为_________________. 20.在4×+9×=60的两个中,分别填入一个自然数,使它们的倒数之和最小,则中应分别填入____________和____________.21.若a ,b ,c >0且(a +c )(a +b )=423-,则2a +b +c 的最小值为________________. 22.已知正实数a ,b 满足:1a b +=,则222a ba b a b +++的最大值是________________.其他23.某校要建一个面积为450平方米的矩形球场,要求球场的一面利用旧墙,各面用钢筋网围成,且在矩形一边的钢筋网的正中间要留一个3米的进出口(如图所示).设矩形的长为x 米,钢筋网的总长度为y 米. (1)列出y 与x 的函数关系式,并写出其定义域;(2)问矩形的长与宽各为多少米时,所用的钢筋网的总长度最小?24.(1)求函数2710(1)1x x y x x ++=>-+的最小值;(2)已知正数a ,b 和正数x ,y ,若a +b =10,1a bx y+=,且x +y 的最小值是18,求a ,b 的值.25.已知函数2()21,f x x ax a a =--+∈R .(1)若2a =,试求函数()(0)f x y x x=>的最小值; (2)对于任意的[0,2]x ∈,不等式()f x a ≤成立,试求a 的取值范围.26.(天津文理)已知a ,b ∈R ,且360a b -+=,则128ab+的最小值为_______________. 27.(江苏)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒,ABC ∠的平分线交AC于点D ,且1BD =,则4a c +的最小值为_______________.28.(山东理)若0a b >>,且1ab =,则下列不等式成立的是A .()21log 2aba ab b +<<+ B .()21log 2a b a b a b<+<+ C .()21log 2a b a a b b +<+<D .()21log 2a ba b a b +<+< 29.(天津文理)若,a b ∈R ,0ab >,则4441a b ab++的最小值为________________.30.(江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________________. 31.(山东文)若直线1(0,0)x ya b a b+=>>过点(1,2),则2a b +的最小值为________________.【参考答案】1.【答案】B 2.【答案】C 3.【答案】D 4.【答案】D 5.【答案】A 6.【答案】D 7.【答案】B8.【答案】[)+∞,9 9.【答案】3 10.【答案】 11.【答案】9212.【答案】4 13.【答案】C 14.【答案】B 15.【答案】C 16.【答案】C 17.【答案】B 18.【答案】A19.【答案】9 20.【答案】6 4 21.【答案】2 22.23.【答案】(1)9003(0150)y x x x=+-<<;(2)长为30米,宽为15米时,所用的钢筋网的总长度最小. 24.【答案】(1)9;(2)28a b =⎧⎨=⎩或82a b =⎧⎨=⎩. 25.【答案】(1)2-;(2)3[,)4+∞.26.【答案】0.25 27.【答案】9 28.【答案】B 29.【答案】4 30.【答案】30 31.【答案】8。
高考数学试题基本不等式
基本不等式及其应用1.(2019山东济南历下区校级月考)设a ,b ∈(0,+∞),则下列各式中不一定成立的是( ) A.a+b ≥2√abB.b a +a b≥2 C.22√ab≥2√abD.2aba+b ≥√ab2.若a ,b 都是正数,则1+b a 1+4a b的最小值为( ) A.7B.8C.9D.103.(2019四川成都模拟)已知a<0,b<0,a+b=-2,则y=1a+1b的最大值为( ) A.-1B.-32C.-4D.-24.(2019浙江丽水一模)已知正数a ,b 满足ab 2(a+b )=4,则2a+b 的最小值为( ) A.12B.8C.2√2D.√35.设正数x ,y 满足x>y ,x+2y=3,则1x -y +9x+5y 的最小值为( ) A.83B.3C.32D.2√336.若lg a+lg b=0且a ≠b ,则2a+1b的取值范围为( ) A.[2√2,+∞)B.(2√2,+∞)C.[2√2,3)∪(3,+∞)D.(2√2,3)∪(3,+∞) 7.已知a>b>0,则2a+3a+b +2a -b的最小值为( )A.2√2+2√3B.√2+√3C.2√2+√3D.√2+√328.(2019辽宁大连测试)已知E 为△ABC 的重心,AD 为BC 边上的中线,令AB ⃗⃗⃗⃗⃗ =a ,AC ⃗⃗⃗⃗⃗ =b ,过点E 的直线分别交AB ,AC 于P ,Q 两点,且AP ⃗⃗⃗⃗⃗ =m a ,AQ ⃗⃗⃗⃗⃗ =n b ,则1m +1n =( ) A.3B.4C.5D.139.已知x>0,y>0,xy=x+2y ,若xy ≥m-2恒成立,则实数m 的最大值是 . 10.已知x ,y ∈R 且满足x 2+2xy+4y 2=6,则z=x 2+4y 2的取值范围为 .11.(2019江苏无锡二模)经过长期观测,某一公路段在交通繁忙的时段内,汽车的车流量(千辆/时)与vv 2-5v+900成正比,其中v (千米/时)是汽车的平均速度.则该公路段在交通繁忙的时段内,汽车的平均速度v 为 时,车流量最大. 12.已知a>0,b>0,a+b=1,求证: (1)1a +1b +1ab ≥8; (2)1+1a 1+1b≥9.13.(2019吉林长春模拟)设a ,b ,c ,d 均为大于零的实数,且abcd=1,令m=a (b+c+d )+b (c+d )+cd ,则a 2+b 2+m 的最小值为( ) A.8 B.4+2√3 C.5+2√3D.4√314.(2019山东济南历下区模拟)设x ,y ∈(0,+∞),(x+y )1x +1y≥a 恒成立,则实数a 的最大值为( )A.2B.4C.8D.1615.(2019山东烟台质检)已知x>0,y>0,则代数式M=(3x+2y )·1x+6y中的x 和y 满足 时,M取得最小值,其最小值为 .16.(2019湖南郴州质检)已知△ABC 满足BA ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ +2√3=0,∠BAC=30°,点P 在△ABC 内且△PCA ,△PAB ,△PBC 的面积分别为12,x ,y. (1)求x+y 的值; (2)求1x +9y 的最小值.。
基本不等式及其应用
基本不等式及其应用【考试要求】1.掌握基本不等式ab ≤a +b2(a ,b ≥0);2.结合具体实例,能用基本不等式解决简单的最大值或最小值问题. 【知识梳理】 1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号. (3)其中a +b2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数.2.两个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R),当且仅当a =b 时取等号.(2)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R),当且仅当a =b 时取等号.3.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大).【微点提醒】1.b a +a b≥2(a ,b 同号),当且仅当a =b 时取等号. 2.21a +1b≤ab ≤a +b2≤a 2+b 22(a >0,b >0).3.连续使用基本不等式求最值要求每次等号成立的条件一致. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”) (1)两个不等式a 2+b 2≥2ab 与a +b2≥ab 成立的条件是相同的.( )(2)函数y =x +1x的最小值是2.( )(3)函数f(x)=sin x+4sin x的最小值为4.( )(4)x>0且y>0是xy+yx≥2的充要条件.( )【教材衍化】2.(必修5P99例1(2)改编)若x>0,y>0,且x+y=18,则xy的最大值为( )A.9B.18C.36D.813.(必修5P100练习T1改编)若x<0,则x+1x( )A.有最小值,且最小值为2B.有最大值,且最大值为2C.有最小值,且最小值为-2D.有最大值,且最大值为-2【真题体验】4.(2019·浙江镇海中学月考)已知f(x)=x2-2x+1x,则f(x)在⎣⎢⎡⎦⎥⎤12,3上的最小值为( )A.12B.43C.-1D.05.(2018·济宁一中月考)一段长为30 m的篱笆围成一个一边靠墙的矩形菜园,墙长18 m,则这个矩形的长为________m,宽为________m时菜园面积最大.6.(2018·天津卷)已知a ,b ∈R ,且a -3b +6=0,则2a+18b 的最小值为________.【考点聚焦】考点一 利用基本不等式求最值 角度1 利用配凑法求最值【例1-1】 (1)(2019·乐山一中月考)设0<x <32,则函数y =4x (3-2x )的最大值为________.(2)已知x <54,则f (x )=4x -2+14x -5的最大值为______.角度2 利用常数代换法求最值 【例1-2】 (2019·潍坊调研)函数y =a1-x(a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -1=0上,且m ,n 为正数,则1m +1n的最小值为________.角度3 基本不等式积(ab )与和(a +b )的转化【例1-3】 (经典母题)正数a ,b 满足ab =a +b +3,则ab 的取值范围是________.【迁移探究】 本例已知条件不变,求a +b 的最小值.【规律方法】在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,主要有两种思路:(1)对条件使用基本不等式,建立所求目标函数的不等式求解.常用的方法有:折项法、变系数法、凑因子法、换元法、整体代换法等.(2)条件变形,进行“1”的代换求目标函数最值.【训练1】 (1)(2019·济南联考)若a >0,b >0且2a +b =4,则1ab的最小值为( ) A.2B.12C.4D.14(2)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值为________.考点二 基本不等式在实际问题中的应用【例2】 运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元. (1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.【规律方法】1.设变量时一般要把求最大值或最小值的变量定义为函数.2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.【训练2】网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2019年1月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x万件与投入实体店体验安装的费用t万元之间满足函数关系式x=3-2t+1.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是________万元.考点三基本不等式与其他知识的综合应用【例3】(1)(2019·河南八校测评)已知等差数列{a n}中,a3=7,a9=19,S n为数列{a n}的前n项和,则S n+10a n+1的最小值为________.(2)(一题多解)(2018·江苏卷)在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC 的平分线交AC于点D,且BD=1,则4a+c的最小值为________.【规律方法】基本不等式的应用非常广泛,它可以和数学的其他知识交汇考查,解决这类问题的策略是:1.先根据所交汇的知识进行变形,通过换元、配凑、巧换“1”等手段把最值问题转化为用基本不等式求解,这是难点.2.要有利用基本不等式求最值的意识,善于把条件转化为能利用基本不等式的形式.3.检验等号是否成立,完成后续问题.【训练3】(1)(2019·厦门模拟)已知f(x)=32x-(k+1)3x+2,当x∈R时,f(x)恒为正值,则k的取值范围是( )A.(-∞,-1)B.(-∞,22-1)C.(-1,22-1)D.(-22-1,22-1)(2)在各项都为正数的等比数列{a n }中,若a 2 018=22,则1a 2 017+2a 2 019的最小值为________.【反思与感悟】1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.2.对于基本不等式,不仅要记住原始形式,而且还要掌握它的几种变形形式及公式的逆用等,例如:ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,ab ≤a +b 2≤a 2+b 22(a >0,b >0)等,同时还要注意不等式成立的条件和等号成立的条件. 【易错防范】1.使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.2.对使用基本不等式时等号取不到的情况,可考虑使用函数y =x +mx(m >0)的单调性. 【分层训练】【基础巩固题组】(建议用时:35分钟) 一、选择题1.(2019·孝感调研)“a >b >0”是“ab <a 2+b 22”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件2.下列结论正确的是( )A.当x>0且x≠1,lg x+1lg x≥2B.1x2+1<1(x∈R)C.当x>0时,x+1x≥2D.当0<x≤2时,x-1x无最大值3.(2019·绵阳诊断)已知x>1,y>1,且lg x,2,lg y成等差数列,则x+y有( )A.最小值20B.最小值200C.最大值20D.最大值2004.设a>0,若关于x的不等式x+ax-1≥5在(1,+∞)上恒成立,则a的最小值为( )A.16B.9C.4D.25.(2019·太原模拟)若P为圆x2+y2=1上的一个动点,且A(-1,0),B(1,0),则|PA|+|PB|的最大值为( )A.2B.2 2C.4D.4 26.某车间分批生产某种产品,每批产品的生产准备费用为800元,若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ) A.60件 B.80件C.100件D.120件7.若实数a ,b 满足1a +2b=ab ,则ab 的最小值为( )A. 2B.2C.2 2D.48.(2019·衡水中学质检)正数a ,b 满足1a +9b=1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是( ) A.[3,+∞) B.(-∞,3] C.(-∞,6]D.[6,+∞)二、填空题9.函数y =x 2+2x -1(x >1)的最小值为________.10.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y(单位:万元)与机器运转时间x(单位:年)的关系为y=-x2+18x-25(x∈N*),则每台机器为该公司创造的年平均利润的最大值是________万元.11.已知x>0,y>0,x+3y+xy=9,则x+3y的最小值为________.12.已知直线mx+ny-2=0经过函数g(x)=log a x+1(a>0且a≠1)的定点,其中mn>0,则1m+1n的最小值为________.【能力提升题组】(建议用时:15分钟)13.(2018·江西师大附中月考)若向量m=(a-1,2),n=(4,b),且m⊥n,a>0,b>0,则log13a+log31b有( )A.最大值log312B.最小值log32C.最大值log1312D.最小值014.(2019·湖南师大附中模拟)已知△ABC的面积为1,内切圆半径也为1,若△ABC的三边长分别为a,b,c,则4a+b+a+bc的最小值为( )A.2B.2+ 2C.4D.2+2 215.(2017·天津卷)若a,b∈R,ab>0,则a4+4b4+1ab的最小值为________.16.已知函数f(x)=x2+ax+11x+1(a∈R),若对于任意的x∈N*,f(x)≥3恒成立,则a的取值范围是________.【新高考创新预测】17.(多填题)已知正数x,y满足x+y=1,则x-y的取值范围为________,1x+xy的最小值为________.答 案【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”) (1)两个不等式a 2+b 2≥2ab 与a +b2≥ab 成立的条件是相同的.( )(2)函数y =x +1x的最小值是2.( )(3)函数f (x )=sin x +4sin x 的最小值为4.( )(4)x >0且y >0是x y +y x≥2的充要条件.( ) 【答案】 (1)× (2)× (3)× (4)×【解析】 (1)不等式a 2+b 2≥2ab 成立的条件是a ,b ∈R ; 不等式a +b2≥ab 成立的条件是a ≥0,b ≥0.(2)函数y =x +1x的值域是(-∞,-2]∪[2,+∞),没有最小值.(3)函数f (x )=sin x +4sin x 没有最小值.(4)x >0且y >0是x y +y x≥2的充分不必要条件. 【教材衍化】2.(必修5P99例1(2)改编)若x >0,y >0,且x +y =18,则xy 的最大值为( ) A.9 B.18C.36D.81【答案】 A【解析】 因为x +y =18,所以xy ≤x +y2=9,当且仅当x =y =9时,等号成立.3.(必修5P100练习T1改编)若x <0,则x +1x( )A.有最小值,且最小值为2B.有最大值,且最大值为2C.有最小值,且最小值为-2D.有最大值,且最大值为-2【答案】 D【解析】 因为x <0,所以-x >0,-x +1-x ≥21=2,当且仅当x =-1时,等号成立,所以x +1x≤-2. 【真题体验】4.(2019·浙江镇海中学月考)已知f (x )=x 2-2x +1x ,则f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为( )A.12 B.43C.-1D.0【答案】 D【解析】 f (x )=x 2-2x +1x =x +1x -2≥2-2=0,当且仅当x =1x,即x =1时取等号.又1∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为0.5.(2018·济宁一中月考)一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m ,则这个矩形的长为________m ,宽为________m 时菜园面积最大. 【答案】 15152【解析】 设矩形的长为x m ,宽为y m.则x +2y =30, 所以S =xy =12x ·(2y )≤12⎝⎛⎭⎪⎫x +2y 22=2252,当且仅当x =2y ,即x =15,y =152时取等号.6.(2018·天津卷)已知a ,b ∈R ,且a -3b +6=0,则2a+18b 的最小值为________.【答案】 14【解析】 由题设知a -3b =-6,又2a >0,8b >0,所以2a+18b ≥22a ·18b =2·2a -3b 2=14,当且仅当2a=18b ,即a =-3,b =1时取等号.故2a+18b 的最小值为14. 【考点聚焦】考点一 利用基本不等式求最值 角度1 利用配凑法求最值【例1-1】 (1)(2019·乐山一中月考)设0<x <32,则函数y =4x (3-2x )的最大值为________.(2)已知x <54,则f (x )=4x -2+14x -5的最大值为______.【答案】 (1)92(2)1【解析】 (1)y =4x (3-2x )=2[2x (3-2x )]≤2⎣⎢⎡⎦⎥⎤2x +(3-2x )22=92,当且仅当2x =3-2x ,即x =34时,等号成立.∵34∈⎝ ⎛⎭⎪⎫0,32,∴函数y =4x (3-2x )⎝⎛⎭⎪⎫0<x <32的最大值为92. (2)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3≤-2(5-4x )·15-4x +3=-2+3=1.当且仅当5-4x =15-4x,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1.角度2 利用常数代换法求最值 【例1-2】 (2019·潍坊调研)函数y =a1-x(a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -1=0上,且m ,n 为正数,则1m +1n的最小值为________.【答案】 4【解析】 ∵曲线y =a1-x恒过定点A ,x =1时,y =1,∴A (1,1).将A 点代入直线方程mx +ny -1=0(m >0,n >0), 可得m +n =1,∴1m +1n =⎝ ⎛⎭⎪⎫1m +1n ·(m +n )=2+n m +mn≥2+2n m ·mn=4, 当且仅当n m =m n 且m +n =1(m >0,n >0),即m =n =12时,取得等号.角度3 基本不等式积(ab )与和(a +b )的转化【例1-3】 (经典母题)正数a ,b 满足ab =a +b +3,则ab 的取值范围是________. 【答案】 [9,+∞)【解析】 ∵a ,b 是正数,∴ab =a +b +3≥2ab +3,解得ab ≥3,即ab ≥9. 【迁移探究】 本例已知条件不变,求a +b 的最小值. 【答案】 见解析【解析】 ∵a >0,b >0,∴ab ≤⎝⎛⎭⎪⎫a +b 22,即a +b +3≤⎝⎛⎭⎪⎫a +b 22,整理得(a +b )2-4(a +b )-12≥0, 解得a +b ≥6或a +b ≤-2(舍).故a +b 的最小值为6.【规律方法】在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,主要有两种思路:(1)对条件使用基本不等式,建立所求目标函数的不等式求解.常用的方法有:折项法、变系数法、凑因子法、换元法、整体代换法等.(2)条件变形,进行“1”的代换求目标函数最值.【训练1】 (1)(2019·济南联考)若a >0,b >0且2a +b =4,则1ab的最小值为( ) A.2B.12C.4D.14(2)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值为________. 【答案】 (1)B (2)5【解析】(1)因为a>0,b>0,故2a +b≥22ab(当且仅当2a =b 时取等号). 又因为2a +b =4,∴22ab ≤4⇒0<ab≤2, ∴1ab ≥12,故1ab 的最小值为12(当且仅当a =1,b =2时等号成立). (2)由x +3y =5xy 可得15y +35x =1,所以3x +4y =(3x +4y )⎝ ⎛⎭⎪⎫15y +35x =135+3x 5y +12y 5x ≥135+125=5(当且仅当3x 5y =12y 5x ,即x =1,y =12时,等号成立),所以3x +4y 的最小值是5. 考点二 基本不等式在实际问题中的应用【例2】 运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. 【答案】 见解析【解析】 (1)设所用时间为t =130x (h),y =130x ×2×⎝ ⎛⎭⎪⎫2+x 2360+14×130x ,x ∈[50,100]. 所以,这次行车总费用y 关于x 的表达式是y =130×18x +2×130360x ,x ∈[50,100](或y =2 340x +1318x ,x ∈[50,100]).(2)y =130×18x +2×130360x ≥2610,当且仅当130×18x =2×130360x , 即x =1810时等号成立.故当x =1810千米/时,这次行车的总费用最低,最低费用的值为2610元. 【规律方法】1.设变量时一般要把求最大值或最小值的变量定义为函数.2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.【训练2】 网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2019年1月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x 万件与投入实体店体验安装的费用t 万元之间满足函数关系式x =3-2t +1.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和, 则该公司最大月利润是________万元. 【答案】37.5【解析】由题意知t =23-x-1(1<x <3),设该公司的月利润为y 万元,则y =⎝⎛⎭⎪⎫48+t 2x x -32x -3-t =16x -t 2-3=16x -13-x +12-3 =45.5-⎣⎢⎡⎦⎥⎤16(3-x )+13-x ≤45.5-216=37.5, 当且仅当x =114时取等号,即最大月利润为37.5万元.考点三 基本不等式与其他知识的综合应用【例3】 (1)(2019·河南八校测评)已知等差数列{a n }中,a 3=7,a 9=19,S n 为数列{a n }的前n 项和,则S n +10a n +1的最小值为________. (2)(一题多解)(2018·江苏卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________. 【答案】 (1)3 (2)9【解析】 (1)∵a 3=7,a 9=19,∴d =a 9-a 39-3=19-76=2,∴a n =a 3+(n -3)d =7+2(n -3)=2n +1,∴S n =n (3+2n +1)2=n (n +2),因此S n +10a n +1=n (n +2)+102n +2=12⎣⎢⎡⎦⎥⎤(n +1)+9n +1≥12×2(n +1)·9n +1=3,当且仅当n =2时取等号.故S n +10a n +1的最小值为3. (2)法一 依题意画出图形,如图所示.易知S △ABD +S △BCD =S △ABC ,即12c sin 60°+12a sin 60°=12ac sin 120°, ∴a +c =ac ,∴1a +1c=1,∴4a +c =(4a +c )⎝ ⎛⎭⎪⎫1a +1c =5+c a +4a c≥9,当且仅当c a =4a c ,即a =32,c =3时取“=”. 法二 以B 为原点,BD 所在直线为x 轴建立如图所示的平面直角坐标系,则D (1,0),∵AB =c ,BC =a , ∴A ⎝ ⎛⎭⎪⎫c 2,32c ,C ⎝ ⎛⎭⎪⎫a2,-32a .∵A ,D ,C 三点共线,∴AD →∥DC →. ∴⎝ ⎛⎭⎪⎫1-c 2⎝ ⎛⎭⎪⎫-32a +32c ⎝ ⎛⎭⎪⎫a 2-1=0,∴ac =a +c ,∴1a +1c=1,∴4a +c =(4a +c )⎝ ⎛⎭⎪⎫1a +1c =5+c a +4a c≥9,当且仅当c a =4a c , 即a =32,c =3时取“=”. 【规律方法】 基本不等式的应用非常广泛,它可以和数学的其他知识交汇考查,解决这类问题的策略是:1.先根据所交汇的知识进行变形,通过换元、配凑、巧换“1”等手段把最值问题转化为用基本不等式求解,这是难点.2.要有利用基本不等式求最值的意识,善于把条件转化为能利用基本不等式的形式.3.检验等号是否成立,完成后续问题.【训练3】 (1)(2019·厦门模拟)已知f (x )=32x-(k +1)3x+2,当x ∈R 时,f (x )恒为正值,则k 的取值范围是( ) A.(-∞,-1)B.(-∞,22-1)C.(-1,22-1)D.(-22-1,22-1)(2)在各项都为正数的等比数列{a n }中,若a 2 018=22,则1a 2 017+2a 2 019的最小值为________. 【答案】 (1)B (2)4【解析】 (1)由f (x )>0得32x -(k +1)3x +2>0,解得k +1<3x+23x .又3x +23x ≥22(当且仅当3x=23x ,即x =log 3 2时,等号成立).所以k +1<22,即k <22-1.(2)∵{a n }为等比数列,∴a 2 017·a 2 019=a 22 018=12.∴1a 2 017+2a 2 019≥22a 2 017·a 2 019=24=4.当且仅当1a 2 017=2a 2 019,即a 2 019=2a 2 017时,取得等号.∴1a 2 017+2a 2 019的最小值为4.【反思与感悟】1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.2.对于基本不等式,不仅要记住原始形式,而且还要掌握它的几种变形形式及公式的逆用等,例如:ab ≤⎝⎛⎭⎪⎫a +b 22≤a 2+b 22,ab ≤a +b 2≤a 2+b 22(a >0,b >0)等,同时还要注意不等式成立的条件和等号成立的条件. 【易错防范】1.使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.2.对使用基本不等式时等号取不到的情况,可考虑使用函数y =x +m x(m >0)的单调性. 【分层训练】【基础巩固题组】(建议用时:35分钟) 一、选择题1.(2019·孝感调研)“a >b >0”是“ab <a 2+b 22”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件【答案】 A【解析】 由a >b >0,可知a 2+b 2>2ab ,充分性成立,由ab <a 2+b 22,可知a ≠b ,a ,b ∈R ,故必要性不成立.2.下列结论正确的是( ) A.当x >0且x ≠1,lg x +1lg x≥2 B.1x 2+1<1(x ∈R) C.当x >0时,x +1x ≥2D.当0<x ≤2时,x -1x无最大值 【答案】 C【解析】 对于A ,当0<x <1时,lg x <0,不等式不成立; 对于B ,当x =0时,有1x 2+1=1,不等式不成立; 对于C ,当x >0时,x +1x≥2x ·1x=2,当且仅当x =1时等号成立;对于D ,当0<x ≤2时,y =x -1x 单调递增,所以当x =2时,取得最大值,最大值为32.3.(2019·绵阳诊断)已知x >1,y >1,且lg x ,2,lg y 成等差数列,则x +y 有( ) A.最小值20 B.最小值200 C.最大值20D.最大值200【答案】 B【解析】 由题意得2×2=lg x +lg y =lg (xy ),所以xy =10 000,则x +y ≥2xy =200,当且仅当x =y =100时,等号成立,所以x +y 有最小值200. 4.设a >0,若关于x 的不等式x +a x -1≥5在(1,+∞)上恒成立,则a 的最小值为( )A.16B.9C.4D.2【答案】 C【解析】 在(1,+∞)上,x +ax -1=(x -1)+a x -1+1≥2(x -1)×a(x -1)+1=2a +1(当且仅当x =1+a 时取等号).由题意知2a +1≥5.所以a ≥4.5.(2019·太原模拟)若P 为圆x 2+y 2=1上的一个动点,且A (-1,0),B (1,0),则|PA |+|PB |的最大值为( ) A.2 B.2 2 C.4 D.4 2【答案】 B【解析】 由题意知∠APB =90°,∴|PA |2+|PB |2=4,∴⎝ ⎛⎭⎪⎫|PA |+|PB |22≤|PA |2+|PB |22=2(当且仅当|PA |=|PB |时取等号), ∴|PA |+|PB |≤22,∴|PA |+|PB |的最大值为2 2.6.某车间分批生产某种产品,每批产品的生产准备费用为800元,若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ) A.60件 B.80件C.100件D.120件【答案】 B【解析】 设每批生产产品x 件,则每件产品的生产准备费用是800x 元,仓储费用是x8元,总的费用是⎝ ⎛⎭⎪⎫800x +x 8元,由基本不等式得800x +x 8≥2800x +x 8=20,当且仅当800x =x8,即x =80时取等号. 7.若实数a ,b 满足1a +2b=ab ,则ab 的最小值为( ) A. 2 B.2C.2 2D.4【答案】 C【解析】 依题意知a >0,b >0,则1a +2b ≥22ab=22ab,当且仅当1a =2b,即b =2a 时,“=”成立.因为1a +2b =ab ,所以ab ≥22ab ,即ab ≥22(当且仅当a =214,b =254时等号成立),所以ab 的最小值为2 2.8.(2019·衡水中学质检)正数a ,b 满足1a +9b=1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是( ) A.[3,+∞) B.(-∞,3] C.(-∞,6]D.[6,+∞)【答案】 D【解析】 因为a >0,b >0,1a +9b=1,所以a +b =(a +b )⎝ ⎛⎭⎪⎫1a +9b =10+b a +9a b≥16,当且仅当b a =9ab,即a =4,b =12时取等号. 依题意,16≥-x 2+4x +18-m ,即x 2-4x -2≥-m 对任意实数x 恒成立. 又x 2-4x -2=(x -2)2-6,所以x 2-4x -2的最小值为-6,所以-6≥-m ,即m ≥6. 二、填空题9.函数y =x 2+2x -1(x >1)的最小值为________.【答案】 23+2【解析】 y =x 2+2x -1=(x 2-2x +1)+2x -2+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2.当且仅当x -1=3x -1,即x =3+1时,等号成立. 10.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则每台机器为该公司创造的年平均利润的最大值是________万元. 【答案】 8【解析】 每台机器运转x 年的年平均利润为y x=18-⎝⎛⎭⎪⎫x +25x ,而x >0,故yx ≤18-225=8,当且仅当x =5时等号成立,此时每台机器为该公司创造的年平均利润最大,最大值为8万元. 11.已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 【答案】 6【解析】 因为x >0,y >0,所以9-(x +3y )=xy =13x ·(3y )≤13·⎝ ⎛⎭⎪⎫x +3y 22,当且仅当x =3y ,即x =3,y=1时等号成立.设x +3y =t >0,则t 2+12t -108≥0,所以(t -6)(t +18)≥0,又因为t >0,所以t ≥6.故当x =3,y =1时,(x +3y )min =6.12.已知直线mx +ny -2=0经过函数g (x )=log a x +1(a >0且a ≠1)的定点,其中mn >0,则1m +1n的最小值为________.【答案】 2【解析】 因为函数g (x )=log a x +1(a >0且a ≠1)的定点(1,1)在直线mx +ny -2=0上,所以m +n -2=0,即m 2+n 2=1. 所以1m +1n =⎝ ⎛⎭⎪⎫1m +1n ⎝ ⎛⎭⎪⎫m 2+n 2=1+n 2m +m 2n≥1+2n 2m ·m 2n=2, 当且仅当n 2m =m 2n,即m 2=n 2时取等号, 所以1m +1n的最小值为2. 【能力提升题组】(建议用时:15分钟)13.(2018·江西师大附中月考)若向量m =(a -1,2),n =(4,b ),且m ⊥n ,a >0,b >0,则log 13a +log 3 1b有( )A.最大值log 3 12B.最小值log 32C.最大值log 13 12D.最小值0【答案】 B【解析】 由m ⊥n ,得m ·n =0,即4(a -1)+2b =0, ∴2a +b =2,∴2≥22ab ,∴ab ≤12(当且仅当2a =b 时,等号成立). 又log 13 a +log 3 1b =log 13 a +log 13 b =log 13 (ab )≥log 1312=log 3 2, 故log 13a +log 3 1b有最小值为log 3 2. 14.(2019·湖南师大附中模拟)已知△ABC 的面积为1,内切圆半径也为1,若△ABC 的三边长分别为a ,b ,c ,则4a +b +a +b c的最小值为( ) A.2B.2+ 2C.4D.2+2 2 【答案】 D【解析】 因为△ABC 的面积为1,内切圆半径也为1,所以12(a +b +c )×1=1,所以a +b +c =2, 所以4a +b +a +b c =2(a +b +c )a +b +a +b c =2+2c a +b +a +b c≥2+22, 当且仅当a +b =2c ,即c =22-2时,等号成立,所以4a +b +a +b c的最小值为2+2 2. 15.(2017·天津卷)若a ,b ∈R ,ab >0,则a 4+4b 4+1ab的最小值为________. 【答案】 4【解析】 ∵a ,b ∈R ,ab >0,∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab =4, 当且仅当⎩⎪⎨⎪⎧a 2=2b 2,4ab =1ab ,即⎩⎪⎨⎪⎧a 2=22,b 2=24时取得等号. 16.已知函数f (x )=x 2+ax +11x +1(a ∈R),若对于任意的x ∈N *,f (x )≥3恒成立,则a 的取值范围是________.【答案】 ⎣⎢⎡⎭⎪⎫-83,+∞ 【解析】 对任意x ∈N *,f (x )≥3, 即x 2+ax +11x +1 ≥3恒成立,即a ≥-⎝ ⎛⎭⎪⎫x +8x +3. 设g (x )=x +8x ,x ∈N *,则g (x )=x +8x≥42, 当x =22时等号成立,又g (2)=6,g (3)=173, ∵g (2)>g (3),∴g (x )min =173.∴-⎝ ⎛⎭⎪⎫x +8x +3≤-83, ∴a ≥-83,故a 的取值范围是⎣⎢⎡⎭⎪⎫-83,+∞.【新高考创新预测】17.(多填题)已知正数x,y满足x+y=1,则x-y的取值范围为________,1x+xy的最小值为________.【答案】(-1,1) 3【解析】∵正数x,y满足x+y=1,∴y=1-x,0<x<1,∴-y=-1+x,∴x-y=2x-1,又0<x<1,∴0<2x<2,∴-1<2x-1<1,即x-y的取值范围为(-1,1).1 x +xy=x+yx+xy=1+yx+xy≥1+2yx·xy=1+2=3,当且仅当x=y=12时取“=”;∴1x+xy的最小值为3.。
2019年高考数学试题分项版—不等式(解析版)
2019年高考数学试题分项版——不等式(解析版)一、选择题1.(2019·全国Ⅲ文,11)记不等式组+ , -表示的平面区域为D .命题p :∃(x ,y )∈D,2x+y ≥9;命题q :∀(x ,y )∈D,2x +y ≤12.下面给出了四个命题: ①p ∨q ;②(p ⌝)∨q ;③p ∧(q ⌝);④(p ⌝)∧(q ⌝). 这四个命题中,所有真命题的编号是( ) A .①③ B .①② C .②③ D .③④ 答案 A解析 方法一 画出可行域如图中阴影部分(含边界)所示.目标函数z =2x +y 是一条平行移动的直线,且z 的几何意义是直线z =2x +y 在y 轴上的截距.显然,当直线过点A (2,4)时,z min =2×2+4=8, 即z =2x +y ≥8. ∴2x +y ∈[8,+∞).由此得命题p :∃(x ,y )∈D,2x +y ≥9正确; 命题q :∀(x ,y )∈D,2x +y ≤12不正确. ∴①③真,②④假.方法二 取x =4,y =5,满足不等式组 + , - ,且满足2x +y ≥9,不满足2x +y ≤12,故p 真,q 假. ∴①③真,②④假.2.(2019·天津文,2)设变量x ,y 满足约束条件+ - , - + ,- , - ,则目标函数z =-4x +y 的最大值为( )A .2B .3C .5D .6 答案 C解析 画出可行域如图中阴影部分(含边界)所示,作出直线-4x+y=0,并平移,可知当直线过点A时,z取得最大值.由=-,-+=,可得=-,=,所以点A的坐标为(-1,1),故z max=-4×(-1)+1=5.3.(2019·天津文,3)设x∈R,则“0<x<5”是“|x-1|<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析由|x-1|<1可得0<x<2,所以“|x-1|<1的解集”是“0<x<5的解集”的真子集.故“0<x<5”是“|x-1|<1”的必要不充分条件.4.(2019·浙江,3)若实数x,y满足约束条件-+,--,+,则z=3x+2y的最大值是()A.-1 B.1 C.10 D.12答案 C解析作出可行域如图中阴影部分(含边界)所示,数形结合可知,当直线z=3x+2y过点A(2,2)时,z取得最大值,z max=6+4=10.5.(2019·浙江,5)设a>0,b>0,则“a+b≤4”是“ab≤4”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析因为a>0,b>0,所以a+b≥2,由a+b≤4可得2≤4,解得ab≤4,所以充分性成立;当ab ≤4时,取a =8,b =,满足ab ≤4,但a +b ≥4,所以必要性不成立,所以“a+b ≤4”是“ab ≤4”的充分不必要条件. 6.(2019·全国Ⅱ理,6)若a >b ,则( ) A .ln(a -b )>0 B .3a <3b C .a 3-b 3>0 D .|a |>|b |答案 C解析 由函数y =ln x 的图象(图略)知,当0<a -b <1时,ln(a -b )<0,故A 不正确;因为函数y =3x 在R 上单调递增,所以当a >b 时,3a >3b ,故B 不正确;因为函数y =x 3在R 上单调递增,所以当a >b 时,a 3>b 3,即a 3-b 3>0,故C 正确;当b <a <0时,|a |<|b |,故D 不正确.故选C.7.(2019·北京理,5)若x ,y 满足||1x y -…,且1y -…,则3x y +的最大值为( ) A .7-B .1C .5D .7【思路分析】由约束条件作出可行域,令3z x y =+,化为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【解析】:由||11x y y -⎧⎨-⎩……作出可行域如图,联立110y x y =-⎧⎨+-=⎩,解得(2,1)A -,令3z x y =+,化为3y x z =-+,由图可知,当直线3y x z =-+过点A 时,z 有最大值为3215⨯-=. 故选:C .【归纳与总结】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题. 8.(2019·天津理,2)设变量x ,y 满足约束条件+ - ,- + ,- , - ,则目标函数z =-4x +y 的最大值为( )A .2B .3C .5D .6答案 C解析画出可行域如图中阴影部分(含边界)所示,作出直线-4x+y=0,并平移,可知当直线过点A时,z取得最大值.由=-,-+=,可得=-,=,所以点A的坐标为(-1,1),故z max=-4×(-1)+1=5.9.(2019·天津理,3)设x∈R,则“x2-5x<0”是“|x-1|<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析由x2-5x<0可得0<x<5.由|x-1|<1可得0<x<2.由于区间(0,2)是(0,5)的真子集,故“x2-5x<0”是“|x-1|<1”的必要不充分条件.二、填空题1.(2019·全国Ⅱ文,13)若变量x,y满足约束条件+-,-,则z=3x-y的最大值是________.答案9解析作出已知约束条件对应的可行域,如图中阴影部分(含边界)所示,由图易知,当直线y=3x-z过点C时,-z最小,即z最大.由+-=,+-=,解得=,=,即C点坐标为(3,0),故z max=3×3-0=9.2.(2019·北京文,10)若x,y满足,-,-+,则y-x的最小值为________,最大值为________.答案-3 1解析x,y满足的平面区域如图(阴影部分)所示.设z=y-x,则y=x+z.把z看作常数,则目标函数是可平行移动的直线,z的几何意义是直线y=x+z在y轴上的截距,通过图象可知,当直线y=x+z经过点A(2,3)时,z取得最大值,此时z max=3-2=1. 当经过点B(2,-1)时,z取得最小值,此时z min=-1-2=-3.3.(2019·天津文,10)设x∈R,使不等式3x2+x-2<0成立的x的取值范围为________.答案解析3x2+x-2<0变形为(x+1)(3x-2)<0,解得-1<x<,故使不等式成立的x的取值范围为.4.(2019·天津文,13)设x>0,y>0,x+2y=4,则的最小值为________.答案解析===2+.∵x>0,y>0且x+2y=4,∴4≥2(当且仅当x=2,y=1时取等号),∴2xy≤4,∴≥,∴2+≥2+=.5.(2019·天津理,13)设x>0,y>0,x+2y=5,则的最小值为________.答案4解析===2+.由x+2y=5得5≥2,即≤,即xy≤,当且仅当x=2y=时等号成立.所以2+≥2=4,当且仅当2=,即xy=3时取等号,结合xy≤可知,xy可以取到3,故的最小值为4.三、解答题1.(2019·全国Ⅰ文,23)[选修4-5:不等式选讲]已知a,b,c为正数,且满足abc=1.证明:(1)++≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.证明(1)因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,且abc=1,故有a2+b2+c2≥ab+bc+ca==++.所以++≤a2+b2+c2.(2)因为a,b,c为正数且abc=1,故有(a+b)3+(b+c)3+(c+a)3≥3=3(a+b)(b+c)(a+c)≥3×(2)×(2)×(2)=24.所以(a+b)3+(b+c)3+(c+a)3≥24.2.(2019·全国Ⅱ文,23)[选修4-5:不等式选讲]已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.解(1)当a=1时,f(x)=|x-1|x+|x-2|(x-1).当x<1时,f(x)=-2(x-1)2<0;当x≥1时,f(x)≥0.所以,不等式f(x)<0的解集为(-∞,1).(2)因为f(a)=0,所以a≥1.当a≥1,x∈(-∞,1)时,f(x)=(a-x)x+(2-x)(x-a)=2(a-x)(x-1)<0.所以,a的取值范围是[1,+∞).3.(2019·全国Ⅲ文,23)[选修4-5:不等式选讲]设x,y,z∈R,且x+y+z=1.(1)求(x-1)2+(y+1)2+(z+1)2的最小值;(2)若(x-2)2+(y-1)2+(z-a)2≥成立,证明:a≤-3或a≥-1.(1)解由于[(x-1)+(y+1)+(z+1)]2=(x-1)2+(y+1)2+(z+1)2+2[(x-1)(y+1)+(y+1)(z+1)+(z+1)(x-1)]≤3[(x-1)2+(y+1)2+(z+1)2],故由已知,得(x-1)2+(y+1)2+(z+1)2≥,当且仅当x=,y=-,z=-时,等号成立.所以(x-1)2+(y+1)2+(z+1)2的最小值为.(2)证明由于[(x-2)+(y-1)+(z-a)]2=(x-2)2+(y-1)2+(z-a)2+2[(x-2)(y-1)+(y-1)(z-a)+(z-a)(x-2)]≤3[(x-2)2+(y-1)2+(z-a)2],故由已知,得(x-2)2+(y-1)2+(z-a)2≥,当且仅当x=,y=,z=时,等号成立.因此(x-2)2+(y-1)2+(z-a)2的最小值为.由题设知≥,解得a≤-3或a≥-1.4.(2019·江苏,21)C.[选修4-5:不等式选讲]设x∈R,解不等式|x|+|2x-1|>2.解当x<0时,原不等式可化为-x+1-2x>2,解得x<-;当0≤x≤时,原不等式可化为x+1-2x>2,即x<-1,无解;当x>时,原不等式可化为x+2x-1>2,解得x>1.综上,原不等式的解集为或.5.(2019·全国Ⅰ理,23)[选修4-5:不等式选讲]已知a,b,c为正数,且满足abc=1.证明:(1)++≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.证明(1)因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,且abc=1,故有a2+b2+c2≥ab+bc+ca==++.所以++≤a2+b2+c2.(2)因为a,b,c为正数且abc=1,故有(a+b)3+(b+c)3+(c+a)3≥3=3(a+b)(b+c)(a+c)≥3×(2)×(2)×(2)=24.所以(a+b)3+(b+c)3+(c+a)3≥24.6.(2019·全国Ⅱ理,23)[选修4-5:不等式选讲]已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.解(1)当a=1时,f(x)=|x-1|x+|x-2|(x-1).当x<1时,f(x)=-2(x-1)2<0;当x≥1时,f(x)≥0.所以,不等式f(x)<0的解集为(-∞,1).(2)因为f(a)=0,所以a≥1.当a≥1,x∈(-∞,1)时,f(x)=(a-x)x+(2-x)(x-a)=2(a-x)(x-1)<0.所以,a的取值范围是[1,+∞).7.(2019·全国Ⅲ理,23)[选修4-5:不等式选讲]设x,y,z∈R,且x+y+z=1.(1)求(x-1)2+(y+1)2+(z+1)2的最小值;(2)若(x-2)2+(y-1)2+(z-a)2≥成立,证明:a≤-3或a≥-1.(1)解由于[(x-1)+(y+1)+(z+1)]2=(x-1)2+(y+1)2+(z+1)2+2[(x-1)(y+1)+(y+1)(z+1)+(z+1)(x-1)]≤3[(x-1)2+(y+1)2+(z+1)2],故由已知,得(x-1)2+(y+1)2+(z+1)2≥,当且仅当x=,y=-,z=-时,等号成立.所以(x-1)2+(y+1)2+(z+1)2的最小值为.(2)证明由于[(x-2)+(y-1)+(z-a)]2=(x-2)2+(y-1)2+(z-a)2+2[(x-2)(y-1)+(y-1)(z-a)+(z-a)(x-2)]≤3[(x-2)2+(y-1)2+(z-a)2],故由已知,得(x-2)2+(y-1)2+(z-a)2≥,当且仅当x=,y=,z=时,等号成立.因此(x-2)2+(y-1)2+(z-a)2的最小值为.由题设知≥,解得a≤-3或a≥-1.。
2019版高考数学一轮复习第6章不等式第4讲基本不等式课件【优质ppt版本】
触类旁通 利用基本不等式求最值问题的解题策略
(1)利用基本(均值)不等式解题一定要注意应用的前提: “一正”“二定”“三相等”.
(2)在利用基本(均值)不等式求最值时,要根据式子的特 征灵活变形,配凑出积、和为常数的形式,然后再利用基本 (均值)不等式.
【变式训练 1】 (1)已知 0<x<1,则 x(3-3x)取得最大
值时 x 的值为( )
1132 A.3 B.2 C.4 D.3
解析
∵
0<x<1
,
∴
x·(3
-
3x)
=
1 3
·3x·(3
-
3x)≤
1 3
3x+23-3x2=34,当 3x=3-3x,即 x=12时,x(3-3x)取得 最大值34.选 C.
3.其中a+2 b叫做正数 a,b 的 做正数 a,b 的 几何平均数 .
算术平均数
, ab叫
考点 3 利用基本不等式求最大、最小值问题 1.如果 x,y∈(0,+∞),且 xy=P(定值), 那么当 x=y 时,x+y 有最小值 2 P.(简记:“积定 和最小”) 2.如果 x,y∈(0,+∞),且 x+y=S(定值), 那么当 x=y 时,xy 有最大值S42.(简记:“和定积最大”)
触类旁通 求条件最值注意的问题
(1)要敏锐的洞察到已知条件与要求式子的联系,并能 灵活进行转化;
(2)常用的技巧有:“1”的代换,配凑法,放缩法,换元 法.
【变式训练 2】 (1)[2018·珠海模拟]已知 x>0,y>0,x +3y+xy=9,则 x+3y 的最小值为( )
高中数学基本不等式知识点及练习题
高中数学基本不等式知识点及练习题1.基本不等式:对于任意正实数a和b,有ab≤(a+b)/2.2.几个重要的不等式:1) 平方差公式:对于任意实数a和b,有(a-b)^2≥0,即a^2+b^2≥2ab.2) 两个同号数的平方和大于它们的积:对于任意正实数a 和b,有a^2+b^2≥2ab.3) 两个异号数的平方和小于它们的积:对于任意实数a和b,如果ab<0,则a^2+b^2<2ab.4) 平均值不等式:对于任意正实数a和b,有(a+b)/2≥√(ab).3.算术平均数与几何平均数:对于任意正实数a和b,它们的算术平均数为(a+b)/2,几何平均数为√(ab)。
基本不等式可以叙述为两个正数的算术平均数大于或等于它们的几何平均数.4.利用基本不等式求最值问题:1) 如果积xy是定值p,那么当且仅当x=y时,x+y有最小值是2p.2) 如果和x+y是定值p,那么当且仅当x=y时,xy有最大值是p^2/4.一个技巧:在运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a^2+b^2≥2ab逆用就是ab≤(a^2+b^2)/(a+b)^2;还要注意“添、拆项”等技巧和公式等号成立的条件等.两个变形:1) a^2+b^2≥(a+b)^2/2≥ab(a>0,b>0,当且仅当a=b时取等号).2) a^2+b^2≥2ab(a,b∈R,当且仅当a=b时取等号).三个注意:1) 使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视。
要利用基本不等式求最值,这三个条件缺一不可.2) 在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.3) 连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.应用一:求最值:例1:已知x<5,求函数y=4x-2+1/(2x+1)的最大值.解题技巧:技巧一:凑项.例1:已知x<5,求函数y=4x-2+1/(2x+1)的最大值.技巧二:凑系数.例1.当x^2+7x+10/(x+1)的值域.技巧三:分离.例3.求y=x(8-2x)的最大值,当y<4时。
人教A版(2019)高中数学必修第一册2.2基本不等式教案
2.2 基本不等式学习目标:1.知识与技能:会从不同角度探索基本不等式,会用基本不等式解决简单的最值问题;2.过程与方法:经历基本不等式的推导过程,体会数形结合、分类讨论等数学思想,提升数学抽象、直观想象、逻辑推理等数学核心素养;3.情感态度价值观:培养学生主动探索、勇于发现的科学精神,并在探究的过程中,体会数学的严谨性,发现数学的实用性教学重点:基本不等式的定义,证明方法和几何解释;用基本不等式解决简单的最值问题.教学难点:基本不等式的几何解释,用基本不等式解决简单最值问题.教学过程:教学内容师生活动设计意图情境导学探新知情境1:展示第24届国际数学家大会的会标,介绍赵爽弦图历史渊源.情境2:介绍知名校友国际数学新秀韦东奕.师:展示部分北京数学家大会的图片,介绍发展史.生:欣赏和感受数学历史文华,榜样就在我们身边.渗透德育,激发学生的民族自豪感,调动学生数学学习积极性.合作探究释问题1:你能否从数学家的角度来欣赏会标,由哪些几何图形构成?蕴含怎样的不等关系?师:提出问题1,留给学生一分钟时间独立思考.生:整个图案由正方形和四个全等的直角三角形构成.生:大正方形面积不小于四个直角三角形面积和.激发学生探究欲望,引导学生从几何图形出发抽象出重要不等式,为接下来基本不等式做铺垫,体会数疑难重要不等式:222a b ab+≥当且仅当a b=时,等号成立. 师:设直角三角形的直角边分别为a,b,如何表示上述不等关系?师:观察数学模型,当a,b,满足什么条件时,大正方形面积等于四个直角三角形面积和?生:a b=时取得相等学建模,数形结合的思想.合作探究释疑难问题2:由重要不等式出发,如何才能得到两个正数和与积的不等关系?基本不等式:0,0a b>>2a bab+≥当且仅当a=b时取得等号.2a b+是两个正数a,b的算术平均数,ab是两个正数a, b的几何平均数师:重要不等式体现了平方和与积的关系,你能想到哪些方法使其转变成两个正数和与积的关系?生:小组交流讨论,时长3分钟.生:可用正数,a b代替原式中的a,b,即得到2a b ab+≥生:原不等式两边同时加2ab2224a b ab ab++≥即()24a b ab+≥即2a b ab+≥师:何时取等?生:当且仅当a b=等号成立.师:板书基本不等式体会代换方法在数学学习中的作用,感受数学知识间的联系,通过分析基本不等式的结构特征得到基本不等式的代数解释,加深对基本不等式的认识,多种方法下,培养学生的发散思维.合问题3:是否还有其它方式证明师:有哪些方式可以比较两个代数式的大小?从几何和代数两个角度实现基本作探究释疑难(),02a bab a b+≥>?做差法证明基本不等式.生:做差法.生:一人黑板板书做差法证明基本不等式,其余同学练习本证明.生:黑板上讲解证明思路,过程.师:结合板书同学证明步骤,讲强调取等的重要性.不等式的证明,培养学生逻辑推理能力,实现从感性认识到理性认识升华.合作探究释疑难问题4:“当a b=时等号成立”“仅当a b=时等号成立”含义分别是什么?师:结合第一章我们研究的常用逻辑用语,你能否发现,“a b=”和“等号成立”之间的关系?生:“当a b=时等号成立”是说“a b=”是“等号成立”的充分条件; “仅当a b=时等号成立”是说“a b=”是“等号成立”的必要条件,也就是“a b=”和“等号成立”互为充要条件.师:肯定学生能够前后知识融会贯通.强调基本不等式取等条件,加深学生对于等号是否成立的理性认识.加强学生前后知识间的联系和数学应用意识.合作探究释疑难问题5:如图AB是圆的直径,点C是AB上一点,AC=a,BC=b,过点C做垂直于AB的弦DE,连接AD,BD,你能利用这个图形得到基本不等式的几何解释吗?师:前后4人小组,4分钟时间讨论交流.生:小组讨论,选派小组代表上台为同学展示交流成果,其他同学做补充.师:肯定小组交流成果.师:几何画板动态演示,使学生直观感受变与不变.师:引导学生总结,半径即为2a b+,CD ab=,圆中直径不小于任意一条弦,当且仅当弦过圆心时,学生自己发现基本不等式的几何解释相对较困难,给出几何图形后,引导学生将ab和2a b+与图中的几何元素建立起联系,再观察这些几何元素在变化中表现得大小关系,从而得到基。
基本不等式(很全面)
基本不等式(很全面)基本不等式基本不等式原始形式:对于任意实数a和b,有a+b≥2ab/(a^2+b^2)。
基本不等式一般形式(均值不等式):对于任意实数a和b,有a+b≥2ab/2.基本不等式的两个重要变形:1)对于任意实数a和b,有(a+b)/2≥√(ab)。
2)对于任意实数a和b,有ab≤(a^2+b^2)/2.求最值的条件:“一正,二定,三相等”。
常用结论:1)对于任意正实数x,有x+1/x≥2(当且仅当x=1时取“=”)。
2)对于任意负实数x,有x+1/x≤-2(当且仅当x=-1时取“=”)。
3)对于任意正实数a和b,有(a/b+b/a)≥2(当且仅当a=b 时取“=”)。
4)对于任意实数a和b,有ab≤(a^2+b^2)/2≤(a+b)^2/4.5)对于任意实数a和b,有1/(a+b)≤1/2√(ab)≤(1/a+1/b)/(a+b/2)。
特别说明:以上不等式中,当且仅当a=b时取“=”。
柯西不等式:1)对于任意实数a、b、c和d,有(a+b)(c+d)≥(ac+bd)^2.2)对于任意实数a1、a2、a3、b1、b2和b3,有(a1^2+a2^2+a3^2)(b1^2+b2^2+b3^2)≥(a1b1+a2b2+a3b3)^2.3)对于任意实数a1、a2、…、an和b1、b2、…、bn,有(a1^2+a2^2+…+an^2)(b1^2+b2^2+…+bn^2)≥(a1b1+a2b2+…+an bn)^2.题型归纳:题型一:利用基本不等式证明不等式。
题目1:设a、b均为正数,证明不等式ab≥2/(1/a+1/b)。
题目2:已知a、b、c为两两不相等的实数,求证:a/(b-c)^2+b/(c-a)^2+c/(a-b)^2≥2/(a-b+b-c+c-a)。
题目3:已知a+b+c=1,求证:a^2+b^2+c^2+9abc≥2(ab+bc+ca)。
题目4:已知a、b、c为正实数,且abc=1,求证:a/b+b/c+c/a≥a+b+c。
高考数学-基本不等式(知识点归纳)
高考数学-基本不等式(知识点归纳) 高中数学基本不等式的巧用一、基本不等式1.若$a,b\in\mathbb{R}$,则$a+b\geq 2ab$,$ab\leq\frac{(a+b)^2}{4}$(当且仅当$a=b$时取“=”)2.若$a,b\in\mathbb{R}$,则$\frac{a+b}{2}\geq\sqrt{ab}$(当且仅当$a=b$时取“=”)3.若$x>1$,则$x+\frac{1}{x}\geq 2$(当且仅当$x=1$时取“=”);若$x<1$,则$x+\frac{1}{x}\leq -2$(当且仅当$x=-1$时取“=”);若$x\neq 0$,则$x+\frac{1}{x}\geq 2$或$x+\frac{1}{x}\leq -2$(当且仅当$x=1$或$x=-1$时取“=”)4.若$a,b>0$,则$\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当$a=b$时取“=”);若$ab\neq 0$,则$\frac{a}{b}+\frac{b}{a}\geq 2$或$\frac{a}{b}+\frac{b}{a}\leq -2$(当且仅当$a=b$时取“=”)注:(1)当两个正数的积为定值时,可以求它们的和的最小值,当两个正数的和为定值时,可以求它们的积的最大值,正所谓“积定和最小,和定积最大”。
2)求最值的条件“一正,二定,三取等”。
3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用。
应用一:求最值例1:求下列函数的值域1.$y=3x+\frac{11}{2}$2.$y=x+\frac{1}{2x}$解:(1)$y=3x+\frac{11}{2}\geq 6$,所以值域为$[6,+\infty)$。
2)当$x>0$时,$y=x+\frac{1}{2x}\geq 2$;当$x<0$时,$y=x+\frac{1}{2x}\leq -2$;当$x=0$时,$y$无定义。
高中数学:基本不等式
基本不等式1、基本不等式√ab≤a+b2(a>0,b>0),当且仅当a=b时取等号其中,a+b2为正数a,b的算数平均数,√ab为正数a,b的几何平均数2、基本不等式的变形(1)a2+b2≥2ab(a,b∈R),当且仅当a=b时取等号(2)a+b≥2√ab(a>0,b>0),当且仅当a=b时取等号(3)ab≤(a+b2)2(a,b∈R),当且仅当a=b时取等号(4)a+1a ≥2(a>0),当且仅当a=1时取等号;a+1a≤−2(a<0),当且仅当a=−1时取等号(5)ba +ab≥2(a,b同号),当且仅当a=b时取等号(6)2aba+b 为正数a,b的调和平均数,√a2+b22为正数a,b的平方平均数则:2aba+b ≤√ab≤a+b2≤√a2+b22(a>0,b>0)注意:运用基本不等式及其变形时,一定要验证等号是否成立。
3、基本不等式与最值已知x>0,y>0(1)如果xy是定值p,那么当且仅当x=y时,x+y有最小值2√p(简记:积定和最小)(2)如果x+y是定值s,那么当且仅当x=y时,xy有最大值s 24(简记:和定积最大)注意:①一正二定三相等②连续使用基本不等式时,等号要同时成立题型一、基本不等式的性质1、下列不等式中正确的是()A.a2+b2≥4abB.a+4a≥4C.a2+2+1a2+2≥4 D.a2+4a2≥42、若正实数a,b满足a+b=1,则()A.1a +1b有最大值4 B.ab有最小值14C.√a+√b有最大值√2D.a2+b2有最小值√22题型二、代数式最值的求解方法——拼凑法1、已知8a+2b=1(a>0,b>0),则ab的最大值为____________2、已知f(x)=x 2+3x+6x+1(x>0),则f(x)的最小值是______________3、若a、b∈R,ab>0,则a 4+4b4+1ab的最小值为________________4、中国南宋大数学家秦九韶提出了“三斜求积术",即已知三角形三边长求三角形面积的公式:设三角形的三条边长分别为a,b,c,则三角形的面积S可由公式S=√p(p−a)(p−b)(p−c)求得,其中p为三角形周长的一半,这个公式也被称为海伦一秦九韶公式,现有一个三角形的边长满足a=6, b+c =8,则此三角形面积的最大值为_____________题型三、条件最值的求解方法——常数代换法1、若正实数x,y满足x+y=1,则4x +9y的最小值为_____________2、已知x>0,y>0,z>0,且9y+z +1x=1,则x+y+z的最小值为________________3、若正实数x,y满足x+y=1,则4x+1+1y的最小值为_____________4、若正实数x,y满足x+4y−xy=0,则3x+y的最大值为________________5、已知a、b都是正数,且ab=1,则12a +12b+8a+b的最小值为______________6、已知a、b都是正数,且ab+a+b=3,则ab的最大值是________________;a+2b的最小值是______________7、已知5x2y2+y4=1(x,y∈R),则x2+y2的最小值是_____________8、已知ab=12,a,b∈(0,1),那么11−a+21−b的最小值为_______________题型四、应用题1、某果农种植一种水果,每年施肥和灌溉等需投人4万元为了提高产量同时改善水果口味以赢得市场,计划在今年投入x万元用于改良品种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本不等式
【考点梳理】
1.基本不等式ab ≤
a +b
2
(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式 (1)a 2
+b 2
≥2ab (a ,b ∈R ); (2)b a +a b
≥2(a ,b 同号且不为零); (3)ab ≤⎝
⎛⎭
⎪⎫a +b 22(a ,b ∈R );
(4)⎝ ⎛⎭
⎪⎫a +b 22≤a 2
+b 2
2(a ,b ∈R ). 3.算术平均数与几何平均数
设a >0,b >0,则a ,b 的算术平均数为
a +b
2
,几何平均数为ab ,基本不等式可叙述为:
两个正数的算术平均数不小于它们的几何平均数.
4.利用基本不等式求最值问题 已知x >0,y >0,则
(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 2
4(简记:和定积最大).
【考点突破】
考点一、配凑法求最值
【例1】(1)若x <
54,则f (x )=4x -2+145
x -的最大值为________. (2)函数y =
x -1
x +3+x -1
的最大值为________.
[答案] (1) 1 (2) 1
5
[解析] (1)因为x <5
4
,所以5-4x >0,
=-2+3=1.
当且仅当5-4x =1
5-4x ,即x =1时,等号成立.
故f (x )=4x -2+1
4x -5的最大值为1.
(2)令t =x -1≥0,则x =t 2
+1, 所以y =
t
t 2
+1+3+t =
t
t 2
+t +4
.
当t =0,即x =1时,y =0; 当t >0,即x >1时,y =
1
t +4t
+1
, 因为t +4
t
≥24=4(当且仅当t =2时取等号),
所以y =
1t +4t
+1
≤1
5, 即y 的最大值为1
5(当t =2,即x =5时y 取得最大值). 【类题通法】
1.应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.
2.在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式. 【对点训练】 1.若函数f (x )=x +
1
x -2
(x >2)在x =a 处取最小值,则a 等于( ) A .1+2 B .1+3 C .3 D .4 [答案] C
[解析] 当x >2时,x -2>0,f (x )=(x -2)+
1
x -2
+2≥2(x -2)×
1
x -2
+2=4,当
且仅当x -2=
1
x -2
(x >2),即x =3时取等号,即当f (x )取得最小值时,即a =3,选C. 2.函数y =x 2+2
x -1
(x >1)的最小值为________.
[答案] 23+2
[解析] y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3
x -1
=(x -1)2
+2(x -1)+3
x -1
=(x -1)+
3
x -1
+2≥23+2. 当且仅当x -1=3
x -1,即x =3+1时,等号成立.
考点二、常数代换或消元法求最值
【例2】(1)已知x ,y 均为正实数,且
1x +2+1y +2=16
,则x +y 的最小值为( ) A .24 B .32 C .20 D .28 (2)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. [答案] (1) C (2) 6
[解析] (1)∵x ,y 均为正实数,且1x +2+1y +2=16
, 则x +y =(x +2+y +2)-4 =6⎝
⎛⎭⎪
⎫1x +2+1y +2(x +2+y +2)-4
=6⎝
⎛⎭
⎪⎫
2+
x +2y +2+y +2x +2-4 ≥6×⎝
⎛⎭
⎪⎫
2+2
x +2y +2·y +2x +2-4=20, 当且仅当x =y =10时取等号. ∴x +y 的最小值为20. (2)由已知得x =9-3y
1+y .
法一 (消元法)
因为x >0,y >0,所以0<y <3,
所以x +3y =9-3y
1+y +3y
=
12
1+y
+3(y +1)-6≥212
1+y
·3(y +1)-6=6, 当且仅当12
1+y =3(y +1),
即y =1,x =3时,(x +3y )min =6. 法二 ∵x >0,y >0,
9-(x +3y )=xy =13x ·(3y )≤13·⎝ ⎛⎭⎪⎫x +3y 22
,
当且仅当x =3y 时等号成立.
设x +3y =t >0,则t 2
+12t -108≥0, ∴(t -6)(t +18)≥0,又∵t >0,∴t ≥6. 故当x =3,y =1时,(x +3y )min =6. 【类题通法】
条件最值的求解通常有三种方法:
一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;
二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值;
三是对条件使用基本不等式,建立所求目标函数的不等式求解. 【对点训练】
1.若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值为________. [答案] 5
[解析] 法一 由x +3y =5xy 可得15y +3
5x =1,
∴3x +4y =(3x +4y )⎝
⎛⎭
⎪⎫15y +35x
=95+45+3x 5y +12y 5x ≥135+125=5(当且仅当3x 5y =12y 5x ,即x =1,y =1
2时,等号成立), ∴3x +4y 的最小值是5.
法二 由x +3y =5xy ,得x =3y
5y -1,
∵x >0,y >0,∴y >1
5
,
∴3x +4y =9y 5y -1+4y =13⎝ ⎛⎭⎪⎫y -15+95+4
5-4y 5⎝ ⎛⎭⎪⎫y -15+4y =135+95·15y -15+4⎝ ⎛⎭⎪⎫y -15≥13
5+2
3625
=5,
当且仅当y =1
2
时等号成立,∴(3x +4y )min =5.
2.已知直线l :ax +by -ab =0(a >0,b >0)经过点(2,3),则a +b 的最小值为________. [答案] 5+2 6
[解析] 因为直线l 经过点(2,3),所以2a +3b -ab =0,所以b =2a
a -3
>0,所以a -3>0,所以a +b =a +
2a a -3=a -3+6a -3
+5≥5+2(a -3)·
6
a -3
=5+26,当且仅当a -3=6
a -3
,即a =3+6,b =2+6时等号成立. 考点三、基本不等式的实际应用
【例3】某工厂需要建造一个仓库,根据市场调研分析,运费与工厂和仓库之间的距离成正比,仓储费与工厂和仓库之间的距离成反比,当工厂和仓库之间的距离为4千米时,运费为20万元,仓储费为5万元,当工厂和仓库之间的距离为________千米时,运费与仓储费之和最小,最小为________万元.
[答案] 2 20
[解析] 设工厂和仓库之间的距离为x 千米,运费为y 1万元,仓储费为y 2万元,则y 1=
k 1x (k 1≠0),y 2=k 2
x
(k 2≠0),
∵工厂和仓库之间的距离为4千米时,运费为20万元,仓储费用为5万元, ∴k 1=5,k 2=20,∴运费与仓储费之和为⎝ ⎛⎭
⎪⎫5x +20x 万元,
∵5x +20
x
≥2
5x ×20x =20,当且仅当5x =20
x
,即x =2时,运费与仓储费之和最小,为
20万元. 【类题通法】
1.设变量时一般要把求最大值或最小值的变量定义为函数.
2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.
3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)求解. 【对点训练】
一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m ,则这个矩形的长为______m ,宽为________m 时菜园面积最大.
[答案] 15
15
2
[解析] 设矩形的长为x m ,宽为y m ,则x +2y =30.
所以S =xy =12x ·(2y )≤⎝ ⎛⎭
⎪⎫x +2y 22=2252,当且仅当x =2y ,即x =15,y =152时取等号.。