2015年中考二次函数中含45度角题组专题
二次函数中的角度问题(4大题型)专练(学生版)-2024年中考数学压轴题专项训练
二次函数中的角度问题(4大题型)专练通用的解题思路:1、角的数量关系处理的一般方法如下:(1)证等角:常运用等腰三角形两底角相等,等角的余角相等,等角的补角相等、全等三角形和相似三角形的对应角相等及两角的锐角三角函数值相等,等等; (2)证二倍角:常构造辅助圆,利用圆周角定理; (3)证和差角:常旋转、翻折、平移构造角.2.特殊角问题处理的一般方法如下: (1)运用三角函数值;(2)遇45°构造等腰直角三角形; (3)遇30°,60°构造等边三角形; (4)遇90°构造直角三角形.题型一:角相等问题对于二次函数中的角相等问题,首选方法是利用等角的三角比解决问题(利用一线三等角模型或者拆分特殊角来发现等角),其次选择利用相似三角形中的比例线段解决问题。
二次函数中的角相等问题比较灵活,在遇到具体问题时具体分析,合理构造等角,解决问题。
1(2024·山西太原·三模)综合与探究如图1,经过原点O 的抛物线y =-2x 2+8x 与x 轴的另一个交点为A ,直线l 与抛物线交于A ,B 两点,已知点B 的横坐标为1,点M 为抛物线上一动点.(1)求出A ,B 两点的坐标及直线l 的函数表达式.(2)如图2,若点M 是直线l 上方的抛物线上的一个动点,直线OM 交直线l 于点C ,设点M 的横坐标为m ,求MC OC的最大值.(3)如图3,连接OB ,抛物线上是否存在一点M ,使得∠MOA =∠BAO ,若存在,请直接写出点M 的坐标;若不存在,请说明理由.2(23-24九年级下·内蒙古赤峰·阶段练习)在平面直角坐标系中,抛物线y=x2-2x-3与x轴交于点A和点B,与y轴交于点C,顶点为D.(1)请直接写出A、B、D三点坐标.(2)如图1,点M是第四象限内抛物线上的一点,过点M作x轴的垂线,交直线BC于点N,求线段MN长度的最大值;(3)如图2,若点P在抛物线上且满足∠PCB=∠CBD,求点P的坐标;3(23-24九年级下·湖南永州·开学考试)综合与探究.如图,在平面直角坐标系中,已知二次函数y=-23x2+43x+2的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接BC.(1)求A,B,C三点的坐标;(2)若点P是x轴上一点,当△BCP为等腰三角形时,求点P的坐标;(3)点Q是二次函数图象上的一个动点,请问是否存在点Q使∠QCB=∠ABC?若存在,请求出点Q的坐标;若不存在,请说明理由.4(2024·上海嘉定·二模)在平面直角坐标系xOy(如图)中,已知抛物线y=ax2+bx+3经过点A(1,0)、B(-2,3)两点,与y轴的交点为C点,对称轴为直线l.(1)求此抛物线的表达式;(2)已知以点C为圆心,半径为CB的圆记作圆C,以点A为圆心的圆记作圆A,如果圆A与圆C外切,试判断对称轴直线l与圆A的位置关系,请说明理由;(3)已知点D在y轴的正半轴上,且在点C的上方,如果∠BDC=∠BAC,请求出点D的坐标.5(2023·海南·模拟预测)如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-1,0)、B(3,0)两点,与y 轴交于点C(0,3).直线y=x+1与抛物线交于A,D两点.点P是抛物线上一动点.(1)求该抛物线的表达式及点D的坐标;(2)当点P的坐标为(1,4)时,求四边形PCAD的面积;(3)抛物线上是否存在点P,使∠BAP=∠CAD?若存在,求出点P的横坐标;若不存在,请说明理由;(4)如图2,点M、N是对称轴上的两个动点,且MN=1,点M在点N的上方,求四边形ACMN的周长的最小值.6(2024·上海静安·二模)如图,在平面直角坐标系xOy中,已知抛物线关于直线x=52对称,且经过点A(0,3)和点B(3,0),横坐标为4的点C在此抛物线上.(1)求该抛物线的表达式;(2)联结AB、BC、AC,求tan∠BAC的值;(3)如果点P在对称轴右方的抛物线上,且∠PAC=45°,过点P作PQ⊥y轴,垂足为Q,请说明∠APQ=∠BAC,并求点P的坐标.7(2024·广西·一模)如图,已知抛物线y =-13x 2+bx +c 交x 轴于A -3,0 ,B 4,0 两点,交y 轴于点C ,P 是抛物线上一点,连接AC 、BC .(1)求抛物线的解析式;(2)连接OP ,BP ,若S △BOP =2S △AOC ,求点P 的坐标;(3)若∠PBA =∠ACO ,直接写出点P 的坐标.8(2024·山东济南·一模)如图,二次函数y =x ²-2mx -2m -1(m >0). 的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D ,其对称轴与线段BC 交于点E ,与x 轴交于点F .连接AC 、BD .(1)若m =1,,求B 点和C 点坐标;(2)若∠ACO =∠CBD ,求m 的值;(3)若在第一象限内二次函数y =x ²-2mx -2m -1(m >0)的图象上,始终存在一点P ,使得∠ACP =75°.请结合函数的图象,直接写出m 的范围.9(2024·广东·一模)综合应用.如图1,在平面直角坐标系中,已知二次函数y =-23x 2+43x +2的图象与x 轴交于A ,B 两点(点A 在点B的左侧),与y 轴交于点C ,连接BC .(1)求A ,B ,C 三点的坐标,并直接写出直线BC 的函数表达式;(2)点P 是二次函数图象上的一个动点,请问是否存在点P 使∠PCB =∠ABC ?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)如图2,作出该二次函数图象的对称轴直线l,交x轴于点D.若点M是二次函数图象上一动点,且点M始终位于x轴上方,作直线AM,BM,分别交l于点E,F,在点M的运动过程中,DE+DF的值是否为定值?若是,请直接写出该定值;若不是,请说明理由.10(2024·江苏宿迁·二模)如图,在平面直角坐标系中,抛物线经过A、B、C三点,已知A-1,0,B3,0.,C0,3(1)求抛物线的函数表达式;(2)点P是抛物线上任意一点,若∠PBC=∠ACO,求点P的坐标;(3)点M是抛物线上任意一点,若以M、B、C为顶点的三角形是直角三角形,请直接写出点M的坐标.题型二:二倍角关系问题对于平面直角坐标系中的二倍角问题,往往将其转化成等角问题。
中考二次函数与角度有关的问题知识解读
二次函数与角度有关的问题知识解读【专题说明】二次函数背景下与角有关的存在性问题,是各地中考和模拟考试压轴题的热点问题,这种类型的题目综合性较强,更重要的是涉及方程与函数思想、数形结合思想、分类讨论等重要的思想方法,对学生分析、解决问题的能力具有较高的要求。
为此,下面将与角度有关的常见压轴题题型及解法做统一整理【知识点梳理】类型一:将等角问题转化成等腰三角形或平行线问题。
如例1:抛物线y=-x+3x+4,与坐标轴交于点A、B、C,CP⊥y轴交抛物线与点P,点M为A、C间抛物线上一点(包括端点),求满足∠MPO=∠POA的点M的坐标。
分析:显然符合条件的点M有两个,OP上方一个,OP下方一个、当M在OP 上方时,由∠MPO=∠POA可知PM//OA,则M与C点重合。
当M在OP下方时,∠MPO=∠POA,这两角组成的三角形是等腰三角形。
设PM与x轴交于点D,坐标为D(n,0),由两点间距离公式可表示出OD、PD长,根据OD=PD列方程即可求出D点坐标,再求出PD直线表达式与抛物线表达式联立,进而求出M点坐标。
类型二:将等角问题转化成等角所在三角形相似或等角对应的三角函数(通常是正切值)相等问题。
这类问题有两种情况:一种是所求角的一边与坐标轴平行(重合);例2如图,抛物线y=x221+bx+c 与x 轴交于A 、B 两点,与y 轴交于点C ,其对称轴交抛物线于点D ,交x 轴于点E ,已知OB=OC=6.(1)求抛物线的解析式及点D 的坐标;(2)连接BD ,F 为抛物线上一动点,当∠FAB=∠EDB 时,求点F 的坐标;解析:通过已知条件易得抛物线表达式为6221y 2+−=x x 及各定点坐标,第二问中的F 有两种情况:x 轴上方一个,x 轴下方一个。
在Rt ⊿BDE 中,可知tan ∠EDB=21,则tan ∠FAB=21,过F 作x 轴垂线,构造∠FAB 所在直角三角形,接着通过设F 点坐标,表示FH 和AH 长,根据tan ∠FAB=21=AH FH 列方程,或利用相似三角形对应边成比例列式,从而求出点F 坐标,由于表示FH 时加了绝对值,已经考虑到了上下两种情况,这样两个F 就都求出来了。
2015中考数学真题分类汇编:二次函数压轴题(含答案解析可打印)
2015中考数学真题汇编:二次函数1.(13分)(2015•福州)如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q.(1)这条抛物线的对称轴是,直线PQ与x轴所夹锐角的度数是;(2)若两个三角形面积满足S△POQ=S△PAQ,求m的值;(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PD•DQ的最大值.解答:解:(1)∵y=x2﹣4x=(x﹣2)2﹣4,∴抛物线的对称轴是x=2,∵直线y=x+m,∴直线与坐标轴的交点坐标为(﹣m,0),(0,m),∴交点到原点的距离相等,∴直线与坐标轴围成的三角形是等腰直角三角形,∴直线PQ与x轴所夹锐角的度数是45°,故答案为x=2、45°.(2)设直线PQ交x轴于点B,分别过O点,A点作PQ的垂线,垂足分别是E、F,显然当点B在OA的延长线时,S△POQ=S△PAQ不成立;①当点B落在线段OA上时,如图①,==,由△OBE∽△ABF得,==,∴AB=3OB,∴OB=OA,由y=x2﹣4x得点A(4,0),∴OB=1,∴B(1,0),∴1+m=0,∴m=﹣1;②当点B落在线段AO的延长线上时,如图②,同理可得OB=OA=2,∴B(﹣2,0),∴﹣2+m=0,∴m=2,综上,当m=﹣1或2时,S△POQ=S△PAQ;(3)①过点C作CH∥x轴交直线PQ于点H,如图③,可得△CHQ是等腰三角形,∵∠CDQ=45°+45°=90°,∴AD⊥PH,∴DQ=DH,∴PD+DQ=PH,过P点作PM⊥CH于点M,则△PMH是等腰直角三角形,∴PH=PM,∴当PM最大时,PH最大,∴当点P在抛物线顶点出时,PM最大,此时PM=6,∴PH的最大值为6,即PD+DQ的最大值为6.②由①可知:PD+PH≤6,设PD=a,则DQ﹣a,∴PD•DQ≤a(6﹣a)=﹣a2+6a=﹣(a﹣3)2+18,∵当点P在抛物线的顶点时,a=3,∴PD•DQ≤18.∴PD•DQ的最大值为18.2.(10分)(2015•莆田)抛物线y=ax2+bx+c,若a,b,c满足b=a+c,则称抛物线y=ax2+bx+c 为“恒定”抛物线.(1)求证:“恒定”抛物线y=ax2+bx+c必过x轴上的一个定点A;(2)已知“恒定”抛物线y=x2﹣的顶点为P,与x轴另一个交点为B,是否存在以Q 为顶点,与x轴另一个交点为C的“恒定”抛物线,使得以PA,CQ为边的四边形是平行四边形?若存在,求出抛物线解析式;若不存在,请说明理由.解答:(1)证明:由“恒定”抛物线y=ax2+bx+c,得:b=a+c,即a﹣b+c=0,∵抛物线y=ax2+bx+c,当x=﹣1时,y=0,∴“恒定”抛物线y=ax2+bx+c必过x轴上的一个定点A(﹣1,0);(2)解:存在;理由如下:∵“恒定”抛物线y=x2﹣,当y=0时,x2﹣=0,解得:x=±1,∵A(﹣1,0),∴B(1,0);∵x=0时,y=﹣,∴顶点P的坐标为(0,﹣),以PA,CQ为边的平行四边形,PA、CQ是对边,∴PA∥CQ,PA=CQ,∴存在两种情况:①如图1所示:作QM⊥AC于M,则QM=OP=,∠QMC=90°=∠POA,在Rt△QMC和Rt△POA中,,∴Rt△QMC≌Rt△POA(HL),∴MC=OA=1,∴OM=2,∵点A和点C是抛物线上的对称点,∴AM=MC=1,∴点Q的坐标为(﹣2,﹣),设以Q为顶点,与x轴另一个交点为C的“恒定”抛物线的解析式为y=a(x+2)2﹣,把点A(﹣1,0)代入得:a=,∴抛物线的解析式为:y=(x+2)2﹣,即y═x2+4x+3;②如图2所示:顶点Q在y轴上,此时点C与点B重合,∴点C坐标为(1,0),∵CQ∥PA,∴∠OQC=∠OPA,在△OQC和△OPA中,,∴△OQC≌△OPA(AAS),∴OQ=OP=,∴点Q坐标为(0,),设以Q为顶点,与x轴另一个交点为C的“恒定”抛物线的解析式为y=ax2+,把点C(1,0)代入得:a=﹣,∴抛物线的解析式为:y=﹣x2+;综上所述:存在以Q为顶点,与x轴另一个交点为C的“恒定”抛物线,使得以PA,CQ为边的四边形是平行四边形,抛物线的解析式为:y=x2+4x+3,或y=﹣x2+.3.(13分)(2015•泉州)阅读理解抛物线y=x2上任意一点到点(0,1)的距离与到直线y=﹣1的距离相等,你可以利用这一性质解决问题.问题解决如图,在平面直角坐标系中,直线y=kx+1与y轴交于C点,与函数y=x2的图象交于A,B两点,分别过A,B两点作直线y=﹣1的垂线,交于E,F两点.(1)写出点C的坐标,并说明∠ECF=90°;(2)在△PEF中,M为EF中点,P为动点.①求证:PE2+PF2=2(PM2+EM2);②已知PE=PF=3,以EF为一条对角线作平行四边形CEDF,若1<PD<2,试求CP的取值范围.解答:解:(1)当x=0时,y=k•0+1=1,则点C的坐标为(0,1).根据题意可得:AC=AE,∴∠AEC=∠ACE.∵AE⊥EF,CO⊥EF,∴AE∥CO,∴∠AEC=∠OCE,∴∠ACE=∠OCE.同理可得:∠OCF=∠BCF.∵∠ACE+∠OCE+∠OCF+∠BCF=180°,∴2∠OCE+2∠OCF=180°,∴∠OCE+∠OCF=90°,即∠ECF=90°;(2)①过点P作PH⊥EF于H,Ⅰ.若点H在线段EF上,如图2①.∵M为EF中点,∴EM=FM=EF.根据勾股定理可得:PE2+PF2﹣2PM2=PH2+EH2+PH2+HF2﹣2PM2=2PH2+EH2+HF2﹣2(PH2+MH2)=EH2﹣MH2+HF2﹣MH2=(EH+MH)(EH﹣MH)+(HF+MH)(HF﹣MH)=EM(EH+MH)+MF(HF﹣MH)=EM(EH+MH)+EM(HF﹣MH)=EM(EH+MH+HF﹣MH)=EM•EF=2EM2,∴PE2+PF2=2(PM2+EM2);Ⅱ.若点H在线段EF的延长线(或反向延长线)上,如图2②.同理可得:PE2+PF2=2(PM2+EM2).综上所述:当点H在直线EF上时,都有PE2+PF2=2(PM2+EM2);②连接CD、PM,如图3.∵∠ECF=90°,∴▱CEDF是矩形,∵M是EF的中点,∴M是CD的中点,且MC=EM.由①中的结论可得:在△PEF中,有PE2+PF2=2(PM2+EM2),在△PCD中,有PC2+PD2=2(PM2+CM2).∵MC=EM,∴PC2+PD2=PE2+PF2.∵PE=PF=3,∴PC2+PD2=18.∵1<PD<2,∴1<PD2<4,∴1<18﹣PC2<4,∴14<PC2<17.∵PC>0,∴<PC<.4.(12分)(2015•福建)如图,在平面直角坐标系中,顶点为A(1,﹣1)的抛物线经过点B(5,3),且与x轴交于C,D两点(点C在点D的左侧).(1)求抛物线的解析式;(2)求点O到直线AB的距离;(3)点M在第二象限内的抛物线上,点N在x轴上,且∠MND=∠OAB,当△DMN与△OAB 相似时,请你直接写出点M的坐标.解答:解:(1)设抛物线的解析式为y=a(x﹣1)2﹣1,将B点坐标代入函数解析式,得(5﹣1)2a﹣1=3,解得a=.故抛物线的解析式为y=(x﹣1)2﹣1;(2)由勾股定理,得OA2=11+12=2,OB2=52+32=34,AB2=(5﹣1)2+(3+1)2=32,OA2+AB2=OB2,∴∠OAB=90°,O到直线AB的距离是OA=;(3)设M(a,b),N(a,0)当y=0时,(x﹣1)2﹣1=0,解得x1=3,x2=﹣1,D(3,0),DN=3﹣a.①当△MND∽△OAB时,=,即=,化简,得4b=a﹣3 ①M在抛物线上,得b=(a﹣1)2﹣1 ②联立①②,得,解得a1=3(不符合题意,舍),a2=﹣2,b=,M1(﹣2,),当△MND∽△BAO时,=,即=,化简,得b=12﹣4a ③,联立②③,得,解得a1=3(不符合题意,舍),a2=﹣17,b=12﹣4×(﹣17)=80,M2(﹣17,80).综上所述:当△DMN与△OAB相似时,点M的坐标(﹣2,),(﹣17,80).5.(14分)(2015•漳州)如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D为抛物线的顶点,请解决下列问题.(1)填空:点C的坐标为(0,3),点D的坐标为(1,4);(2)设点P的坐标为(a,0),当|PD﹣PC|最大时,求α的值并在图中标出点P的位置;(3)在(2)的条件下,将△BCP沿x轴的正方向平移得到△B′C′P′,设点C对应点C′的横坐标为t(其中0<t<6),在运动过程中△B′C′P′与△BCD重叠部分的面积为S,求S与t 之间的关系式,并直接写出当t为何值时S最大,最大值为多少?解答:解:(1)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴C(0,3),D(1,4),故答案为:0;3;1;4;(2)∵在三角形中两边之差小于第三边,∴延长DC交x轴于点P,设直线DC的解析式为y=kx+b,把D、C两点坐标代入可得,解得,∴直线DC的解析式为y=x+3,将点P的坐标(a,0)代入得a+3=0,求得a=﹣3,如图1,点P(﹣3,0)即为所求;(3)过点C作CE∥x,交直线BD于点E,如图2,由(2)得直线DC的解析式为y=x+3,由法可求得直线BD的解析式为y=﹣2x+6,直线BC的解析式为y=﹣x+3,在y=﹣2x+6中,当y=3时,x=,∴E点坐标为(,3),设直线P′C′与直线BC交于点M,∵P′C′∥DC,P′C′与y轴交于点(0,3﹣t),∴直线P′C′的解析式为y=x+3﹣t,联立,解得,∴点M坐标为(,),∵B′C′∥BC,B′坐标为(3+t,0),∴直线B′C′的解析式为y=﹣x+3+t,分两种情况讨论:①当0<t<时,如图2,B′C′与BD交于点N,联立,解得,∴N点坐标为(3﹣t,2t),S=S△B′C′P﹣S△BMP﹣S△BNB′=×6×3﹣(6﹣t)×(6﹣t)﹣t×2t=﹣t2+3t,其对称轴为t=,可知当0<t<时,S随t的增大而增大,当t=时,有最大值;②当≤t<6时,如图3,直线P′C′与DB交于点N,立,解得,∴N点坐标为(,),S=S△BNP′﹣S△BMP′=(6﹣t)×﹣×(6﹣t)×=(6﹣t)2=t2﹣t+3;显然当<t<6时,S随t的增大而减小,当t=时,S=综上所述,S与t之间的关系式为S=,且当t=时,S 有最大值,最大值为.6.(12分)(2015•甘南州)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c,经过A(0,﹣4),B(x1,0),C(x2,0)三点,且|x2﹣x1|=5.(1)求b,c的值;(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.解答:解:(1)∵抛物线y=﹣x2+bx+c,经过点A(0,﹣4),∴c=﹣4又∵由题意可知,x1、x2是方程﹣x2+bx﹣4=0的两个根,∴x1+x2=b,x1x2=6由已知得(x2﹣x1)2=25又∵(x2﹣x1)2=(x2+x1)2﹣4x1x2=b2﹣24∴b2﹣24=25解得b=±,当b=时,抛物线与x轴的交点在x轴的正半轴上,不合题意,舍去.∴b=﹣.(2)∵四边形BDCE是以BC为对角线的菱形,根据菱形的性质,点D必在抛物线的对称轴上,又∵y=﹣x2﹣x﹣4=﹣(x+)2+,∴抛物线的顶点(﹣,)即为所求的点D.(3)∵四边形BPOH是以OB为对角线的菱形,点B的坐标为(﹣6,0),根据菱形的性质,点P必是直线x=﹣3与抛物线y=﹣x2﹣x﹣4的交点,∴当x=﹣3时,y=﹣×(﹣3)2﹣×(﹣3)﹣4=4,∴在抛物线上存在一点P(﹣3,4),使得四边形BPOH为菱形.四边形BPOH不能成为正方形,因为如果四边形BPOH为正方形,点P的坐标只能是(﹣3,3),但这一点不在抛物线上7.(10分)(2015•酒泉)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C (5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.解答:解:(1)根据已知条件可设抛物线的解析式为y=a(x﹣1)(x﹣5),把点A(0,4)代入上式得:a=,∴y=(x﹣1)(x﹣5)=x2﹣x+4=(x﹣3)2﹣,∴抛物线的对称轴是:x=3;(2)P点坐标为(3,).理由如下:∵点A(0,4),抛物线的对称轴是x=3,∴点A关于对称轴的对称点A′的坐标为(6,4)如图1,连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小.设直线BA′的解析式为y=kx+b,把A′(6,4),B(1,0)代入得,解得,∴y=x﹣,∵点P的横坐标为3,∴y=×3﹣=,∴P(3,).(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),如图2,过点N作NG∥y轴交AC于G;作AD⊥NG于D,由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=﹣x+4,把x=t代入得:y=﹣t+4,则G(t,﹣t+4),此时:NG=﹣t+4﹣(t2﹣t+4)=﹣t2+4t,∵AD+CF=CO=5,∴S△ACN=S△ANG+S△CGN=AM×NG+NG×CF=NG•OC=×(﹣t2+4t)×5=﹣2t2+10t=﹣2(t﹣)2+,∴当t=时,△CAN面积的最大值为,由t=,得:y=t2﹣t+4=﹣3,∴N(,﹣3).8.(12分)(2015•兰州)已知二次函数y=ax2的图象经过点(2,1).(1)求二次函数y=ax2的解析式;(2)一次函数y=mx+4的图象与二次函数y=ax2的图象交于点A(x1、y1)、B(x2、y2)两点.①当m=时(图①),求证:△AOB为直角三角形;②试判断当m≠时(图②),△AOB的形状,并证明;(3)根据第(2)问,说出一条你能得到的结论.(不要求证明)解答:(1)解:∵y=ax2过点(2,1),∴1=4a,解得a=,∴抛物线解析式为y=x2;(2)①证明:当m=时,联立直线和抛物线解析式可得,解得或,∴A(﹣2,1),B(8,16),分别过A、B作AC⊥x轴,BD⊥x轴,垂足分别为C、D,如图1,∴AC=1,OC=2,OD=8,BD=16,∴==,且∠ACO=∠ODB,∴△ACO∽△ODB,∴∠AOC=∠OBD,又∵∠OBD+∠BOD=90°,∴∠AOC+∠BOD=90°,即∠AOB=90°,∴△AOB为直角三角形;②解:△AOB为直角三角形.证明如下:当m≠时,联立直线和抛物线解析式可得,解得或,∴A(2m﹣2,(m﹣)2),B(2m+2,(m+)2),分别过A、B作AC⊥x轴,BD⊥x轴,如图2,∴AC=(m﹣)2,OC=﹣(2m﹣2),BD=(m+)2,OD=2m+2,∴==,且∠ACO=∠ODB,∴△ACO∽△OBD,∴∠AOC=∠OBD,又∵∠OBD+∠BOD=90°,∴∠AOC+∠BOD=90°,即∠AOB=90°,∴△AOB为直角三角形;(3)解:由(2)可知,一次函数y=mx+4的图象与二次函数y=ax2的交点为A、B,则△AOB恒为直角三角形.(答案不唯一).9.(12分)(2015•天水)在平面直角坐标系中,已知y=﹣x2+bx+c(b、c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),点C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若抛物线经过A、B两点,求抛物线的解析式.(2)平移(1)中的抛物线,使顶点P在直线AC上并沿AC方向滑动距离为时,试证明:平移后的抛物线与直线AC交于x轴上的同一点.(3)在(2)的情况下,若沿AC方向任意滑动时,设抛物线与直线AC的另一交点为Q,取BC的中点N,试探究NP+BQ是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.解答:解:(1)∵等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3)∴点B的坐标为(4,﹣1).∵抛物线过A(0,﹣1),B(4,﹣1)两点,∴,解得:b=2,c=﹣1,∴抛物线的函数表达式为:y=﹣x2+2x﹣1.(2)如答题图2,设顶点P在直线AC上并沿AC方向滑动距离时,到达P′,作P′M∥y轴,PM∥x轴,交于M点,∵点A的坐标为(0,﹣1),点C的坐标为(4,3),∴直线AC的解析式为y=x﹣1,∵直线的斜率为1,∴△P′PM是等腰直角三角形,∵PP′=,∴P′M=PM=1,∴抛物线向上平移1个单位,向右平移1个单位,∵y=﹣x2+2x﹣1=﹣(x﹣2)2+1,∴平移后的抛物线的解析式为y=﹣(x﹣3)2+2,令y=0,则0=﹣(x﹣3)2+2,解得x1=1,x=52,∴平移后的抛物线与x轴的交点为(1,0),(5,0),解,得或∴平移后的抛物线与AC的交点为(1,0),∴平移后的抛物线与直线AC交于x轴上的同一点(1,0).(3)如答图3,取点B关于AC的对称点B′,易得点B′的坐标为(0,3),BQ=B′Q,取AB中点F,连接QF,FN,QB′,易得FN∥PQ,且FN=PQ,∴四边形PQFN为平行四边形.∴NP=FQ.∴NP+BQ=FQ+B′Q≥FB′==2.∴当B′、Q、F三点共线时,NP+BQ最小,最小值为2.10.(10分)(2015•酒泉)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.解答:解:(1)根据已知条件可设抛物线的解析式为y=a(x﹣1)(x﹣5),把点A(0,4)代入上式得:a=,∴y=(x﹣1)(x﹣5)=x2﹣x+4=(x﹣3)2﹣,∴抛物线的对称轴是:x=3;(2)P点坐标为(3,).理由如下:∵点A(0,4),抛物线的对称轴是x=3,∴点A关于对称轴的对称点A′的坐标为(6,4)如图1,连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小.设直线BA′的解析式为y=kx+b,把A′(6,4),B(1,0)代入得,解得,∴y=x﹣,∵点P的横坐标为3,∴y=×3﹣=,∴P(3,).(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),如图2,过点N作NG∥y轴交AC于G;作AD⊥NG于D,由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=﹣x+4,把x=t代入得:y=﹣t+4,则G(t,﹣t+4),此时:NG=﹣t+4﹣(t2﹣t+4)=﹣t2+4t,∵AD+CF=CO=5,∴S△ACN=S△ANG+S△CGN=AM×NG+NG×CF=NG•OC=×(﹣t2+4t)×5=﹣2t2+10t=﹣2(t﹣)2+,∴当t=时,△CAN面积的最大值为,由t=,得:y=t2﹣t+4=﹣3,∴N(,﹣3).11.(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.解答:解:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).12.(14分)(2015•广州)已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1•x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t上.(1)求点C的坐标;(2)当y1随着x的增大而增大时,求自变量x的取值范围;(3)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2﹣5n的最小值.解答:解:(1)令x=0,则y=c,故C(0,c),∵OC的距离为3,∴|c|=3,即c=±3,∴C(0,3)或(0,﹣3);(2)∵x1x2<0,∴x1,x2异号,①若C(0,3),即c=3,把C(0,3)代入y2=﹣3x+t,则0+t=3,即t=3,∴y2=﹣3x+3,把A(x1,0)代入y2=﹣3x+3,则﹣3x1+3=0,即x1=1,∴A(1,0),∵x1,x2异号,x1=1>0,∴x2<0,∵|x1|+|x2|=4,∴1﹣x2=4,解得:x2=﹣3,则B(﹣3,0),代入y1=ax2+bx+3得,,解得:,∴y1=﹣x2﹣2x+3=﹣(x+1)2+4,则当x≤﹣1时,y随x增大而增大.②若C(0,﹣3),即c=﹣3,把C(0,﹣3)代入y2=﹣3x+t,则0+t=﹣3,即t=﹣3,∴y2=﹣3x﹣3,把A(x1,0),代入y2=﹣3x﹣3,则﹣3x1﹣3=0,即x1=﹣1,∴A(﹣1,0),∵x1,x2异号,x1=﹣1<0,∴x2>0∵|x1|+|x2|=4,∴1+x2=4,解得:x2=3,则B(3,0),代入y1=ax2+bx+3得,,解得:,∴y1=x2﹣2x﹣3=(x﹣1)2﹣4,则当x≥1时,y随x增大而增大,综上所述,若c=3,当y随x增大而增大时,x≤﹣1;若c=﹣3,当y随x增大而增大时,x≥1;(3)①若c=3,则y1=﹣x2﹣2x+3=﹣(x+1)2+4,y2=﹣3x+3,y1向左平移n个单位后,则解析式为:y3=﹣(x+1+n)2+4,则当x≤﹣1﹣n时,y随x增大而增大,y2向下平移n个单位后,则解析式为:y4=﹣3x+3﹣n,要使平移后直线与P有公共点,则当x=﹣1﹣n,y3≥y4,即﹣(﹣1﹣n+1+n)2+4≥﹣3(﹣1﹣n)+3﹣n,解得:n≤﹣1,∵n>0,∴n≤﹣1不符合条件,应舍去;②若c=﹣3,则y1=x2﹣2x﹣3=(x﹣1)2﹣4,y2=﹣3x﹣3,y1向左平移n个单位后,则解析式为:y3=(x﹣1+n)2﹣4,则当x≥1﹣n时,y随x增大而增大,y2向下平移n个单位后,则解析式为:y4=﹣3x﹣3﹣n,要使平移后直线与P有公共点,则当x=1﹣n,y3≤y4,即(1﹣n﹣1+n)2﹣4≤﹣3(1﹣n)﹣3﹣n,解得:n≥1,综上所述:n≥1,2n2﹣5n=2(n﹣)2﹣,∴当n=时,2n2﹣5n的最小值为:﹣.13.(2015•深圳)如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.解答:解:(1)∵二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),∴,解得,∴抛物线的解析式y=﹣x2﹣2x+3,(2)存在,当P在∠DAB的平分线上时,如图1,作PM⊥AD,设P(﹣1,m),则PM=PD•sin∠ADE=(4﹣m),PE=m,∵PM=PE,∴(4﹣m)=m,m=﹣1,∴P点坐标为(﹣1,﹣1);当P在∠DAB的外角平分线上时,如图2,作PN⊥AD,设P(﹣1,n),则PN=PD•sin∠ADE=(4﹣n),PE=﹣n,∵PM=PE,∴(4﹣n)=﹣n,n=﹣﹣1,∴P点坐标为(﹣1,﹣﹣1);综上可知存在满足条件的P点,其坐标为(﹣1,﹣1)或(﹣1,﹣﹣1);(3)∵S△EBC=3,2S△FBC=3S△EBC,∴S△FBC=,过F作FQ⊥x轴,交BC的延长线于Q,如图3,∵S△FBC=FQ•OB=FQ=,∴FQ=9,∵BC的解析式为y=﹣3x+3,设F(x0,﹣x02﹣2x0+3),∴﹣3x0+3+x02+2x0﹣3=9,解得:x0=或(舍去),∴点F的坐标是(,).14.(9分)(2015•珠海)如图,折叠矩形OABC的一边BC,使点C落在OA边的点D处,已知折痕BE=5,且=,以O为原点,OA所在的直线为x轴建立如图所示的平面直角坐标系,抛物线l:y=﹣x2+x+c经过点E,且与AB边相交于点F.(1)求证:△ABD∽△ODE;(2)若M是BE的中点,连接MF,求证:MF⊥BD;(3)P是线段BC上一点,点Q在抛物线l上,且始终满足PD⊥DQ,在点P运动过程中,能否使得PD=DQ?若能,求出所有符合条件的Q点坐标;若不能,请说明理由.解答:(1)证明:∵四边形ABCO为矩形,且由折叠的性质可知△BCE≌△BDE,∴∠BDE=∠BCE=90°,∵∠BAD=90°,∴∠EDO+∠BDA=∠BDA+∠DAB=90°,∴∠EDO=∠DBA,且∠EOD=∠BAD=90°,∴△ABD∽△ODE;(2)证明:∵=,∴设OD=4x,OE=3x,则DE=5x,∴CE=DE=5x,∴AB=OC=CE+OE=8x,又∵△ABD∽△ODE,∴==,∴DA=6x,∴BC=OA=10x,在Rt△BCE中,由勾股定理可得BE2=BC2+CE2,即(5)2=(10x)2+(5x)2,解得x=1,∴OE=3,OD=4,DA=6,AB=8,OA=10,∴抛物线解析式为y=﹣x2+x+3,当x=10时,代入可得y=,∴AF=,BF=AB﹣AF=8﹣=,在Rt△AFD中,由勾股定理可得DF===,∴BF=DF,又M为Rt△BDE斜边上的中点,∴MD=MB,∴MF为线段BD的垂直平分线,∴MF⊥BD;(3)解:由(2)可知抛物线解析式为y=﹣x2+x+3,设抛物线与x轴的两个交点为H、G,令y=0,可得0=﹣x2+x+3,解得x=﹣4或x=12,∴H(﹣4,0),G(12,0),①当PD⊥x轴时,由于PD=8,DM=DN=8,故点Q的坐标为(﹣4,0)或(12,0)时,△PDQ是以D为直角顶点的等腰直角三角形;②当PD不垂直与x轴时,分别过P,Q作x轴的垂线,垂足分别为N,I,则Q不与G重合,从而I不与G重合,即DI≠8.∵PD⊥DQ,∴∠QDI=90°﹣∠PDN=∠DPN,∴Rt△PDN∽Rt△DQI,∵PN=8,∴PN≠DI,∴Rt△PDN与Rt△DQI不全等,∴PD≠DQ,另一侧同理PD≠DQ.综合①,②所有满足题设条件的点Q的坐标为(﹣4,0)或(12,0).15(12分)(2015•河池)如图1,抛物线y=﹣x2+2x+3与x轴交于A,B,与y轴交于C,抛物线的顶点为D,直线l过C交x轴于E(4,0).(1)写出D的坐标和直线l的解析式;(2)P(x,y)是线段BD上的动点(不与B,D重合),PF⊥x轴于F,设四边形OFPC的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点Q在x轴的正半轴上运动,过Q作y轴的平行线,交直线l于M,交抛物线于N,连接CN,将△CMN沿CN翻转,M的对应点为M′.在图2中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.解答:解:(1)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线l的解析式为y=kx+b,把C(0,3),E(4,0)分别代入得,解得,∴直线l的解析式为y=﹣x+3;(2)如图(1),当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则B(3,0),设直线BD的解析式为y=mx+n,把B(3,0),D(1,4)分别代入得,解得,∴直线BD的解析式为y=﹣2x+6,则P(x,﹣2x+6),∴S=•(﹣2x+6+3)•x=﹣x2+x(1≤x≤3),∵S=﹣(x﹣)2+,∴当x=时,S有最大值,最大值为;(3)存在.如图2,设Q(t,0)(t>0),则M(t,﹣t+3),N(t,﹣t2+2t+3),∴MN=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|,CM==t,∵△CMN沿CN翻转,M的对应点为M′,M′落在y轴上,而QN∥y轴,∴MN∥CM′,NM=NM′,CM′=CM,∠CNM=∠CNM′,∴∠M′CN=∠CNM,∴∠M′CN=∠CNM′,∴CM′=NM′,∴NM=CM,∴|t2﹣t|=t,当t2﹣t=t,解得t1=0(舍去),t2=4,此时Q点坐标为(4,0);当t2﹣t=﹣t,解得t1=0(舍去),t2=,此时Q点坐标为(,0),综上所述,点Q的坐标为(,0)或(4,0).16.(10分)(2015•南宁)在平面直角坐标系中,已知A、B是抛物线y=ax2(a>0)上两个不同的点,其中A在第二象限,B在第一象限,(1)如图1所示,当直线AB与x轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A、B两点的横坐标的乘积.(2)如图2所示,在(1)所求得的抛物线上,当直线AB与x轴不平行,∠AOB仍为90°时,A、B两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由.(3)在(2)的条件下,若直线y=﹣2x﹣2分别交直线AB,y轴于点P、C,直线AB交y 轴于点D,且∠BPC=∠OCP,求点P的坐标.解答:解:(1)如图1,∵AB与x轴平行,根据抛物线的对称性有AE=BE=1,∵∠AOB=90°,∴OE=AB=1,∴A(﹣1,1)、B(1,1),把x=1时,y=1代入y=ax2得:a=1,∴抛物线的解析式y=x2,A、B两点的横坐标的乘积为x A•x B=﹣1(2)x A•x B=﹣1为常数,如图2,过A作AM⊥x轴于M,BN⊥x轴于N,∴∠AMO=∠BNO=90°,∴∠MAO+∠AOM=∠AOM+∠BON=90°,∴∠MAO=∠BON,∴△AMO∽△BON,∴,∴OM•ON=AM•BN,设A(x A,y A),B(x B,y B),∵A(x A,y A),B(x B,y B)在y=x2图象上,∴,y A=,y B=,∴﹣x A•x B=y A•y B=•,∴x A•x B=﹣1为常数;(3)设A(m,m2),B(n,n2),如图3所示,过点A、B分别作x轴的垂线,垂足为E、F,则易证△AEO∽△OFB.∴,即,整理得:mn(mn+1)=0,∵mn≠0,∴mn+1=0,即mn=﹣1.设直线AB的解析式为y=kx+b,联立,得:x2﹣kx﹣b=0.∵m,n是方程的两个根,∴mn=﹣b.∴b=1.∵直线AB与y轴交于点D,则OD=1.易知C(0,﹣2),OC=2,∴CD=OC+OD=3.∵∠BPC=∠OCP,∴PD=CD=3.设P(a,﹣2a﹣2),过点P作PG⊥y轴于点G,则PG=﹣a,GD=OG﹣OD=﹣2a﹣3.在Rt△PDG中,由勾股定理得:PG2+GD2=PD2,即:(﹣a)2+(﹣2a﹣3)2=32,整理得:5a2+12a=0,解得a=0(舍去)或a=﹣,当a=﹣时,﹣2a﹣2=,∴P(﹣,).16.(2015•北海)如图1所示,已知抛物线y=﹣x2+4x+5的顶点为D,与x轴交于A、B两点,与y轴交于C点,E为对称轴上的一点,连接CE,将线段CE绕点E按逆时针方向旋转90°后,点C的对应点C′恰好落在y轴上.(1)直接写出D点和E点的坐标;(2)点F为直线C′E与已知抛物线的一个交点,点H是抛物线上C与F之间的一个动点,若过点H作直线HG与y轴平行,且与直线C′E交于点G,设点H的横坐标为m(0<m<4),那么当m为何值时,S△HGF:S△BGF=5:6?(3)图2所示的抛物线是由y=﹣x2+4x+5向右平移1个单位后得到的,点T(5,y)在抛物线上,点P是抛物线上O与T之间的任意一点,在线段OT上是否存在一点Q,使△PQT 是等腰直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.解答:解:(1)∵抛物线y=﹣x2+4x+5=﹣(x﹣2)2+9∴D点的坐标是(2,9);∵E为对称轴上的一点,∴点E的横坐标是:﹣=2,设点E的坐标是(2,m),点C′的坐标是(0,n),∵将线段CE绕点E按逆时针方向旋转90°后,点C的对应点C′恰好落在y轴上,∴△CEC′是等腰直角三角形,∴解得或(舍去),∴点E的坐标是(2,3),点C′的坐标是(0,1).综上,可得D点的坐标是(2,9),点E的坐标是(2,3).(2)如图1所示:令抛物线y=﹣x2+4x+5的y=0得:x2﹣4x﹣5=0,解得:x1=﹣1,x2=5,所以点A(﹣1,0),B(5,0).设直线C′E的解析式是y=kx+b,将E(2,3),C′(0,1),代入得,解得:,∴直线C′E的解析式为y=x+1,将y=x+1与y=﹣x2+4x+5,联立得:,解得:,,∴点F得坐标为(4,5),点A(﹣1,0)在直线C′E上.∵直线C′E的解析式为y=x+1,∴∠FAB=45°.过点B、H分别作BN⊥AF、HM⊥AF,垂足分别为N、M.∴∠HMN=90°,∠ADN=90°.又∵∠NAD=∠HNM=45°.∴△HGM∽△ABN∴,∵S△HGF:S△BGF=5:6,∴.∴,即,∴HG=5.设点H的横坐标为m,则点H的纵坐标为﹣m2+4m+5,则点G的坐标为(m,m+1),∴﹣m2+4m+5﹣(m+1)=5.解得:m1=,m2=.(3)由平移的规律可知:平移后抛物线的解析式为y=﹣(x﹣1)2+4(x﹣1)+5=﹣x2+6x.将x=5代入y=﹣x2+6x得:y=5,∴点T的坐标为(5,5).设直线OT的解析式为y=kx,将x=5,y=5代入得;k=1,∴直线OT的解析式为y=x,①如图2所示:当PT∥x轴时,△PTQ为等腰直角三角形,将y=5代入抛物线y=﹣x2+6x得:x2﹣6x+5=0,解得:x1=1,x2=5.∴点P的坐标为(1,5).将x=1代入y=x得:y=1,∴点Q的坐标为(1,1).②如图3所示:由①可知:点P的坐标为(1,5).∵△PTQ为等腰直角三角形,∴点Q的横坐标为3,将x=3代入y=x得;y=3,∴点Q得坐标为(3,3).③如图4所示:设直线PT解析式为y=kx+b,∵直线PT⊥QT,∴k=﹣1.将k=﹣1,x=5,y=5代入y=kx+b得:b=10,∴直线PT的解析式为y=﹣x+10.将y=﹣x+10与y=﹣x2+6x联立得:x1=2,x2=5∴点P的横坐标为2.将x=2代入y=x得,y=2,∴点Q的坐标为(2,2).综上所述:点Q的坐标为(1,1)或(3,3)或(2,2).17.(10分)(2015•贵港)如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y 轴交于点C(0,3),其对称轴I为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴I上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.解答:解:(1)∵抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴I为x=﹣1,∴,解得:.∴二次函数的解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点坐标为(﹣1,4);(2)令y=﹣x2﹣2x+3=0,解得x=﹣3或x=1,∴点A(﹣3,0),B(1,0),作PD⊥x轴于点D,∵点P在y=﹣x2﹣2x+3上,∴设点P(x,﹣x2﹣2x+3)①∵PA⊥NA,且PA=NA,∴△PAD≌△AND,∴OA=PD即y=﹣x2﹣2x+3=2,解得x=﹣1(舍去)或x=﹣﹣1,∴点P(﹣﹣1,2);②∵S四边形BCPA=S△OBC+S△OAC=2+S△APC∵S△AOC=,S△OCP=x,S△OAP=•3•|y P|=﹣x2﹣3x+∴S△APC=S△OAP+S△OCP﹣S△AOC=x+(﹣x2﹣3x+)﹣=﹣x2﹣x=﹣(x﹣)2+,∴当x=﹣时,S△ACP最大值=,此时M(﹣,﹣),S四边形PABC最大=.18.(12分)(2015•桂林)如图,已知抛物线y=﹣x2+bx+c与坐标轴分别交于点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O 时,点C、D停止运动.(1)直接写出抛物线的解析式:y=﹣x2+3x+8;(2)求△CED的面积S与D点运动时间t的函数解析式;当t为何值时,△CED的面积最大?最大面积是多少?(3)当△CED的面积最大时,在抛物线上是否存在点P(点E除外),使△PCD的面积等于△CED的最大面积?若存在,求出P点的坐标;若不存在,请说明理由.解答:解:(1)将点A(0,8)、B(8,0)代入抛物线y=﹣x2+bx+c得:,解得:b=3,c=8,∴抛物线的解析式为:y=﹣x2+3x+8,故答案为:y=﹣x2+3x+8;(2)∵点A(0,8)、B(8,0),∴OA=8,OB=8,令y=0,得:﹣x2+3x+8=0,解得:x18,x2=2,∵点E在x轴的负半轴上,∴点E(﹣2,0),∴OE=2,根据题意得:当D点运动t秒时,BD=t,OC=t,∴OD=8﹣t,∴DE=OE+OD=10﹣t,∴S=•DE•OC=•(10﹣t)•t=﹣t2+5t,即S=﹣t2+5t=﹣(t﹣5)2+,∴当t=5时,S最大=;(3)由(2)知:当t=5时,S最大=,∴当t=5时,OC=5,OD=3,∴C(0,5),D(3,0),由勾股定理得:CD=,设直线CD的解析式为:y=kx+b,将C(0,5),D(3,0),代入上式得:k=﹣,b=5,∴直线CD的解析式为:y=﹣x+5,过E点作EF∥CD,交抛物线与点P,如图1,设直线EF的解析式为:y=﹣x+b,将E(﹣2,0)代入得:b=﹣,∴直线EF的解析式为:y=﹣x﹣,将y=﹣x﹣,与y=﹣x2+3x+8联立成方程组得:,解得:,,∴P(,﹣);过点E作EG⊥CD,垂足为G,∵当t=5时,S△ECD==,∴EG=,过点D作DN⊥CD,垂足为N,且使DN=,过点N作NM⊥x轴,垂足为M,如图2,可得△EGD∽△DMN,∴,即:,解得:DM=,∴OM=,由勾股定理得:MN==,∴N(,),过点N作NH∥CD,与抛物线交与点P,如图2,设直线NH的解析式为:y=﹣x+b,将N(,),代入上式得:b=,∴直线NH的解析式为:y=﹣x+,将y=﹣x+,与y=﹣x2+3x+8联立成方程组得:,解得:,,∴P(8,0)或P(,),综上所述:当△CED的面积最大时,在抛物线上存在点P(点E除外),使△PCD的面积等于△CED的最大面积,点P的坐标为:P(,﹣)或P(8,0)或P(,).19.(14分)(2015•安顺)如图,抛物线y=ax2+bx+与直线AB交于点A(﹣1,0),B(4,),点D是抛物线A,B两点间部分上的一个动点(不与点A,B重合),直线CD与y轴平行,交直线AB于点C,连接AD,BD.(1)求抛物线的解析式;(2)设点D的横坐标为m,△ADB的面积为S,求S关于m的函数关系式,并求出当S 取最大值时的点C的坐标.解答:解:(1)由题意得,解得:,∴y=﹣x2+2x+.(2)设直线AB解析式为:y=kx+b,则有,解得:,∴y=x+,则D(m,﹣m2+2m+),C(m,m+),CD=(﹣m2+2m+)﹣(m+)=﹣m2+m+2,∴S=(m+1)•CD+(4﹣m)•CD=×5×CD=×5×(﹣m2+m+2)=﹣m2+m+5∵﹣<0,∴当m=时,S有最大值,当m=时,m+=×+=,∴点C(,).20.(16分)(2015•毕节市)如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,顶点M关于x轴的对称点是M′.(1)求抛物线的解析式;(2)若直线AM′与此抛物线的另一个交点为C,求△CAB的面积;(3)是否存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ 为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.解答:解:(1)将A、B点坐标代入函数解析式,得,解得,抛物线的解析式y=x2﹣2x﹣3;(2)将抛物线的解析式化为顶点式,得y=(x﹣1)2﹣4,M点的坐标为(1,﹣4),M′点的坐标为(1,4),设AM′的解析式为y=kx+b,将A、M′点的坐标代入,得,解得,AM′的解析式为y=2x+2,联立AM′与抛物线,得,解得,C点坐标为(5,12).S△ABC=×4×12=24;(3)存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ 为正方形,由ABPQ是正方形,A(﹣1,0)B(3,0),得P(1,﹣2),Q(1,2),或P(1,2),Q(1,﹣2),①当顶点P(1,﹣2)时,设抛物线的解析式为y=a(x﹣1)2﹣2,将A点坐标代入函数解析式,得a(﹣1﹣1)2﹣2=0,解得a=,抛物线的解析式为y=(x﹣1)2﹣2,②当P(1,2)时,设抛物线的解析式为y=a(x﹣1)2+2,将A点坐标代入函数解析式,得a(﹣1﹣1)2+2=0,解得a=﹣,抛物线的解析式为y=﹣(x﹣1)2+2,综上所述:y=(x﹣1)2﹣2或y=﹣(x﹣1)2+2,使得四边形APBQ为正方形.21.(16分)(2015•六盘水)如图,已知图①中抛物线y=ax2+bx+c经过点D(﹣1,0),D (0,﹣1),E(1,0).(1)求图①中抛物线的函数表达式.(2)将图①中的抛物线向上平移一个单位,得到图②中的抛物线,点D与点D1是平移前后的对应点,求该抛物线的函数表达式.(3)将图②中的抛物线绕原点O顺时针旋转90°后得到图③中的抛物线,所得到抛物线表达式为y2=2px,点D1与D2是旋转前后的对应点,求图③中抛物线的函数表达式.(4)将图③中的抛物线绕原点O顺时针旋转90°后与直线y=﹣x﹣1相交于A、B两点,D2与D3是旋转前后如图④,求线段AB的长.解答:解:(1)将D、C、E的坐标代入函数解析式,得,解得.图①中抛物线的函数表达式y=x2﹣1;(2)将抛物线的函数表达式y=x2﹣1向上平移1个单位,得y=x2,该抛物线的函数表达式y=x2;(3)将抛物线的函数表达式y=x2绕原点O顺时针旋转90°,得x=y2,图③中抛物线的函数表达式x=y2;(4)将图③中抛物线的函数表达式x=y2绕原点O顺时针旋转90°,得y=﹣x2,联立,。
二次函数45°角专题
二次函数45°角问题模型1 45°角问题例1.抛物线y=x2+bx+c与x轴交于点A和B(点A在点B的左侧),与y轴交于点C,OB=OC,点D(2,﹣3)在抛物线上.(1)求抛物线的解析式;(2)点P(m,km+1),m为任意实数,当m变化时,点P在直线l上运动,若点A,D到直线l 的距离相等,求k的值;(3)M为抛物线在第一象限内一动点,若∠AMB>45°,求点M的横坐标x M的取值范围.例2.如图1,抛物线y=﹣x2+2x+3的图象与x轴交于点A、B,与y轴交于点C,连接BC.(1)求直线BC的解析式;(2)如图2,点P是抛物线在第一象限内的一点,作PQ∥y轴交BC于Q,当线段PQ的长度最大时,在x轴上找一点M,使PM+CM的值最小,求PM+CM的最小值;(3)抛物线的顶点为点E,连接AE,在抛物线上是否存在一点N,使得直线AN与直线AE的夹角为45度,若存在请直接写出满足条件的点N的坐标,若不存在,请说明理由.随堂练习练习1.如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B,C两点,与y轴交于点D (0,3).(1)求抛物线的表达式以及点B的坐标;(2)在抛物线的对称轴上是否存在一点P,使得DP+CP最小,如果存在,求出点P的坐标;如果不存在,请说明理由.(3)点Q是线段BD上方抛物线上的一个动点.过点Q作x轴的垂线,交线段BD于点E,再过点Q 作QF∥x轴交抛物线于点F,连结EF,请问是否存在点Q使△QEF为等腰直角三角形?若存在,求出点Q的坐标;若不存在,说明理由.练习2.如图,在平面直角坐标系中抛物线y=ax2+bx+c交x轴于点A(﹣2,0)、B(4,0),交y轴于点C(0,﹣3).(1)求抛物线的解析式;(2)动点D在第四象限且在抛物线上,当△BCD面积最大时,求点D坐标,并求△BCD面积的最大值;(3)抛物线的对称轴上是否存在一点Q,使得∠QBC=45°,如果存在,直接写出点Q坐标,不存在,请说明理由.练习3.在平面直角坐标系中,点O为坐标原点,抛物线y=a(x﹣2)2﹣8与x轴交于A、B两点,与y 轴交于点C,点C的坐标为(0,﹣6).(1)如图1,求线段AB的长;(2)如图2,点P为第四象限抛物线上一点,过点P作PE⊥BC于点E,设点P的横坐标为t,PE的长为d,求d与t的函数关系式;(3)如图3,在(2)的条件下,连接AP交OC于点F,过点P作PQ⊥AB于点Q,PQ与BC交于点D,过点A作AG⊥AB,且AG=OA+OF,连接BG与AD交于点H.若∠ADP+∠ABG=135°,求点P 的坐标.练习4.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C(0,3),且OB=OC =3AO.直线y=x+1与抛物线交于A、D两点,与y轴交于点E,点Q是抛物线的顶点,设直线AD上方的抛物线上的动点P的横坐标为m.(1)求该抛物线的解析式及顶点Q的坐标;(2)连结CQ,判断线段CQ与线段AE的数量关系和位置关系,并说明理由.(3)连结P A、PD,当m为何值时,S△P AD=S△DAB;(4)在直线AD上是否存在一点H使△PQH为等腰直角三角形,若存在请求出m的值,不存在请说明理由.练习5.已知抛物线y=x2﹣mx﹣m﹣1与x轴交于A、B两点,点A在点B的左边,与y轴交于点C(0,﹣3).(1)求点A、B的坐标;(2)点D是抛物线上一点,且∠ACO+∠BCD=45°,求点D的坐标;(3)将抛物线向上平移m个单位,交线段BC于点M,N,若∠MON=45°,求m的值.如图,在平面直角坐标系中抛物线y=ax2+bx+c交x轴于点A、B,交y轴于点C,A、B两点横坐标为﹣1和3,C点纵坐标为﹣4.模型2 等角问题例1.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+2(a≠0)与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,连接BC.(1)求该抛物线的函数表达式;(2)若点N为抛物线对称轴上一点,抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由;(3)点P是直线BC上方抛物线上的点,若∠PCB=∠BCO,求出P点的到y轴的距离.例2.如图,抛物线与x轴相交于点A(﹣3,0)、点B(1,0),与y轴交于点C(0,3),点D是抛物线上一动点,联结OD交线段AC于点E.(1)求这条抛物线的解析式,并写出顶点坐标;(2)求∠ACB的正切值;(3)当△AOE与△ABC相似时,求点D的坐标.随堂练习练习1.如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF:S△CDF=3:2时,求点D的坐标.(3)如图2,点E的坐标为(0,),在抛物线上是否存在点P,使∠OBP=2∠OBE,若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.练习2.如图1,抛物线y=ax2+bx经过原点O和点A(12,0),在B在抛物线上,已知OB⊥BA,且∠A =30°.(1)求此抛物线的解析式.(2)如图2,点P为OB延长线上一点,若连接AP交抛物线于点M,设点P的横坐标为t,点M的横坐标为m,试用含有t的代数式表示m,不要求写取值范围.(3)在(2)的条件下,过点O作OW⊥AP于W,并交线段AB于点G,过点W的直线交OP延长线于点N,交x轴于点K,若∠WKA=2∠OAP,且NK=11,求点M的横坐标及WG的长.练习3.在平面直角坐标系中,抛物线y=﹣x2+x+m﹣1交x轴于A、B两点,交y轴于点C,若A点坐标为(x1,0),B点坐标为(x2,0)(x1≠x2).(1)求m的取值范围;(2)如图1,若x12+x22=17,求抛物线的解析式;(3)在(2)的条件下,请解答下列两个问题:①如图1,请连接AC,求证:△ACB为直角三角形.②如图2,若D(1,n)在抛物线上,过点A的直线y=﹣x﹣1交(2)中的抛物线于点E,那么在x轴上点B的左侧是否存在点P,使以P、B、D为顶点的三角形与△ABE相似?若存在,求出P点坐标;若不存在,说明理由.练习4.如图①,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O出发,沿线段OA以每秒1个单位长度的速度向点A移动,同时点Q从点A出发,沿线段AB以每秒2个单位长度的速度向点B移动,当点P与点A重合时移动停止.设点P移动的时间为t秒.(1)当△CBQ与△P AQ相似时,求t的值;(2)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图②所示,该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,请求出所有满足条件的点D的坐标;若不存在,请说明理由.练习5.如图,已知直线y=2x+4分别交x轴,y轴于点A,B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若抛物线的解析式为y=﹣2x2﹣2x+4,设其顶点为M,其对称轴交AB于点N.①直接写出点M,N的坐标.②若四边形MNPD为平行四边形,请求出点P的坐标.(2)当点P的横坐标为﹣1时,是否存在这样的抛物线,使得以B,P,D为顶点的三角形与△AOB 相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.练习6.如图1,已知抛物线;C1:y=﹣(x+2)(x﹣m)(m>0)与x轴交于点B、C(点B在点C的左侧),与y轴交于点E.(1)求点B、点C的坐标;(2)当△BCE的面积为6时,若点G的坐标为(0,b),在抛物线C1的对称轴上是否存在点H,使得△BGH的周长最小,若存在,则求点H的坐标(用含b的式子表示);若不存在,则请说明理由;(3)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.练习7.如图,已知抛物线y=﹣+bx+c的图象经过点A(﹣1,0)和点C(0,2),点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴正半轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.练习8.如图,已知在平面直角坐标系xOy中,顶点为M的抛物线C1:y=ax2+bx(a<0)经过点A和x轴上的点B,AO=OB=2,∠AOB=120°.(1)求该抛物线的表达式;(2)连结AM,求S△AOM;(3)设点F是x轴上一点,如果△MBF与△AOM相似,求所有符合条件的点F的坐标.11。
2015年-2017年全国中考二次函数压轴题集锦(附详细答案)
1.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点.(1)求抛物线的解析式;(2)点E是直角△ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E、F的坐标;(3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.2.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)D与点M M、N同时32)三点.(1(2)点(3)点E、F,若△PEB4.如图A(4,0)(1(2)点C2)(3P 为5(1(2ACD沿x (3点Q6.如图1,在平面直角坐标系中,O是坐标原点,抛物线y=﹣x2﹣x+8与x轴正半轴交于点A,与y轴交于点B,连接AB,点M,N分别是OA,AB的中点,Rt△CDE≌Rt△ABO,且△CDE始终保持边ED经过点M,边CD经过点N,边DE与y轴交于点H,边CD与y轴交于点G.(1)填空:OA的长是,∠ABO的度数是度;(2)如图2,当DE∥AB,连接HN.①求证:四边形AMHN是平行四边形;②判断点D是否在该抛物线的对称轴上,并说明理由;(3)如图3,当边CD经过点O时,(此时点O与点G重合),过点D作DQ∥OB,交AB延长线上于点Q,延长ED到点K,使DK=DN,过点K作KI∥OB,在KI上取一点P,使得∠PDK=45°(点P,Q 在直线ED的同侧),连接PQ,请直接写出PQ的长.7.如图,抛物线y=x2+x+c与x轴的负半轴交于点A,与y轴交于点B,连结AB,点C(6,)在抛物线上,直线AC与y轴交于点D.(1)求c的值及直线AC的函数表达式;(2)点P在x轴正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO并延长交AB于点N,若M为PQ的中点.①求证:△APM∽△AON;②设点M的横坐标为m,求AN的长(用含m的代数式表示).8.抛物线y=4x2﹣2ax+b与x轴相交于A(x1,0),B(x2,0)(0<x1<x2)两点,与y轴交于点C.(1)设AB=2,tan∠ABC=4,求该抛物线的解析式;(2)在(1)中,若点D为直线BC下方抛物线上一动点,当△BCD的面积最大时,求点D的坐标;(3)是否存在整数a,b使得1<x1<2和1<x2<2同时成立,请证明你的结论.9.如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为2.(1)求A,B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求△ACE面积的最大值;(3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由.(4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由.10.如图,Rt△OAB如图所示放置在平面直角坐标系中,直角边OA与x轴重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB绕点O逆时针旋转90°,点B旋转到点C的位置,一条抛物线正好经过点O,C,A三点.(1)求该抛物线的解析式;(2)在x轴上方的抛物线上有一动点P,过点P作x轴的平行线交抛物线于点M,分别过点P,点M作x轴的垂线,交x轴于E,F两点,问:四边形PEFM的周长是否有最大值?如果有,请求出最值,并写出解答过程;如果没有,请说明理由.(3)如果x轴上有一动点H,在抛物线上是否存在点N,使O(原点)、C、H、N四点构成以OC为一边的平行四边形?若存在,求出N点的坐标;若不存在,请说明理由.11.如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=x2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y=x2+bx+c交于第四象限的F点.(1)求该抛物线解析式与F点坐标;(2)如图(2),动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE以每秒个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.①问EP+PH+HF是否有最小值?如果有,求出t的值;如果没有,请说明理由.②若△PMH是等腰三角形,请直接写出此时t的值.12.如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.13.如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l 上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.14.如图,四边形ABCD是边长为4的正方形,动点P、Q同时从A点出发,点P沿AB以每秒1个单位长度的速度向终点B运动.点Q沿折线ADC以每秒2个单位长度的速度向终点C运动,设运动时间为t秒.(1)当(2)当(3ABCD面15.如图x与A在点B(1(2)点过点E作90°,点F,P F′处,再沿Q(31个单位长度向点N运动到H y 轴于点I求t16.如图,直线与x轴的另(﹣1,0).(1)求(2)P E,交x 轴于点F①求S与②求S(3)过点P作直线b∥x轴(图2),交AC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,请求出点R的坐标;若不存在,请说明理由.17.已知正方形OABC的边OC、OA分别在x、y轴的正半轴上,点B坐标为(10,10),点P从O 出发沿O→C→B运动,速度为1个单位每秒,连接AP.设运动时间为t.(1)若抛物线y=﹣(x﹣h)2+k经过A、B两点,求抛物线函数关系式;(2)当0≤t≤10时,如图1,过点O作OH⊥AP于点H,直线OH交边BC于点D,连接AD,PD,设△APD的面积为S,求S的最小值;(3)在图2中以A为圆心,OA长为半径作⊙A,当0≤t≤20时,过点P作PQ⊥x轴(Q在P的上方),且线段PQ=t+12:①当t在什么范围内,线段PQ与⊙A只有一个公共点?当t在什么范围内,线段PQ与⊙A有两个公共点?②请将①中求得的t的范围作为条件,证明:当t取该范围内任何值时,线段PQ与⊙A总有两个公共点.18.如图,二次函数y=x2﹣4x的图象与x轴、直线y=x的一个交点分别为点A、B,CD是线段OB 上的一动线段,且CD=2,过点C、D的两直线都平行于y轴,与抛物线相交于点F、E,连接EF.(1)点A的坐标为,线段OB的长= ;(2)设点C的横坐标为m①当四边形CDEF是平行四边形时,求m的值;②连接AC、AD,求m为何值时,△ACD的周长最小,并求出这个最小值.19.如图,已知二次函数y=﹣x2+bx+c(c>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求二次函数的解析式;(2)点ACPQ的面积为S(320x x AC,BC,已知(1)P P 使得以A(2)设,连接以每秒个单位的速度运动到时,点M21.A(0,2),直线y=x C,交x 轴于点G Q,△PCQ(1(2(3(4M+22抛物线y=x2上任意一点到点(0,1)的距离与到直线y=﹣1的距离相等,你可以利用这一性质解决问题.问题解决如图,在平面直角坐标系中,直线y=kx+1与y轴交于C点,与函数y=x2的图象交于A,B两点,分别过A,B两点作直线y=﹣1的垂线,交于E,F两点.(1)写出点C的坐标,并说明∠ECF=90°;(2)在△PEF中,M为EF中点,P为动点.①求证:PE2+PF2=2(PM2+EM2);②已知PE=PF=3,以EF为一条对角线作平行四边形CEDF,若1<PD<2,试求CP的取值范围.23.已知抛物线经过A(﹣3,0),B(1,0),C(2,)三点,其对称轴交x轴于点H,一次函数y=kx+b(k≠0)的图象经过点C,与抛物线交于另一点D(点D在点C的左边),与抛物线的对称轴交于点E.(1)求抛物线的解析式;(2)如图1,当S△EOC =S△EAB时,求一次函数的解析式;(3)如图2,设∠CEH=α,∠EAH=β,当α>β时,直接写出k的取值范围.24.如图1,已知直线EA与x轴、y轴分别交于点E和点A(0,2),过直线EA上的两点F、G分别作x轴的垂线段,垂足分别为M(m,0)和N(n,0),其中m<0,n>0.(1)如果m=﹣4,n=1,试判断△AMN的形状;(2)如果mn=﹣4,(1)中有关△AMN的形状的结论还成立吗?如果成立,请证明;如果不成立,请说明理由;(3)如图2,题目中的条件不变,如果mn=﹣4,并且ON=4,求经过M、A、N三点的抛物线所对应的函数关系式;(4)在(3)的条件下,如果抛物线的对称轴l与线段AN交于点P,点Q是对称轴上一动点,以点P、Q、N为顶点的三角形和以点M、A、N为顶点的三角形相似,求符合条件的点Q的坐标.25.如图,二次函数与x轴交于A、B两点,与y轴交于C点,点P从A点出发,以1个单位每秒的速度向点B运动,点Q同时从C点出发,以相同的速度向y轴正方向运动,运动时间为t秒,点P到达B点时,点Q同时停止运动.设PQ交直线AC于点G.(1)求直线AC的解析式;(2)设△PQC的面积为S,求S关于t的函数解析式;(3)在y轴上找一点M,使△MAC和△MBC都是等腰三角形.直接写出所有满足条件的M点的坐标;(4)过点P作PE⊥AC,垂足为E,当P点运动时,线段EG的长度是否发生改变,请说明理由.26.如图,在平面直角坐标系xOy中,二次函数的图象与x轴交于A(﹣1,0)、B(3,0)两点,顶点为C.(1)求此二次函数解析式;(2)点D为点C关于x轴的对称点,过点A作直线l:交BD于点E,过点B作直线BK∥AD交直线l于K点.问:在四边形ABKD的内部是否存在点P,使得它到四边形ABKD四边的距离都相等?若存在,请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,若M、N分别为直线AD和直线l上的两个动点,连结DN、NM、MK,求DN+NM+MK 和的最小值.27.如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ的周长最小,求出P、Q两点的坐标.28.如图,已知抛物线与x轴交于点A(﹣2,0),B(4,0),与y轴交于点C(0,).(1)求抛物线的解析式及其顶点D的坐标;(2)设直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,在直线CD的上方,y轴及y轴的右侧的平面内找一点G,使以点G、F、C为顶点的三角形与△COE相似,请直接写出符合要求的点G的坐标;(3)如图,抛物线的对称轴与x轴的交点M,过点M作一条直线交∠ADB于T,N两点,①当∠DNT=90°时,直接写出的值;②当直线TN绕点M旋转时,试说明:△DNT的面积S=DN?DT;△DNT并猜想:的值是否是定值?说明理由.29.如图①,Rt△ABC中,∠B=90°∠CAB=30°,AC⊥x轴.它的顶点A的坐标为(10,0),顶点B的坐标为,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t 秒.(1)求∠BAO的度数.(直接写出结果)(2)当点P在AB上运动时,△OPQ的面积S与时间t(秒)之间的函数图象为抛物线的一部分(如图②),求点P的运动速度.(3)求题(2)中面积S与时间t之间的函数关系式,及面积S取最大值时,点P的坐标.(4)如果点P,Q保持题(2)中的速度不变,当t取何值时,PO=PQ,请说明理由.30.如图,已知直线l:y=x+2与y轴交于点D,过直线l上一点E作EC丄y轴于点C,且C点坐标为(0,4),过C、E两点的抛物线y=﹣x2+bx+c交x轴于A、B两点(点A在点B的左侧).(1)求抛物线的解析式:(2)动点Q从点C出发沿线段CE以1单位/秒的速度向终点E运动,过点Q作QF⊥ED于点F,交BD于点H,设点Q运动时间为t秒,△DFH的面积为S,求出S与t的函数关系式(并直接写出自变量t的取值范围);(3)若动点P为直线CE上方抛物线上一点,连接PE,过点E作EM⊥PE交线段BD于点M,当△PEM 是等腰直角三角形时,求四边形PMBE的面积.31.已知在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0,且a,b,c为常数)的对称轴为:直线x=,与x轴分别交于点A、点B,与y轴交于点C(0,﹣),且过点(3,﹣5),D为x轴正半轴上的动点,E为y轴负半轴上的动点.(1)求该抛物线的表达式;(2)如图1,当点D为(3,0)时,DE交该抛物线于点M,若∠ADC=∠CDM,求点M的坐标;(3)如图2,把(1)中抛物线平移使其顶点与原点重合,若直线ED与新抛物线仅有唯一交点Q 时,y轴上是否存在一个定点P使PE=PQ?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一.解答题(共31小题)1.(2017秋?上杭县期中)如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点.(1)求抛物线的解析式;(2)点E是直角△ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E、F的坐标;(3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【专题】151:代数综合题;32:分类讨论.【分析】(1)根据AC=BC,求出BC的长,进而得到点A,B的坐标,利用待定系数法即可求得抛物线的解析式;(2)利用待定系数法求出直线AB的解析式,用含m的式表示出E,F的坐标,求出EF的长度最大时m的值,即可求得E,F的坐标;(3)分两种情况:∠E﹣90°和∠F=90°,分别得到点P的纵坐标,将纵坐标代入抛物线解析式,即可求得点P的值.【解答】解:(1)∵OA=1,OC=4,AC=BC,∴BC=5,∴A(﹣1,0),B(4,5),抛物线y=x2+bx+c经过A,B两点,∴,解得:,∴y=x2﹣2x﹣3;(2)设直线AB解析式为:y=kx+b,直线经过点A,B两点,∴,解得:,∴直线AB的解析式为:y=x+1,设点E2∴EF=m+1﹣m2+2m+3=﹣m2+3m+4=﹣(m﹣)2+,∴当EF最大时,m=,∴点E(,),F(,);(3)存在.①当∠FEP=90°时,点P的纵坐标为,即x2﹣2x﹣3=,解得:x1=,x2=,∴点P1(,),P2(,),②当∠EFP=90°时,点P的纵坐标为,即x2﹣2x﹣3=,解得:x1=,x2=(舍去),∴点P3(,),综上所述,P1(,),P2(,),P3(,).【点评】本题主要考查二次函数的综合题,其中第(3)小题要注意分类讨论,分∠E=90°和∠F=90°两种情况.2.(2017秋?鄂城区期中)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.【考点】HF:二次函数综合题.【专题】16:压轴题.【分析】(1)代入A(1,0)和C(0,3),解方程组即可;(2)求出点B的坐标,再根据勾股定理得到BC,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;(3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,运用二次函数的顶点坐标解决问题;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x 轴下方2个单位处.【解答】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函数的表达式为:y=x2﹣4x+3;(2)令y=0,则x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②当BP=BC时,OP=OB=3,∴P3(0,﹣3);③当PB=PC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(0,﹣3)或(0,0);(3)如图2,设A运动时间为t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,即当M(2,0)、N(2,2)或(2,﹣2)时△MNB面积最大,最大面积是1.【点评】本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数,等腰三角形的性质,轴对称的性质等知识,运用数形结合、分类讨论及方程思想是解题的关键.3.(2017?泸州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C (0,2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于第一象限上的一动点,连接PA分别交BC、y轴于点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1﹣S2的最大值.【考点】HF:二次函数综合题.【专题】16:压轴题.【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)当点D在x轴上方时,则可知当CD∥AB时,满足条件,由对称性可求得D点坐标;当点D 在x轴下方时,可证得BD∥AC,利用AC的解析式可求得直线BD的解析式,再联立直线BD和抛物线的解析式可求得D点坐标;(3)过点P作PH∥y轴交直线BC于点H,可设出P点坐标,从而可表示出PH的长,可表示出△PEB的面积,进一步可表示出直线AP的解析式,可求得F点的坐标,联立直线BC和PA的解析式,可表示出E点横坐标,从而可表示出△CEF的面积,再利用二次函数的性质可求得S1﹣S2的最大值.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+x+2;(2)当点D在x轴上方时,过C作CD∥AB交抛物线于点D,如图1,∵A、B关于对称轴对称,C、D关于对称轴对称,∴四边形ABDC为等腰梯形,∴∠CAO=∠DBA,即点D满足条件,∴D(3,2);当点D在x轴下方时,∵∠DBA=∠CAO,∴BD∥AC,∵C(0,2),∴可设直线AC解析式为y=kx+2,把A(﹣1,0)代入可求得k=2,∴直线AC解析式为y=2x+2,∴可设直线BD解析式为y=2x+m,把B(4,0)代入可求得m=﹣8,∴直线BD解析式为y=2x﹣8,联立直线BD和抛物线解析式可得,解得或,∴D(﹣5,﹣18);综上可知满足条件的点D的坐标为(3,2)或(﹣5,﹣18);(3)过点P作PH∥y轴交直线BC于点H,如图2,设P(t,﹣t2+t+2),由B、C两点的坐标可求得直线BC的解析式为y=﹣x+2,∴H(t,﹣t+2),∴PH=yP ﹣yH=﹣t2+t+2﹣(﹣t+2)=﹣t2+2t,设直线AP的解析式为y=px+q,∴,解得,∴直线AP的解析式为y=(﹣t+2)(x+1),令x=0可得y=2﹣t,∴F(0,2﹣t),∴CF=2﹣(2﹣t)=t,联立直线AP和直线BC解析式可得,解得x=,即E点的横坐标为,∴S1=PH(xB﹣xE)=(﹣t2+2t)(4﹣),S2=??,∴S1﹣S2=(﹣t2+2t)(4﹣)﹣??=﹣t2+4t=﹣(t﹣)2+,∴当t=时,有S1﹣S2有最大值,最大值为.【点评】本题为二次函数的综合应用,涉及待定系数法、平行线的判定和性质、三角形的面积、二次函数的性质、方程思想汲分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中确定出D点的位置是解题的关键,在(3)中用P点的坐标分别表示出两个三角形的面积是解题的关键.本题考查知识点较多,综合性较强,计算量大,难度较大.4.(2017?南充)如图1,已知二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象过点O(0,0)和点A(4,0),函数图象最低点M的纵坐标为﹣,直线l的解析式为y=x.(1)求二次函数的解析式;(2)直线l沿x轴向右平移,得直线l′,l′与线段OA相交于点B,与x轴下方的抛物线相交于点C,过点C作CE⊥x轴于点E,把△BCE沿直线l′折叠,当点E恰好落在抛物线上点E′时(图2),求直线l′的解析式;(3)在(2)的条件下,l′与y轴交于点N,把△BON绕点O逆时针旋转135°得到△B′ON′,P 为l′上的动点,当△PB′N′为等腰三角形时,求符合条件的点P的坐标.【考点】HF:二次函数综合题.【专题】16:压轴题.【分析】(1)由题意抛物线的顶点坐标为(2,﹣),设抛物线的解析式为y=a(x﹣2)2﹣,把(0,0)代入得到a=,即可解决问题;(2)如图1中,设E(m,0),则C(m,m2﹣m),B(﹣m2+m,0),由E、B关于对称轴对称,可得=2,由此即可解决问题;(3)分两种情形求解即可①当P1与N重合时,△P1B′N′是等腰三角形,此时P1(0,﹣3).②当N′=N′B′时,设P(m,m﹣3),列出方程解方程即可;【解答】解:(1)由题意抛物线的顶点坐标为(2,﹣),设抛物线的解析式为y=a(x﹣2)2﹣,把(0,0)代入得到a=,∴抛物线的解析式为y=(x﹣2)2﹣,即y=x2﹣x.(2)如图1中,设E(m,0),则C(m,m2﹣m),B(﹣m2+m,0),∵E′在抛物线上,易知四边形EBE′C是正方形,抛物线的对称轴也是正方形的对称轴,∴E、B关于对称轴对称,∴=2,解得m=1或6(舍弃),∴B(3,0),C(1,﹣2),∴直线l′的解析式为y=x﹣3.(3)如图2中,①当P1与N重合时,△P1B′N′是等腰三角形,此时P1(0,﹣3).②当N′=N′B′时,设P(m,m﹣3),则有(m﹣)2+(m﹣3﹣)2=(3)2,解得m=或,∴P2(,),P3(,).综上所述,满足条件的点P坐标为(0,﹣3)或(,)或(,).【点评】本题考查二次函数综合题、待定系数法、等腰三角形的判定和性质、两点间距离公式等知识,解题的关键是学会用分类讨论的思想思考问题,学会根据方程,属于中考压轴题.5.(2017?宜宾)如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.(1)求抛物线的解析式;(2)在第二象限内取一点C,作CD垂直X轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x 轴向右平移m个单位,当点C落在抛物线上时,求m的值;(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【专题】16:压轴题.【分析】(1)由A、B的坐标,利用待定系数法可求得抛物线的解析式;(2)由题意可求得C点坐标,设平移后的点C的对应点为C′,则C′点的纵坐标为8,代入抛物(3为平行四Q 由B、E【解答】(1∴,(2)∵∴OD=6∴C(﹣6∵C(﹣6∴当点C∴m(3)∵∴可设P由(2①当BE垂线,垂足为N,如图,则∠BEF=∠BMP=∠QPN,在△PQN和△EFB中∴△PQN≌△EFB(AAS),∴NQ=BF=OB﹣OF=5﹣1=4,设Q(x,y),则QN=|x﹣2|,∴|x﹣2|=4,解得x=﹣2或x=6,当x=﹣2或x=6时,代入抛物线解析式可求得y=﹣7,∴Q点坐标为(﹣2,﹣7)或(6,﹣7);②当BE为对角线时,∵B(5,0),E(1,8),∴线段BE的中点坐标为(3,4),则线段PQ的中点坐标为(3,4),设Q(x,y),且P(2,t),∴x+2=3×2,解得x=4,把x=4代入抛物线解析式可求得y=5,∴Q(4,5);综上可知Q点的坐标为(﹣2,﹣7)或(6,﹣7)或(4,5).【点评】本题为二次函数的综合应用,涉及待定系数法、平移的性质、全等三角形的判定和性质、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)注意待定系数法的应用,在(2)中求得平移后C点的对应点的坐标是解题的关键,在(3)中确定出Q点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.6.(2017?沈阳)如图1,在平面直角坐标系中,O是坐标原点,抛物线y=﹣x2﹣x+8与x轴正半轴交于点A,与y轴交于点B,连接AB,点M,N分别是OA,AB的中点,Rt△CDE≌Rt△ABO,且△CDE G.(1(2②判断点(3点Q P,Q 在直线【考点】【专题】【分析】(2)②如图12,由﹣=(3的坐标即可解决问题;【解答】y=8,∴B(0,∴OB=8当y=0﹣x﹣x8=0x2+4x﹣(x﹣8)x 1=8,x2=∴A(8,∴OA=8,在Rt△AOB中,tan∠ABO===,∴∠ABO=30°,故答案为:8,30;(2)①证明:∵DE∥AB,∴,∵OM=AM,∴OH=BH,∵BN=AN,∴HN∥AM,∴四边形AMHN是平行四边形;②点D在该抛物线的对称轴上,理由是:如图1,过点D作DR⊥y轴于R,∵HN∥OA,∴∠NHB=∠AOB=90°,∵DE∥AB,∴∠DHB=∠OBA=30°,∵Rt△CDE≌Rt△ABO,∴∠HDG=∠OBA=30°,∴∠HGN=2∠HDG=60°,∴∠HNG=90°﹣∠HGN=90°﹣60°=30°,∴∠HDN=∠HND,∴DH=HN=OA=4,∴Rt△DHR中,DR=DH==2,∴点D的横坐标为﹣2,∵抛物线的对称轴是直线:x=﹣=﹣=﹣2,∴点D在该抛物线的对称轴上;(3)如图3中,连接PQ,作DR⊥PK于R,在DR上取一点T,使得PT=DT.设PR=a.∵NA=NB,∴HO=NA=NB,∵∠ABO=30°,∴∠BAO=60°,∴△AON是等边三角形,∴∠NOA=60°=∠ODM+∠OMD,∵∠ODM=30°,∴∠OMD=∠ODM=30°,∴OM=OD=4,易知D(﹣2,﹣2),Q(﹣2,10),∵N(4,4),∴DK=DN==12,∵DR∥x轴,,∴∠KDR=∠OMD=30°∴RK=DK=6,DR=6,∵∠PDK=45°,∴∠TDP=∠TPD=15°,∴∠PTR=∠TDP+∠TPD=30°,∴TP=TD=2a,TR=a,∴a+2a=6,∴a=12﹣18,可得P(﹣2﹣6,10﹣18),∴PQ==12.【点评】本题考查二次函数综合题、平行四边形的判定和性质、锐角三角函数、30度角的直角三角形的性质、等边三角形的判定和性质、勾股定理、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.7.(2017?宁波)如图,抛物线y=x2+x+c与x轴的负半轴交于点A,与y轴交于点B,连结AB,点C(6,)在抛物线上,直线AC与y轴交于点D.(1)求c的值及直线AC的函数表达式;(2)点P在x轴正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO并延长交AB于点N,若M为PQ的中点.①求证:△APM∽△AON;②设点M的横坐标为m,求AN的长(用含m的代数式表示).【考点】HF:二次函数综合题.【专题】16:压轴题.【分析】(1)把C点坐标代入抛物线解析式可求得c的值,令y=0可求得A点坐标,利用待定系数法可求得直线AC的函数表达式;(2)①在Rt△AOB和Rt△AOD中可求得∠OAB=∠OAD,在Rt△OPQ中可求得MP=MO,可求得∠MPO=∠MOP=∠AON,则可证得△APM∽△AON;②过M作ME⊥x轴于点E,用m可表示出AE和AP,进一步可表示出AM,利用△APM∽△AON可表示出AN.【解答】解:(1)把C点坐标代入抛物线解析式可得=9++c,解得c=﹣3,∴抛物线解析式为y=x2+x﹣3,令y=0可得x2+x﹣3=0,解得x=﹣4或x=3,∴A(﹣4,0),设直线AC的函数表达式为y=kx+b(k≠0),把A、C坐标代入可得,解得,∴直线AC的函数表达式为y=x+3;(2)①∵在Rt△AOB中,tan∠OAB==,在RtAOD中,tan∠OAD==,∴∠OAB=∠OAD,∵在Rt△POQ中,M为PQ的中点,∴OM=MP,∴∠MOP=∠MPO,且∠MOP=∠AON,∴∠APM=∠AON,∴△APM∽△AON;②如图,过点M作ME⊥x轴于点E,则OE=EP,∵点M的横坐标为m,∴AE=m+4,AP=2m+4,∵tan∠OAD=,∴cos∠EAM=cos∠OAD=,∴=,∴AM=AE=,∵△APM∽△AON,∴=,即=,∴AN=.【点评】本题为二次函数的综合应用,涉及待定系数法、三角函数的定义、相似三角形的判定和性质、等腰三角形的性质、直角三角形的性质及方程思想等知识.在(1)中注意函数图象上的点的坐标满足函数解析式,以及待定系数法的应用,在(2)①中确定出两对对应角相等是解题的关键,在(2)②中用m表示出AP的长是解题的关键,注意利用相似三角形的性质.本题考查知识点较多,综合性较强,难度较大.8.(2017?自贡)抛物线y=4x2﹣2ax+b与x轴相交于A(x1,0),B(x2,0)(0<x1<x2)两点,与y轴交于点C.(1)设AB=2,tan∠ABC=4,求该抛物线的解析式;(2)在(1)中,若点D为直线BC下方抛物线上一动点,当△BCD的面积最大时,求点D的坐标;(3)是否存在整数a,b使得1<x1<2和1<x2<2同时成立,请证明你的结论.【考点】HF:二次函数综合题.【专题】16:压轴题.【分析】(1)由tan∠ABC=4,可以假设B(m,0),则A(m﹣2,0),C(0,4m),可得抛物线的解析式为y=4(x﹣m)(x﹣m+2),把C(0,4m)代入y=4(x﹣m)(x﹣m+2),求出m的值即可解决问题;(2)设P(m,4m2﹣16m+12).作PH∥OC交BC于H,根据S△PBC =S△PHC+S△PHB构建二次函数,利用二次函数的性质解决问题;(3)不存在.假设存在,由题意由题意可知,且1<﹣<2,首先求出整数a的值,代入不等式组,解不等式组即可解决问题.【解答】解:(1)∵tan∠ABC=4∴可以假设B(m,0),则A(m﹣2,0),C(0,4m),∴可以假设抛物线的解析式为y=4(x﹣m)(x﹣m+2),把C(0,4m)代入y=4(x﹣m)(x﹣m+2),得m=3,∴抛物线的解析式为y=4(x﹣3)(x﹣1),∴y=4x2﹣16x+12,(2)如图,设D(m,4m2﹣16m+12).作DH∥OC交BC于H.∵B(3,0),C(0,12),∴直线BC的解析式为y=﹣4x+12,∴H(m,﹣4m+12),∴S△DBC =S△DHC+S△DHB=?(﹣4m+12﹣4m2+16m﹣12)?3=﹣6(m﹣)2+,∵﹣6<0,∴m=时,△DBC面积最大,此时D(,﹣3).(3)不存在.理由:假设存在.由题意可知,且1<﹣<2,∴4<a<8,∵a是整数,∴a=5或6或7,当a=5时,代入不等式组,不等式组无解.当a=6时,代入不等式组,不等式组无解.当a=7时,代入不等式组,不等式组无解.综上所述,不存在整数a、b,使得1<x1<2和1<x2<2同时成立.【点评】本题考查二次函数综合题、待定系数法、三角形的面积,不等式组等整数,解题的关键是灵活运用待定系数法确定函数解析式,学会构建二次函数,利用二次函数的性质解决问题,学会利用不等式组解决问题,属于中考压轴题.9.(2017?日照模拟)如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为2.(1)求A,B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求△ACE面积的最大值;(3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由.(4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由.【考点】HF:二次函数综合题.【专题】16:压轴题.【分析】(1)令抛物线y=x2﹣2x﹣3=0,求出x的值,即可求A,B两点的坐标,根据两点式求出直线AC的函数表达式;(2)设P点的横坐标为x(﹣1≤x≤2),求出P、E的坐标,用x表示出线段PE的长,求出PE的最大值,进而求出△ACE的面积最大值;(3)根据D点关于PE的对称点为点C(2,﹣3),点Q(0,﹣1)点关于x轴的对称点为M(0,1),则四边形DMNQ的周长最小,求出直线CM的解析式为y=﹣2x+1,进而求出最小值和点M,N的坐标;(4)结合图形,分两类进行讨论,①CF平行x轴,如图1,此时可以求出F点两个坐标;②CF不平行x轴,如题中的图2,此时可以求出F点的两个坐标.【解答】解:(1)令y=0,解得x1=﹣1或x2=3,∴A(﹣1,0),B(3,0);将C点的横坐标x=2代入y=x2﹣2x﹣3得y=﹣3,∴C(2,﹣3),∴直线AC的函数解析式是y=﹣x﹣1,(2)设P点的横坐标为x(﹣1≤x≤2),则P、E的坐标分别为:P(x,﹣x﹣1),E(x,x2﹣2x﹣3),∵P点在E点的上方,PE=(﹣x﹣1)﹣(x2﹣2x﹣3)=﹣x2+x+2,∴当x=时,PE的最大值=,△ACE的面积最大值=PE[2﹣(﹣1)]=PE=,(3)D点关于PE的对称点为点C(2,﹣3),点Q(0,﹣1)点关于x轴的对称点为K(0,1),连接CK交直线PE于M点,交x轴于N点,可求直线CK的解析式为y=﹣2x+1,此时四边形DMNQ 的周长最小,。
二次函数与角度综合问题(学生版)
二次函数与几何综合专题--角问题【模型解读】二次函数与角综合问题,常见的主要有三种类型: 1. 特殊角问题:(1) 利用特殊角的三角函数值找到线段之间的数量关系(2) 遇到特殊角可以构造特殊三角形,如遇到45°构造等腰直角三角形,遇到30°、60°构造等边三角形,遇到90°构造直角三角形2.角的数量关系问题(1)等角问题:借助特殊图形的性质、全等和相似的性质来解决;构造圆,利用圆周角的性质来解决 (2)二倍角问题:利用角平分线的性质、等腰三角形的性质、对称、辅助圆等知识来解答 (3)角的和差问题3.角的最值问题:利用辅助圆等知识来解答【引例】如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,3OA OC ==,顶点为D ,对称轴交x 轴于点E . (1)求抛物线的解析式、对称轴及顶点D 的坐标.(2)在抛物线上是否存在点P ,使PAO OCE ∠=∠,若存在,求出点P 的坐标;若不存在,说明理由.(3)该抛物线上是否存在点P,使得PCA CAD∠=∠?若存在,求出所有点P的坐标;若不存在,请说明理由.∠的平分线与y轴的交点M的坐标.(4)直线AC与抛物线的对称轴交于点F,请求出CDF∠=∠,若存在,求出点P的坐标;若不存在,请说明理(5)在抛物线上是否存在点P,使得POC PCO由.(6)过点B 的直线交直线AC 于点M ,当直线AC 与BM 的夹角等于ACB ∠的2倍时,求点M 的坐标.(7)在y 轴上是否存在点N ,使得BCO BNO BAC ∠+∠=∠,若存在,求出点N 的坐标;若不存在,请说明理由.(8)在对称轴左侧的抛物线上有一点M ,在对称轴右侧的抛物线上有一点N ,满足90MDN ∠=︒.求证:MN 恒过定点,并求出定点坐标.【模型实例】1.如图,在平面直角坐标系xOy 中,抛物线()2y a x h k =-+与x 轴相交于O ,A 两点,顶点P 的坐标为()2,1-.点B 为抛物线上一动点,连接,AP AB ,过点B 的直线与抛物线交于另一点C .(1)求抛物线的函数表达式;(2)若点B 的横坐标与纵坐标相等,ABC OAP ∠=∠,且点C 位于x 轴上方,求点C 的坐标;(3)若点B 的横坐标为t ,90ABC ∠=︒,请用含t 的代数式表示点C 的横坐标,并求出当0t <时,点C 的横坐标的取值范围.2.如图,在平面直角坐标系xOy中,抛物线E:y=﹣(x﹣m)2+2m2(m<0)的顶点P在抛物线F:y=ax2上,直线x=t与抛物线E,F分别交于点A,B.(1)求a的值;(2)将A,B的纵坐标分别记为y A,y B,设s=y A﹣y B,若s的最大值为4,则m的值是多少?(3)Q是x轴的正半轴上一点,且PQ的中点M恰好在抛物线F上.试探究:此时无论m为何负值,在y轴的负半轴上是否存在定点G,使∠PQG总为直角?若存在,请求出点G的坐标;若不存在,请说明理由.3.如图,在平面直角坐标系中,抛物线y=ax2+bx+2经过A(,0),B(3,)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P在抛物线上,过P作PD⊥x轴,交直线BC于点D,若以P、D、O、C为顶点的四边形是平行四边形,求点P的横坐标;(3)抛物线上是否存在点Q,使∠QCB=45°?若存在,请直接写出点Q的坐标;若不存在,请说明理由.4.如图1,在平面直角坐标系中.抛物线y=ax2+bx+2与x轴交于A(﹣4,0)和B(1,0),与y轴交于点C,连接AC,BC.(1)求该抛物线的解析式;(2)如图2,点M为直线AC上方的抛物线上任意一点,过点M作y轴的平行线,交AC于点N,过点M作x轴的平行线,交直线AC于点Q,求△MNQ周长的最大值;(3)点P为抛物线上的一动点,且∠ACP=45°﹣∠BAC,请直接写出满足条件的点P的坐标.5.抛物线y=x2﹣4x+c与直线I:y=kx交于点G(1,m)和点H,﹣1≤m<0,直线x=m﹣1交直线l于点A,交抛物线于点B.(1)求c和k的值(用含m的代数式表示);(2)过点A作x轴的平行线交抛物线于M,N两点(M在N的左侧),交y轴于点C.求的取值范围;(3)在(2)的条件下,过点B作x轴的平行线,与抛物线另一个交点为D,若点E是线段BD的中点,探究∠MEN与∠ABC的数量关系,并说明理由.6.抛物线y=ax2﹣2ax﹣3a与x轴交于A、B两点(点A在点B的左边),与y轴的正半轴交于C点,△ABC的面积为6.(1)直接写出点A、B的坐标为;抛物线的解析式为.(2)如图1,连结AC,若在第一象限抛物线上存在点D,使点D到直线AC的距离为,求点D的坐标;(3)如图2,平行于AC的直线交抛物线于M、N两点,在抛物线上存在点P,当PQ⊥y轴时,PQ恰好平分∠MPN,求P点坐标.7.如图,抛物线y=mx2+3mx﹣2m+1的图象经过点C,交x轴于点A(x1,0),B(x2,0)(点A在点B左侧),且x2﹣x1=5,连接BC,D是AC上方的抛物线一点.(1)求抛物线的解析式;(2)连接BC,CD,S△DCE:S△BCE是否存在最大值?若存在,请求出其最大值及此时点D的坐标;若不存在,请说明理由;(3)第二象限内抛物线上是否存在一点D,DF垂直AC于点F,使得△DCF中有一个锐角等于∠BAC的两倍?若存在,求点D的横坐标,若不存在,请说明理由.1.如图1,抛物线y=ax2+bx+3经过A(1,0)、B(3,0)两点,与y轴交于点C,(1)求抛物线的函数解析式;(2)如图2,M是x轴下方的抛物线上一点,连接MO、MB、MC,若△MOC的面积是△MBC面积的3倍,求点M的坐标;(3)如图3,连接AC、BC,在抛物线上是否存在一点N(不与点A重合),使得∠BCN=∠ACB?若存在,求点N的横坐标;若不存在,请说明理由.2.如图,抛物线与x轴交于点A和点C(﹣1,0),与y轴交于点B(0,3),连接AB,BC,对称轴PD交AB与点E.(1)求抛物线的解析式;(2)如图2,试探究:线段BC上是否存在点M,使∠EMO=∠ABC,若存在,求出点M的坐标;若不存在,请说明理由;(3)如图3,点Q是抛物线的对称轴PD上一点,若以点Q、A、B为顶点的三角形是锐角三角形,请直接写出点Q纵坐标n的取值范围.3.如图1,抛物线y=ax2﹣x+c与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,直线l与抛物线交于A、D两点,其中D点的横坐标为2.(1)求抛物线的解析式以及直线AD的解析式;(2)点P是抛物线上位于直线AD下方的动点,过点P作x轴,y轴的平行线,交AD于点E、F,当PE+PF取最大值时,求点P的坐标;(3)如图2,连接AC,点Q在抛物线上,且满足∠QAB=2∠ACO,求点的坐标.。
二次函数积分题分类精选---45度角
二次函数积分题分类精选---45度角在初等数学中,二次函数是一个非常重要的概念。
而在微积分中,对二次函数进行积分是经常用到的技巧。
本文将会介绍二次函数积分中的一个特殊情况:角度为45度。
我们将挑选出几个典型的题目,并根据题目的特点进行分类讲解。
类型一:$ax^2+2bx+a$型当被积函数为$ax^2+2bx+a$型时,可以采用配方法进行积分,即利用配方法将其化为$(px+q)^2$的形式,然后代入积分公式,最后通过代数运算计算出积分的结果。
例如:$$\int (2x^2+4\sqrt{2}x+2) dx$$解:$2x^2+4\sqrt{2}x+2=2(x^2+2\sqrt{2}x+1)=2(x+\sqrt{2})^2$所以,$$\begin{aligned} \int (2x^2+4\sqrt{2}x+2) dx & =2\int(x+\sqrt{2})^2 dx \\ & = \frac{4}{3}(x+\sqrt{2})^3+C \end{aligned}$$ 类型二:$ax^2+bx+c$型当被积函数为$ax^2+bx+c$型时,可以采用换元法进行积分,即令$t=x+\frac{b}{2a}$,将被积函数化为关于$t$的一次方程,然后代入积分公式进行计算。
例如:$$\int (x^2-x-2) dx$$解:$x^2-x-2=(x+1)(x-2)$所以,$$\begin{aligned} \int (x^2-x-2) dx & =\int (x+1)(x-2) dx \\ & = \frac{1}{3}(x+1)^3-\frac{1}{2}(x-2)^2+C \end{aligned}$$类型三:$\sqrt{ax^2+bx+c}(a>0)$型当被积函数为$\sqrt{ax^2+bx+c}(a>0)$型时,采用三角代换进行积分是一种有效的方法,即令$x=\frac{1}{\sqrt{a}}\tan t$,然后将被积函数化为三角函数的形式,代入积分公式进行计算。
初三中考数学专题复习:二次函数综合题(角度问题)含答案
中考数学专题复习:二次函数综合题(角度问题)1.如图,边长为4的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PM⊥OA于点M,点Q的坐标为(0,3),连接PQ.(1)求出抛物线的解析式;(2)当点P与点A或点C重合时,PQ+PM=_____,小聪猜想:对于A,C间的任意一点P,PQ与PM之和是一个固定值,你认为正确吗,判断并说明理由;(3)延长MP交BC于点N,当⊥NPQ为锐角,cos⊥NPQ=13时,求点P的坐标.2.如图1,抛物线y=x2+(m﹣2)x一2m(m>0)与x轴交于A,B两点(A在B左边),与y轴交于点C.连接AC,BC.且⊥ABC的面积为8.(1)求m的值;(2)在(1)的条件下,在第一象限内抛物线上有一点T,T的横坐标为t,使⊥ATC=60°.求(t﹣1)2的值.(3)如图2,点P为y轴上一个动点,连接AP,求CP的最小值,并求出此时点P的坐标.3.如图,在平面直角坐标系中,直线y=﹣12x+3与x轴交于点A,与y轴交于点B,抛物线y=13x2+bx+c经过坐标原点和点A,顶点为点M.(1)求抛物线的关系式及点M的坐标;(2)点E是直线AB下方的抛物线上一动点,连接EB,EA,当⊥EAB的面积等于252时,求E点的坐标;(3)将直线AB向下平移,得到过点M的直线y=mx+n,且与x轴负半轴交于点C,取点D(2,0),连接DM,求证:⊥ADM﹣⊥ACM=45°.4.如图,在平面直角坐标系中,二次函数y=−14x2+bx−4的图象与x轴交于点A和点B(8,0),与y轴交于点C.(1)求二次函数的表达式;(2)连接AC,找出图中与ACO∠相等的角,并说明理由;(3)若点P是抛物线上一点,满足PCB ACB BCO∠+∠=∠,求点P的坐标;(4)若点Q在第四象限内,且3tan2AQB∠=,()4,2M-,线段MQ是否存在最大值,如果存在,求出最大值;如果不存在,请说明理由.5.如图,直线y=x﹣3与x轴、y轴分别交于B、C两点,抛物线y=49x2+bx+c经过B、C,且与x轴另一交点为A,连接AC.(1)求抛物线的解析式;(2)点E在抛物线上,连接EC,当⊥ECB+⊥ACO=45°时,求点E的横坐标;(3)点M从点A出发,沿线段AB由A向B运动,同时点N从点C出发沿线段CA由C向A运动,M,N的运动速度都是每秒1个单位长度,当N点到达A点时,M,N同时停止运动,问在坐标平面内是否存在点D,使M,N运动过程中的某些时刻t,以A,D,M,N为顶点的四边形为菱形?若存在,直接写出t的值;若不存在,说明理由.6.如图,在平面直角坐标系中,二次函数y12=-x2+bx﹣2的图象与x轴交于点A和点B(4,0),与y轴交于点C.(1)求二次函数的表达式;(2)若点P是抛物线上一点,满足⊥PCB+⊥ACB=⊥BCO,求点P的坐标;(3)若点Q在第四象限内,且tan⊥AQB32=,M(﹣2,1),线段MQ是否存在最大值,如果存在,求出最大值;如果不存在,请说明理由.7.如图,抛物线y=x2+bx+c交x轴于点A,B两点,OA=1,与y轴交于点C,连接AC,tan⊥OAC=3,抛物线的对称轴与x轴交于点D.(1)求点A,C的坐标;(2)若点P在抛物线上,且满足⊥P AB=2⊥ACO,求直线P A与y轴交点的坐标;(3)点Q在抛物线上,且在x轴下方,直线AQ,BQ分别交抛物线的对称轴于点M、N.求证:DM+DN为定值,并求出这个定值.8.如图1,抛物线y12=-x2+bx+c与x轴交于点A(4,0),B(﹣2,0),与y轴交于点C,线段BC的垂直平分线与对称轴l交于点D,与x轴交于点F,与BC交于点E.对称轴l与x轴交于点H.(1)求抛物线的函数表达式及对称轴;(2)求点D和点F的坐标;(3)如图2,若点P是抛物线上位于第一象限的一个动点,当⊥EFP=45°时,请求出此时点P的坐标.9.如图,将抛物线W1:y=﹣x2+3平移后得到W2,抛物线W2经过抛物线W1的顶点C,且与x轴相交于A、B两点,其中B(1,0),抛物线W2顶点是D.(1)求抛物线W2的关系式;(2)设点E在抛物线W2上,连接AC、DC,如果CE平分⊥DCA,求点E的坐标;(3)在(2)的条件下,将抛物线W1沿x轴方向平移,点C的对应点为F,当⊥DEF与⊥ABC相似时,请求出平移后抛物线的表达式.10.如图,抛物线2=-++与x轴交于点A(-1,0)和B(3,0),与y轴交于点C.y x bx c(1)求抛物线的表达式;(2)如图1,若点M为直线BC上方抛物线一动点(与点B、C不重合),做MN平行于y轴,交直线BC于点N,当线段MN的长最大时,请求出点M的坐标;∠=∠时,请求出点Q的坐标.(3)如图2,若P为抛物线的顶点,动点Q在抛物线上,当QCO PBC11.如图,抛物线y=ax2-bx-3与x轴交于点A、C,交y轴于点B,OB=OC=3OA.(1)求抛物线的解析式及对称轴方程;(2)如图1,连接AB,点M是对称轴上一点且在第四象限,若⊥AMB是以⊥MBA为底角的等腰三角形,求点M的坐标;(3)如图2,连接AB,点P在抛物线上,当⊥P AC=2⊥ABO时,求点P的坐标.12.如图,已知抛物线23=++(a、b为常数,且a≠0)与x轴交于点A(-1,0)和点B,与y轴y ax bx交于点C,其对称轴是直线x=1,顶点为P,连接BP,CP.(1)求抛物线的表达式;(2)判断△BCP的形状,并说明理由;(3)该抛物线上是否存在点Q,使得△QBC=△ACO?若存在,请直接写出满足条件的所有点Q是坐标;若不存在,请说明理由.13.如图,点B,C分别在x轴和y轴的正半轴上,OB,OC的长分别为x2-8x+12=0的两个根(OC>OB),点A在x轴的负半轴上,且OA=OC=3OB,连接AC.(1)求过A ,B ,C 三点的抛物线的函数解析式;(2)点P 从点C 出发,以每秒2个单位长度的速度沿CA 运动到点A ,点Q 从点O 出发,以每秒1个单位长度的速度沿OC 运动到点C ,连接PQ ,当点P 到达点A 时,点Q 停止运动,求S △CPQ 的最大值; (3)M 是抛物线上一点,是否存在点M ,使得⊥ACM =15°?若存在,请求出点M 的坐标;若不存在,请说明理由.14.已知如图,二次函数23y x bx =++的图像与x 轴相交于点A 、B 两点,与y 轴相交于点C ,连接AC 、BC ,tan 1ABC ∠=,抛物线的顶点为D .(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点E ,当AE CE +取得最小值时,E 点坐标为________;此时AE 与BC 的位置关系是________,tan ACE ∠=________;(3)抛物线对称轴右侧的函数图像上是否存在点M ,满足ACB BAM ∠=∠,若存在求M 点的横坐标;若不存在,请说明理由;(4)若抛物线上一动点Q ,当BAQ ACO ∠=∠时,直接写出Q 点坐标________.15.如图1,抛物线26=++与x轴交于点A(2,0)、B(6,0),与y轴交于点C,连接AC、BC.y ax bx(1)求抛物线的表达式;(2)求△ACB的正切值;(3)如图2,过点C的直线交抛物线于点D,若△ACD=45°,求点D的坐标.16.如图1抛物线y=-x2+bx+c与x轴交于点A(-1,0)、B(3,0),与y轴交于点C顶点为D,对称轴交x轴于点Q,过C、D两点作直线CD.(1)求抛物线的函数表达式;(2)如图2,连接CQ、CB,点P是抛物线上一点,当△DCP=△BCQ时,求点P的坐标;(3)若点M是抛物线的对称轴上的一点,以点M为圆心的圆经过A、B两点,且与直线CD相切,求点M 的坐标.17.如图,已知二次函数y=﹣x2+2mx+3m2(m>0)的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)点B 的坐标为 ,点D 的坐标为 ;(用含有m 的代数式表示) (2)连接CD ,BC .⊥若CB 平分⊥OCD ,求二次函数的表达式;⊥连接AC ,若CB 平分⊥ACD ,求二次函数的表达式.18.如图,抛物线()()22369=++-+y mx m x m 与x 轴交于点A 、B ,与y 轴交于点C ,已知()3,0B .(1)m 的值是________;(2)P (异于点A )为抛物线上一点,若PBC ABC S S =△△,求点P 的坐标: (3)Q 为抛物线上一点,若45ACQ ∠=︒,请直接写出点Q 的坐标.19.如图,在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴交于(1,0)A ,(4,0)B 两点,与y 轴交于点(0,2)C .(1)求抛物线的表达式; (2)求证:CAO BCO ∠=∠;(3)若点P 是抛物线上的一点,且PCB ACB BCO ∠+∠=∠,求直线CP 的表达式.20.如图,已知抛物线(2)(4)y a x x =+-(a 为常数,且a >0)与x 轴从左至右依次交于A ,B 两点,与y 轴交于点C ,经过点B 的直线34y x b =-+与抛物线的另一交点为D .(1)若点D 的横坐标为-5,求抛物线的函数表达式;(2)若在第一象限的抛物线上有点P ,使得以A ,B ,P 为顶点的三角形与⊥ABC 相似,求a 的值; (3)在(1)的条件下,直线BD 上是否存在点E ,使⊥AEC =45°?若存在,请直接写出点E 的横坐标;若不存在,请说明理由.答案1.(1)y=﹣14x2+4(2)5,理由见解析(3)点P坐标为(﹣2)2.(1)2(3)(0,﹣1)3.(1)y=13x2﹣2x;点M的坐标为(3,﹣3)(2)点E的坐标为(1,﹣53)或(72,﹣3512)4.(1)二次函数的表达式为y=−14x2+52x−4;(2)⊥OCA=⊥OBC,理由见解析;(3)P点坐标为(143,209)或(10,-4);(4)MQ.5.(1)y=49x2﹣13x﹣3(2)154或3916(3)存在,t=7544或158或4522,理由见解析6.(1)y12=-x252+x﹣2(2)P(73,109)7.(1)点A、C的坐标分别为(1,0)、(0,﹣3)(2)直线P A在与y轴交点的坐标为(0,34-)或(0,34)(3) DM+DN=88.(1)抛物线的表达式为:y 12=-x 2+x +4,抛物线对称轴为:直线x =1 (2)D (1,1),F (3,0)(3)P (43)9.(1)223y x x =--+(2)点E ()23-,(3)2233y x ⎛⎫=-++ ⎪⎝⎭或2132y x ⎛⎫=-++ ⎪⎝⎭10.(1)y =﹣x 2+2x +3(2)M ( 3 2,154) (3)Q (﹣1,0)或(5,﹣12)11.(1)223y x x =--,1x =;(2)M 坐标为(1,)或(1,﹣1);(3)点P 的坐标是(154,5716)或(94,-3916).12.(1)2y x 2x 3=-++(2)直角三角形,(3)Q (1,4)或Q 17(,)24-13.(1)y =−12x 2−2x +6;(2)最大值为2;(3)存在,点M 的坐标为或.14.(1)y =x 2-4x +3;(2)(2,1);AE ⊥BC ,12; (3)存在,M 点的横坐标为52或72; (4)Q 点的坐标为(103,79)或(83,59-) .15.(1)21462y x x =-+ (2)tan⊥ACB =12(3)点D 坐标5(7,)216.(1)2y x 2x 3=-++ (2)53239P ⎛⎫ ⎪⎝⎭,(3)()114M 、()214M -,17.(1)(3m ,0),(m ,4m 2)(2)⊥21y x =-+;⊥295y x x =-++18.(1)1-(2)()2,1P ,⎝⎭P ,⎝⎭P (3)75,24⎛⎫- ⎪⎝⎭Q19.(1)215222y x x =-+;(3)直线CP 的解析式为423y x =-+或2y =20.(1):y =14x 2-12x -2;(2)a ;(3)在直线BD 上不存在点E ,使⊥AEC =45°。
二次函数中的45°处理方法
二次函数中的45°处理方法首先,我们可以通过几何的方法来处理。
二次函数的图像是一个抛物线,而45°角对应的直线的斜率是1。
如果我们需要找到二次函数的图像与45°角的交点,可以通过代数的方法解方程组来求解。
具体来说,我们可以将二次函数的方程和直线的方程联立,然后解方程得到交点的坐标。
其次,我们也可以通过角度的方法来处理。
对于一元二次函数,我们可以求出其判别式Δ=b^2-4ac的值来判断二次函数的图像与x轴的交点情况。
当Δ>0时,说明二次函数与x轴有两个交点,即二次函数的图像开口朝上或者朝下;当Δ=0时,说明二次函数与x轴有一个交点,即二次函数的图像与x轴相切;当Δ<0时,说明二次函数与x轴没有交点,即二次函数的图像位于x轴之上或之下。
这些情况都可以帮助我们理解二次函数的图像特点,从而更好地处理与45°角相关的问题。
此外,我们还可以通过导数的方法来处理。
对于二次函数y=ax^2+bx+c,其导数为y'=2ax+b。
我们可以通过导数来求解二次函数的极值点,进而判断二次函数的图像与45°角的交点情况。
当二次函数的导数在某点的值为1时,说明二次函数的图像在该点的切线斜率为1,即与45°角相切。
这也是处理45°角问题的一种方法。
综上所述,处理二次函数中的45°角问题可以通过几何、角度和导数等多种方法来进行。
通过综合运用这些方法,我们可以更全面地理解和处理与二次函数图像相关的45°角问题。
2015年中考真题三角函数解读
2015年中考真题-三角函数1.如图,在楼房AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角α为45°.从距离楼底B点1米的P点处经过树顶E点恰好看到塔的顶部C点,且仰角β为30°.已知树高EF=6米,求塔CD的高度.(结果保留根号)2.如图,某市对位于笔直公路AC上两个小区A、B的供水路线进行优化改造.供水站M在笔直公路AD上,测得供水站M在小区A的南偏东60°方向,在小区B的西南方向,小区A、B之间的距离为300)米,求供水站M分别到小区A、B的距离.(结果可保留根号)3.小丽为了测旗杆AB的高度,小丽眼睛距地图1.5米,小丽站在C 点,测出旗杆A的仰角为30o,小丽向前走了10米到达点E,此时的仰角为60o,求旗杆的高度.4.小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°和35°,已知大桥BC与地面在同一水平面上,其长度为100m。
请求出热气球离地面的高度。
(结果保留整数,参考数据:,,5.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P 的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q 的仰角分别是60°和30°。
(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m)。
备用数据:,6.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).7.如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h.经过0.1h,轮船甲行驶至B处,轮船乙行驶至D位,测得∠DBO=58°,此8.如图,登山缆车从点A出发,途经点B后到达终点C,其中AB段与BC段的运行路程均为200m,且AB段的运行路线与水平面的夹角为30°,BC段的运行路线与水平面的夹角为42°,求缆车从点A运行到点C的垂直上升的距离.(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)9.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(=1.7).10.晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞,小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高,于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长,已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ,请你根据以上信息,求出小军身高BE的长(结果精确到0.01米)11.如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30º,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°. 若坡角∠FAE=30°,求大树的高度. (结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)12.某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥CD.瞭望台PC正前方水面上有两艘渔船M,N,观察员在瞭望台顶端P处观测渔船M的俯角α=31°,观测渔船N的俯角β=45°.已知MN所在直线与PC所在直线垂直,垂足为点E,PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:0.25.为提高大坝防洪能力,某施工队在大坝的背水坡填筑土石加固,加固后坝顶加宽3米,背水坡FH的坡度为i=1:1.5.施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的1.5倍,结果比原计划提前20天完成加固任务.施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)13.如图,某建筑物BC上有一旗杆AB,从与BC相距38m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,则旗杆的高度均为 7.2 m.(结果精确到0.1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)。
第二章二次函数之二次函数中的角度问题专题训 2024—2025学年北师大版数学九年级下册
第二章二次函数之二次函数中的角度问题专题训北师大版2024—2025学年九年级下册一、二次函数中的45度角(一)构造等腰直角三角形求直线与曲线的交点问题1.如图,抛物线y=﹣x2+3x+4经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B,连接AC,BC.过点C作x轴的平行线交抛物线于另一点D,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标;2.如图,抛物线y=﹣x2+x+3,与x轴交于A(﹣2,0)、B(6,0)两点,与y轴交于点C.直线l与抛物线交于A、D两点,与y轴交于点E,点D的坐标为(4,3).点Q是y 轴上的点,且∠ADQ=45°,求点Q的坐标.3.如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3.(1)求tan∠DBC的值;(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.(二)定弦定角4.如图,已知抛物线y=﹣+x+4交x轴于A(﹣3,0),B(4,0)两点,交y轴于点C,点P是抛物线上一点,连接AC、BC.在抛物线的对称轴上是否存在点Q,使得∠AQC=45°?若存在,求出点Q的坐标;若不存在,请说明理由.二、函数中的其他特殊角度问题(一)构造一线三垂直1.如图,抛物线y=﹣x2+x+2与x轴交于点A和点B.点D的坐标D(1,2)连接BD,P为抛物线上一点,且∠DBP=135°,求点P的坐标2.如图,抛物线y=(x﹣)(x﹣3)与x轴交于A,B两点,与y轴交于点C,点D 是抛物线的对称轴l与x轴的交点,点P是抛物线上一点,且∠DCP=30°,则符合题意的点P的坐标为.3.如图,已知抛物线y=﹣x2﹣2x+3;与直线AB相交于A(﹣3,0),B(0,3)两点.设C是抛物线对称轴上的一动点,求使∠CBA=90°的点C的坐标;(二)、函数中已知一个角的正切求点的坐标1.如图,已知抛物线y=(x﹣1)2与y轴交于点B(0,),点C为抛物线的顶点.点A在抛物线上,且AC⊥BC,求点A的坐标.2.如图,已知点A(﹣8,0),点B(﹣5,﹣4),直线y=2x+m过点B交y轴于点C,交x轴于点D,抛物线;经过点A、C、D,连接AB、AC.E为直线AC上方的抛物线上一点,且tan∠ECA=,求点E的坐标;3.如图,在平面直角坐标系xOy中,直线AB与抛物线y=x2﹣6x交于点A(6,0)和点B(1,﹣5).直线AB的表达式y=x﹣6;如果点C在直线AB上,且∠BOC的正切值是,求点C的坐标.三、二次函数中的角度问题(一)等腰三角形直线与抛物线交点1.如图,在平面直角坐标系中,抛物线y=x2+2x﹣3与坐标轴的交点分别为点A(﹣3,0),B(1,0),C(0,﹣3).D(﹣1,﹣4),连接BC,作直线CD,已知直线CD上有一动点P,满足∠PBC=∠BCO,求点P的坐标;(也可以用角平分线分线段成比例)2.如图,抛物线经过点A(﹣2,0),点B(0,4).P是抛物线对称轴上的点,联结AB、PB,如果∠PBO=∠BAO,求点P的坐标;3.如图1,已知y=的图象与x轴交于A,B两点,点P是抛物线上在第四象限的点,且tan∠BAP=.(1)求点P的坐标;(2)抛物线的对称轴交x轴于点Q,若抛物线上存在点C,使得∠CPQ=∠PQB,求点C的坐标;4.如图,在平面直角坐标系中,直线y=﹣x+3交坐标轴于B,C两点,抛物线y=﹣x2+2x+3.经过B,C两点,且交x轴于另一点A(﹣1,0).点D为第一象限内抛物线上一动点,过点D作DQ∥CO,交BC于点P,交x轴于点Q.设点P的横坐标为m,在点D移动的过程中,存在∠DCP=∠ACO,求出此时m的值;(利用角的正切值相等)5.如图,抛物线y=﹣x2﹣2x+c的经过D(﹣2,3),与x轴交于A、B两点(点A在点B的左侧)、与y轴交于点C.(1)在抛物线的对称轴上有一点P,使得∠OAP=∠BCO,求点P的坐标;(2)点M在抛物线上,点N在抛物线对称轴上.当∠ACM=90°时,求点M的坐标;6.如图,在平面直角坐标系中,抛物线y=x2+x﹣4.的图象与x轴交于点A(2,0)、B (﹣4,0),与y轴交于点D.在抛物线上有一点M,过点M、A的直线MA交y轴于点C,连接BC,若∠MBO=∠BCO,请直接写出点M的坐标.(二)二次函数的倍角关系1.如图,抛物线y=x2+2x﹣3交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).连接AC,点P在抛物线上,且满足∠P AB=2∠ACO.求点P的坐标;2.如图1,抛物线y=﹣x2+6x﹣5.交x轴于A、B两点,交y轴于点C.直线y=x﹣5经过点B、C,连接AC,当∠AMB=2∠ACB时,求点M的坐标(外角加对称).3.如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+x+2经过A,B两点且与x轴的负半轴交于点C.点D为直线AB上方抛物线上的一个动点,当∠ABD=2∠BAC时,求点D的坐标;4.如图,抛物线;交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC.点P是抛物线上一点,设P点的横坐标为m.请直接写出使∠PBA=∠ABC 的点P的坐标(三)二次函数中角的和差关系1.如图1,已知抛物线y=﹣x2﹣2x+3过点A(1,0),B(﹣3,0).顶点C(﹣1,4),的设点D是x轴上一点,当tan(∠CAO+∠CDO)=4时,求点D的坐标(母子模型相似);.2.如图,在平面直角坐标系中,已知抛物线y=x2+x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过A,C两点,连接BC.取点G(0,﹣1),连接AG,在第一象限内的抛物线上,是否存在点P,使∠BAP=∠BCO﹣∠BAG?若存在,求出点P的坐标;若不存在,请说明理由.3.如图,经过点A(0,﹣4)的抛物线y=x2﹣x﹣4.与x轴相交于B(﹣2,0),C两点,O为坐标原点.设点M在y轴上,∠OMB+∠OAB=∠ACB,求AM的长.4.如图,抛物线y=﹣x2+x+5.与x轴交于A、B(A左B右),与y轴交于C,直线y=﹣x+5经过点B、C.点P为第二象限抛物线上一点,设点P横坐标为m,点P到直线BC的距离为d,求d与m的函数解析式;若∠PCB+∠POB=180°,求d的值(四点共圆).5.如图,抛物线y=ax2﹣ax﹣6a与x轴交于A、B两点(A在B点左边),与y轴负半轴交于C点,OC=2OA.E是x轴上方,抛物线上一点,若∠AEB+∠BAE=45°,求E点纵坐标;练习:如图1,抛物线y=x2+(m﹣3)x﹣4与y轴交于C点,与直线y=mx交于A,B两点(点B,A分别在第一、三象限).(1)求的值;(2)若AC⊥AB,求m的值;(3)如图2,连接AC,点P是y轴上的一定点,当m的值发生变化时,∠BPO=∠ACO 恒成立,求定点P的坐标.。
2015中考数学真题分类汇编:二次函数(压轴题)资料
26.(13分)(2015•福州)如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q.(1)这条抛物线的对称轴是,直线PQ与x轴所夹锐角的度数是;(2)若两个三角形面积满足S△POQ=S△PAQ,求m的值;(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PD•DQ的最大值.考点:二次函数综合题.分析:(1)把抛物线的解析式化成顶点式即可求得对称轴;求得直线与坐标轴的交点坐标,即可证得直线和坐标轴围成的图形是等腰直角三角形,从而求得直线PQ与x轴所夹锐角的度数;(2)分三种情况分别讨论根据已知条件,通过△OBE∽△ABF对应边成比例即可求得;(3)①过点C作CH∥x轴交直线PQ于点H,可得△CHQ是等腰三角形,进而得出AD⊥PH,得出DQ=DH,从而得出PD+DQ=PH,过P点作PM⊥CH于点M,则△PMH是等腰直角三角形,得出PH=PM,因为当PM最大时,PH最大,通过求得PM的最大值,从而求得PH的最大值;由①可知:PD+PH≤6,设PD=a,则DQ﹣a,得出PD•DQ≤a(6﹣a)=﹣a2+6a=﹣(a﹣3)2+18,当点P在抛物线的顶点时,a=3,得出PD•DQ≤18.解答:解:(1)∵y=x2﹣4x=(x﹣2)2﹣4,∴抛物线的对称轴是x=2,∵直线y=x+m,∴直线与坐标轴的交点坐标为(﹣m,0),(0,m),∴交点到原点的距离相等,∴直线与坐标轴围成的三角形是等腰直角三角形,∴直线PQ与x轴所夹锐角的度数是45°,故答案为x=2、45°.(2)设直线PQ交x轴于点B,分别过O点,A点作PQ的垂线,垂足分别是E、F,显然当点B在OA的延长线时,S△POQ=S△PAQ不成立;①当点B落在线段OA上时,如图①,==,由△OBE∽△ABF得,==,∴AB=3OB,∴OB=OA,由y=x2﹣4x得点A(4,0),∴OB=1,∴B(1,0),∴1+m=0,∴m=﹣1;②当点B落在线段AO的延长线上时,如图②,同理可得OB=OA=2,∴B(﹣2,0),∴﹣2+m=0,∴m=2,综上,当m=﹣1或2时,S△POQ=S△PAQ;(3)①过点C作CH∥x轴交直线PQ于点H,如图③,可得△CHQ是等腰三角形,∵∠CDQ=45°+45°=90°,∴AD⊥PH,∴DQ=DH,∴PD+DQ=PH,过P点作PM⊥CH于点M,则△PMH是等腰直角三角形,∴PH=PM,∴当PM最大时,PH最大,∴当点P在抛物线顶点出时,PM最大,此时PM=6,∴PH的最大值为6,即PD+DQ的最大值为6.②由①可知:PD+PH≤6,设PD=a,则DQ﹣a,∴PD•DQ≤a(6﹣a)=﹣a2+6a=﹣(a﹣3)2+18,∵当点P在抛物线的顶点时,a=3,∴PD•DQ≤18.∴PD•DQ的最大值为18.点评:本题是二次函数的综合题,考查了抛物线的性质,直线的性质,三角形相似的判定和性质,难度较大.25.(10分)(2015•莆田)抛物线y=ax2+bx+c,若a,b,c满足b=a+c,则称抛物线y=ax2+bx+c为“恒定”抛物线.(1)求证:“恒定”抛物线y=ax2+bx+c必过x轴上的一个定点A;(2)已知“恒定”抛物线y=x2﹣的顶点为P,与x轴另一个交点为B,是否存在以Q为顶点,与x轴另一个交点为C的“恒定”抛物线,使得以PA,CQ为边的四边形是平行四边形?若存在,求出抛物线解析式;若不存在,请说明理由.考点:二次函数综合题.专题:综合题.分析:(1)由“恒定”抛物线y=ax2+bx+c,得到b=a+c,即a﹣b+c=0,即可确定出抛物线恒过定点(﹣1,0);(2)先求出抛物线y=x2﹣的顶点坐标和B的坐标,由题意得出PA∥CQ,PA=CQ;存在两种情况:设抛物线的解析式为y=a(x+2)2﹣,把点A坐标代入求出a的值即可;②顶点Q在y轴上,此时点C与点B重合;证明△OQC≌△OPA,得出OQ=OP=,得出点Q坐标,设抛物线的解析式为y=ax2+,把点C坐标代入求出a的值即可.解答:(1)证明:由“恒定”抛物线y=ax2+bx+c,得:b=a+c,即a﹣b+c=0,∵抛物线y=ax2+bx+c,当x=﹣1时,y=0,∴“恒定”抛物线y=ax2+bx+c必过x轴上的一个定点A(﹣1,0);(2)解:存在;理由如下:∵“恒定”抛物线y=x2﹣,当y=0时,x2﹣=0,解得:x=±1,∵A(﹣1,0),∴B(1,0);∵x=0时,y=﹣,∴顶点P的坐标为(0,﹣),以PA,CQ为边的平行四边形,PA、CQ是对边,∴PA∥CQ,PA=CQ,∴存在两种情况:①如图1所示:作QM⊥AC于M,则QM=OP=,∠QMC=90°=∠POA,在Rt△QMC和Rt△POA中,,∴Rt△QMC≌Rt△POA(HL),∴MC=OA=1,∴OM=2,∵点A和点C是抛物线上的对称点,∴AM=MC=1,∴点Q的坐标为(﹣2,﹣),设以Q为顶点,与x轴另一个交点为C的“恒定”抛物线的解析式为y=a(x+2)2﹣,把点A(﹣1,0)代入得:a=,∴抛物线的解析式为:y=(x+2)2﹣,即y═x2+4x+3;②如图2所示:顶点Q在y轴上,此时点C与点B重合,∴点C坐标为(1,0),∵CQ∥PA,∴∠OQC=∠OPA,在△OQC和△OPA中,,∴△OQC≌△OPA(AAS),∴OQ=OP=,设以Q为顶点,与x轴另一个交点为C的“恒定”抛物线的解析式为y=ax2+,把点C(1,0)代入得:a=﹣,∴抛物线的解析式为:y=﹣x2+;综上所述:存在以Q为顶点,与x轴另一个交点为C的“恒定”抛物线,使得以PA,CQ为边的四边形是平行四边形,抛物线的解析式为:y=x2+4x+3,或y=﹣x2+.点评:本题是二次函数综合题目,考查了新定义“恒定”抛物线、用待定系数法求抛物线的解析式、全等三角形的判定与性质、抛物线的对称性、坐标与图形性质等知识;本题难度较大,综合性强,特别是(2)中,需要作辅助线证明三角形全等求出点的坐标才能得出抛物线的解析式.26.(13分)(2015•泉州)阅读理解抛物线y=x2上任意一点到点(0,1)的距离与到直线y=﹣1的距离相等,你可以利用这一性质解决问题.问题解决如图,在平面直角坐标系中,直线y=kx+1与y轴交于C点,与函数y=x2的图象交于A,B两点,分别过A,B两点作直线y=﹣1的垂线,交于E,F两点.(1)写出点C的坐标,并说明∠ECF=90°;(2)在△PEF中,M为EF中点,P为动点.①求证:PE2+PF2=2(PM2+EM2);②已知PE=PF=3,以EF为一条对角线作平行四边形CEDF,若1<PD<2,试求CP的取值范围.考点:二次函数综合题;勾股定理;矩形的判定与性质.专题:综合题;阅读型.分析:(1)如图1,只需令x=0,即可得到点C的坐标.根据题意可得AC=AE,从而有∠AEC=∠ACE.易证AE∥CO,从而有∠AEC=∠OCE,即可得到∠ACE=∠OCE,同理可得∠OCF=∠BCF,然后利用平角的定义即可证到∠ECF=90°;(2))①过点P作PH⊥EF于H,分点H在线段EF上(如图2①)和点H在线段EF的延长线(或反向延长线)上(如图2②)两种情况讨论,然后只需运用勾股定理及平方差公式即可证到PE2+PF2﹣2PM2=2EM2,即PE2+PF2=2(PM2+EM2);②连接CD,PM,如图3.易证▱CEDF是矩形,从而得到M是CD的中点,且MC=EM,然后根据①中的结论,可得:在△PEF中,有PE2+PF2=2(PM2+EM2),在△PCD中,有PC2+PD2=2(PM2+CM2).由MC=EM可得PC2+PD2=PE2+PF2.根据PE=PF=3可求得PC2+PD2=18.根据1<PD<2可得1<PD2<4,即1<18﹣PC2<4,从而可求出PC的取值范围.解答:解:(1)当x=0时,y=k•0+1=1,则点C的坐标为(0,1).根据题意可得:AC=AE,∴∠AEC=∠ACE.∵AE⊥EF,CO⊥EF,∴AE∥CO,∴∠AEC=∠OCE,∴∠ACE=∠OCE.同理可得:∠OCF=∠BCF.∵∠ACE+∠OCE+∠OCF+∠BCF=180°,∴2∠OCE+2∠OCF=180°,∴∠OCE+∠OCF=90°,即∠ECF=90°;(2)①过点P作PH⊥EF于H,Ⅰ.若点H在线段EF上,如图2①.∵M为EF中点,∴EM=FM=EF.根据勾股定理可得:PE2+PF2﹣2PM2=PH2+EH2+PH2+HF2﹣2PM2=2PH2+EH2+HF2﹣2(PH2+MH2)=EH2﹣MH2+HF2﹣MH2=EM(EH+MH)+MF(HF﹣MH)=EM(EH+MH)+EM(HF﹣MH)=EM(EH+MH+HF﹣MH)=EM•EF=2EM2,∴PE2+PF2=2(PM2+EM2);Ⅱ.若点H在线段EF的延长线(或反向延长线)上,如图2②.同理可得:PE2+PF2=2(PM2+EM2).综上所述:当点H在直线EF上时,都有PE2+PF2=2(PM2+EM2);②连接CD、PM,如图3.∵∠ECF=90°,∴▱CEDF是矩形,∵M是EF的中点,∴M是CD的中点,且MC=EM.由①中的结论可得:在△PEF中,有PE2+PF2=2(PM2+EM2),在△PCD中,有PC2+PD2=2(PM2+CM2).∵MC=EM,∴PC2+PD2=PE2+PF2.∵PE=PF=3,∴PC2+PD2=18.∵1<PD<2,∴1<PD2<4,∴1<18﹣PC2<4,∴14<PC2<17.∵PC>0,∴<PC<.24.(12分)(2015•福建)如图,在平面直角坐标系中,顶点为A(1,﹣1)的抛物线经过点B(5,3),且与x轴交于C,D两点(点C在点D的左侧).(1)求抛物线的解析式;(2)求点O到直线AB的距离;(3)点M在第二象限内的抛物线上,点N在x轴上,且∠MND=∠OAB,当△DMN与△OAB相似时,请你直接写出点M的坐标.考点:二次函数综合题.分析:(1)根据待定系数法,可得抛物线的解析式;(2)根据勾股定理,可得OA2、OB2、AB2的长,根据勾股定理的逆定理,可得∠OAB的度数,根据点到直线的距离的定义,可得答案;(3)根据抛物线上的点满足函数解析式,可得方程②,根据相似三角形的性质,可得方程①③,根据解方程组,可得M点的坐标.解答:解:(1)设抛物线的解析式为y=a(x﹣1)2﹣1,将B点坐标代入函数解析式,得(5﹣1)2a﹣1=3,解得a=.故抛物线的解析式为y=(x﹣1)2﹣1;(2)由勾股定理,得OA2=11+12=2,OB2=52+32=34,AB2=(5﹣1)2+(3+1)2=32,OA2+AB2=OB2,∴∠OAB=90°,O到直线AB的距离是OA=;(3)设M(a,b),N(a,0)当y=0时,(x﹣1)2﹣1=0,解得x1=3,x2=﹣1,D(3,0),DN=3﹣a.①当△MND∽△OAB时,=,即=,化简,得4b=a﹣3 ①M在抛物线上,得b=(a﹣1)2﹣1 ②联立①②,得,解得a1=3(不符合题意,舍),a2=﹣2,b=,M1(﹣2,),当△MND∽△BAO时,=,即=,化简,得b=12﹣4a ③,联立②③,得,解得a1=3(不符合题意,舍),a2=﹣17,b=12﹣4×(﹣17)=80,M2(﹣17,80).综上所述:当△DMN与△OAB相似时,点M的坐标(﹣2,),(﹣17,80).点评:本题考查了二次函数综合题,(1)设成顶点式的解析式是解题关键,(2)利用了勾股定理及勾股定理的逆定理,点到直线的距离;(3)利用了相似三角形的性质,图象上的点满足函数解析式得出方程组是解题关键,要分类讨论,以防遗漏.25.(14分)(2015•漳州)如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D为抛物线的顶点,请解决下列问题.(1)填空:点C的坐标为(0,3),点D的坐标为(1,4);(2)设点P的坐标为(a,0),当|PD﹣PC|最大时,求α的值并在图中标出点P的位置;(3)在(2)的条件下,将△BCP沿x轴的正方向平移得到△B′C′P′,设点C对应点C′的横坐标为t(其中0<t<6),在运动过程中△B′C′P′与△BCD重叠部分的面积为S,求S与t之间的关系式,并直接写出当t为何值时S最大,最大值为多少?考点:二次函数综合题.分析:(1)根据抛物线与坐标轴交点坐标求法和顶点坐标求法计算即可;(2)求|PD﹣PC|的值最大时点P的坐标,应延长CD交x轴于点P.因为|PD﹣PC|小于或等于第三边CD,所以当|PC﹣PD|等于CD时,|PC﹣PD|的值最大.因此求出过CD两点的解析式,求它与x轴交点坐标即可;(3)过C点作CE∥x轴,交DB于点E,求出直线BD的解析式,求出点E的坐标,求出P′C′与BC 的交点M的坐标,分点C′在线段CE上和在线段CE的延长线上两种情况,再分别求得N点坐标,再利用图形的面积的差,可表示出S,再求得其最大值即可.解答:解:(1)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴C(0,3),D(1,4),故答案为:0;3;1;4;(2)∵在三角形中两边之差小于第三边,∴延长DC交x轴于点P,设直线DC的解析式为y=kx+b,把D、C两点坐标代入可得,解得,∴直线DC的解析式为y=x+3,将点P的坐标(a,0)代入得a+3=0,求得a=﹣3,如图1,点P(﹣3,0)即为所求;(3)过点C作CE∥x,交直线BD于点E,如图2,由法可求得直线BD的解析式为y=﹣2x+6,直线BC的解析式为y=﹣x+3,在y=﹣2x+6中,当y=3时,x=,∴E点坐标为(,3),设直线P′C′与直线BC交于点M,∵P′C′∥DC,P′C′与y轴交于点(0,3﹣t),∴直线P′C′的解析式为y=x+3﹣t,联立,解得,∴点M坐标为(,),∵B′C′∥BC,B′坐标为(3+t,0),∴直线B′C′的解析式为y=﹣x+3+t,分两种情况讨论:①当0<t<时,如图2,B′C′与BD交于点N,联立,解得,∴N点坐标为(3﹣t,2t),S=S△B′C′P﹣S△BMP﹣S△BNB′=×6×3﹣(6﹣t)×(6﹣t)﹣t×2t=﹣t2+3t,其对称轴为t=,可知当0<t<时,S随t的增大而增大,当t=时,有最大值;②当≤t<6时,如图3,直线P′C′与DB交于点N,立,解得,∴N点坐标为(,),S=S△BNP′﹣S△BMP′=(6﹣t)×﹣×(6﹣t)×=(6﹣t)2=t2﹣t+3;显然当<t<6时,S随t的增大而减小,当t=时,S=综上所述,S与t之间的关系式为S=,且当t=时,S有最大值,最大值为.点评:本题主要考查二次函数的综合应用,涉及待定系数法、三角形三边关系、平移的性质和二次函数的性质等知识点.在(1)中掌握二次函数的顶点式是解题的关键,在(2)中确定出P点的位置是解题的关键,在(3)中用t分别表示出E、M、N的坐标是解题的关键,注意分类讨论思想的应用.本题考查知识点较多,综合性较强,计算量较大.28.(12分)(2015•甘南州)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c,经过A(0,﹣4),B(x1,0),C(x2,0)三点,且|x2﹣x1|=5.(1)求b,c的值;(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.考点:二次函数综合题.分析:(1)把A(0,﹣4)代入可求c,运用两根关系及|x2﹣x1|=5,对式子合理变形,求b;(2)因为菱形的对角线互相垂直平分,故菱形的另外一条对角线必在抛物线的对称轴上,满足条件的D点,就是抛物线的顶点;(3)由四边形BPOH是以OB为对角线的菱形,可得PH垂直平分OB,求出OB的中点坐标,代入抛物线解析式即可,再根据所求点的坐标与线段OB的长度关系,判断是否为正方形即可.解答:解:(1)∵抛物线y=﹣x2+bx+c,经过点A(0,﹣4),∴c=﹣4又∵由题意可知,x1、x2是方程﹣x2+bx﹣4=0的两个根,∴x1+x2=b,x1x2=6由已知得(x2﹣x1)2=25又∵(x2﹣x1)2=(x2+x1)2﹣4x1x2=b2﹣24∴b2﹣24=25解得b=±,当b=时,抛物线与x轴的交点在x轴的正半轴上,不合题意,舍去.∴b=﹣.(2)∵四边形BDCE是以BC为对角线的菱形,根据菱形的性质,点D必在抛物线的对称轴上,又∵y=﹣x2﹣x﹣4=﹣(x+)2+,∴抛物线的顶点(﹣,)即为所求的点D.(3)∵四边形BPOH是以OB为对角线的菱形,点B的坐标为(﹣6,0),根据菱形的性质,点P必是直线x=﹣3与抛物线y=﹣x2﹣x﹣4的交点,∴当x=﹣3时,y=﹣×(﹣3)2﹣×(﹣3)﹣4=4,∴在抛物线上存在一点P(﹣3,4),使得四边形BPOH为菱形.四边形BPOH不能成为正方形,因为如果四边形BPOH为正方形,点P的坐标只能是(﹣3,3),但这一点不在抛物线上点评:本题考查了抛物线解析式的求法,根据菱形,正方形的性质求抛物线上符合条件的点的方法.28.(10分)(2015•酒泉)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)抛物线经过点A(0,4),B(1,0),C(5,0),可利用两点式法设抛物线的解析式为y=a(x ﹣1)(x﹣5),代入A(0,4)即可求得函数的解析式,则可求得抛物线的对称轴;(2)点A关于对称轴的对称点A′的坐标为(6,4),连接BA′交对称轴于点P,连接AP,此时△PAB 的周长最小,可求出直线BA′的解析式,即可得出点P的坐标.(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),再求得直线AC的解析式,即可求得NG的长与△ACN的面积,由二次函数最大值的问题即可求得答案.解答:解:(1)根据已知条件可设抛物线的解析式为y=a(x﹣1)(x﹣5),把点A(0,4)代入上式得:a=,∴y=(x﹣1)(x﹣5)=x2﹣x+4=(x﹣3)2﹣,∴抛物线的对称轴是:x=3;(2)P点坐标为(3,).理由如下:∵点A(0,4),抛物线的对称轴是x=3,∴点A关于对称轴的对称点A′的坐标为(6,4)如图1,连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小.设直线BA′的解析式为y=kx+b,把A′(6,4),B(1,0)代入得,解得,∴y=x﹣,∵点P的横坐标为3,∴y=×3﹣=,∴P(3,).(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),如图2,过点N作NG∥y轴交AC于G;作AD⊥NG于D,由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=﹣x+4,把x=t代入得:y=﹣t+4,则G(t,﹣t+4),此时:NG=﹣t+4﹣(t2﹣t+4)=﹣t2+4t,∵AD+CF=CO=5,∴S△ACN=S△ANG+S△CGN=AM×NG+NG×CF=NG•OC=×(﹣t2+4t)×5=﹣2t2+10t=﹣2(t﹣)2+,∴当t=时,△CAN面积的最大值为,由t=,得:y=t2﹣t+4=﹣3,∴N(,﹣3).点评:本题主要考查了二次函数与方程、几何知识的综合应用,解题的关键是方程思想与数形结合思想的灵活应用.28.(12分)(2015•兰州)已知二次函数y=ax2的图象经过点(2,1).(1)求二次函数y=ax2的解析式;(2)一次函数y=mx+4的图象与二次函数y=ax2的图象交于点A(x1、y1)、B(x2、y2)两点.①当m=时(图①),求证:△AOB为直角三角形;②试判断当m≠时(图②),△AOB的形状,并证明;(3)根据第(2)问,说出一条你能得到的结论.(不要求证明)考点:二次函数综合题.分析:(1)把点(2,1)代入可求得a的值,可求得抛物线的解析式;(2)①可先求得A、B两点的坐标,过A、B两点作x轴的垂线,结合条件可证明△ACO∽△ODB,可证明∠AOB=90°,可判定△AOB为直角三角形;②可用m分别表示出A、B两点的坐标,过A、B两点作x轴的垂线,表示出AC、BD的长,可证明△ACO∽△ODB,结合条件可得到∠AOB=90°,可判定△AOB为直角三角形;(3)结合(2)的过程可得到△AOB恒为直角三角形等结论.解答:(1)解:∵y=ax2过点(2,1),∴1=4a,解得a=,∴抛物线解析式为y=x2;(2)①证明:当m=时,联立直线和抛物线解析式可得,解得或,∴A(﹣2,1),B(8,16),分别过A、B作AC⊥x轴,BD⊥x轴,垂足分别为C、D,如图1,∴AC=1,OC=2,OD=8,BD=16,∴==,且∠ACO=∠ODB,∴△ACO∽△ODB,∴∠AOC=∠OBD,又∵∠OBD+∠BOD=90°,∴∠AOC+∠BOD=90°,即∠AOB=90°,∴△AOB为直角三角形;②解:△AOB为直角三角形.证明如下:当m≠时,联立直线和抛物线解析式可得,解得或,∴A(2m﹣2,(m﹣)2),B(2m+2,(m+)2),分别过A、B作AC⊥x轴,BD⊥x轴,如图2,∴AC=(m﹣)2,OC=﹣(2m﹣2),BD=(m+)2,OD=2m+2,∴==,且∠ACO=∠ODB,∴△ACO∽△OBD,∴∠AOC=∠OBD,又∵∠OBD+∠BOD=90°,∴∠AOC+∠BOD=90°,即∠AOB=90°,∴△AOB为直角三角形;(3)解:由(2)可知,一次函数y=mx+4的图象与二次函数y=ax2的交点为A、B,则△AOB恒为直角三角形.(答案不唯一).点评:本题主要考查二次函数的综合应用,涉及待定系数法、相似三角的判定和性质、直角三角形的判定等知识点.在(1)中注意待定系数法的应用步骤,在(2)中注意表示出A、B两点的坐标,构造三角形相似是解题的关键,在(3)中答案不唯一,可结合(2)的过程得出.本题知识点较多,综合性很强,难度较大.26.(12分)(2015•天水)在平面直角坐标系中,已知y=﹣x2+bx+c(b、c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),点C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若抛物线经过A、B两点,求抛物线的解析式.(2)平移(1)中的抛物线,使顶点P在直线AC上并沿AC方向滑动距离为时,试证明:平移后的抛物线与直线AC交于x轴上的同一点.(3)在(2)的情况下,若沿AC方向任意滑动时,设抛物线与直线AC的另一交点为Q,取BC的中点N,试探究NP+BQ是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.考点:二次函数综合题.分析:(1)先求出点B的坐标,然后利用待定系数法求出抛物线的函数表达式;(2)如答题图2,设顶点P在直线AC上并沿AC方向滑动距离时,到达P′,作P′M∥y轴,PM∥x 轴,交于M点,根据直线AC的斜率求得△P′PM是等腰直角三角形,进而求得抛物线向上平移1个单位,向右平移1个单位,从而求得平移后的解析式,进而求得与x轴的交点,与直线AC的交点,即可证得结论;(3)如答图3所示,作点B关于直线AC的对称点B′,由分析可知,当B′、Q、F(AB中点)三点共线时,NP+BQ最小,最小值为线段B′F的长度.解答:解:(1)∵等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3)∴点B的坐标为(4,﹣1).∵抛物线过A(0,﹣1),B(4,﹣1)两点,∴,解得:b=2,c=﹣1,∴抛物线的函数表达式为:y=﹣x2+2x﹣1.(2)如答题图2,设顶点P在直线AC上并沿AC方向滑动距离时,到达P′,作P′M∥y轴,PM∥x 轴,交于M点,∵点A的坐标为(0,﹣1),点C的坐标为(4,3),∴直线AC的解析式为y=x﹣1,∵直线的斜率为1,∴△P′PM是等腰直角三角形,∵PP′=,∴P′M=PM=1,∴抛物线向上平移1个单位,向右平移1个单位,∵y=﹣x2+2x﹣1=﹣(x﹣2)2+1,∴平移后的抛物线的解析式为y=﹣(x﹣3)2+2,令y=0,则0=﹣(x﹣3)2+2,解得x1=1,x=52,∴平移后的抛物线与x轴的交点为(1,0),(5,0),解,得或∴平移后的抛物线与AC的交点为(1,0),∴平移后的抛物线与直线AC交于x轴上的同一点(1,0).(3)如答图3,取点B关于AC的对称点B′,易得点B′的坐标为(0,3),BQ=B′Q,取AB中点F,连接QF,FN,QB′,易得FN∥PQ,且FN=PQ,∴四边形PQFN为平行四边形.∴NP=FQ.∴NP+BQ=FQ+B′Q≥FB′==2.∴当B′、Q、F三点共线时,NP+BQ最小,最小值为2.点评:本题为二次函数中考压轴题,考查了二次函数的图象与性质、待定系数法、一次函数、几何变换(平移,对称)、等腰直角三角形、平行四边形、轴对称﹣最短路线问题等知识点,考查了存在型问题和分类讨论的数学思想,试题难度较大.28.(10分)(2015•酒泉)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)抛物线经过点A(0,4),B(1,0),C(5,0),可利用两点式法设抛物线的解析式为y=a(x ﹣1)(x﹣5),代入A(0,4)即可求得函数的解析式,则可求得抛物线的对称轴;(2)点A关于对称轴的对称点A′的坐标为(6,4),连接BA′交对称轴于点P,连接AP,此时△PAB 的周长最小,可求出直线BA′的解析式,即可得出点P的坐标.(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),再求得直线AC的解析式,即可求得NG的长与△ACN的面积,由二次函数最大值的问题即可求得答案.解答:解:(1)根据已知条件可设抛物线的解析式为y=a(x﹣1)(x﹣5),把点A(0,4)代入上式得:a=,∴y=(x﹣1)(x﹣5)=x2﹣x+4=(x﹣3)2﹣,∴抛物线的对称轴是:x=3;(2)P点坐标为(3,).理由如下:∵点A(0,4),抛物线的对称轴是x=3,∴点A关于对称轴的对称点A′的坐标为(6,4)如图1,连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小.设直线BA′的解析式为y=kx+b,把A′(6,4),B(1,0)代入得,解得,∴y=x﹣,∵点P的横坐标为3,∴y=×3﹣=,∴P(3,).(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),如图2,过点N作NG∥y轴交AC于G;作AD⊥NG于D,由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=﹣x+4,把x=t代入得:y=﹣t+4,则G(t,﹣t+4),此时:NG=﹣t+4﹣(t2﹣t+4)=﹣t2+4t,∵AD+CF=CO=5,∴S△ACN=S△ANG+S△CGN=AM×NG+NG×CF=NG•OC=×(﹣t2+4t)×5=﹣2t2+10t=﹣2(t﹣)2+,∴当t=时,△CAN面积的最大值为,由t=,得:y=t2﹣t+4=﹣3,∴N(,﹣3).点评:本题主要考查了二次函数与方程、几何知识的综合应用,解题的关键是方程思想与数形结合思想的灵活应用.24.(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.考点:二次函数综合题.分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;(2)联立两解析式,可求出交点A的坐标;(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.解答:解:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).点评:本题是二次函数的综合题型,其中涉及到两函数图象交点的求解方法,二次函数顶点坐标的求解方法,三角形的面积,待定系数法求一次函数的解析式,难度适中.利用数形结合与方程思想是解题的关键.25.(14分)(2015•广州)已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1•x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t上.(1)求点C的坐标;(2)当y1随着x的增大而增大时,求自变量x的取值范围;(3)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2﹣5n的最小值.考点:二次函数综合题.分析:(1)利用y轴上点的坐标性质表示出C点坐标,再利用O,C两点间的距离为3求出即可;(2)分别利用①若C(0,3),即c=3,以及②若C(0,﹣3),即c=﹣3,得出A,B点坐标,进而求出函数解析式,进而得出答案;(3)利用①若c=3,则y1=﹣x2﹣2x+3=﹣(x+1)2+4,y2=﹣3x+3,得出y1向左平移n个单位后,则解析式为:y3=﹣(x+1+n)2+4,进而求出平移后的直线与P有公共点时得出n的取值范围,②若c=﹣3,则y1=x2﹣2x﹣3=(x﹣1)2﹣4,y2=﹣3x﹣3,y1向左平移n个单位后,则解析式为:y3=(x ﹣1+n)2﹣4,进而求出平移后的直线与P有公共点时得出n的取值范围,进而利用配方法求出函数最值.解答:解:(1)令x=0,则y=c,故C(0,c),∵OC的距离为3,∴|c|=3,即c=±3,∴C(0,3)或(0,﹣3);(2)∵x1x2<0,∴x1,x2异号,①若C(0,3),即c=3,把C(0,3)代入y2=﹣3x+t,则0+t=3,即t=3,∴y2=﹣3x+3,把A(x1,0)代入y2=﹣3x+3,则﹣3x1+3=0,即x1=1,∴A(1,0),∵x1,x2异号,x1=1>0,∴x2<0,∵|x1|+|x2|=4,∴1﹣x2=4,解得:x2=﹣3,则B(﹣3,0),代入y1=ax2+bx+3得,,解得:,∴y1=﹣x2﹣2x+3=﹣(x+1)2+4,则当x≤﹣1时,y随x增大而增大.②若C(0,﹣3),即c=﹣3,把C(0,﹣3)代入y2=﹣3x+t,则0+t=﹣3,即t=﹣3,∴y2=﹣3x﹣3,把A(x1,0),代入y2=﹣3x﹣3,则﹣3x1﹣3=0,即x1=﹣1,∴A(﹣1,0),∵x1,x2异号,x1=﹣1<0,∴x2>0∵|x1|+|x2|=4,∴1+x2=4,解得:x2=3,则B(3,0),代入y1=ax2+bx+3得,,解得:,∴y1=x2﹣2x﹣3=(x﹣1)2﹣4,则当x≥1时,y随x增大而增大,综上所述,若c=3,当y随x增大而增大时,x≤﹣1;若c=﹣3,当y随x增大而增大时,x≥1;(3)①若c=3,则y1=﹣x2﹣2x+3=﹣(x+1)2+4,y2=﹣3x+3,y1向左平移n个单位后,则解析式为:y3=﹣(x+1+n)2+4,则当x≤﹣1﹣n时,y随x增大而增大,y2向下平移n个单位后,则解析式为:y4=﹣3x+3﹣n,要使平移后直线与P有公共点,则当x=﹣1﹣n,y3≥y4,即﹣(﹣1﹣n+1+n)2+4≥﹣3(﹣1﹣n)+3﹣n,解得:n≤﹣1,∵n>0,∴n≤﹣1不符合条件,应舍去;②若c=﹣3,则y1=x2﹣2x﹣3=(x﹣1)2﹣4,y2=﹣3x﹣3,y1向左平移n个单位后,则解析式为:y3=(x﹣1+n)2﹣4,则当x≥1﹣n时,y随x增大而增大,y2向下平移n个单位后,则解析式为:y4=﹣3x﹣3﹣n,要使平移后直线与P有公共点,则当x=1﹣n,y3≤y4,即(1﹣n﹣1+n)2﹣4≤﹣3(1﹣n)﹣3﹣n,解得:n≥1,综上所述:n≥1,2n2﹣5n=2(n﹣)2﹣,∴当n=时,2n2﹣5n的最小值为:﹣.点评:此题主要考查了二次函数综合以及二次函数的平移以及二次函数增减性等知识,利用分类讨论得出n 的取值范围是解题关键.23.(2015•深圳)如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.考点:二次函数综合题.分析:(1)把A、C两点坐标代入可求得b、c,可求得抛物线解析式;(2)当点P在∠DAB的平分线上时,过P作PM⊥AD,设出P点坐标,可表示出PM、PE,由角平分线的性质可得到PM=PE,可求得P点坐标;当点P在∠DAB外角平分线上时,同理可求得P点坐标;(3)可先求得△FBC的面积,过F作FQ⊥x轴,交BC的延长线于Q,可求得FQ的长,可设出F 点坐标,表示出B点坐标,从而可表示出FQ的长,可求得F点坐标.解答:解:(1)∵二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),∴,解得,∴抛物线的解析式y=﹣x2﹣2x+3,(2)存在,当P在∠DAB的平分线上时,如图1,作PM⊥AD,设P(﹣1,m),则PM=PD•sin∠ADE=(4﹣m),PE=m,∵PM=PE,∴(4﹣m)=m,m=﹣1,∴P点坐标为(﹣1,﹣1);当P在∠DAB的外角平分线上时,如图2,作PN⊥AD,设P(﹣1,n),则PN=PD•sin∠ADE=(4﹣n),PE=﹣n,∵PM=PE,∴(4﹣n)=﹣n,n=﹣﹣1,∴P点坐标为(﹣1,﹣﹣1);综上可知存在满足条件的P点,其坐标为(﹣1,﹣1)或(﹣1,﹣﹣1);(3)∵S△EBC=3,2S△FBC=3S△EBC,∴S△FBC=,过F作FQ⊥x轴,交BC的延长线于Q,如图3,∵S△FBC=FQ•OB=FQ=,∴FQ=9,∵BC的解析式为y=﹣3x+3,设F(x0,﹣x02﹣2x0+3),∴﹣3x0+3+x02+2x0﹣3=9,解得:x0=或(舍去),∴点F的坐标是(,).点评:本题主要考查二次函数的综合应用,涉及待定系数法、角平分线的性质、三角函数、三角形面积等知识点.在(1)中注意待定系数法的应用步骤,在(2)中注意分点P在∠DAB的角平分线上和在外角的平分线上两种情况,在(3)中求得FQ的长是解题的关键.本题所考查知识点较多,综合性很强,难度适中.22.(9分)(2015•珠海)如图,折叠矩形OABC的一边BC,使点C落在OA边的点D处,已知折痕BE=5,且=,以O为原点,OA所在的直线为x轴建立如图所示的平面直角坐标系,抛物线l:y=﹣x2+x+c经过点E,且与AB边相交于点F.(1)求证:△ABD∽△ODE;(2)若M是BE的中点,连接MF,求证:MF⊥BD;(3)P是线段BC上一点,点Q在抛物线l上,且始终满足PD⊥DQ,在点P运动过程中,能否使得PD=DQ?若能,求出所有符合条件的Q点坐标;若不能,请说明理由.考点:二次函数综合题.。
二次函数与45度角问题解题技巧
二次函数与45度角问题解题技巧
1待定系数法型
题设明确给出两个变量间是二次函数关系,和几对变量值,要求求出函数关系式,并进行简单的应用。
解答的关键是熟练运用待定系数法,准确求出函数关系式。
2“平行于y轴的动线段长度的最大值”的问题
由于平行于y轴的线段上各个点的横坐标相等(常设为t),借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t的代数式表示出来,再由两个端点的高低情况,运用平行于y轴的线段长度计算公式,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标。
3二次函数解题方法
①三角形基本模型:有一边在x轴或y上,或有一边平行于x轴或y轴的三角形称为三角形基本模型。
③颤抖三角形:至少存有一边的长度就是不确认的,就是运动变化的。
或至少存有一个顶点就是运动,变化的三角形称作颤抖三角形。
④动线段:其长度是运动,变化,不确定的线段称为动线段。
⑤的定三角形:三边的长度紧固,或三个顶点紧固的三角形称作的定三角形。
⑥定直线:其函数关系式是确定的,不含参数的直线称为定直线。
如:y=3x-6。
⑦x标,y标:为了记忆和阐释某些问题的便利,我们把横坐标称作x标,纵坐标称作y标。
⑧直接动点:相关平面图形(如三角形,四边形,梯形等)上的动点称为直接动点,与之共线的问题中的点叫间接动点。
动点坐标“一母示”是针对直接动点坐标而言的。
2015年全国中考数学试卷分类汇编专题13 二次函数
A.60m2 C.64m2
B.63m2[ D.66m2
考点:二次函数的应用..
专题:应用题. 分析:设 BC=xm,表示出 AB,矩形面积为 ym2,表示出 y 与 x 的关系式,利用二次函数性质求出 面积最大值即可. 解答:解:设 BC=xm,则 AB=(16﹣x)m,矩形 ABCD 面积为 ym2,
5. (2015•四川乐山,第 6 题 3 分)二次函数
A.3
B.4
C.5
D.6
的最大值为( )
第 3 页 共 180 页
【答案】C. 【解析】 试题分析:
,∵
<0,∴当 x=1 时,y 有最大值,最大值为 5.故选 C.
考点:二次函数的最值.
6.(2015 湖北荆州第 4 题 3 分)将抛物线 y=x2﹣2x+3 向上平移 2 个单位长度,再向右平移 3 个 单位长度后,得到的抛物线的解析式为( )
时,
;当
时,
;故③错误;
④∵二次函数
的图象过点(3,0),∴x=3 时,y=0,即
故选 B. 考点:1.二次函数图象与系数的关系;2.二次函数图象上点的坐标特征.
,故④正确.
12.(2015·贵州六盘水,第 10 题 3 分)如图 5,假设篱笆(虚线部分)的长度 16m,则所围成矩形 ABCD 的最大面积是( )
第 1 页 共 180 页
点的横坐标和纵坐标都大于 0 列出不等式组. 解答: 解:由 y=(x﹣m)2+(m+1)=x2﹣2mx+(m2+m+1),
根据题意,
,
解不等式(1),得 m>0,
解不等式(2),得 m>﹣1;
【中考专题】二次函数背景下的45°处理策略
45°角的处理策略
随着中考命题的不断创新,对于既能考查学生分析问题能力,又能考查学生思维创新素养的题目,越发受命题者的青睐,比如角的存在性问题,看似知识单一,知识的关联度较小,但若能结合条件和图形特征,合理添加辅助线,便能快速获得解决问题的途径.
原题呈现
反思:这种解法给我们的启示是解题时要“大胆猜想、小心求证”猜想是一种很重要的数学感性认识,是几何学习必备的数学素养,本题大胆猜想∠DCB=90°,再小心的验算.其中也渗透了数形结合的数学思想.。
2015年中考二次函数中含45度角题组专题
二次函数中含45度角题型1. 如图,抛物线24y ax bx a=+-经过(10)A-,、(04)C,两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)已知点(1)D m m+,在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;(3)在(2)的条件下,连接BD,点P为抛物线上一点,且45DBP∠=°,求点P的坐标.2. 如图,在直角坐标系xOy中,二次函数2253y x b x=-++的图像与x轴、y轴的公共点分别为A(5,0)、B,点C在这个二次函数的图像上,且横坐标为3.(1)求这个二次函数的解析式;(2)求∠BAC的正切值;(3)如果点D在这个二次函数的图像上,且∠DAC = 45°,求点D的坐标.ACDO xy(第24题图)B3.如图10,已知抛物线 c bx x y ++-=2过点A (2,0),对称轴为y 轴,顶点为P . (1) 求该抛物线的表达式,写出其顶点P 的坐标,并画出其大致图像;(2) 把该抛物线先向右平移m 个单位,再向下平移m 个单位(m > 0 ),记新抛物线的顶点为B ,与y 轴的交点为C .① 试用m 的代数式表示点B 、点C 的坐标; ② 若∠OBC =45°,试求m 的值.4.(本题满分12分,其中第(1)小题3分,第(2)小题9分)如图,抛物线22y ax ax b =-+经过点30,2C ⎛⎫- ⎪⎝⎭,且与x 轴交于点A 、点B ,若23tan ACO ∠=.(1)求此抛物线的解析式;(2)若抛物线的顶点为M ,点P 是线段OB 上一动点(不与点B 重合),45MPQ ∠=,射线PQ 与线段BM 交于点Q ,当△MPQ 为等腰三角形时,求点P 的坐标.( 图10 )24.如图,已知在平面直角坐标系xOy 中,抛物线c bx x y ++=241与x 轴交于点A 、B (点A 在点B 右侧),与y 轴交于点C (0,-3),且OA =2OC . (1)求这条抛物线的表达式及顶点M 的坐标; (2)求MAC ∠tan 的值;(3)如果点D 在这条抛物线的对称轴上, 且∠CAD =45º, 求点D 的坐标.24. 已知抛物线422--=ax ax y 与x 轴交于点A 、B (点A 在点B 的左侧),与y 轴交于点C ,△ABC 的面积为12.(1)求抛物线的对称轴及表达式;(2)若点P 在x 轴上方的抛物线上,且tan ∠PAB =21,求点P 的坐标; (3)在(2)的条件下,过C 作射线交线段AP 于点E ,使得tan ∠BCE =21,联结BE ,试问BE 与BC 是否垂直?请通过计算说明。
专题10二次函数—10.13.1二次函数综合之角度相等、45°角、二倍角鲁教版(五四制)九年级数学
二次函数角度问题 (角相等,45°角,二倍角)【经典例题1——角度相等】通过平行线,等腰等角,相似求解抛物线y =ax 2+c 与x 轴交于A 、B 两点,顶点为C ,点P 为抛物线上,且位于x 轴下方.(1)如图1,若P (1,-3)、B (4,0), ① 求该抛物线的解析式;② 若D 是抛物线上一点,满足∠DPO =∠POB ,求点D 的坐标;【解析】(1)①将P(1,−3),B(4,0)代入y=ax 2+c ,得⎩⎨⎧-=+=+3016c a c a ,解得⎪⎪⎩⎪⎪⎨⎧-==51651c a ,∴抛物线的解析式为y=51x 2−516;②如图1,当点D 在OP 左侧时,由∠DPO=∠POB ,得DP ∥OB , ∴D 与P 关于y 轴对称,且P(1,−3), ∴D(−1,−3);当点D 在OP 右侧时,延长PD 交x 轴于点G. 作PH ⊥OB 于点H ,则OH=1,PH=3. ∵∠DPO=∠POB , ∴PG=OG.设OG=x ,则PG=x ,HG=x −1.在Rt △PGH 中,由x 2=(x −1)2+32,得x =5. ∴点G(5,0).∴直线PG 的解析式为y=43x −415,解方程组⎪⎪⎩⎪⎪⎨⎧-=-=51651415432xyxy得⎩⎨⎧-==31yx或⎪⎪⎩⎪⎪⎨⎧-==1627411yx.∵P(1,−3),∴D(411,−1627).∴点D的坐标为(−1,−3)或(411,−1627).【经典例题变式】如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(1,0)、B(4,0)两点,与y轴交于C(0,2),连接AC、BC.(1)求抛物线解析式;(2)BC的垂直平分线交抛物线于D. E两点,求直线DE的解析式;(3)若点P在抛物线的对称轴上,且∠CPB=∠CAB,求出所有满足条件的P点坐标。
【解析】(1)由题意,得:⎪⎩⎪⎨⎧==++=++2416ccbacba解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==22521cba.故这个抛物线的解析式为y=21x2-25x+2.(2)解法一:如图1,设BC的垂直平分线DE交BC于M,交x轴于N,连接CN,过点M 作MF⊥x轴于F.∴△BMF∽△BCO,∴21===BCBMBOBFCOMF.∵B(4,0),C(0,2),∴CO=2,BO=4,∴MF=1,BF=2, ∴M (2,1)…(5分) ∵MN 是BC 的垂直平分线, ∴CN=BN ,设ON=x ,则CN=BN=4-x , 在Rt △OCN 中,CN 2=OC 2+ON 2, ∴(4-x )2=22+x 2,解得:x =23,∴N (23,0).设直线DE 的解析式为y=kx +b ,依题意,得:⎪⎩⎪⎨⎧=+=+02312b k b k ,解得:⎩⎨⎧-==32b k .∴直线DE 的解析式为y=2x -3. 解法二:如图2,设BC 的垂直平分线DE 交BC 于M ,交x 轴于N ,连接CN ,过点C 作CF ∥x 轴交DE 于F . ∵MN 是BC 的垂直平分线, ∴CN=BN ,CM=BM . 设ON=x ,则CN=BN=4-x , 在Rt △OCN 中,CN 2=OC 2+ON 2, ∴(4-x )2=22+x 2,解得:x =23,∴N (23,0). ∴BN=4-23=25.∵CF ∥x 轴,∴∠CFM=∠BNM . ∵∠CMF=∠BMN ,∴△CMF ≌△BMN .∴CF=BN .∴F (25,2).设直线DE 的解析式为y=kx +b ,得:⎪⎩⎪⎨⎧=+=+02312b k b k ,解得:⎩⎨⎧-==32b k∴直线DE 的解析式为y=2x -3.(3)由(1)得抛物线解析式为y=21x 2-25x +2,∴它的对称轴为直线x =25.①如图3,设直线DE 交抛物线对称轴于点G ,则点G (25,2), 以G 为圆心,GA 长为半径画圆交对称轴于点P 1,则∠CP 1B=∠CAB . GA=25,∴点P 1的坐标为(25,-21).②如图4,由(2)得:BN=25,∴BN=BG ,∴G 、N 关于直线BC 对称.∴以N 为圆心,NB 长为半径的 N 与 G 关于直线BC 对称. N 交抛物线对称轴于点P 2,则∠CP 2B=∠CAB .设对称轴与x 轴交于点H ,则NH=25-23=1.∴HP 2=221,∴点P 2的坐标为(25,221).综上所述,当P 点的坐标为(25,-21)或(25,221)时,∠CPB=∠CAB . 【经典例题变式】如图①,抛物线y=−x 2+(a +1)x −a 与x 轴交于A ,B 两点(点A 位于点B 的左侧),与y 轴交于点C. 已知△ABC 的面积是6. (1)求a 的值;(2)在△ABC 内是否存在一点M ,使得点M 到点A. 点B 和点C 的距离相等,若存在,请求出点M 的坐标;若不存在,请说明理由;(3)如图②,P 是抛物线上一点,Q 为射线CA 上一点,且P 、Q 两点均在第三象限内,Q 、A 是位于直线BP 同侧的不同两点,若点P 到x 轴的距离为d ,△QPB 的面积为2d ,且∠PAQ=∠AQB ,求点Q 的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数中含45度角题型
1. 如图,抛物线2
4y ax bx a =+-经过(10)A -,、(04)C ,两点,与x 轴交于另一点B . (1)求抛物线的解析式;
(2)已知点(1)D m m +,在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标; (3)在(2)的条件下,连接BD ,点P 为抛物线上一点,且45DBP ∠=°, 求点P 的坐标.
2. 如图,在直角坐标系xOy 中,二次函数22
53
y x b x =-++的图像与x 轴、y 轴的公共点分
别为A (5,0)、B ,点C 在这个二次函数的图像上,且横坐标为3.
(1)求这个二次函数的解析式;
(2)求∠BAC 的正切值;
(3)如果点D 在这个二次函数的图像上,
且∠DAC = 45°,求点D 的坐标.
A C
D
O
x
y (第24题图)
B
3.如图10,已知抛物线 c bx x y ++-=2过点A (2,0),对称轴为y 轴,顶点为P . (1) 求该抛物线的表达式,写出其顶点P 的坐标,并画出其大致图像;
(2) 把该抛物线先向右平移m 个单位,再向下平移m 个单位(m > 0 ),记新抛物线的顶点为B ,与y 轴的交点为C .
① 试用m 的代数式表示点B 、点C 的坐标; ② 若∠OBC =45°,试求m 的值.
4.(本题满分12分,其中第(1)小题3分,第(2)小题9分)
如图,抛物线22y ax ax b =-+经过点30,2C ⎛
⎫- ⎪⎝
⎭,且与x 轴交于点A 、点B ,若
2
3
tan ACO ∠=.
(1)求此抛物线的解析式;
(2)若抛物线的顶点为M ,点P 是线段OB 上一动点(不与点B 重合),45MPQ ∠=,射线PQ 与线段BM 交于点Q ,当△MPQ 为等腰三角形时,求点P 的坐标.
( 图10 )
24.如图,已知在平面直角坐标系xOy 中,抛物线c bx x y ++=
2
4
1与x 轴交于点A 、B (点A 在点B 右侧),与y 轴交于点C (0,-3),且OA =2OC . (1)求这条抛物线的表达式及顶点M 的坐标; (2)求MAC ∠tan 的值;
(3)如果点D 在这条抛物线的对称轴上, 且∠CAD =45º, 求点D 的坐标.
24. 已知抛物线422
--=ax ax y 与x 轴交于点A 、B (点A 在点B 的左侧),与y 轴交于点C ,△ABC 的面积为12.
(1)求抛物线的对称轴及表达式;
(2)若点P 在x 轴上方的抛物线上,且tan ∠PAB =
2
1
,求点P 的坐标; (3)在(2)的条件下,过C 作射线交线段AP 于点E ,使得tan ∠BCE =2
1
,联结BE ,试问BE 与BC 是否垂直?请通过计算说明。
x
y
O
(第24题图)。