第三章 机械零件的强度

合集下载

第三章 机械零件的强度

第三章   机械零件的强度
• 变应力的应力比保持不变,即:r = C
• 变应力的平均应力保持不变,即:sm = C • 变应力的最小应力保持不变,即:smin = C
1.变应力的应力比保持不变,即 r C (如转轴)
s a s max s min 1 r C s m s max s min 1 r
一、疲劳破坏 机械零件在变应力作用下,即使变应力的 smax < sb ,而应
力的每次循环也仍然会对零件造成轻微的损伤。随应力循环次数的 增加,当损伤累积到一定程度时,在零件的表面或内部将出现(萌 生)裂纹。之后,裂纹又逐渐扩展直到发生完全断裂。这种缓慢形 成的破坏称为 “疲劳破坏”。
“疲劳破坏” 是循环应力作用下零件的主 要失效形式。
直线CG方程:
s ae s m e s s
三、单向稳定变应力时机械零件的疲劳强度计算
一般步骤:
1)由外载荷smax 、smin sm 、sa——工作应力;
2)将工作应力sm、sa标在零件极
限应力图上,得工作应力点:
M( sm,sa )
M s m e,s ae M s m,s a
在零件极限应力图上表示 为:平行 纵坐标 的一条 直线。
M s m e,s ae M s m,s a
1)如果此线与AG线交于M( sme ,sae ),则有:
s m e s m
,
s ae

s 1
ss m
Ks
s lim s m ax s ae s m e s 1
M s m e,s ae
s a Cs m
显然,直线OM上任一点的应力
比均相同,M 就是零件的极限
应力点。
M s m,s a

第3章机械零件的强度

第3章机械零件的强度

a 受拉
对称循环变应力
▴ 变应力参数
σ σmax o 循环变应力 σa
静应力: σ = 常数 变应力: σ 随时间变化
σ
σa
σmin σm t o
σ=常数
t
max min 最大应力: max = m+ a m 平均应力:
2
应力幅:
a
max min 最小应力:min= m-a
§3-2
机械零件的疲劳强度计算
对于切应力的情况,只需用τ代替σ,就可以得到相 应的极限应力曲线方程:
1e
1
K
'ae e ' me
及: 'ae ' me s
k 1 1 K 1 q
或: 1 K 'ae 'me
弯 曲
σb =
32M πd3
D/d 1.30 1.20 1.15 1.10 2.39 2.28 2.14 1.99 1.79 1.69 1.63 1.56 1.59 1.53 1.48 1.44 1.49 1.44 1.40 1.37 1.43 1.37 1.34 1.31 1.39 1.33 1.30 1.28 D/d 2.0 1.50 1.20 1.10 2.33 2.21 2.09 2.00 1.73 1.68 1.62 1.59 1.55 1.52 1.48 1.46 1.44 1.42 1.39 1.38 1.35 1.34 1.33 1.31 1.30 1.29 1.27 1.26
σ e ---零件受弯曲的材料常数;
§3-2
机械零件的疲劳强度计算
综合影响系数Kσ 反映了:应力集中、尺寸因素、 表面加工质量及强化等因素的综合影响结果。其计算公 式如下:

03机械零件的强度

03机械零件的强度

§3-2 机械零件的疲劳强度 1. 由于零件的几何形状的变化、尺寸大小、加工质量及强化 由于零件的几何形状的变化、尺寸大小、 因素等影响,使零件的疲劳极限要小于材料试件的疲劳极限。 因素等影响,使零件的疲劳极限要小于材料试件的疲劳极限。 综合影响系数K 2. 若以弯曲疲劳极限的综合影响系数 σ 若以弯曲疲劳极限的综合影响系数 表示材料r 及零件r 的疲劳极限值之比, 表示材料 = -1及零件 = -1的疲劳极限值之比,即: 及零件 的疲劳极限值之比
§3-4 机械零件的接触强度
1、接触应力 、 两圆柱体接触——线接触 两圆柱体接触——线接触 ——
F 1 1 ( ± ) B ρ1 ρ2 σH = 2 2 1− µ1 1− µ2 π( + ) E1 E2
F:作用于接触面上的总压力
(3-36) )
B:初始接触线长度
零件1和零件2初始接触处的曲率半径。 ρ1和ρ2:零件1和零件2初始接触处的曲率半径。 公式中, 号为外接触, 为内接触。 公式中,+号为外接触,- 为内接触。 μ和 E:分别为材料的泊松比和弹性模量
3.零件的极限应力图 3.零件的极限应力图
有影响, 无影响, 由于 k 只对 有影响,而对 σ 无影响,∴在材料 m σ 的极限应力图 A´D´G´C上几个特殊点的坐标计入 影响 σ 零件对称循环疲劳点
k
(一)、单向稳定变应力时的疲劳强度计算 )、单向稳定变应力时的疲劳强度计算 1、 r = σ
σ−1 Kσ = σ−1e
若r≠-1时 , - 时
(3-7) )

σ−1e =
σ−1

3-8) (3-8)
′ σa Kσ = ′ σ ae
因此将零件材料的极限应力线图按比值下移, 因此将零件材料的极限应力线图按比值下移,则折线 ADGCO 即为零件的极限应力线图。 即为零件的极限应力线图 零件的极限应力线图。

第3章 机械零件的强度(用)

第3章 机械零件的强度(用)
变载荷:随时间作周期性或非周期性变化的载荷.如
汽车的齿轮和轴所承受的动载荷。
注意:在设计计算中,载荷又可分为名义载荷和计 算载荷,计算载荷等于载荷系数乘以名义载荷。
名义载荷: 根据机器在稳定和理想工作条件下的工作阻力,
按力学公式求出的载荷称为名义载荷. 计算载荷:
考虑机器在工作中载荷的变化和载荷在零件上
s
m rN
N

C (NC

N

ND)
D点以后(无限寿命区间):
s rN s r (N ND )
用N0及其相对应的疲劳极限σr来近
似代表ND和 σr∞,有:
s
m rN
N

s
m r
N0

C
s-N疲劳曲线
§3-1 材料的疲劳特性 疲劳曲线
2、 s-N疲劳曲线
有限寿命区间内循环次数N与
疲劳极限srN的关系为:
CG'直线的方程为:
s a s m s s
σ为试件受循环弯曲 应力时的材料常数,其值 由试验及下式决定:
s

2s 1 s 0 s0
对于碳钢,σ≈0.1~0.2,对于合金钢,σ≈0.2~0.3。
§3-2 机械零件的疲劳强度计算
1、零件的极限应力线图
如设弯曲疲劳极限的综合影响系数 Kσ ,且 s 1 ―材料对称循环弯曲疲劳极限
s rN s r
m
N0 N
KNsr
式中, N0为循环基数;
sr为与N0相对应的疲劳极限
s-N疲劳曲线
m为材料常数,值由材料试验确定。
疲劳曲线的意义
s rN
sr m
N0 N
KNsr

《机械设计》第3章_机械零件的强度(正式)

《机械设计》第3章_机械零件的强度(正式)
1.最大应力 s max s m s a
2.最小应力 s min s m s a
3.平均应力
sm
s max
s min
2
4.应力幅
sa
s max
s min
2
5.应力循环特性
s min s max
第三章 机械零件的强度
(a)非对称循环变应力
(b)脉动循环变应力
(c)对称循环变应力
疲劳曲线
s max
s min
2
sa
s max
s min
2
r s min
s max
1 r 1 (r 0)
smax
sm
0
t
sm
sa
s max
2
s min 0
r0
sa= smax
0
t
smin
sm 0
s a s max s min
r 1
二、应力的描述
第三章 机械零件的强度
稳定循环变应力的基本参数 共有5个基本参数,知其2就能求其他
应力循环特性 r 一定的条件下,记录出在 不同最大应力σmax下引起试件疲劳破坏所经历 的应力循环次数N,即可得到σ-N疲劳曲线 。
静应力强度(AB段):N≤103, σmax几乎不 随N变化,可近似看作是静应力强度。
(ND,σr∞)
低周疲劳(BC段):N↑→ σmax↓。C点对应 的循环次数约为104。
(非周期变化)
循环变应力
(周期变化)
符合统计规律
稳定循环变应力
(等幅变应力)
非稳定循环变应力
(变幅变应力)
非对称循环变应力 对称循环变应力 脉动循环变应力
s
1、非循环变应力 符合统计规律

第三章 机械零件的强度

第三章 机械零件的强度
应力幅: σ a =
σ max − σ min
2
平均应力: σ m =
σ max + σ min
2
Well begun is half done. 好的开始等于成功的一半。
机械设计
Design of Machinery
强度计算
静应力强度 变应力强度
2、静应力时的机械零件的强度 σ lim σ ≤ [σ ] = S
—— AG 的方程 ′ ′ 2. CG方程:
' ' σ ae + σ me = σ s
σ +σ =σs
' a ' m
—— CG′的方程
Well begun is half done. 好的开始等于成功的一半。
机械设计
Design of Machinery
1. 单向稳定变应力时机械零件的疲劳强度计算 机械零件应力的变化规律: ①变应力的循环特性不变 ②变应力的平均应力不变 ③变应力的最小应力不变
′ ′ AG 的方程:
' ' σ−1 =σa +ϕσσm
其中:
ϕσ =
2 −1 −σ0 σ
σ0
CG′ 的方程:
材料的极限应力线图
' ' σa +σm =σs
Well begun is half done. 好的开始等于成功的一半。
机械设计
Design of Machinery
§3-2 机械零件的疲劳强度计算
机械设计
Design of Machinery
第三章 机械零件的强度
1.载荷和应力的分类 静载荷、变载荷 静应力、变应力
静载荷:大小和方向不随时间变化或变化缓慢的载荷。 变载荷:随时间周期性变化或非周期性变化的载荷。 静应力:不随时间变化或变化缓慢的应力。 (只在静载荷作用下产生) 变应力:随时间变化的应力。 (可由变载荷产生,也可由静载荷产生) σ

机械设计-第三章 机械零件的强度(疲劳)

机械设计-第三章 机械零件的强度(疲劳)

AB(103前):最大应力值变化很小,相当于静强度状况; BC(103-104):N增加,σmax减小,有塑性变形特征—应变疲
劳,低周疲劳,不讨论; CD(>104):有限寿命疲劳阶段 ,任意点的疲劳极限--有限寿
命疲劳极限σrN ,该曲线近似双曲线。
公式描述:
c,m—材料常数 D点后:材料不发生疲劳破坏,无限寿命疲劳阶段,
件的疲劳极限,用综合影响系数Kσ 表示。 如:对称循环弯曲疲劳极限的综合影响系数Kσ。 则:
σ -1试件的对称循环弯曲疲劳极限; σ -1e零件的对称循环弯曲疲劳极限。
不对称时:Kσ 是试件与零件的极限应力幅的比值。
零件的极限应力线图—ADGC 试件线图A’ D’ G’C—综合修正系数Kσ—零件线图ADGC
机械设计
第三章:机械零件的强度(疲劳强度)
主讲老师:吴克勤
第三章 机械零件的强度(疲劳)
一、材料的疲劳特性 1、 σ - N曲线 ①疲劳断裂:变应力下的零件损坏形式,与循环次数有关。 ②特征: σmax< σlim; 脆性材料和塑性材料都突然断裂; 损伤的积累。 ③疲劳极限:循环特征r一定时,应力循环N次后,材料不 发生破坏的最大应力σrN ; ④疲劳曲线:r一定的条件下,表示N与σrN 关系的曲线。
零件的极限应力曲线:
φσe-零件受循环弯曲应力时的材料常数; σ’ae -零件受循环弯曲应力时的极限应力幅; σ’me-零件受循环弯曲应力时的极限平均应力。
Kσ 为弯曲疲劳极限的综合影响系数
kσ-零件的有效应力集中系数(σ 表示在正应力条 件下);
εσ - 零件的尺寸系数; βσ -零件的表面质量系数; βq -零件的强化系数。 上面所有的计算公式,同样适用于剪切应力。

第3章机械零件的强度hm

第3章机械零件的强度hm
∴过工作应力点M(N)作与横坐标成45°的直线,则这直线任一
点的最小应力 min m 均a 相同,∴直线与极限应力线图交
点 M 3 (N3即) 为所求极限应力点。
a) 工 作 应 力 点 位 于 OJGI区域内
极限应力为疲劳极限, 按疲劳强度计算
求AG与MM3´的交点:
1e
1
k
ae
e
等寿命曲线或极限应力线图(σ- N 曲线)
在特定寿命条件下,最大应力σmax =σm +σa与应力比
m a 的关系。
m a
(二)等寿命疲劳曲线(疲劳极限应力线图)
材料试验一般只给出r=-1及r=0时的疲劳极限,即σ-1、σ0。为获得各 种不同循环特性r时的疲劳极限,常借助简化的疲劳极限应力图。
•曲线CD段代表有限寿命疲劳阶段,有限寿命疲劳极限用符号 rN 表示。
•D点以后称为无限寿命疲劳阶段,无限寿命疲劳极限用 r 表示。
m rN
N
C
NC N ND
rN r
N ND
ND 106 ~ 25107
在做疲劳试验时,常规定一个循环次数 N0 (称为循环基数)。
用N0和与N0相对应的疲劳极限 rN(0 简写脉动循环) 1 r (1 非对称循环)
r = -1 对称循环应力
r=0 脉动循环应力
r=1 静应力
m
max
min
2
a
max
min
2
r min max
几种典型变应力的循环特征和应力特点
循环名称 循环特性
应力特点
对称循环 r=-1 脉动循环 r=0 非对称循环 -1<r<1
q — —强化系数
注:求K时,将式中换成

机械设计第三章机械零件强度

机械设计第三章机械零件强度

45° B
C
σm
σS σB
AG直线上任意点代表了一定循环特性时的疲劳极限。
已知C点坐标:(σS , 0) CG直线的斜率: k=tan135°=-1
CG直线的方程:
a m s
CG直线上任意点的最大应力达到了屈服极限应力。
§3.1 材料的疲劳特性
疲劳破坏的判据:
1. 当循环应力参数( σm,σa )
静应力只能由静载荷产生。 注意: 静载荷和变载荷均可能产生变应力。
绝大多数机械零件都是处于变应力状态下工作的。
§3.1 材料的疲劳特性
四、 变应力的描述
平均应力:
m
max
min
2
应力幅值:
a
max
min
2
-1,对称循环应力
应力比 (循环特性):
r
min max
=
0,脉冲循环应力 描述规律性的变应力有5个参数,但
由于实际零件的几何形状、尺寸大小、加工质量及强化因素等与材料 标准试件有区别,使得零件的疲劳极限要小于材料标准试件的疲劳极限。
1. 应力集中
由于零件形状突然变化而引起的局部应力增大现象。 应力集中的存在会降低零件的疲劳极限。
2. 零件尺寸
其他条件相同的情况下,零件的绝对尺寸越大,其疲劳强度 越低。
零件的表面状态包括表面粗糙度和表面处理。
二、名义载荷与计算载荷
➢名义载荷Fn :根据额定功率用力学公式计算出作用在零件上的载荷。 ➢计算载荷Fca:考虑载荷的时间不均匀性、分布的不均匀性以及其它
影 响因素对名义载荷进行修正得到的载荷。
Fca K Fn
K—— 载荷系数
§3.1 材料的疲劳特性
三、应力

机械设计第三章机械零件的强度

机械设计第三章机械零件的强度
第三章 机械零件的强度
学习要求:
1. 了解疲劳曲线及极限应力曲线的来源,意义及用途, 能从材料的几个基本机械性能及零件的几何特性,绘 制零件的极限应力简化线图
2. 学会单向变应力时的强度计算方法 3. 了解疲劳损伤累积假说的意义及其应用
4. 学会双向变应力时的强度校核方法
学习重点:
极限应力线图的绘制及含义
强度准则是设计机械零件的最基本准则。
通用机械零件的强度分为静应力强度和变应力 强度两个范畴。
在机械零件整个工作寿命期间应力变化次数小 于103的通用零件,均按静应力强度进行设计。
即使是承受变应力的零件,在按疲劳强度进行 设计的同时,还有不少情况需要根据受载过程 中作用次数很少而数值很大的峰值载荷作静应 力强度校核。本章以下只讨论零件在变应力下的疲劳、低应力下 的脆断和接触强度等问题。
根据零件载荷的变化规律以及零件与相邻零件互相约 束情况的不同,可能发生的典型的应力变化规律通常 有下述三种:
a)变应力的应力比保持不变,即r=C(例如绝大 多数转轴中的应力状态);
b)变应力的平均应力保持不变,即σm=C(例如 振动着的受载弹簧中的应力状态);
c)变应力的最小应力保持不变, σmin=C(例如 紧螺栓联接中螺栓受轴向变载荷时的应力状 态)。以下分别讨论这三种情况。
e 可用下式计算
e
K
1 K
2 1 0 0
(3 11)
Kσ——弯曲疲劳极限的综合影响系数
K
k
1
1
1
q
(3 12)
式中:kσ——零件的有效应力集中系数 εσ——零件的尺寸系数; βσ——零件的表面质量系数; βq——零件的强化系数。
(一)单向稳定变应力时机械零件的疲劳强度计算

第3章机械零件的强度

第3章机械零件的强度

σ ca = σ max
杜永平 机械零件的强度
b、双向应力 、
σca = σx + σy 2 + ( σx − σy 2
2 )2 + τxy

最大剪应力理论(第三强度理论) 最大剪应力理论(第三强度理论)
σ ca = σ 2 + 4τ 2
③ 最大形变能理论(第四强度理论) 最大形变能理论(第四强度理论)
σ min σm - σa = C=r = σ max σm + σa
σa σa = (1- ) (1 + ) σm σm
σa ⇒ = C ' = 常数 σm
杜永平 机械零件的强度
' ' (σme,σae )
(σm,σa )
M点的极限应力为 点的极限应力为
σ
' max
= σ +σ
' ae
' me
σ−1(σm +σa ) σ−1σmax = = Kσσa +ϕσσm Kσσa +ϕσσm
σmax + σmin 平均应力σ(τ m)= m 2 σmax − σmin 应力幅σ(τ a)= a 2
杜永平 机械零件的强度
σmin 应力循环特 性 r = σmax
疲劳极限 循环特性r一定时,应力循环 次后 次后, 循环特性 一定时,应力循环N次后, 一定时 材料不发生疲劳破坏时的最大应力
用[σ ]表示
杜永平 机械零件的强度
3. 安全系数(safety factor) 安全系数( ) 安全系数 极限应力与许 用应力的比值
σ lim S = [σ ]
安全系数计算值
极限应力与计 S = σ lim ca σ ca 算应力的比值

机械设计第3章机械零件的强度

机械设计第3章机械零件的强度

根据零件载荷的变化规律以及零件与相邻零件互相约 束情况的不同,可能发生的典型的应力变化规律通常 有下述三种:
a)变应力的应力比保持不变,即r=C(例如绝大 多数转轴中的应力状态);
b)变应力的平均应力保持不变,即σm=C(例如 振动着的受载弹簧中的应力状态);
c)变应力的最小应力保持不变, σmin=C(例如 紧螺栓联接中螺栓受轴向变载荷时的应力状 态)。以下分别讨论这三种情况。
(3—9)
直线CG的方程为
σa'+σm'=σs
(3—10)
式中:σae'——零件受循环弯曲应力时的极限应力幅; σme'——零件受循环弯曲应力时的极限平均应力; e ——零件受循环弯曲应力时的材料常数。
e 可用下式计算
e
K
1 K
2 1 0 0
(3 11)
Kσ——弯曲疲劳极限的综合影响系数
S a
ae a
1 m K a
对应于N点的极限应力由N2'点表示,它位于直线CG上,故 仍只按式(3—18)进行静强度计算,分析图3—7可知,凡是工 作应力点位于CGH区域内时,在σm=C的条件下,极限应力 统为屈服极限,也是只进行静强度计算。
3.σmin=C的情况
当σmin=C时,需找到一个其最小应力与零件工 作应力的最小应力相同的极限应力。因为
分别是: 1 K ae m e
1 K ae m
ae
1
m
K
m ax
ae
m e
1
m
K
m
1
K
K
m
Sca
lim
m ax max
1 (K ) m
K
也有文献上建议,在σm=C的情况下,按照应力幅来 校核零件的疲劳强度,即按应力幅求得安全系数计算 值为

第3章机械零件的强度第3章

第3章机械零件的强度第3章

3、发动机连杆横截面上的应力变化规律如图所示,则该变应力的应力比r
为 2。
(1)0.24;(2)-0.24;(3)-4.17;(4)4.17。

0
31.2N/mm2 t
-130N/mm2
4、发动机连杆横截面上的应力变化规律如题3图所示,则其应力幅a和平
均应力m分别为 2 。
(1)a = -80.6Mpa,m = 49.4Mpa;(2)a = 80.6Mpa,m = -49.4Mpa; (3)a = 49.4Mpa,m = -80.6Mpa;(4)a = -49.4Mpa,m = - 80.6Mpa。
200 100 2
150
200
a
50 0 min
-100
max
m
t
例2 已知:a= 80N/mm2,m=-40N/mm2 求:max、min、r、绘图。
解:
max m a 40 (80) 120
min m a 40 (80) 40 r min 40 1 max 120 3
a m s
说明CG‘直 线上任意点的最大应力达到了屈服极限应力。
当循环应力参数( σm,σa )落在OA’G’C以内时,
表示不会发生疲劳破坏。
σa
当应力点落在OA’G’C以外 时,一定会发生疲劳破坏。
A’
D’ G’
σ-1 σ0 /2
而正好落在A’G’C折线上 时,表示应力状况达到疲 劳破坏的极限值。
(1)专用零件和部件;(2)在高速、高压、环境温度过高或过低 等特殊条件下工作的以及尺寸特大或特小的通用零件和部件;(3) 在普通工作条件下工作的一般参数的通用零件和部件;(4)标准化 的零件和部件。

机械设计第03章 机械零件的强度

机械设计第03章  机械零件的强度
的受载弹簧应力状态) 的受载弹簧应力状态)
• • •
• •
当σm =C时,需找到一个其平均应力与零件工作应力的平均 时 应力相同的极限应力。 应力相同的极限应力。 在图3- 中 作平行线MM’2(或NN’2),则该 ),则该 在图 -7中,过M(或N)点,作平行线 或 ) 线上的任何点所代表的应力循环都具有相同的平均应力值。 线上的任何点所代表的应力循环都具有相同的平均应力值。 σ 联解MM’2和AG两直线方程,求出 2的坐标的: me 、 σ ′ 两直线方程, 联解 两直线方程 求出M’ 的坐标的: ′ ae 点的疲劳极限应力: 则M点的疲劳极限应力: 点的疲劳极限应力 ψσ σ −1 + ( K σ − ψ σ )σ m ′ ′ ′ σ max = σ ae + σ me = σ −1e + σ m (1 − )= Kσ Kσ σ −ψ σ ′ σ ae = −1 σ m 零件的极限应力幅: 零件的极限应力幅: Kσ 计算安全系数: 计算安全系数:

E1、E2--为零件1、零件2材料的弹性模量。
在接触点、线连续改变位置时,显然 对于零件上任一点处的接触应力只能在 0~σH之间变化。 • 接触应力是脉动循环变应力。 • 在作接触疲劳计算时,极限应力也应 是脉动循环的极限接触应力。 •
总结: 1.材料的极限应力线图帮助我们了解零件的失 效的可能形式,要记住三个区域的意义,它是 讨论其它线图的基础。 σ−1 2.Sca = ≥ S 适用于各种循环特性的疲劳破坏。
§3-1 材料的疲劳特性
• 材料疲劳特性描述:最大应力 σ max • 应力循环次数 N σ min • 应力比(循环特性) r = σ • 其它符号:极限平均应力 • 极限应力幅值 • • 材料屈服极限

第三章机械零件的强度

第三章机械零件的强度
lim rN
第三章 机械零件的强度
CD段代表有限寿命疲劳阶段,CD曲线上任何一点所
代表的疲劳极限,称为有限寿命疲劳极限,用 rN 表
示,脚标r表示该变应力的应力比,N表示应力循环次 数。
CD段可用下式来描述:

m rN
N

C
(NC N ND)
σmax
σB A
B C
N=1/4 103 104
m

max
2

a

r

0
σ r =-1
σ
σmax
r =0 σa
σmax σmin
σa σa
σa σm
o
to
σmin
t
3) 非对称循环变应力:
4)静应力:
r =+1 σ
σ =常数
o
t
m
min
min max m 、 r 1
第三章 机械零件的强度
二、材料的疲劳特性
变应力下,零件的损坏形式是疲劳断裂。
r m ax m a
试件的试验条件: 1)光滑、无应力集中源; 2)标准尺寸。
第三章 机械零件的强度
在作材料试验时,求出对称循环和脉动循环时的疲劳极限
1和 0 ,把这两个极限应力标在 m a 图上。在对称循环 中:
σa
对称循环疲劳极限可以
用纵坐标上的A’点表示。
疲劳断裂过程:
很多机械零件受变应力作用。即使变应力的 max b 或 s 。而变应力的每次循环也仍然会对零件造成轻微的损
伤。随应力循环次数的增加,当损伤累积到一定程度时, 零件表层产生微小裂纹;随着循环次数增加,微裂纹逐 渐扩展;当剩余材料不足以承受载荷时,突然脆性断裂。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档