离散系统的时域及变换域分析剖析

合集下载

第3章 离散信号的时域和Z域分析

第3章 离散信号的时域和Z域分析
f1 (n) f2 (n) f2 (n) f1 (n)
f1 (n) [ f2 (n) f3 (n)] f1 (n) f 2 (n) f1 (n) f3 (n)
f1 (n) f2 (n) f3 (n) f1 (n) f2 (n) f3 (n)
任意序列可以利用单位脉冲序列及带时移 单位脉冲序列的线性加权和表示,
如图所示离散序列可以表示为
f (n) 3 (n 1) (n) 2 (n 1) 2 (n 2)
性质:它也具有抽样性,即
f (n) (n) f (0) (n) f (n) (n m) f (m) (n m) f (n) (n m) f (m) (n m)
2. 单位阶跃序列u(n)
1 u ( n) 0
这个序列在
n0 n0
n 0 时取值为1,n 0 时取值为0, 因此
称为“单位阶跃序列”。单位阶跃序列如图3所示。
u (n )
1
… -5 -4 -3 -2 -1 0 1 2 3 4 5 6 n
图 3 u(n)序列
它很类似于连续时间信号与系统中的单位阶 跃函数u(t),它也具有截取特性,即可将一个双 边序列截成一个单边序列。
例 设序列
求y(n)= x(n)*z(n) 。
解:
对应点相乘! n<0时,x(m)与z(n-m) 没有重叠,得y(n)=0。 对应点相乘! 0≤n≤4时,
4<n≤6时,
6<n≤10时,
n>10时,x(m)与z(n-m)没有重叠,得y(n)= 0。
4)卷积的性质 (1)代数定律:交换律、分配律、结合律
m 0 N 1
4.实指数序列
实指数序列是指序列值随序号变化刚好按

离散系统的时域分析_OK

离散系统的时域分析_OK

pk[c cos k Dsin k] 或Apk cos(k )
其 中
Ae j
C
jD
Ar1k r1 k cos( k r1) Ar2k r2 k cos( k r2) ... A0 k cos( k 0)
8
2. 特解
激励 f (k)
特解 yp (k)
km
Pmk m Pm1k m1 ... P1k P0 k r Pmk m Pm1k m1 ... P1k P0
y
f
(1)
3y f
(0) 2 y f
(1)
f
(1)
1
14
系统的零状态响应是非齐次差分方程的全解,分别求出方程
的齐次解和特解,得
yf
(k)
C f1
(1)k
C f2
(2)k
yp (k)
C f1
(1)k
C f2
(2)k
1 3
(2)k
将初始值代入上式,得
y
f
(0)
C
f
1
C
f
2
1 3
1
yf
(1)
1C f
yx
(1)
y(1)
0,
yx
2
y
2
1 2
yx (0) 3 yx (1) 2 yx 2 1
yx 1 3yx 0 2 yx 1 3
2021/9/5
求得初始值
13
1 1, 1 2
yx
(k)
Cx1
(1)k
Cx2
(2)k
yx yx
(0) (1)
Cx1 Cx2 Cx1 2Cx2
差分方程与微分方程的求解方法在很大程度上是相互对 应的.

信号与系统 第8章 离散时间系统的时域与变换域分析

信号与系统 第8章 离散时间系统的时域与变换域分析
时不变离散系统是指在同样起始状态下,系统响应与激 励施加于系统的时刻无关。即:若激励信号x[n]产生的响 应为y[n],则激励信号x[n - m]产生的响应为y[n - m],即 发生同步延迟。
4
8.1.1 线性时不变离散时间系统
例8.1-1 设某离散系统激励x[n]与响应y[n]之间的关系为
y[n] = nx[n],判断该系统是否为线性时不变系统。
1 M2
1
M2
k M1
(x1[n
k]
x1[n
k ])
1
M2
1
M2
M1 M 2 1 kM1 x1[n k] M1 M 2 1 kM1 x2[n k]
y1[n] y2[n]
该系统满足叠加性,所以该系统是线性系统。
(3)假设输入信号为x[n]= x1[n-m],则输出信号为
y[n]
y[n] = x[n] + ay[n-1] = a n
此范围仅限于n ≥ 0,

y[n] = anu[n] 12
8.2 常系数线性差分方程的求解
N
M
ak y[n k] br x[n r]
k 0
r0
(8.2-2)
8.2.1 线性常系数差分方程的时域经典法求解
一般地,常系数线性差分方程的解由齐次解和特解组成。
的完全解。
其中激励信号为x[n] n2,且边界条件为 y[1] 1
解:(1)齐次解为 yh[n] C(2)n
(2)将 x[n] n代2 入差分方程的右端,得自由项为
2n 1
从而特解为 yp[n] D1n D2
其中,D1和D2为待定系数,代入原方程得
3D1n 3D2 2D1 2n 1

自动控制理论课件第七章离散系统的时域分析

自动控制理论课件第七章离散系统的时域分析
y(n) y(n 1) 0
已知起始状态y(1) 2,试求零输入响应。
解:在无外加输入时系统的零输入响应通常
是指n 0以后的响应起始状态是值y(1),
y(2), 各值。
y(n) y(n 1)
故有 y(n) y(1) y(2)
y(n 1) y(0) y(1)
y(n)是公比为的等比级数,故零输入响应有如下形式
是一阶非齐次差分方程。
梯形电阻网络,设各点 对地电压为 u(n), n 0,1,2,...为各节点
序号,为常数,则求其差分方程。
根据KCL, 有
u(n 1) u(n) u(n) u(n) u(n 1)
R
R
R
整理可得
u(n 1) u(n 1) (2a 1)u(n) 0
是关于节点电压的齐次差分方程。
u(n) (2a 1)u(n 1) u(n 2) 0
差分方程的阶数为未知 序列(响应序列)的最大序号与
最小序号之差。上式为 二阶差分方程。
对于一个线性是不变离散系统,若响应信号为y(n),
输入信号为f (n),则描述系统输入- 输出关系的
N阶差分方程为
y(n) a1y(n 1) a2 y(n 2) aN-1y(n N 1) aN y(n N )
an n 1 a 0
1 1 O 1
23
4n
5.正弦序列
xn sinnω0
余弦序列:xn cosn0
sinnω0
1
sin 0 t
O
1
5
10 n
1
0 : 正弦序列的频率, 序列值依次周期性重复的速率。

=2π 0 10
,
则序列每10个重复一次正弦包络的数值。

离散时间系统的时域分析

离散时间系统的时域分析

称为混叠。 常称作折叠频率。 2
信号频率
fa nfs fm
fa fs / 2
假频
Fδ(jω)
抽样频率
ω Ω-ωm ωm Ω
例如:当抽样率为5kHz对3kHz的余弦信号 抽样,然后用截止频率为2.5kHz的低通滤波 器进行滤波,输出的频谱只包含2kHz的频率, 这是原信号中所没有的。
对一个低通滤波器的冲激响应进行抽样,抽 样后低频通带将在整个频率轴上周期的重复出现, 这种现象称为“伪门”。在设计数字滤波器时要 适当选择抽样率,使得伪门在干扰频率之外。
H(jω)
ω 0 数字滤波器的伪门
例1:对于频率为150Hz的正弦时间序列,分别以4ms 和8ms采样结果会如何?
100HZ 25HZ
在实际工作中应用抽样定理时,还应考虑下 面两个实际问题:
1、在理论上讲,按照奈奎斯特抽样率抽样, 通过理想低通滤波器以后,就可以恢复原信 号。但理想低通滤波器在物理上是不可实现 的,实际滤波器都存在一个过渡带,为了保 证在滤波器过渡带的频率范围内信号的频谱 为零,必须选择高于2fm的抽样率。
u (n) 0, n 0
...
n -1 0 1 2 3
(n) u(n) u(n) u(n 1)
u(n) (n m) (n) (n 1) (n 2) m0
3.矩形序列 R N (n )
1, R N (n) 0,
0 n N 1 其他n
RN (n) u(n) u(n N )
第五章 离散时间系统 的时域分析
§5.1 离散信号与抽样定理
一、离散信号及其表示
1、离散时间信号是指只在一系列离散的时刻 tk (k = 0,1,2,…)时,信号才有确定值,在其它时 刻,未定义; 2、离散时间信号是离散时间变量 tk 的函数; 3、抽样间隔可以是均匀的,也可以非均匀。

离散时间系统的时域特性分析实验报告

离散时间系统的时域特性分析实验报告

信号、系统与信号处理实验报告实验一、离散时间系统的时域特性分析姓名:学号:班级:专业:一.实验目的线性时不变(LTI)离散时间系统在时域中可以通过常系数线性差分方程来描述,冲激响应列可以刻画时域特性。

本次实验通过使用MATLAB函数研究离散时间系统的时域特性,以加深对离散时间系统的差分方程、冲激响应和系统的线性和时不变性的理解。

二.基本原理一个离散时间系统是将输入序列变换成输出序列的一种运算。

离散时间系统中最重要、最常用的是“线性时不变系统”。

1.线性系统满足叠加原理的系统称为线性系统,即若某一输入是由N个信号的加权和组成的,则输出就是系统对这几个信号中每一个输入的响应的加权和。

即那么当且仅当系统同时满足和时,系统是线性的。

在证明一个系统是线性系统时,必须证明此系统同时满足可加性和比例性,而且信号以及任何比例系数都可以是复数。

2.时不变系统系统的运算关系在整个运算过程中不随时间(也即序列的先后)而变化,这种系统称为时不变系统(或称移不变系统)。

若输入的输出为,则将输入序列移动任意位后,其输出序列除了跟着位移外,数值应该保持不变,即则满足以上关系的系统称为时不变系统。

3.常系数线性差分方程线性时不变离散系统的输入、输出关系可用以下常系数线性差分方程描述:当输入为单位冲激序列时,输出即为系统的单位冲激响应。

当时,是有限长度的,称系统为有限长单位冲激响应(FIR)系统;反之,则称系统为无限长单位冲激响应(IIR)系统。

三.实验内容及实验结果1.实验内容考虑如下差分方程描述的两个离散时间系统:系统1:系统2:输入:(1)编程求上述两个系统的输出,并画出系统的输入与输出波形。

(2)编程求上述两个系统的冲激响应序列,并画出波形。

(3)若系统的初始状态为零,判断系统2是否为时不变的?是否为线性的?2.实验结果(1)编程求上述两个系统的输出和冲激响应序列,并画出系统的输入、输出与冲激响应波形。

clf;n=0:300;x=cos((20*pi*n)/256)+cos((200*pi*n)/256);num1=[0.5 0.27 0.77];den1=[1];num2=[0.45 0.5 0.45];den2=[1 -0.53 0.46];y1=filter(num1,den1,x);y2=filter(num2,den2,x);subplot(3,1,1);stem(n,x);xlabel('时间信号');ylabel('信号幅度');title('输入信号');subplot(3,1,2);stem(y1);xlabel('时间信号n');ylabel('信号幅度');title('输出信号');subplot(3,1,3);stem(y2);xlabel('时间序号n ');ylabel('信号幅度');title('冲激响应序列');(2)N=40;num1=[0.5 0.27 0.77];den1=[1];num2=[0.45 0.5 0.45];den2=[1 -0.53 0.46];y1=impz(num1,den1,N);y2=impz(num2,den2,N);subplot(2,1,1);stem(y1);xlabel('时间信号n ');ylabel('信号幅度');title('³冲激响应');subplot(2,1,2);stem(y2);xlabel('时间信号n ');ylabel('信号幅度');title('³冲激响应');1.应用叠加原理验证系统2是否为线性系统:clear allclcn = 0 : 1 : 299;x1 = cos(20 * pi * n / 256);x2 = cos(200 * pi * n / 256);x = x1 + x2;num = [0.45 0.5 0.45];den = [1 -0.53 0.46];y1 = filter(num, den, x1);y2 = filter(num, den, x2);y= filter(num, den, x);yt = y1 + y2;figuresubplot(2, 1, 1);stem(n, y, 'g');xlabel('时间信号n');ylabel('信号幅度');axis([0 100 -2 2]);grid;subplot(2, 1, 2);stem(n, yt, 'r');xlabel('时间信号n');ylabel('信号幅度');axis([0 100 -2 2]);grid;2.应用时延差值来判断系统2是否为时不变系统。

离散系统的时域分析法

离散系统的时域分析法

第五章离散系统的时域分析法目录5.1 引言5.2 离散时间信号5.3 离散系统的数学模型-差分方程 5.4 线性常系数差分方程的求解5.5 单位样值响应5.6 卷积和§5.1引言连续时间信号、连续时间系统连续时间信号:f(t)是连续变化的t的函数,除若干不连续点之外对于任意时间值都可以给出确定的函数值。

函数的波形都是具有平滑曲线的形状,一般也称模拟信号。

模拟信号抽样信号量化信号连续时间系统:系统的输入、输出都是连续的时间信号。

离散时间信号、离散时间系统离散时间信号:时间变量是离散的,函数只在某些规定的时刻有确定的值,在其他时间没有定义。

离散时间系统:系统的输入、输出都是离散的时间信号。

如数字计算机。

o k t ()k t f 2t 1−t 1t 3t 2−t 离散信号可以由模拟信号抽样而得,也可以由实际系统生成。

量化幅值量化——幅值只能分级变化。

采样过程就是对模拟信号的时间取离散的量化值过程——得到离散信号。

数字信号:离散信号在各离散点的幅值被量化的信号。

ot ()t f T T 2T 31.32.45.19.0o T T 2T 3()t f q t3421离散时间系统的优点•便于实现大规模集成,从而在重量和体积方面显示其优越性;•容易作到精度高,模拟元件精度低,而数字系统的精度取决于位数;•可靠性好;•存储器的合理运用使系统具有灵活的功能;•易消除噪声干扰;•数字系统容易利用可编程技术,借助于软件控制,大大改善了系统的灵活性和通用性;•易处理速率很低的信号。

离散时间系统的困难和缺点高速时实现困难,设备复杂,成本高,通信系统由模拟转化为数字要牺牲带宽。

应用前景由于数字系统的优点,使许多模拟系统逐步被淘汰,被数字(更多是模/数混合)系统所代替;人们提出了“数字地球”、“数字化世界”、“数字化生存”等概念,数字化技术逐步渗透到人类工作与生活的每个角落。

数字信号处理技术正在使人类生产和生活质量提高到前所未有的新境界。

6.离散时间信号与系统的时域分析

6.离散时间信号与系统的时域分析

0, n 1 1 z ( n) x ( n) y ( n) , n 1 2 1 n 1 ( 2 )( n 1)( 2 ) , n 0
6 线性时不变离散系统的时域分析
5. 累加 设某一序列为x(n),则x(n)的累加序列 y(n)定义为
y ( n)
k
x(k ) x(n) * u(n)
n
根据上述性质可以推得以下结论:
f (n n1 ) * (n n2 ) f (n n1 n2 )
6 线性时不变离散系统的时域分析
例 已知 x1 (n) (n) 3 (n 1) 2 (n 2) x2 (n) u(n) u(n 3) 试求信号 x (n) ,它满足 x(n) x1 (n) x2 (n) 解:可利用上面讲述的性质求解。
1 1/ 2 1/4 -2 -1 0 1 1/8 ... 2
n
x(-n) 1 1/2 1/8 1/4 ... -2 -1 0
1
2
n
6 线性时不变离散系统的时域分析
3.序列的加减 两序列的加、减是指同序号(n)的序列值逐项对 应相加得一新序列。
6 线性时不变离散系统的时域分析
例:
x(n) 1 1/2 1/4 -2 -1 0 y(n) 2 1 1/4 1/2 1 2 n …
6 线性时不变离散系统的时域分析
2.单位阶跃序列
u(n)
1, u ( n) 0,
n0 n0
u(n)
...
-1 0 1 2 3 n
(n) u (n) u (n) u (n 1)
m 0
u (n) (n m) (n) (n 1) (n 2)

离散时间系统的时域分析

离散时间系统的时域分析

第七章离散时间系统的时域分析§7-1 概述一、离散时间信号与离散时间系统离散时间信号:只在某些离散的时间点上有值的信号。

离散时间系统:处理离散时间信号的系统。

混合时间系统:既处理离散时间信号,又处理连续时间信号的系统。

二、连续信号与离散信号连续信号可以转换成离散信号,从而可以用离散时间系统(或数字信号处理系统)进行处理:三、离散信号的表示方法:1、 时间函数:f(k)<——f(kT),其中k 为序号,相当于时间。

例如:)1.0sin()(k k f =2、 (有序)数列:将离散信号的数值按顺序排列起来。

例如:f(k)={1,0.5,0.25,0.125,……,}时间函数可以表达任意长(可能是无限长)的离散信号,可以表达单边或双边信号,但是在很多情况下难于得到;数列的方法表示比较简单,直观,但是只能表示有始、有限长度的信号。

四、典型的离散时间信号1、 单位样值函数:⎩⎨⎧==其它001)(k k δ 下图表示了)(n k −δ的波形。

这个函数与连续时间信号中的冲激函数)(t δ相似,也有着与其相似的性质。

例如:)()0()()(k f k k f δδ=,)()()()(000k k k f k k k f −=−δδ。

2、 单位阶跃函数:⎩⎨⎧≥=其它001)(k k ε这个函数与连续时间信号中的阶跃函数)(t ε相似。

用它可以产生(或表示)单边信号(这里称为单边序列)。

3、 单边指数序列:)(k a k ε比较:单边连续指数信号:)()()(t e t e t a at εε=,其底一定大于零,不会出现负数。

(a) 0.9a = (d) 0.9a =−(b) 1a = (e) 1a =−(c) 1.1a = (f) 1.1a =−4、 单边正弦序列:)()cos(0k k A εφω+双边正弦序列:)cos(0φω+k A五、离散信号的运算1、 加法:)()()(21k f k f k f +=<—相同的k 对应的数相加。

离散时间系统的时域分析

离散时间系统的时域分析

§7.1 引言
离散时间信号通过将连续时间信号进行取样得到
f t 4.2
3.1
采样(sampling)过程就是对模拟信号的 时间取离散的量化值过程——得到离 散信号。
1.5 0.9 2T 3T
o
3
f q t
T
4
t
幅值量化——幅值只能分级变化。
2 1
o
T
2T
3T
t
§7.1 引言
• 经过量化的离散时间信号称 为数字信号(digital signal)
经典法:齐次解 特解 时域分析 零输入响应 零状态响应 变换域分析: 拉氏变换法
离散时间系统——差分方程描述 差分方程的解法与微分方程类似
经典法:齐次解 特解 时域分析 零输入响应 零状态响应 变换域分析: z变换法
§7.2 取样信号与取样定理
• 取样定理(抽样定理)
• 通常将这种方程形式称为前向预测差分方程 (forward difference equation)
§7.3 离散时间系统的描述和模拟
• 差分方程与微分方程相比 在取样间隔Ts足够小时
dy( t ) y[( k 1)Ts ] y( kTs ) 微分方程 dt Ts 也可写做 dy( t ) y( kTs ) y[( k 1)Ts ] dt Ts
x n
3 4 5
1 2
9 10 11 6 7 8
22
n
一个周期
§7.1 引言
信号xn sin0.4n是否为周期信号?
0 0.4

0
5π是无理数 所以为非周期的序列
§7.1 引言
• 离散信号 sin n0与连续信号 sin 0 t 的关系 2 对连续信号 f t sin2πf 0 t sinΩ0 t Ω0 T 离散点(时刻)nT’上的正弦值

离散信号与系统的变换域分析

离散信号与系统的变换域分析

() arctg a sin
1 a cos
1. 幅频曲线为偶对称,相频曲线为奇 对称,一般均为连续函数;
2. 不同于连续系统,曲线是周期
函数,周期为 2 ;
3. 离散系统也有高通、低通之分。
1 1 a
1 1 a
2 0
H (e j )
() arctan1 a 1 a2
2
0
0 a 1 低通 1 a 0 高通
(零状态条件下)
二阶后向差分方程的离散 系统函数求法与此类似
总结如下:
第六章 离散信号与系统的变换域分析
离散信号与系统的变换域分析概述 6.1 Z 变换 6.2 Z 变换的性质 6.3 Z 反变换 6.4 离散系统的 Z 域分析 6.5 离散系统函数与系统特性 6.6 离散系统的模拟 6.7 离散时间傅里叶变换与离散系统的频率
条件:f (k) 的终值存在意味着
F (z) 除了在 z=1 处允许有一个 一阶极点外,其余极点必须在单 位圆内部。
S 平面与 Z 平面的映射关系
例5 2 9 某序列的 Z变换为F (z) z ,试求f (k ) za
的终值f ()。
Z 变换性质综合应用的例题:
例 求图示有限长序列的Z变换。
响应特性
6.5 离散系统函数与系统特性
zr 称为系统函数的零点,pi 称为系统函数的极点,
• 可以画出H(z)的零、极点图,画法和连续系统类似。
例:系统函数为
H(z)
z2(z
(z 1)( z 1) 2 j)( z 2
j)
则其零、极点图如右图所示。
j Imz 1 Rez
• 一阶极点的位 置与自然响应 模式的关系:
离散信号与系统的变换域分析概述 6.1 Z 变换 6.2 Z 变换的性质 6.3 Z 反变换 6.4 离散系统的 Z 域分析 6.5 离散系统函数与系统特性 6.6 离散系统的模拟 6.7 离散时间傅里叶变换与离散系统的频率

信号与系统PPT 第六章 离散时域分析

信号与系统PPT  第六章 离散时域分析

例:求z(n)=x(n)·y(n)
解:
z(0)=x(0)·y(0) z(1)=x(1)·y(1) z(2)=x(2)·y(2)

例:当 m =3时
例:
5、序列的差分运算:一个序列与一个移位序列之差。
一阶前向差分: x[n] x[n 1] x[n] 一阶后向差分: x[n] x[n] x[n 1]
[n]
1
0
t
t
u(t) ( )d ------ 积分关系
u[n]
1
...
-2 -1 0 1 2 3 n
-2 -1 0 1 2 3 n
[n] u[n]u[n 1] ------ 差分关系
u[n] [n][n 1][n 2] [n m] ------ 求和关系 m0
(3)矩形序列
x(m)和h(m)如图所示
x(m) 3/2
1 1/2
0123
m
h(m) 1
01 2
m
h(0-m) 1 n=0反褶
-2 -1 0
m
h(-1-m) 1 n=-1左移
-3 -2 -1 0
m
反褶 .以m=0为对称轴, 折叠h(m) 得到h(0-m)
可见, 当n<1时,x(m)与 h(n-m)无交叠,相乘处 处为 零,即y(n)=0,n<1
若有两个序列 x1n和x2 n,定义和式
x1k x2n k
k
为x1n和x2 n的卷积和,记作1n x2 n
(2)计算方法: 离散线性卷积的计算:图解法、解析法,对位相乘法
•图解法
卷积和的图解过程:换元 反褶 平移 相乘 取和
h[-m]、 h[n-m]、x[m] h[n-m]、 x[m]h[n m] m

离散信号与系统的时域和频域分析

离散信号与系统的时域和频域分析
h(0) h(1) ... h(n 1) 0 h(n) 1
h(k n) an1h(k n 1) an2h(k n 2) ... a0h(k ) 0 K>0时, n 齐次差分方程解: k
h(k ) [ ci ( ) ] (k )
离散信号与系统分析
开始
下一页
结束
本章说明

与连续信号与系统相比较,离散系统的数学描述是激励响应的差分方 程,其系统分析求响应实质是求解描述离散系统的差分方程。离散系 统的零状态响应可以用卷积和来求取。 时域分析: 1.掌握离散信号与系统的基本概念。 2.熟悉并掌握常用基本信号的描述、特性、运算与变换。 3.深刻理解采样定理的意义、内容及应用。 4.掌握离散系统的数学描述方法—差分方程及模拟图 5.掌握离散系统的时域分析—经典法求零输入响应、零状态响应。 6.熟悉卷积和法及其主要性质并会应用卷积和法求零状态响应。
4、图解法卷积
①变量代换 f1(n) 变成f1(k) f2(n) 变成f2( ②反折其中之一信号 ③将反折信号移位 m f2(-k) f2(m-k) 以k代n
④e将平移后的f2(m-k)与对应的f1(k)相乘 ⑤将各乘积值相加可画出全部y(m) ⑥重复步骤③到⑤可画出全部y(n) 5、系统零状态响应为
5、序列的运算



④差分:离散信号的差分运算 f (k ) f (k 1) f (k ) 前向差分: f (k ) f (k ) f (k 1) 后向差分: ⑤反折:将离散信号以纵轴为对称轴反折(转) ⑥压扩:将离散信号中f(k)的自变量k置换为ak得到的过程称为信号的尺 度变换 注意:不存在非整数ak的值! ⑦求和:离散信号的求和运算是对某一离散信号进行历史推演的求和过程。

离散系统时域分析_OK

离散系统时域分析_OK

例:设 y(k)+3y(k-1)+2y(k-2)=2k (k),y(0)=0, y(1)=2,求y(k)。
f(k)=ak(k)
|a| >
1
f(k)=ak(k)
|a| <
11
1
-2 -1 0 1 2 3
k
-2 -1 0 1 2 3
k
3
发散
收敛
5.正弦序列
f (k) Acos(kω0 )
0序列依次重复出现的频率。
2
ω 0
为有理数,正弦序列为周期序列。
f (k N ) A cosω[ 0(k N ) ] A cosω[ 0k ω0 N ]
any(k)+an-1y(k-1)+…+a1y(k-n+1)+a0y(k-n)=0(后向)
any(k+n)+an-1y(k+n-1)+…+a1y(k+1)+a0y(k)=0(前向)
对应的特征方程为:ann+an-1n-1+ + …+a1 + a0=0
1.特征根均为单根: 则齐次通解为:
1≠2≠…≠n
10
§5–2 离散时间系统的数学模型
一、线性时不变离散时间系统
1.离散系统:激励和响应都是离散信号的系统
f(k)
y(k)
离散时间系统
2.分类:亦可分为线性与非线性;时不变与时变;因果与非 因果等。
时不变: f(k) → y(k) f(k-m) → y(k-m)
因果系统:响应总是出现在激励之后。即: 当k < k0 ,f(k)
(2) 初始条件y(0), y(1),…, y(n-1)(与外施激励有关)代入完全解,可确 定待定常数Ci 。

888第二章离散时间信号与系统的变换域分析

888第二章离散时间信号与系统的变换域分析

第二章离散时间信号与系统的变换域分析 2.1 序列的Z变换 Z变换的定义 Z变换的收敛域逆Z 变换 Z变换的性质与定理 Z变换与拉氏变换的关系 Z变换的定义抽样信号进行拉氏变换得: Z变换的定义 Z变换的定义例1:求序列 x (n)= an u(n) 的Z变换。

解:为保证收敛,则若 a = 1, 则 Z变换的定义例2:求序列x(n)= -an u(-n-1)的Z变换。

解: Z变换的定义例3:求序列 x (n)= (1/3)|n| 的Z变换。

解: Z变换的收敛域 Z 变换的收敛域对于任意给定的序列x(n) ,使其Z变换收敛的所有z值的集合称为X(z)的收敛域。

其收敛的充要条件是满足绝对可和条件,即:根据级数收敛的阿贝尔定理 Z变换的收敛域 1.有限长序列 x(n)仅在有限长的时间间隔n1≤n ≤ n2内,序列值不全为零,其它时间全为零,即 Z变换的收敛域2.右边序列 x(n)在n ≥n1时,序列值不全为零,在n n1时序列值全为零,此时有收敛域为如为因果序列,其收敛域为 Z变换的收敛域 3.左边序列 x(n)在n n2以外序列值全为零,仅在n ≤ n2时有非零值,其z变换为Z变换的收敛域 4.双边序列双边序列的序列值n可取任何整数值,其z变换为 Z变换的收敛域如果序列Z变换可表达成有理分式的形式:称分子多项式的零点为X(z)的零点,分母多项式的零点为X(z)的极点,因为极点z变换不存在,因此在收敛域内应没有极点,故可通过取X(z)的极点为边界来确定其收敛半径。

Z变换的收敛域例求单位阶跃序列 u(n) 的z变换,并确定其收敛域。

解:由于u(n)为因果序列,其Z变换收敛域为,因函数在z=1处有一极点,极点应在收敛域外,因此可取,求得u(n)的z变换收敛域为。

Z变换的收敛域例求序列逆Z变换逆Z变换从给定的Z变换表达式(包括收敛域)求原序列的过程称为逆z变换。

其实质是求X(z)的幂级数展开式各项的系数。

信号与系统第五章 离散信号与系统的时域分析

信号与系统第五章 离散信号与系统的时域分析

f1(k) f (n)
6
n
3 2
1
1 1 2 3 k
3
1
1 1 2 3 4 k
《信号与系统》SIGNALS AND SYSTEMS
返回
ZB
5.1.3 常用的离散信号
(k)
1. 单位函数 (k)
(k)
1 0
k0 k0
1
1 1 2 3 k
(k n)
(k
n)
1 0
k n kn
1
1 0 1 2 n k
整理,得 y(k 2) 3y(k 1)+2y(k)=0
《信号与系统》SIGNALS AND SYSTEMS ZB
例:每月存入银行 A 元,设月息为 ,试确定第 k 次存
款后应有的存款额 y(k) 的方程。
解:第 k+1 次存入后应有的存款额为
A y(k) y(k)
即 y(k 1) y(k) y(k) A
(1) 筛选特性 f (k) (k n) f (n)
k
(2) 加权特性 f (k) (k n) f (n) (k n)
应用此性质,可以把任意离散信号 f (k) 表示为一系 列延时单位函数的加权和,即
f (k) f (2) (k 2) f (1) (k 1)
返回《信号f与(0)系 (统k) 》fS(1IG) N(kAL1)SANDSnYSTfE(Mn)S
一阶后向差分
f (k) f (k) f (k 1)
二阶后向差分
f (k) 2 f (k) f (k) f (k 1)
《信号与系统》SIGf (Nk)AL2SfA(kND1)SYfS(TkEM2)S
返回
ZB
6. 序列的求和(累加) (对应于连续信号的积分)

离散信号与系统的时域分析实验报告

离散信号与系统的时域分析实验报告

离散信号与系统的时域分析实验报告1. 引言离散信号与系统是数字信号处理中的重要基础知识,它涉及信号的采样、量化和表示,以及离散系统的描述和分析。

本实验通过对离散信号在时域下的分析,旨在加深对离散信号与系统的理解。

在实验中,我们将学习如何采样和显示离散信号,并通过时域分析方法分析信号的特性。

2. 实验步骤2.1 信号的采样与显示首先,我们需要准备一个模拟信号源,例如函数发生器,来产生一个连续时间域的模拟信号。

通过设置函数发生器的频率和振幅,我们可以产生不同的信号。

接下来,我们需要使用一个采样器来对模拟信号进行采样,将其转化为离散时间域的信号。

使用合适的采样率,我们可以准确地获取模拟信号的离散样本。

最后,我们将采样后的信号通过合适的显示设备进行显示,以便观察和分析。

2.2 信号的观察与分析在实验中,我们可以选择不同类型的模拟信号,例如正弦波、方波或脉冲信号。

通过观察采样后的离散信号,我们可以观察到信号的周期性、频率、振幅等特性。

通过对不同频率和振幅的信号进行采样,我们可以进一步研究信号与采样率之间的关系,例如采样定理等。

2.3 信号的变换与滤波在实验中,我们可以尝试对采样后的离散信号进行变换和滤波。

例如,在频域下对信号进行离散傅里叶变换(DFT),我们可以将时域信号转换为频域信号,以便观察信号的频谱特性。

通过对频谱进行分析,我们可以观察到信号的频率成分和能量分布情况。

此外,我们还可以尝试使用不同的数字滤波器对离散信号进行滤波,以提取感兴趣的频率成分或去除噪声等。

3. 实验结果与分析通过实验,我们可以得到许多有关离散信号与系统的有趣结果。

例如,在观察信号的采样过程中,我们可以发现信号频率大于采样率的一半时,会发生混叠现象,即信号的频谱会发生重叠,导致采样后的信号失真。

而当信号频率小于采样率的一半时,可以还原原始信号。

此外,我们还可以观察到在频域下,正弦波信号为离散频谱,而方波信号则有更多的频率成分。

4. 结论通过本实验,我们对离散信号与系统的时域分析有了更深入的理解。

第2章 离散时间信号与系统的变换域分析

第2章  离散时间信号与系统的变换域分析
i 1
bi z i
M
因此,X(z)可以展成以下部分分式形式
r Ak Ck n X ( z ) Bn z 1 1 zk z (1 zi z 1 ) k n 0 k 1 k 1 M N N r
其中,M≥N时,才存在Bn;Zk为X(z)的各单极点, Zi为X(z)的一个r阶极点。而系数Ak,Ck 分别为: A Re s[ X ( z ) ] z z zk k 1 d r k r x( z ) Ck r k [( z zi ) (r k )! dz z zz ,
X ( z)
0

n
0
n2 n
n
x ( n) z
n
n2
n
x ( n) z
x ( n) z
n 1
n2
n
14
第二项为有限长序列,其收敛域 0 z ; 第一项为z的正幂次级数,根据阿贝尔定理, 其收敛域为 0 z Rx ; R x 为最大收敛半径 .
i
k 1, 2r 29
分别求出各部分分式的z反变换(可查 P39 表2-1-1),然后相加即得X(z)的z反变换。
[例2-5]利用部分分式法,求X ( z) 1 (1 2 z 1 ) (1 0.5z 1 ) , z 2 的z反变换。 解:
1 z X ( z) 1 1 (1 2 z )(1 0.5 z ) ( z 2)( z 0.5) X ( z) z A1 A2 z ( z 2)( z 0.5) z 2 z 0.5
对采样信号 进行拉普拉斯变换
x a (t )

n
x (nT ) (t nT )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验1 离散系统的时域及变换域分析一、实验目的:1.加深对离散系统的差分方程、单位抽样响应和卷积分析方法的理解。

2.加深对离散系统的频率响应分析和零、极点分布的概念理解。

二、实验原理: 1.时域 离散系统其输入、输出关系可用以下差分方程描述:∑∑==-=-Mm m Nk nm n x b k n y a)()(输入信号分解为冲激信号,∑∞-∞=-=m m n m x n x )()()(δ系统单位抽样序列h (n ),则系统响应为如下的卷积计算式:∑∞-∞=-=*=m m n h m x n h n x n y )()()()()(当00≠a N k a k ,...2,1,0==时,h(n)是有限长度的(n :[0,M]),称系统为FIR系统;反之,称系统为IIR 系统。

在MATLAB 中,可以用函数y=filter(b,a,x)实现差分方程的仿真,也可以用函数 y=conv(x,h)计算卷积。

2.变换域离散系统的时域方程为∑∑==-=-Mm m Nk nm n x b k n y a)()(其变换域分析方法如下:X(z)H(z)Y(z) )()()()()(=⇔-=*=∑∞-∞=m m n h m x n h n x n y 系统函数为 N N MM z a z a a z b z b b z X z Y z H ----++++++==......)()()(110110分解因式∏∏∑∑=-=-=-=---==Nk kMm m Nk kk Mm mm z dz c Kza zb z H 1111)1()1()( ,其中 m c 和 k d 称为零、极点。

在MATLAB 中,可以用函数[z ,p ,K]=tf2zp (num ,den )求得有理分式形式的系统函数的零、极点,用函数zplane (z ,p )绘出零、极点分布图;也可以用函数zplane (num ,den )直接绘出有理分式形式的系统函数的零、极点分布图。

使用h=freqz(num,den,w)函数可求系统的频率响应,w 是频率的计算点,如w=0:pi/255:pi, h 是复数,abs(h)为幅度响应,angle(h)为相位响应。

另外,在MATLAB 中,可以用函数 [r ,p ,k]=residuez (num ,den )完成部分分式展开计算;可以用函数sos=zp2sos (z ,p ,K )完成将高阶系统分解为2阶系统的串联。

三 、实验内容 1.时域(1.)编制程序求解下列系统的单位抽样响应,并绘出其图形。

)1()()2(125.0)1(75.0)(--=-+-+n x n x n y n y n y解 用MATLAB 计算程序如下: N=15; n=0:N-1; b=[1,-1];a=[1,0.75,0.125]; x=[n==0];y=filter(b,a,x); subplot(3,2,1); stem(n,y,'.'); axis([0,N,-1,2]); ylabel('y(n)');(2.)给定因果稳定线性时不变系统的差分方程∑∑==-=-Mm m Nk nm n x b k n y a)()(对下列输入序列()x n ,求输出序列()y n 。

30()()x n R n =解:MATLAB 计算程序如下:N=80; n=0:N-1; b=1;a=[1,-1,0.9];x=[(n>0&(n<30))]; y=filter(b,a,x); subplot(3,2,3); stem(n,y,'.'); axis([0,N,-1,2]); ylabel('y(n)');例1 求下列直接型系统函数的零、极点,并将它转换成二阶节形式num=[1 -0.1 -0.3 -0.3 -0.2];den=[1 0.1 0.2 0.2 0.5];[z,p,k]=tf2zp(num,den);disp('零点');disp(z);disp('极点');disp(p);disp('增益系数');disp(k);sos=zp2sos(z,p,k);disp('二阶节');disp(real(sos));zplane(num,den)输入到“num”和“den”的分别为分子和分母多项式的系数。

计算求得零、极点增益系数和二阶节的系数:零点0.9615-0.5730-0.1443 + 0.5850i-0.1443 - 0.5850i极点0.5276 + 0.6997i 0.5276 - 0.6997i -0.5776 + 0.5635i -0.5776 - 0.5635i 增益系数 1 二阶节1.0000 -0.3885 -0.5509 1.0000 1.1552 0.6511 1.0000 0.2885 0.3630 1.0000 -1.0552 0.7679系统函数的二阶节形式为:极点图如右图。

例2 差分方程)3(02.0)2(36.0)1(44.0)(8.0 )3(6.0)2(45.0)1(7.0)(-+-+--=-----+n x n x n x n x n y n y n y n y 所对应的系统的频率响应。

解:差分方程所对应的系统函数为3213216.045.07.0102.036.044.08.0)(--------+++-=zz z z z z z H 用MATLAB 计算的程序如下:k=256;num=[0.8 -0.44 0.36 0.02]; den=[1 0.7 -0.45 -0.6]; w=0:pi/k:pi;h=freqz(num,den,w); subplot(2,2,1);plot(w/pi,real(h));grid title('实部')xlabel('\omega/\pi');ylabel('幅度') subplot(2,2,2);plot(w/pi,imag(h));gridtitle('虚部')xlabel('\omega/\pi');ylabel('Amplitude') subplot(2,2,3);plot(w/pi,abs(h));grid title('幅度谱')xlabel('\omega/\pi');ylabel('幅值') subplot(2,2,4);plot(w/pi,angle(h));grid title('相位谱')xlabel('\omega/\pi');ylabel('弧度')练习1.求系统54321543212336.09537.08801.14947.28107.110528.0797.01295.01295.00797.00528.0)(-----------+-+-+++++=z z z z z z z z z z z H 的零、极点和幅度频率响应和相位响应。

要求:绘出零、极点分布图,幅度频率响应和相位响应曲线。

解:用MATLAB 计算的程序如下:num=[0.0528 0.0797 0.1295 0.1295 0.797 0.0528]; den=[1 -1.8107 2.4947 -1.8801 0.9537 -0.2336]; [z,p,k]=tf2zp(num,den); disp('零点');disp(z);disp('极点');disp(p);零点-1.5870 + 1.4470i-1.5870 - 1.4470i0.8657 + 1.57795i0.8657 - 1.5779i-0.0669极点0.2788 + 0.8973i0.2788 - 0.8973i0.3811 + 0.6274i0.3811 - 0.6274i0.4910k=256;num=[0.0528 0.0797 0.1295 0.1295 0.797 0.0528];den=[1 -1.8107 2.4947 -1.8801 0.9537 -0.2336]; w=0:pi/k:pi;h=freqz(num,den,w);subplot(2,2,1);plot(w/pi,real(h));gridtitle('幅度谱')xlabel('\omega/\pi');ylabel('幅值')subplot(2,2,4);plot(w/pi,angle(h));gridtitle('相位谱')xlabel('\omega/\pi');ylabel('弧度')四、实验结果分析1、系统函数的零、极点分别关于实轴和原点对称分布2、对于稳定的因果系统,H(z)的全部极点应落在单位圆内,所以描述的系统是稳定的因果系统3、通过Matlab,可以直观的看出系统函数的幅度和相位谱的变化,为系统分析提供了有效便捷的方法五、实验心得1、通过这次实验,学会了更好地使用Matlab仿真软件,对于一些复杂的频率响应有更直观的分析。

2、通过零极点的分布,可以直观的看出来是否为稳定因果系统,比起分析零极点的值,更为便捷。

3、编程的过程中,需要静下心,认真思考,不得马虎。

相关文档
最新文档