第二章《轴对称图形》提高练习题
初二数学轴对称总结练习题

初二数学轴对称总结练习题轴对称是初中数学中的一个重要概念,也是几何中常见的一种性质。
轴对称指的是图形关于某条直线对称成立,对称轴是图形中的某条直线,使得图形关于该直线对称,即该直线上的任意一点经过对称后,都能与原图形上对应的点重合。
那么在学习轴对称的过程中,总结练习题是很有必要的。
本文将为大家总结初二数学轴对称相关的练习题,以便巩固和提高对轴对称的理解与运用。
一、关于轴对称的基础练习题1. 在一个平面直角坐标系中,图形A关于y轴对称得到图形A',如果A'的坐标是(-3,-2),则A的坐标是多少?2. 图形B关于y轴对称,若图形B的坐标是(5,7),则B'的坐标是多少?3. 在平面直角坐标系中,图形C关于y轴对称后,得到了图形C',若点C(1,2)在图形C'上,求C'的坐标。
4. 在平面直角坐标系中,图形D关于y轴对称后,得到了图形D',如果D'的坐标是(-2,4),则D的坐标是多少?5. 在平面直角坐标系中,图形E关于x轴对称的图形是图形E',若图形E'的坐标是(3,-5),则E的坐标是多少?二、关于轴对称图形的性质练习题1. 若平面图形F关于直线y=4对称,则判断以下说法是否正确:a) 图形F的对称轴是直线y=4;b) 图形F任意两点关于y=4对称的点的连线垂直于y=4。
2. 判断以下命题是否正确:a) 关于过点P(-3,5)的垂直线的轴对称图形关于y轴对称;b) 关于过点Q(2,-3)的水平线的轴对称图形关于x轴对称。
3. 若图形G关于y=-x对称,并且G关于原点O对称,则判断以下说法是否正确:a) 图形G的对称轴是y=-x;b) 图形G的对称轴是原点O;c) 图形G关于y=x对称。
三、综合运用轴对称的练习题1. 在平面直角坐标系中,图形H关于y轴对称的图形是图形I,图形J关于x轴对称的图形是图形K。
如果图形H、I、J、K的坐标分别为:H:(3,-4),I:(-3,-4)J:(1,-5),K:(1,5)则求图形H、I、J、K的对称轴方程。
苏科版八年级上册第二章《轴对称图形》(难题)单元测试(含答案)

苏科版八年级上册第二章《轴对称图形》(难题)单元测试一、选择题1.如图,A,B,C三幢居民楼的位置成三角形,现决定在三幢楼之间修建一个禁毒宣传栏,使宣传栏到三个小区的距离相等,则宣传栏应建在()A.AC,BC两边中线的交点处B. AC,BC两边高线的交点处C. AC,BC两边垂直平分线的交点处D. ∠A,∠B两内角平分线的交点处2.如图所示的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有()A. 2个B. 3个C. 4个D. 5个3.如图,一张三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A落在B处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是()A.c>a>bB. b>a>cC. c>b>aD. b>c>a4.如图,等腰△ABC的底边长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为( )A. 6B. 18C. 7D. 95.如图,在四边形ABCD中,∠A=58°,∠C=100°,连接BD,E是AD上一点,连接BE,∠EBD=36°.若点A,C分别在线段BE,BD的中垂线上,则∠ADC的度数为()A. 75°B. 65°C. 63°D. 61°6.如图,将四边形纸片ABCD沿MN折叠,点A、D分别落在点A1、D1处.若∠1+∠2=130°,则∠B+∠C=()A. 115°B. 130°C. 135°D. 150°7.如图,点D为△ABC边BC的延长线上一点.∠ABC的角平分线与∠ACD的角平分线交于点M,将△MBC以直线BC为对称轴翻折得到△NBC,∠NBC的角平分线与∠NCB的角平分线交于点Q,若∠A=48°,则∠BQC的度数为()A. 138∘B. 114∘C. 102∘D. 100∘8.如图,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG//AD交BC于F,交AB于G,下列结论:①GA=GP②S△PAC:S△PAB=AC:AB③BP垂直平分CE④FP=FC其中正确的判断有()A.只有①②B. 只有③④C. 只有①③④D. ①②③④二、填空题9.把一张长方形纸条按图的方式折叠后,量得∠AOB′=110°,则∠B′OC=__________°.10.如图,已知在等腰三角形ABC中,AB=AC,P,Q分别是边AC,AB上的点,且AP=PQ=QC=BC.则∠A=__________.11.△ABC中,∠C=90°,AD平分∠BAC,AB=6,CD=2,则△ABD的面积是_____.12.已知等腰三角形的周长为10,从底边上的一个顶点引腰的中线,分三角形的周长为两部分,其中一部分比另一部分长2,则腰长_________.13.如图,把△ABC分别沿AB边和AC边翻折得到△ABE和△ADC,BE的延长线与DC的延长线交于点F,若∠BCA:∠ABC:∠BAC=28:5:3,则∠EFC的度数为_____.14.如图,在△ABC中,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是_________________.15.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线,若在边AB上截取BE=BC,连接ED,则图中等腰三角形共有____个16.如图,在ΔABC中,AB=6,∠CAB=15°,M、N分别是直线AC、AB上的动点,则BM+MN的最小值是______________.三、解答题17.如图,和均为等腰直角三角形,AB=AC,AD=AE,,连结BD、EC交于点P.(1)求证:≌;(2)试判断线段BD、EC的关系,并且加以证明;(3)连结PA,求的度数.18.如图,点M、N分别是∠AOB两点OA、OB上的点.(1)尺规作图:在∠AOB内作一点P,使得点P到∠AOB两边OA、OB的距离相等,且满足PM=PN(保留作图痕迹).(2)在(1)的条件下,若∠AOB=40°,求∠MPN的度数.19.已知:如图,▵ABC中,∠ABC=45∘,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G.(1)求证:BF=AC;BF;(2)求证:CE=12(3)CE与BG的大小关系如何?试证明你的结论.20.探索归纳:(1)如图1,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于______A.90°B.135°C.270°D.315°(2)如图2,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=______(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是______(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由.21.如图1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.(1)直接写出∠AFC的度数:______;(2)请你判断并写出FE与FD之间的数量关系;(3)如图2,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,试判断线段AE、CD与AC之间的数量关系并说明理由.22.(1)如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA,求∠DAE的度数;(2)如果把第(1)题中“AB=AC”条件删去,其余条件不变,那么∠DAE的度数改变吗?试证明;(3)如果把(1)题中“∠BAC=90°”的条件改为“∠BAC>90°”,其余条件不变,试探究∠DAE与∠BAC的数量关系式,试证明.答案和解析1.C解:根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.则宣传栏应建在AC,BC两边垂直平分线的交点处.2.B解:在网格中作出与△ABC成轴对称的格点三角形如下图所示:∴在此网格中与△ABC成对称的格点三角形一共有3个.3.D解:第一次折叠如图1,折痕为DE,由折叠得:AE=EC=12AC=12×4=2,DE⊥AC,∵∠ACB=90°,∴DE//BC,∴a=DE=12BC=12×3=32;第二次折叠如图2,折痕为MN,由折叠得:BN=NC=12BC=12×3=32,MN⊥BC,∵∠ACB=90°,∴MN//AC,∴b=MN=12AC=12×4=2;第三次折叠如图3,折痕为GH,由勾股定理得:AB =√32+42=5, 由折叠得:AG =BG =12AB =12×5=52,GH ⊥AB ,∴∠AGH =90°,∵∠A =∠A ,∠AGH =∠ACB ,∴△ACB∽△AGH , ∴AC AG =BC GH, ∴452=3GH , ∴GH =158,即c =158.∵2>158>32, ∴b >c >a .4. D解:连接AD ,MA .∵△ABC 是等腰三角形,点D 是BC 边的中点, ∴AD ⊥BC ,∴S △ABC =12BC ⋅AD =12×6×AD =18,解得AD =6,∵EF 是线段AC 的垂直平分线,∴点A 关于直线EF 的对称点为点C ,MA =MC ,∴MC +DM =MA +DM ≥AD ,∴AD 的长为CM +MD 的最小值, ∴△CDM 的周长最短=(CM +MD)+CD =AD +12BC =6+12×6=6+3=9.5. B解:∵点A ,C 分别在线段BE ,BD 的中垂线上,∴AE =AB ,BC =DC .∵∠A =58°,∠C =100°, ∴∠ABE =180°−58°2=61°,∠CBD =180°−100°2=40°.∵∠EBD =36°,∴∠ABC =∠ABE +∠EBD +∠CBD =61°+36°+40°=137°,∴∠ADC =360°−∠A −∠C −∠ABC =360°−58°−100°−137°=65°. 故答案为:65°.6.A解:∵∠1+∠2=130°,∴∠AMN+∠DNM=360°−130°2=115°.∵∠A+∠D+(∠AMN+∠DNM)=360°,∠A+∠D+(∠B+∠C)=360°,∴∠B+∠C=∠AMN+∠DNM=115°.7.C解:∵∠ABC的角平分线与∠ACD的角平分线交于点M,∴∠DCM=12∠ACD,∠DBM=12∠ABC,∴∠M=∠DCM−∠DBM =12(∠ACD−∠ABC)=12∠A=24°,由折叠可得,∠N=∠M=24°,又∵∠NBC的角平分线与∠NCB的角平分线交于点Q,∴∠CBQ=12∠CBN,∠BCQ=12∠BCN,∴△BCQ中,∠Q=180°−(∠CBQ+∠BCQ) =180°−12(∠CBN+∠BCN)=180°−12×(180°−∠N)=90°+12∠N=102°.8.D解:①∵AP平分∠BAC,∴∠CAP=∠BAP,∵PG//AD,∴∠APG=∠CAP,∴∠APG=∠BAP,∴GA=GP;②∵AP平分∠BAC,∴P到AC,AB的距离相等,∴S△PAC:S△PAB=AC:AB;③∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一);④∵∠BAC与∠CBE的平分线相交于点P,可得点P也位于∠BCD的平分线上,∴∠DCP =∠BCP ,又PG//AD ,∴∠FPC =∠DCP ,∴FP =FC .故①②③④都正确.9. 35解:∵沿OC 折叠,B 和B′重合,∴△BOC≌△B′OC ,∴∠BOC =∠B′OC ,∵∠AOB′=110°,∴∠BOB′=180°−110°=70°, ∴∠B′OC =12×70°=35°,10. (1807)°解:∵AB =AC ,AP =PQ =QC =BC , ∴ABC =∠ACB ,∠A =∠AQP ,∠QPC =∠QCP ,∠BQC =∠B , 设∠A =x°,则∠AQP =x°,∴∠BQC =∠ACQ +∠A ,∴∠BQC =3x°,∴∠B =3x°,∵∠A +∠ABC +∠ACB =180°,∴x°+3x°+3x°=180°, 解得:x =1807.∴∠A =(1807)°.11. 6解:∵AD 平分∠BAC ,CD ⊥AC ,∴D 点到AB 的距离等于CD 长度2. 所以△ABD 面积=12×6×2=6.12. 4或83解:设腰长为x ,底长为y ,当腰比底长时有 {x −y =22x +y =10 解得{x =4y =2; 当底比腰长时有{y −x =22x +y =10解得{x=83y=143.∵0<2<4+4=8,0<143<83+83=163∴这两种情况都能构成三角形.13.30°解:在△ABC中,∵∠BCA:∠ABC:∠BAC=28:5:3,∴设∠BCA为28x,∠ABC为5x,∠BAC为3x,则28x+5x+3x=180°,解得:x=5°,则∠BCA=140°,∠ABC=25°,∠BAC=15°,由折叠的性质可得:∠D=25°,∠DAE=3∠BAC=45°,∠BEA=140°,在△AOD中,∠AOD=180°−∠DAE−∠D=110°,∴∠EOF=∠AOD=110°,∴∠EFC=∠BEA−∠EOF=140°−110°=30°.14.4解:∵EF垂直平分BC,∴B、C关于EF对称,连接AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,∴AP+BP的值最小值为4.15.5解:∵AB=AC,∠A=36°,∴△ABC是等腰三角形;∠ABC=∠ACB=1800−3602=72°,BD平分∠ABC,∴∠EBD=∠DBC=36°,∠ABD=∠A=36º,∴△ABD是等腰三角形;∴∠BDC=180º−36º−72º=72º=∠C,∴△BDC是等腰三角形,∴BD=BC,∵BE=BC,∴BE=BD,∴△BDE是等腰三角形,∴∠ADE=∠BED−∠A=72º−36º=36º=∠A,∴△AED是等腰三角形;16.3解:作B关于AC的对称点E,过E作EN⊥AB于N,交AC于M,连接AE,BM,则此时BM+MN的值最小,∵B关于AC的对称点为E,∴AE=AB=6,BM=EM,∠EAC=∠CAB=15°,∴∠EAB=30°,BM+MN=EM+MN=EN,在Rt△ENA中,∠ENA=90°,∠EAB=30°,AE=6,∴EN=12AE=3,BM+MN=EN=3,17.(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,{AB=AC∠BAD=∠CAE AD=AE,∴△ABD≌△ACE(SAS);(2)解:BD=EC,BD⊥EC,理由如下:∵△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE,∵∠ABD+∠4=90°,∠4=∠5,∴∠ACE+∠5=90°,∴∠BPC=90°,∴BD⊥EC;(3)解:作AM⊥BD于M,AN⊥EC于N,∵△ABD≌△ACE,∴S△ABD=S△ACE,又∵BD=EC,∴AM=AN,∵AM⊥BD,AN⊥EC,∴PA平分∠BPE,又∵BD⊥EC,∴∠BPE=90°,∴∠APB=45°.18.解:(1)如图所示;(2)过P作PC⊥OA,PD⊥OB,垂足分别为C,D,则∠PCO=∠PDB=90°,由(1)知,OP是∠AOB的平分线,∴PC=PD,由题可知PM=PN,∴△PCM≌△PDN(HL),∴∠CPM=∠DPN,∴∠MPN=∠MPD+∠CPN=∠MPD+∠DPN=∠CPD,∵∠CPD=360°−∠AOB−∠PCO−∠PDO=140°∴∠MPN=140°.19.(1)证明:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.∵∠DBF=90°−∠BFD,∠DCA=90°−∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.在Rt△DFB和Rt△DAC中,∵{∠DBF=∠DCA BD=CD∠BDF=∠ADC,∴Rt△DFB≌Rt△DAC(ASA).∴BF=AC;(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE.在Rt△BEA和Rt△BEC中{∠ABE=∠CBE BE=BE∠BEA=∠BEC,∴Rt△BEA≌Rt△BEC(ASA).∴CE=AE=12AC.又由(1),知BF=AC,∴CE=12AC=12BF;(3)证明:∠ABC=45°,CD垂直AB于D,则CD=BD.H为BC中点,则DH⊥BC(等腰三角形“三线合一”)连接CG,则BG=CG,∠GCB=∠GBC=12∠ABC=12×45°=22.5°,∠EGC=45°.又∵BE垂直AC,故∠EGC=∠ECG=45°,CE=GE.∵△GEC是直角三角形,∴CE2+GE2=CG2,∵DH垂直平分BC,∴BG=CG,∴CE2+GE2=CG2=BG2;即2CE2=BG2,BG=√2CE,∴BG>CE.20.解:(1)C;(2)220°;(3)∠1+∠2=180°+∠A;(4)∵△EFP是由△EFA折叠得到的,∴∠AFE=∠PFE,∠AEF=∠PEF,∴∠1=180°−2∠AFE,∠2=180°−2∠AEF,∴∠1+∠2=360°−2(∠AFE+∠AEF),又∵∠AFE+∠AEF=180°−∠A,∴∠1+∠2=360°−2(180°−∠A)=2∠A.解:(1):∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°−(∠A+∠B)=360°−90°=270°.∴∠1+∠2等于270°.故选C;(2)∠1+∠2=180°+40°=220°,故答案是220°;(3)∠1+∠2与∠A 的关系是:∠1+∠2=180°+∠A ;21. (1)120°;(2)解:FE 与FD 之间的数量关系为:DF =EF . 理由:如图2,在AC 上截取CG =CD ,∵CE 是∠BCA 的平分线,∴∠DCF =∠GCF ,在△CFG 和△CFD 中, {CG =CD ∠DCF =∠GCF CF =CF ,∴△CFG≌△CFD(SAS),∴DF =GF .∵∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线, ∴∠FAC =12∠BAC ,∠FCA =12∠ACB ,且∠EAF =∠GAF , ∴∠FAC +∠FCA =(∠BAC +∠ACB)=12(180°−∠B)=60°, ∴∠AFC =120°,∴∠CFD =60°=∠CFG ,∴∠AFG =60°,又∵∠AFE =∠CFD =60°,∴∠AFE =∠AFG ,在△AFG 和△AFE 中, {∠AFE =∠AFG AF =AF ∠EAF =∠GAF ,∴△AFG≌△AFE(ASA),∴EF =GF ,∴DF =EF ;(3)结论:AC =AE +CD .理由:如图3,在AC 上截取AG =AE ,同(2)可得,△EAF≌△GAF(SAS),∴∠EFA =∠GFA . 又由题可知,∠FAC =12∠BAC ,∠FCA =12∠ACB ,∴∠FAC+∠FCA=12(∠BAC+∠ACB)=12(180°−∠B)=60°,∴∠AFC=180°−(∠FAC+∠FCA)=120°,∴∠EFA=∠GFA=180°−120°=60°=∠DFC,∴∠CFG=∠CFD=60°,同(2)可得,△FDC≌△FGC(ASA),∴CD=CG,∴AC=AG+CG=AE+CD.(1)解:∵∠ACB=90°,∠B=60°,∴∠BAC=90°−60°=30°,∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠FAC=15°,∠FCA=45°,∴∠AFC=180°−(∠FAC+∠ACF)=120°故答案为120°;22.解:(1)∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵BD=BA,∴∠BAD=∠BDA=12(180°−∠B)=67.5°,∵CE=CA,∴∠CAE=∠E=12∠ACB=22.5°,在△ABE中,∠BAE=180°−∠B−∠E=112.5°,∴∠DAE=∠BAE−∠BAD=112.5°−67.5°=45度;(2)不改变.设∠CAE=x,∵CA=CE,∴∠E=∠CAE=x,∴∠ACB=∠CAE+∠E=2x,在△ABC中,∠BAC=90°,∴∠B=90°−∠ACB=90°−2x,∵BD=BA,∴∠BAD=∠BDA=12(180°−∠B)=x+45°,在△ABE中,∠BAE=180°−∠B−∠E,=180°−(90°−2x)−x=90°+x,∴∠DAE=∠BAE−∠BAD,=(90°+x)−(x+45°)=45°;(3)∠DAE=12∠BAC.理由:设∠CAE=x,∠BAD=y,则∠B=180°−2y,∠E=∠CAE=x,∴∠BAE=180°−∠B−∠E=2y−x,∴∠DAE=∠BAE−∠BAD=2y−x−y=y−x,∠BAC=∠BAE−∠CAE=2y−x−x=2y−2x,∴∠DAE=12∠BAC.。
2020第二章《轴对称图形》单元测试(含答案)

第二章《轴对称图形》单元测试(满分100分,时间90分钟)一、选择题:(每题3分,共24分)1.若等腰三角形的一个角等于42°,则它的底角为 ( )A.42°B.69°C.69°或84°D.42°或69°2.到三角形三条边的距离都相等的点是这个三角形的 ( )A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点3.如图是一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC三条中线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点4.若一个三角形的一个外角的平分线平行于三角形的一条边,则此三角形肯定是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形5把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行6.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB,下列确定P点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P为∠A的角平分线与AB的垂直平分线的交点C.P为AC、AB两边上的高的交点D.P为AC、AB两边的垂直平分线的交点7.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C 也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A. 6 B.7 C.8D.98.如图是由下面五种基本图形中的两种拼接而成,这两种基本图形是()A.①⑤B.②④C.③⑤D.②⑤二、填空题(每题3分,共24分)9.已知以下四个汽车标志图案:其中是轴对称图形的图案是(只需填入图案代号).10.星期天小华去书店买书时,从镜子内看到背后墙上普通时钟的时针(粗)与分针(细)的位置如图所示,此时时针表示的时间是时分.(按12小时制填写)11.已知等腰三角形的一个内角为70°,则它的顶角为度.12.如图,在△ABC中,AC=9cm,BC=7cm,AB的垂直平分线交AB于点D,交边AC于点E,则△BCE的周长为cm.13.如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是度.14.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为.15.如图,在△ABC中,BC=8cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC,则△PDE的周长是cm.16.如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于.三、解答题(共52分)17.(本题6分)如图,在△ABC中,M、N分别是BC与EF的中点,CF⊥AB,BE⊥AC.求证:MN⊥EF18.(本题6分)如图,四边形EFGH为长方形的台球桌面,现有一白球A和一彩球B,在图中的GH边上找一点O,当击打白球A时,使白球A碰撞台边GH上的O点,反弹后能击中彩球B.19.(本题8分)(1)如图,分别作出点P关于OA、OB的对称点P1、P2,连接P1P2,分别交OA、OB于点M、N,连接PM,PN;(2)若P1P2=5cm,则△PMN的周长为.20.(本10分)某供电部门准备在输电主干线上连结一个分支线路,分支点为M,同时向所落成的A,B两个居民小区送电.(1)如果居民小区A,B在主干线L的两旁,如图1,那么分支点M在什么地方时总线路最短?(2)如果居民小区A,B在主干线L的同旁,如图2,那么分支点M在什么地方时总线路最短?21.(本题10分)如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB 和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.22.(本题12分)(1)如图(一),P是∠AOB平分线上一点,试过点P画一条直线,交角的两边于点C、D,使△OCD是等腰三角形,且CD是底边;(2)若点P不在角平分线上,如图(二),如何过点P画直线与角的两边相交组成等腰三角形?(3)问题(2)中能画出几个满足条件的等腰三角形?一、选择题:(每题3分,共24分)1.若等腰三角形的一个角等于42°,则它的底角为()A.42°B.69°C.69°或84°D.42°或69°【答案】D2.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点【答案】D3.如图是一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC三条中线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点【答案】C.4.若一个三角形的一个外角的平分线平行于三角形的一条边,则此三角形肯定是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形【答案】C.5把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行【答案】B6.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且P A=PB,下列确定P 点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P为∠A的角平分线与AB的垂直平分线的交点C.P为AC、AB两边上的高的交点D.P为AC、AB两边的垂直平分线的交点【答案】B7.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.9【答案】C8.如图是由下面五种基本图形中的两种拼接而成,这两种基本图形是()A.①⑤B.②④C.③⑤D.②⑤【答案】D二、填空题(每题3分,共24分)9.已知以下四个汽车标志图案:其中是轴对称图形的图案是(只需填入图案代号).【答案】①,③10.星期天小华去书店买书时,从镜子内看到背后墙上普通时钟的时针(粗)与分针(细)的位置如图所示,此时时针表示的时间是时分.(按12小时制填写)【答案】1:3011.已知等腰三角形的一个内角为70°,则它的顶角为度.【答案】40或7012.如图,在△ABC中,AC=9cm,BC=7cm,AB的垂直平分线交AB于点D,交边AC于点E,则△BCE的周长为cm.【答案】1613.如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是度.【答案】6014.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当P A=CQ时,连PQ交AC边于D,则DE的长为.【答案】15.如图,在△ABC中,BC=8cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC,则△PDE的周长是cm.【答案】816.如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于.【答案】∠AEF=115°三、解答题(共52分)17.(本题6分)如图,在△ABC中,M、N分别是BC与EF的中点,CF⊥AB,BE⊥AC.求证:MN⊥EF【答案】证明:如图,连接MF、ME,∵MF、ME分别为Rt△FBC是和Rt△EBC斜边上的中线,∴MF=ME=BC,在△MEF中,MF=ME,点N是EF的中点,∴MN⊥EF.18.(本题6分)如图,四边形EFGH为长方形的台球桌面,现有一白球A和一彩球B,在图中的GH边上找一点O,当击打白球A时,使白球A碰撞台边GH上的O点,反弹后能击中彩球B.【答案】如图,作点A关于GH的对称点A′,连接AB′,交EF于点O,将白球A打到台边GH的点O处,反弹后能击中彩球B.19.(本题8分)(1)如图,分别作出点P关于OA、OB的对称点P1、P2,连接P1P2,分别交OA、OB于点M、N,连接PM,PN;(2)若P1P2=5cm,则△PMN的周长为.【答案】(1)依题意,如下图所示:(2)∵点P关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴L△PMN=PM+PN+MN=P1M+MN+P2N=P1P2=5cm.故答案为:5cm20.(本10分)某供电部门准备在输电主干线上连结一个分支线路,分支点为M,同时向所落成的A,B两个居民小区送电.(1)如果居民小区A,B在主干线L的两旁,如图1,那么分支点M在什么地方时总线路最短?(2)如果居民小区A,B在主干线L的同旁,如图2,那么分支点M在什么地方时总线路最短?【答案】:(1)如图1,连接AB,AB与l的交点P就是所求分支点M分支点开在此处,总线路最短;(2)如图2,作B点关于直线l的对称点B2,连接AB2交直线l于点M,此处即为分支点.21.(本题10分)如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.【答案】解:△OMN是等腰直角三角形.理由:连接OA.∵在△ABC中,∠A=90°,AB=AC,O是BC的中点,∴AO=BO=CO(直角三角形斜边上的中线是斜边的一半);∠B=∠C=45°;在△OAN和OBM中,,∴△OAN≌△OBM(SAS),∴ON=OM(全等三角形的对应边相等);∴∠AON=∠BOM(全等三角形的对应角相等);又∵∠BOM+∠AOM=90°,∴∠NOM=∠AON+∠AOM=90°,∴△OMN是等腰直角三角形.22.(本题12分)(1)如图(一),P是∠AOB平分线上一点,试过点P画一条直线,交角的两边于点C、D,使△OCD是等腰三角形,且CD是底边;(2)若点P不在角平分线上,如图(二),如何过点P画直线与角的两边相交组成等腰三角形?(3)问题(2)中能画出几个满足条件的等腰三角形?【答案】解:(1)如图,直线CD为过点P的一条垂线且垂足为P,则△OCD是等腰三角形.∵OP为∠AOB的角平分线∴∠AOP=∠BOP∵∠CPO=∠DPO=90°,OP=OP∴△COP≌△DOP(ASA)∴OC=OD∴△OCD是等腰三角形.(2)如图,过点O作∠AOB的角平分线OD,过点P作PD⊥OD于点D,延长交OA,OB于点M,N,则△OMN为等腰三角形.∵OD为∠AOB的角平分线∴∠AOD=∠BOD∵∠MPO=∠NPO=90°,OD=OD∴△MOD≌△NOD(ASA)∴OM=ON∴△OMN是等腰三角形.(3)应该可画3个.①过P作∠AOB中平分线的垂线,交OA,OB于M,N,则△OMN是等腰三角形.②过P作OA垂线,交OA,OB于E,F,在EA上作EG=OE,连FG,过P作FG平行线,交OA,OB于M,N,则△OMN是等腰三角形.③过P作OB垂线,交OA,OB于E,F,在FB上作FG=OF,连EG,过P作EG平行线,交OA,OB于M,N,则△OMN是等腰三角形.所以有三个这样的等腰三角形.- 11 -。
第二章 轴对称图形单元测试(含答案)

第二章轴对称图形单元测试一、选择题1.下列图形(含阴影部分)中,属于轴对称图形的有( )A.1个B.2个C.3个D.4个2.小亮在镜中看到身后墙上的时钟如下,则实际时间最接近8:00的是( )3.下列图形:①等腰三角形;②平行四边形;③等边三角形;④等腰梯形;⑤长方形.其中,一定是轴对称图形的有( )A.2个B.3个C.4个D.5个4.如图,AC=AD,BC=BD,则有( )A.AB垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB5.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A、B.下列结论中,不一定成立的是( )A.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP6.在等腰△ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15和12两个部分,则该等腰三角形的底边长为( )A.7 B.10 C.7或10 D.7或117.在梯形ABCD中,AD∥BC,AD=1,BC=4,∠C=70°,∠B=40°,则AB的长为( )A.2 B.3 C.4 D.58.如图,在等腰梯形ABCD中,AD∥BC,AC、BD相交于点O,有下列五个结论:①△AOB≌△DOC;②∠DAC=∠DCA;③梯形ABCD是轴对称图形;④∠DAB+∠DCB=180°;⑤AC=BD.其中,正确的个数是( )A.2 B.3 C.4 D.59.如图,已知△ABC,求作一点P,使点P到∠BAC两边的距离相等,且PA=PB.下列确定点P的方法正确的是( )A.P为∠BAC、∠ABC的平分线的交点B.P为∠BAC的平分线与AB的垂直平分线的交点C.P为AC、AB两边上的高的交点D.P为AC、AB两边的垂直平分线的交点10.如图,在△ABC中,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列五个结论:①∠DEF=∠DFE;②AE=AF;③AD垂直平分EF;④EF垂直平分AD;⑤△ABD与△ACD的面积相等.其中,正确的个数是( )A.4 B.3 C.2 D.1二、填空题11.请同学们写出两个具有轴对称性的汉字:__________.12.(1)如图,在Rt△ABC中,∠C=90°,BD是三角形的角平分线,交AC于点D,AD= 2.2 cm,AC=3.7 cm,则点D到AB边的距离是__________cm.(2)在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为50°,则∠B的度数为__________.13.如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F.(1)若△AEF的周长为10 cm,则BC的长为__________cm.(2)若∠EAF=100°,则∠BAC__________.14.(1)如图①,在Rt△ABC中,若AB=AC,AD=AE,∠BAD=40°,则∠EDC=__________.(2)如图②,∠ACB=90°,E、F为AB上的点,AE=AC,BC=BF,则∠ECF=__________.15.(1)若直角三角形斜边上的高和中线分别为10 cm、12 cm,则它的面积为__________cm2.(2)已知等腰三角形的一个外角为100°,则这个等腰三角形的顶角为__________.16.(1)如图①,在等腰梯形ABCD中,AD∥BC,∠B=60°,AD=4,BC=7,则梯形ABCD的周长是__________.(2)如图②,在Rt△ABC中,∠ACB=90°,∠BAC的平分线AD交BC于点D,DE∥AC,DE交AB于点E,M为BE的中点,连接DM.在不添加任何辅助线和字母的情况下,图中的等腰三角形共有__________个.17. 如图,在Rt△ABC中,∠BAC=90°,AB=3,M为边BC上的点,连接AM.如果将△ABM 沿直线AM翻折后,点B恰好落在边AC的中点处,那么点M到AC的距离是__________.18.如图,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH,…,添加的钢管长度都与OE相等,则最多能添加这样的钢管__________根.三、解答题19.利用网格作图,(1)请你在图①中画出线段AB关于线段CD所在直线成轴对称的图形;(2)请你在图②中添加一条线段,使图中的3条线段组成一个轴对称图形.请画出所有情形;(3)请你先在图③的BC上找一点P,使点P到AB、AC的距离相等,再在射线AP上找一点Q,使QB=QC.20.如图,在AABC中,BD、CE是高,G、F分别是BC、DE的中点,连接GF,试判断GF与DE有何特殊的位置关系?请说明理由.21.如图,在△ABC中,AB=AC,BC=BD=ED=EA,求∠A的度数.22.如图,在梯形ABCD 中,AD ∥BC ,AB =DC =AD ,BC =AC ,求该梯形中各内角的度数.23.如图,在等腰△ABC 中,顶角的平分线BD 交AC 于点D ,AD =3,作△ABC 的高AE 交CB 的延长线于点E ,且AE 与BC 的长是方程组55101,10552x y m x y m +=-⎧⎨-=-⎩的解.已知()1205ABCm m S=≠,求△ABC 的周长.24.如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点P为BC边上一点,PE⊥AB于点E,PF⊥DC于点F,BG⊥CD于点G,试说明PE+PF=BG.25.在梯形ABCD中,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从点A开始沿边AD向点D以1 cm/s的速度移动,点Q从点C开始沿边CB向点B以2 cm/s的速度移动,如果点P、Q分别从两点同时出发,多少秒后,梯形PBQD是等腰梯形?参考答案一、1.B 2. D3.C4.A5.D6.D7.B8.C9.B 10.B二、11.答案不唯一,如目、田12.(1)1.5 (2)70°或20°13.(1)10 (2)140°14.(1)20°(2)45°15.(1)120 (2)80°或20°16.(1)17 (2)3 17.2 18.8三、19.略20.GF⊥DE理由:连接GE、GD.因为BD是△ABC的高,所以∠BDC=90°.因为G是BC的中点,所以DG=12BC.同理,EG=12BC.所以DG=EG.又因为F是DE的中点,所以在△EGD中,GF⊥DE.21.设∠A=x.因为AE=ED,所以∠ADE=∠A=x.又∠BED为△AED的外角,所以∠BED=∠ADE+∠A=2x.因为BD=ED,所以∠DBE=∠DEB=2x.因为∠BDC为△ABD 的外角,所以∠BDC=∠EBD+∠A=3x.因为BD=BC,所以∠BDC=∠C=3x.因为AB=AC,所以∠ABC=∠C=3x.又因为△ABC的内角和为180°,所以22+3x+3x=180°.解得x=(1807) °,即∠A=(1807) °22.如图,设∠1=x.因为AB=AD,所以∠1=∠2=x.因为AD∥BC,所以∠2=∠3=x.所以∠ABC=∠1+∠3=2x.因为AD∥BC,AB=DC,所以∠ABC=∠DCB=2x,AC=BD.又因为BC=AC,所以BC=BD.所以∠4=∠BCD=2x.因ABCD的内角和为180°.所以x+2x+2x=180°,解得x=36°.所以∠ABC=∠DCB=72°.因为AD∥BC,所以∠ABC+∠BAD=180°,∠DCB+∠ADC=180°,所以∠BAD=∠ADC=108°23.55101,10552,x y mx y m+=-⎧⎨-=-⎩①②由①+②得,15x=15m-3.所以x=m-15.①×2-②得15y=15m,所以y=m.由125ABCmS =,得12xy=125m,即1 2·(m1-5)m=125m.因为m≠0,所以1112(m- )=255,解得m=5.此时x=4.8,y=5.⎧⎨⎩由于AB=BC>AE,所以BC=5,AE=4.8.又因为AB=BC,BD平分∠ABC,所以AD=DC=3,即AC=6.所以△ABC的周长为6+5 x 2=16。
轴对称图形的练习题

轴对称图形的练习题轴对称图形的练习题轴对称图形是数学中一个有趣且常见的概念。
它们在几何形状的研究中起着重要的作用。
通过练习轴对称图形的题目,我们可以更好地理解轴对称性质以及如何判断一个图形是否具有轴对称性。
本文将给出一些有趣的练习题,帮助读者巩固对轴对称图形的理解。
练习题1:判断轴对称图形首先,让我们来判断一些常见的图形是否具有轴对称性。
请仔细观察下面的图形,并在心中判断它们是否具有轴对称性。
然后,将你的答案写下来。
1. 一个圆2. 一个正方形3. 一个长方形4. 一个等边三角形5. 一个五角星答案:1. 一个圆:具有轴对称性。
无论从哪个方向旋转180度,都可以得到与原图形完全相同的图形。
2. 一个正方形:具有轴对称性。
以正方形的中心为轴,将正方形旋转180度,可以得到与原图形完全相同的图形。
3. 一个长方形:不具有轴对称性。
无论从哪个方向旋转180度,都无法得到与原图形完全相同的图形。
4. 一个等边三角形:具有轴对称性。
以三角形的中线为轴,将三角形旋转180度,可以得到与原图形完全相同的图形。
5. 一个五角星:不具有轴对称性。
无论从哪个方向旋转180度,都无法得到与原图形完全相同的图形。
练习题2:找出轴对称图形的轴线现在,让我们来找出一些具有轴对称性的图形的轴线。
请仔细观察下面的图形,并在心中想象它们的轴线。
然后,将你的答案写下来。
1. 一个心形2. 一个蝴蝶形状3. 一个字母“X”4. 一个字母“H”5. 一个字母“O”答案:1. 一个心形:具有轴对称性。
心形的轴线位于心形的中心,将心形沿轴线旋转180度,可以得到与原图形完全相同的图形。
2. 一个蝴蝶形状:具有轴对称性。
蝴蝶形状的轴线位于蝴蝶的中心,将蝴蝶形状沿轴线旋转180度,可以得到与原图形完全相同的图形。
3. 一个字母“X”:具有轴对称性。
字母“X”的轴线位于字母“X”的中心,将字母“X”沿轴线旋转180度,可以得到与原图形完全相同的图形。
【苏科版】八年级上第二章《轴对称图形》压轴题训练(含答案) (2)

第2章 勾股定理与平方根整章水平测试一.选一选,看完四个选项再做决定!(每小题3分,共30分)1.如果一个数的平方根与这个数的立方根相等,那么这个数等于( )(A )0 (B )1 (C )0或1 (D )-12.在实数-π,,|-2|,,,,0.808008中,无理数个数为( )(A )2 (B )3 (C )4 (D )53.四舍五入保留两个有效数字得0.68的数是( )(A)0.6749 (B)6705 (C)0.6850 (D)0.68094.下列几组数中,不能作为直角三角形三边长度的是( )(A )a=7, b=24, c=25 (B ) a=1.5, b=2, c=2.5(C ) a=, b=2, c= (D ) a=15, b=8, c=175.一个等腰三角形底边长为10厘米,腰长为13厘米,则腰长的高为( )(A)12厘米 (B)厘米 (C)厘米 (D)136910厘米 6.三角形的三边长为(a+b)2=c 2+2ab ,则这个三角形是( )(A )等边三角形 (B )钝角三角形(C )直角三角形 (D )锐角三角形7.估算+2的值在( )(A )5和6之间 (B )6和7之间(C )7和8之间 (D )8和9之间8.小华准备测量一段河水的深度,他把一根竹杆插到离岸边1.5米远的水底,竹杆高出水面0.5米,把竹杆的顶端拉向岸边,杆顶和岸边的水面刚好相齐,则竹杆的高度为( )(A )2米 (B ) 2.5米 (C )2.25米 (D )3米B E D CF A 图3 B C A图4 8cm A BC 图5N M B A C 图2 9.园丁住宅小区有一块草坪如图1所示,已知AB=3m ,BC=4m ,CD=12m ,DA=13m ,且AB ⊥BC ,这块草坪的面积是( )(A)24m 2 (B)36m 2C)48m 2 (D)72m 210.如图2,正方形网格中,每个小正方形的边长为1,则网格上的三角形中,边长为无理数的边数是 ( )(A)0 (B )1 (C )2 (D )3二.填一填,要相信自己的能力!(每小题3分,共30分)1.如果2m -1和5-m 是一个数a 的两个平方根,则m= ,a= .2.3x -9的平方根是0,则x= ;5+2y 的立方根是-3,则y= .3.当0<a <1时,化简-= .4.在Rt △ABC 中,∠C=90º,若BC=8,AB=17,则AB 边上的高CD 的长为____米.5.如图3,△ABC 和△ACF 都是直角三角形,且∠B=∠CAF=90º,四边形CDEF 是正方形,如果AB=4,BC=3,AF=12,则这个正方形CDEF 的面积为 .6.如图4,从A 处到B 处有两条路,一条是直路AB ,另一条是先沿正西走400米到达C 处,然后沿正北再走300米到达B 处.如果走直路的速度是走第二条路速度的一半,而走第二条路所需的时间是7分钟,那么走直路所需的时间是 .A D C B 图17.如图5,由Rt △的三边向外作正方形,若最大正方形的边长为8cm ,则正方形与正方形的面积之和为 cm.8.在实数的原有运算法则中我们补充定义新运算“△”如下:当a ≥b 时,a △b=;当a <b 时,a △b=a. 则当x=2时,(1△x)-(3△x) 的值为 .9.已知+=0,则以a.b.c 为三边的三角形形状是 .10.已知数轴上两点A.B 到原点的距离是和2,则AB= .三.做一做,要注意认真审题!(本大题共40分)1.(每小题3分,共6分)计算:(1)-÷412+; (2)31251241--.2.(每小题3分,共9分)用计算器完成下列各题:(1)求值:±(精确到0.01);(2)比较大小:与-;(3)计算:(结果保留3个有效数字).3.(8分)如图6所示,一个寻宝探险队从A 处出发探寻宝藏,他们向东行4千米到达C 点,然后又向正北方向行走2.5千米到达D 点,接着他们又向正东方向行走2千米到达E 点,最后他们又向正北方向行走5.5千米到达B 点,才找到了宝藏.若他们能直线行走,要少走多少路程? A B C D E 图64.(9分)求一个正数的算术平方根,有些数可以直接求得,如,有些数则不能直接求得,如,但可以通过计算器求得.还有一种方法可以通过一组数的内在联系,运用规律求得,请同学们观察下表: n0.09 9 900 90000 …0.3 3 30 300 …(1)从表中所给的信息中,你能发现什么规律?请将规律写出来; (2)运用你发现的规律,探究下列问题:已知=1.435,求下列各数的算术平方根:①0.0206;②206;③20600.5.(8分)如图7,滑杆在机械槽内运动,为直角,已知滑杆长2.5米,顶端在上运动,量得滑杆下端距点的距离为1.5米,当端点向右移动0.5米时,求滑杆顶端下滑多少米?四.探索创新,再接再厉!(本大题共20分)1.(10分)先阅读然后解答提出的问题:设a.b 是有理数,且满足a+b=3,求的值.解:由题意得(a -3)+(b+2) =0,因为 a.b 都是有理数,所以a A E C B D 图7图8-3,b+2也是有理数.由于是无理数,所以a -3=0,b+2=0,所以a=3,b=-2,所以==-8.问题:设x.y 都是有理数,且满足=17-4.求x+y 的值.2.(10分)如图8(1)是用硬纸板做成的两个全等的直角三角形,两直角边的长分别是a 和b ,斜边长为c.图8(2)是以c 为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能验证勾股定理的图形.(1)画出拼成一个能验证勾股定理的图形.(2)用这个图形验证勾股定理. (3)假设图8(1)中的直角三角形有若干个,你能运用图8(1)中所给的直角三角形拼出另一种能验证勾股定理的图形吗?请画出拼成后的示意图(无需说明理由).c c bc a a c b (2) (1)(4) bc a b c a b c aa cb (3) ca b b c a参考答案一.1.C 2.B 3.D 4.C 5.B 6. C 7.B 8.B 9.B10.C二.1.-4,81 2.3, -16 3.1-2 a 4. 5.169 6.4.9分钟 7.64 8.0 9.直角三角形 10.2+ 或 2-.三.1.(1)原式=2÷+1=2×+1=2;(2)原式=-0.3-0.4=-0.5.2.(1)±1.01;(2)<-;(3)2.67.3.可把DE 平移与AC 在同一直线上,DC 平移与BE 在同一直线上,构成直角三角形,由勾股定理,得AB==10(千米),而AC+DC+DE+BE=4+2.5+2+5.5=14(千米),因此若他们能直线行走,要少走14-10=4(千米).4.(1)被开方数的小数点向右或向左每移动两位,算术平方根则也相应地向右或向左移动一位;(2)①0.1435;②14.35;③143.5.5.设的长为米,依题意得.因为AB=DE=2.5,BC=1.5,∠C=90º,所以AC==2.因为BD=0.5,所以在中,2222222.5() 2.5(1.50.5)CE DE CD CD BD =-=-+=-+.所以2-x=1.5,x=0.5,即.答:梯子下滑0.5米.四.1.由题意得=17,y=-4,所以=17,所以x=5或-5,所以x+y 的值为1或-9.2.(1)示意图如图(3)所示,它是直角梯形.(2)因为直角梯形面积为:(a+b )(a+b ) =;而直角梯形是由两直角边的长分别是a和b,斜边长为c的直角三角形和一个以c为直角边的等腰直角三角形拼成的,所以其面积又为: ab×2+c2=ab+ c2.所以=ab+ c2,化简,得.(3)能,如图(4)所示.。
鲁教版七年级数学上第二章轴对称2.3.3简单的轴对称图形-等要三角形的性质与判定 练习题

鲁教版七年级数学上第二章轴对称2.3.3简单的轴对称图形-等要三角形的性质与判定【基础训练】1.若等腰三角形的顶角为100°,则它的底角度数为( )(A)80° (B)50° (C)40° (D)20°2.如图,在Rt△ABC中,∠A=40°,∠B=90°,AC的垂直平分线MN分别与AB,AC交于点D,E,则∠BCD的度数为( )(A)10° (B)15°(C)40°(D)50°3.如图,在△ABC中,∠B=∠C=60°,点D为AB边的中点,DE⊥BC于E,若BE=1,则AC的长为( )(A)2 (B)3 (C)4 (D)54.(2019绥化)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A的度数为.5.(2020济宁附中)如图,已知BD平分∠ABC,AD∥BC,且AC=AD.(1)试说明:△ABD为等腰三角形;(2)判断∠C与∠D的数量关系,并说明理由.【综合训练】6.如图,在△ABC中,AB=AC,∠B=30°,AD⊥AB,交BC于点D,AD=4,则BC的长为( C )(A)8 (B)4 (C)12 (D)67.(2019武威)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰三角形ABC中,∠A=80°,则它的特征值k= .8.如图,在△A B C中,点D在B C边上,B D=A D=A C,E为C D的中点.若∠CAE=16°,则∠B为度.9.(2019重庆A卷)如图,在△ABC中,AB=AC,点D是BC边上的中点,连接AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)试说明:FB=FE.【提高训练】10.(2019哈尔滨)图1,2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)在图1中画出以A C为底边的等腰直角△A B C,点B在小正方形顶点上;图1(2)在图2中画出以AC为腰的等腰△ACD,点D在小正方形的顶点上,且△ACD的面积为8.(保留作图痕迹)图2。
苏科版八年级数学上册第二章轴对称图形压轴题练习

2. 在 △ ������������������中,
,������������ = ������������,经过点 C 的直线 l 与 AB 平行,点 D 为直线 l 上
的动点(不与点 C 重合),作射线 DA,过点 D 作射线������������ ⊥ ������������,交直线 BC 于点 E.
(2) 如图 3,若������������ ≠ ������������,
,
BN 与 AB 的位置关系,并说明理由.
,点 M 在线段 AB 上运动,请判断
7. 如图在等腰▵������������������中,������������ = ������������ = 20������������,������������ = 16������������,
5. 在 △ ������������������中,������������ = ������������,
交直线 BC 于点 Q.
,P 为直线 AC 上一点,过点 A 作������������ ⊥ ������������于点 D,
(1)如图 1,当 P 在线段 AC 上时,求证:������������ = ������������;
������→������→������方向运动,且速度为每秒 2cm,它们同时出发,设出发的时间为 t 秒.
(1)出发 2 秒后,求 △ ������������������的面积;
(2)当点 Q 在边 BC 上运动时,出发几秒钟后, △ ������������������能形成等腰三角形?
(3)当点 Q 在边 CA 上运动时,求能使 △ ������������������成为等腰三角形的运动时间.
且在 CM 的下方(沿 CM 顺时针方向)作等腰直角三角形 CMN,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章《轴对称图形》提高练习题1.如图,△ABC中,AB=AC,D、E分别是BC、AC上的点,∠BAD与∠CDE满足什么条件时AD=AE?写出你的推理过程.2.如图,D是等边△ABC的边AB上一点,E是BC延长线上一点,CE=DA,连接DE交AC于F,过D点作DG⊥AC于G点.证明下列结论:(1)AG=AD;(2)DF=EF;(3)S△DGF=S△ADG+S△ECF.3.在菱形ABCD中,∠B=60°,AC是对角线.(1)如图1,点E、F分别在边BC、CD上,且BE=CF.①求证:△ABE≌△ACF;②求证:△AEF是等边三角形.(2)若点E在BC的延长线上,在直线CD上是否存在点F,使△AEF是等边三角形?请证明你的结论(图2备用).4.如图,已知△ABC为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连接CE,DE.求证:EC=ED.5.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.6.如图,△ABC是等边三角形,过点C作CD⊥CB交∠CBA的外角平分线于点D,连接AD,过点C作∠BCE=∠BAD,交AB的延长线于点E.(1)求证:BD=BE;(2)若CD=4,求AD的长.7.如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点M处,点C落在点N处,MN与CD交于点P,连接EP.(1)如图②,若M为AD边的中点,①△AEM的周长=cm;②求证:EP=AE+DP;(2)随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.8.如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.9.如图,点O是等边△ABC内一点.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.已知∠AOB=110°.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.10.如图:在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.(1)写出点O到△ABC的三个顶点A、B、C距离之间的关系;(2)如果点M、N分别在线段AB、AC上移动,移动中保持AN=BM,请判断△OMN的形状,并证明你的结论.参考答案1.考点:等腰三角形的性质.专题:压轴题;开放型.解答:当∠BAD=2∠CDE时,AD=AE。
证明:若∠BAD=2∠CDE,设∠CDE=x,则∠BAD=2x,∵AB=AC,∴∠B=∠C,∵∠2=∠CDE+∠C,∠ADC=∠BAD+∠B,∴∠2=x+∠C,∠1+x=2x+∠B=2x+∠C,∴∠1=x+∠C=∠2,∴AD=AE.题1 题2 题32.考点:等边三角形的判定与性质;全等三角形的判定与性质;含30度角的直角三角形.专题:压轴题.证明:(1)∵△ABC是等边三角形,∴∠A=60°,∵DG⊥AC,∴∠AGD=90°,∠ADG=30°,∴AG=AD/2;(2)过点D作DH∥BC交AC于点H,∴∠ADH=∠B,∠AHD=∠ACB,∠FDH=∠E,∵△ABC是等边三角形,∴∠B=∠ACB=∠A=60°,∴∠A=∠ADH=∠AHD=60°,∴△ADH是等边三角形,∴DH=AD,∵AD=CE,∴DH=CE,在△DHF和△ECF中,△DHF≌△ECF(AAS),∴DF=EF;(3)∵△ABC是等边三角形,DG⊥AC,∴AG=GH,∴S△ADG=S△HDG,∵△DHF≌△ECF,∴S△DHF=S△ECF,∴S△DGF=S△DGH+S△DHF=S△ADG+S△ECF.3.考点:等边三角形的判定;全等三角形的判定与性质;菱形的性质.专题:压轴题;开放型.(1)证明:①∵四边形ABCD是菱形,∴AB=BC,∠ACB=∠ACF,又∵∠B=60°,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,∴∠B=∠ACF,∵BE=CF,∴△ABE≌△ACF;②由△ABE≌△ACF,∴AE=AF,∠BAE=∠CAF,∵∠BAE+∠CAE=60°,∴∠CAF+∠CAE=60°,即∠EAF=60°,∴△AEF是等边三角形.(2)答:存在。
证明:在CD延长线上取点F,使CF=BE,与(1)①同理可证△ABE≌△ACF,∴AE=AF,∠BAE=∠CAF,∴∠CAF﹣∠CAE=∠BAE﹣∠CAE,∴∠EAF=∠BAC,∵∠BAC=60°,∴∠EAF=60°∴△AEF是等边三角形.注:若在CD延长线上取点F,使CE=DF亦可.4.考点:等边三角形的判定与性质;全等三角形的判定与性质.专题:证明题;压轴题.证明:延长BD至F,使DF=BC,连接EF,∵AE=BD,△ABC为等边三角形,∴BE=BF,∠B=60°,∴△BEF为等边三角形,∴∠F=60°,在△ECB和△EDF中,∴△ECB≌△EDF(SAS),∴EC=ED.题4 题5 题65.考点:等边三角形的性质;全等三角形的判定与性质;含30度角的直角三角形.专题:压轴题;动点型.解:(1)∵△ABC是边长为6的等边三角形,∴∠ACB=60°,∵∠BQD=30°,∴∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,∴QC=QB+BC=6+x,∵在Rt△QCP中,∠BQD=30°,∴PC=QC/2,即6﹣x=(6+x)/2,解得x=2,∴AP=2;(2)当点P、Q同时运动且速度相同时,线段DE的长度不会改变.理由如下:作QF⊥AB,交直线AB于点F,连接QE,PF,又∵PE⊥AB于E,∴∠DFQ=∠AEP=90°,∵点P、Q速度相同,∴AP=BQ,∵△ABC是等边三角形,∴∠A=∠ABC=∠FBQ=60°,在△APE和△BQF中,∵∠AEP=∠BFQ=90°,∴∠APE=∠BQF,△APE≌△BQF(AAS),∴AE=BF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=EF/2,∵EB+AE=BE+BF=AB,∴DE=AB/2,又∵等边△ABC的边长为6,∴DE=3,∴点P、Q同时运动且速度相同时,线段DE的长度不会改变.6.考点:等边三角形的性质;全等三角形的判定与性质;勾股定理.专题:计算题;证明题;压轴题.证明:(1)∵△ABC为等边三角形,∴AB=BC,∴∠5=60°.又∵∠5+∠CBE=180°,∴∠CBE=120°.又∵BD 平分∠CBE,∴.∴∠5+∠3=∠4+∠3=120°.∴∠ABD=∠CBE.∵在△ABD和△CBE中,△ABD≌△CBE(ASA).∴BD=BE.(2)过D作DF⊥AE于F,∴∠DFB=∠DCB=90°,又∵∠CBD=∠FBD,BD=BD,∴△CBD≌△FBD (AAS).∴CB=BF,DF=CD=4.∵∠3=60°,∠BCD=90°,∴∠CDB=30°,∴设BC=x,则BD=2x,则42+x2=(2x)2,解得:x=,∵BD=BE,∴BD=,在直角三角形BCD中,∵∠BCD=90°,∴BC=,∴BF=BC=.∵AB=BC,∴AF=AB+BF=+=.直角三角形ADF中,AF=,DF=4.∴根据勾股定理可得出AD=.7.考点:翻折变换(折叠问题);全等三角形的判定;矩形的性质;相似三角形的判定.专题:几何综合题;压轴题.解:(1)由折叠知BE=EM,∠B=∠EMP=90°.①△AEM的周长=AE+EM+AM=AE+EB+AM=AB+AM.∵AB=4,M是AD中点,∴△AEM的周长=4+2=6(cm);②现证明EP=AE+PD。
方法一:取EP的中点G,则在梯形AEPD中,MG为中位线,∴MG=(AE+PD),在Rt△EMP中,MG为斜边EP的中线,∴MG=EP,∴EP=AE+PD.方法二:延长EM交CD延长线于Q点.∵∠A=∠MDQ=90°,AM=DM,∠AME=∠DMQ,∴△AME≌△DMQ.∴AE=DQ,EM=MQ.又∵∠EMP=∠B=90°,∴PM垂直平分EQ,有EP=PQ.∵PQ=PD+DQ,∴EP=AE+PD.(2)△PDM的周长保持不变.设AM=x,则MD=4﹣x.由折叠性质可知,EM=4﹣AE,在Rt△AEM中,AE2+AM2=EM2,即AE2+x2=(4﹣AE)2,整理得:AE2+x2=16﹣8AE+AE2,∴AE=(16﹣x2),又∵∠EMP=90°,∴∠AME+∠DMP=90°.∵∠AME+∠AEM=90°,∴∠AEM=∠DMP.又∵∠A=∠D,∴△PDM∽△MAE.∴∴C△PDM=C△MAE•=(4+x)•=8.∴△PDM的周长保持不变.题78.如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.考点:等腰三角形的判定;全等三角形的判定与性质;勾股定理;正方形的判定.菁优网版权所有专题:证明题;压轴题;探究型.分析:(1)利用已知条件,可证出△BCE≌△DCF(SAS),即CE=CF.(2)借助(1)的全等得出∠BCE=∠DCF,∴∠GCF=∠BCE+∠DCG=90°﹣∠GCE=45°,即∠GCF=∠GCE,又因为CE=CF,CG=CG,∴△ECG≌△FCG,∴EG=GF,∴GE=DF+GD=BE+GD.(3)过C作CG⊥AD,交AD延长线于G,先证四边形ABCG是正方形(有一组邻边相等的矩形是正方形).再设DE=x,利用(1)、(2)的结论,在Rt△AED中利用勾股定理可求出DE.解答:(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF.∴CE=CF.(2)解:GE=BE+GD成立.∵△CBE≌△CDF,∴∠BCE=∠DCF.∴∠ECD+∠ECB=∠ECD+∠FCD.即∠ECF=∠BCD=90°.又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,∠GCF=∠GCE,GC=GC,∴△ECG≌△FCG.∴EG=GF.∴GE=DF+GD=BE+GD.(3)解:过C作CG⊥AD,交AD延长线于G,在直角梯形ABCD中,∵AD∥BC,∠A=∠B=90°,又∠CGA=90°,AB=BC,∴四边形ABCG为正方形.∴AG=BC=12.已知∠DCE=45°,根据(1)(2)可知,ED=BE+DG,设DE=x,则DG=x﹣4,∴AD=AG﹣DG=16﹣x,AE=AB﹣BE=12﹣4=8.在Rt△AED中∵DE2=AD2+AE2,即x2=(16﹣x)2+82解得:x=10.∴DE=10.点评:本题是一道几何综合题,内容涉及三角形的全等、图形的旋转以及勾股定理的应用,重点考查学生的数学学习能力,是一道好题.本题的设计由浅入深,循序渐进,考虑到学生的个体差异.从阅卷的情况看,本题的得分在4﹣8分的学生居多.前两个小题学生做得较好,第三小题,因为学生不懂得用前面积累的知识经验答题,数学学习能力不强,造成本小题得分率较低.9.如图,点O是等边△ABC内一点.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.已知∠AOB=110°.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.考点:等边三角形的判定;全等三角形的判定与性质;等腰三角形的判定;勾股定理的逆定理.菁优网版权所有专题:证明题;压轴题;探究型.分析:此题有一定的开放性,要找到变化中的不变量才能有效解决问题.解答:(1)证明:∵CO=CD,∠OCD=60°,∴△COD是等边三角形;(3分)(2)解:当α=150°,即∠BOC=150°时,△AOD是直角三角形.(5分)∵△BOC≌△ADC,∴∠ADC=∠BOC=150°,又∵△COD是等边三角形,∴∠ODC=60°,∴∠ADO=90°,即△AOD是直角三角形;(7分)(3)解:①要使AO=AD,需∠AOD=∠ADO.∵∠AOD=360°﹣∠AOB﹣∠COD﹣α=360°﹣110°﹣60°﹣α=190°﹣α,∠ADO=α﹣60°,∴190°﹣α=α﹣60°∴α=125°;②要使OA=OD,需∠OAD=∠ADO.∵∠AOD=190°﹣α,∠ADO=α﹣60°,∴∠OAD=180°﹣(∠AOD+∠ADO)=50°,∴α﹣60°=50°∴α=110°;③要使OD=AD,需∠OAD=∠AOD.∵190°﹣α=50°∴α=140°.综上所述:当α的度数为125°,或110°,或140°时,△AOD是等腰三角形.(12分)说明:第(3)小题考生答对1种得(2分),答对2种得(4分).点评:本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明、直角三角形的判定、多边形内角和等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力.10.如图:在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.(1)写出点O到△ABC的三个顶点A、B、C距离之间的关系;(2)如果点M、N分别在线段AB、AC上移动,移动中保持AN=BM,请判断△OMN的形状,并证明你的结论.考点:等腰三角形的判定与性质;全等三角形的判定与性质;直角三角形斜边上的中线.菁优网版权所有专题:压轴题;探究型.分析:(1)由于△ABC是直角三角形,点O是BC的中点,根据直角三角形的性质:直角三角形斜边上的中线等于斜边的一半,故有OA=OB=OC=BC;(2)由于OA是等腰直角三角形的斜边上的中线,根据等腰直角三角形的性质知,∠CAO=∠B=45°,OA=OB,又有AN=MB,所以由SAS证得△AON≌△BOM可得:ON=OM ①∠NOA=∠MOB,于是有,∠NOM=∠AOB=90°,所以△OMN是等腰直角三角形.解答:解:(1)∵在Rt△ABC中,∠BAC=90°,O为BC的中点,∴OA=BC=OB=OC,即OA=OB=OC;(2)△OMN是等腰直角三角形.理由如下:连接AO∵AC=AB,OC=OB∴OA=OB,∠NAO=∠B=45°,在△AON与△BOM中∴△AON≌△BOM(SAS)∴ON=OM,∠NOA=∠MOB∴∠NOA+∠AOM=∠MOB+∠AOM∴∠NOM=∠AOB=90°,∴△OMN是等腰直角三角形.点评:本题利用了等腰直角三角形的性质,全等三角形的判定和性质求解.。