三角形的证明
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的证明
一、全等三角形的性质与判定
1.判定和性质
一般三角形直角三角形
判定
边角边(SAS)、角边角(ASA)
角角边(AAS)、边边边(SSS)具备一般三角形的判定方法
斜边和一条直角边对应相等(HL)
性质
对应边相等,对应角相等
对应中线相等,对应高相等,对应角平分线相等
【典型例题1】
1.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是()A.SSS B.ASA
C.AAS D.角平分线上的点到角两边距离相等
2.下列说法中,正确的是()
A.两腰对应相等的两个等腰三角形全等B.两角及其夹边对应相等的两个三角形全等
C.两锐角对应相等的两个直角三角形全等D.面积相等的两个三角形全等
3.如图,△ABC≌ΔADE,若∠B=80°,∠C=30°,∠DAC=35°,
则∠EAC的度数为()
A.40°B.35°C.30°D.25°
4.已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM. 【巩固练习1】
1.下列说法正确的是()
A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等
C.斜边相等的两个等腰直角三角形全等D.一边长相等的两等腰直角三角形全等2.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌
△EDB≌△EDC,则∠C的度数为()
A.15°B.20°C.25°D.30°
3.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是()
A.甲和乙B.乙和丙C.只有乙D.只有丙
4.如图4-9,已知ΔABC≌ΔA'B'C',AD、A'D'分别是ΔABC和ΔA'B'C'的角平分线.
(1)请证明AD=A'D';
(2)把上述结论用文字叙述出来;
(3)你还能得出其他类似的结论吗?
图4-9
5.如图4-10,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F为垂足.