平行四边形的判定专题练习题

合集下载

平行四边形的判定习题-含答案

平行四边形的判定习题-含答案
解:猜想线段CD与线段AE的大小关系和位置关系是:平行且相等.
证明:∵CE∥AB,
∴∠DAO=∠ECO,
∵OA=OC,
∴△ADO≌△ECO,
∴AD=CE,
∴四边形ADCE是平行四边形,
∴CD AE.
6.如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点.
求证:四边形MFNE是平行四边形.
证明:∵▱ABCD中,对角线AC交BD于点O,
∴OB=OD,
又∵四边形AODE是平行四边形,
∴AE∥OD且AE=OD,Fra bibliotek∴AE∥OB且AE=OB,
∴四边形ABOE是平行四边形,
同理可证,四边形DCOE也是平行四边形.
13.如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H有在同一条直线上.
证明:如答图所示,
∵点O为平行四边形ABCD对角线AC,BD的交点,
∴OA=OC,OB=OD.
∵G,H分别为OA,OC的中点,
∴OG= OA,OH= OC,
∴OG=OH.
又∵AB∥CD,
∴∠1=∠2.
在△OEB和△OFD中,
∠1=∠2,OB=OD,∠3=∠4,
∴△OEB≌△OFD,
∴OE=OF.
∴四边形EHFG为平行四边形.
平行四边形的判定
1.如图所示,□AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.
2如图,已知,□ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形.
3如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.

平行四边形的判定典型试题综合训练(含解析)完美打印版

平行四边形的判定典型试题综合训练(含解析)完美打印版

平行四边形的判定典型试题综合训练(含解析)一.选择题(共16小题)1.在下列条件中,不能判定四边形为平行四边形的是()A.一组对边平行,另一组对边相等B.一组对边平行且相等C.两组对边分别平行D.对角线互相平分2.四边形ABCD中,AB=CD,AB∥CD,则下列结论中错误的是()A.∠A=∠C B.AD∥BC C.∠A=∠B D.对角线互相平分3.如图,在四边形ABCD中,AB∥CD,要使四边形ABCD是平行四边形,可添加的条件不正确的是()A.AB=CD B.BC∥AD C.∠A=∠C D.BC=AD4.如图,在四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形,则应增加的条件是()A.AB=CD B.∠BAD=∠DCB C.AC=BD D.∠ABC+∠BAD=180°5.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A.①,②B.①,④C.③,④D.②,③6.根据图中所给的边长长度及角度,判断下列选项中的四边形是平行四边形的为()A. B.C.D.7.如图所示,四边形ABCD是平行四边形,按下列条件得到的四边形BFDE是平行四边形的个数是()①图甲,DE⊥AC,BF⊥AC②图乙,DE平分∠ADC,BF平分∠ABC③图丙,E是AB的中点,F是CD的中点④图丁,E是AB上一点,EF⊥AB.A.3个B.4个C.1个D.2个8.如图,由9个全等的等边三角形拼成一个几何图案,这个图案中共有平行四边形()A.15个 B.14个 C.13个 D.12个9.如图是由4 个边长为1 的正方的平行四边形的个数是形构成的网格.用没有刻度的直尺在这个网格中最多可以作出一组对边长度为的平行四边形的个数是()A.2 个B.4 个C.6 个D.8 个10.如图,▱ABCD中,过对角线BD上一点作EF∥BC,GH∥AB,图中面积相等的平行四边形有()对.A.2对B.3对C.4对D.5对11.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A.6 B.12 C.20 D.2412.如图,在△ABC中,AB=AC=8,D是BC上一动点(D与B、C不重合),且DE∥AB,DF∥AC,则四边形DEAF的周长是()A.24 B.18 C.16 D.1213.如图,平行四边形ABCD中,E,F分别是边BC,AD上的点,有下列条件:①AE∥CF;②BE=FD;③∠1=∠2;④AE=CF,若要添加其中一个条件,使四边形AECF一定是平行四边形,则添加的条件可以是()A.①②③④B.①②③C.②③④D.①③④14.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE=∠CBF;④∠ABE=∠CDF.其中不能判定四边形DEBF是平行四边形的有()A.0个B.1个C.2个D.3个15.如图,平行四边形ABCD中,AB=6cm,AD=10cm,点P在AD 边上以每秒1cm的速度从点A向点D 运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有()A.1 次B.2次C.3次D.4次16.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是10+2;④四边形ACEB 的面积是16.则以上结论正确的个数是()A.1个B.2个C.3个D.4个二.填空题(共12小题)17.如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成了一个四边形ABCD,当线段AD=3时,线段BC的长为.18.如图,平行四边形ABCD中,AE=CG,DH=BF,连接E,F,G,H,E,则四边形EFGH是.19.如图,AC、BD是相交的两条线段,O分别为它们的中点.当BD绕点O旋转时,连接AB、BC、CD、DA所得到的四边形ABCD始终为形.20.如图,在▱ABCD中,EF∥BC,MN∥CD,EF与MN相交于点O,除外,图中还有个平行四边形.21.如图,直线EF与▱ABCD的对角线AC平行,分别交DA,CB的延长线于点E,F,直线GH与AC平行,分别交CD,BA的延长线于点G,H,则EF与HG的关系是.22.如图,为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,给出如下的判断:①四边形ABCD为平行四边形;②BD的长度增大;③四边形ABCD的面积不变;④四边形ABCD的周长不变.其中正确的序号是.23.如图,点E,F分别放在▱ABCD的边BC、AD上,AC、EF交于点O,请你添加一个条件(只添一个即可),使四边形AECF是平行四边形,你所添加的条件是.24.如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为.25.如图,△ABC中,AB=30,BC=24,AC=27,O为△ABC内一点,过点O作GM∥AB,交AC于G,交BC于M,过点O作EN∥AC,交AB于E,交BC于N,过点O作DF∥BC,交AC于D,交AB于F,连接GE,FM,DN.若GE∥DF,FM∥EN,DN∥GM,则△ODN,△OGE,△OFM的周长之和为.26.已知A(﹣2,2),B(1,﹣2),C(5,1),以A,B,C为顶点的平行四边形的第四个顶点D的坐标为.27.如图,在10个边长都为1的小正三角形的网格中,点P是网格的一个顶点,以点P为顶点作格点平行四边形(即顶点均在格点上的四边形),请你写出所有可能的平行四边形的对角线的长.28.如图,在四边形ABCD中,AB∥DC,E是AD中点,EF⊥BC于点F,BC=5,EF=3.(1)若AB=DC,则四边形ABCD的面积S=;(2)若AB>DC,则此时四边形ABCD的面积S′S(用“>”或“=”或“<”填空).三.解答题(共13小题)29.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.30.如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.(1)求证:四边形BCED是平行四边形;(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.31.如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.(1)求证:四边形BDEF为平行四边形;(2)当∠C=45°,BD=2时,求D,F两点间的距离.32.如图,▱ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N.(1)求证:四边形CMAN是平行四边形.(2)已知DE=4,FN=3,求BN的长.33.嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=求证:四边形ABCD是四边形.(1)填空,补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为.34.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,过点O作直线EF,分别交AD、BC于点E和点F,(1)求证:DE=BF.(2)若EF⊥BD,试判断四边形BEDF是什么特殊平行四边形?并证明你的结论.35.(1)如图1,已知△ABC中,以B、C为圆心,以大于BC长为半径画弧相交于M、N两点,连接MN交BC于点D,则线段BD与CD的数量关系为.(2)在(1)的基础上,取AB的中点E,连接DE并延长到F,使EF=DE,连接AF、BF、AD,得到图2.①求证:四边形AFDC是平行四边形.②当∠BAC=90°时,求证:AF=AD.36.如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合),DE∥AB交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.37.在△ABC中,AB=AC,点P为△ABC为所在平面内一点,过点P分别作PF∥AC交AB于点F,PE∥AB 交BC于点D,交AC于点E.(1)当点P在BC边上(如图1)时,请探索线段PE,PF,AB之间的数量关系式为.(2)当点P在△ABC内(如图2)时,线段PD,PE,PF,AB之间有怎样的数量关系,请说明理由.(3)当点P在△ABC外(如图3)时,线段PD,PE,PF,AB之间有怎样的数量关系,直接写出结论.38.已知:如图,▱ABCD中,∠ABC的平分线交AD于E,∠CDA的平分线交BC于F.(1)求证:△ABE≌△CDF;(2)连接EF、BD,求证:EF与BD互相平分.39.如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.求证:(1)△BEG≌△DFH;(2)四边形GEHF是平行四边形.40.如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连接AD,作BE⊥AD,垂足为E,连接CE,过点E作EF⊥CE,交BD于F.(1)求证:BF=FD;(2)点D在运动过程中能否使得四边形ACFE为平行四边形?如不能,请说明理由;如能,求出此时∠A 的度数.41.如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.平行四边形的判定典型试题综合训练参考答案与试题解析一.选择题(共16小题)1.在下列条件中,不能判定四边形为平行四边形的是()A.一组对边平行,另一组对边相等B.一组对边平行且相等C.两组对边分别平行D.对角线互相平分【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【解答】解:根据平行四边形的判定,B、D、C均符合是平行四边形的条件,A则不能判定是平行四边形.故选A.2.四边形ABCD中,AB=CD,AB∥CD,则下列结论中错误的是()A.∠A=∠C B.AD∥BC C.∠A=∠B D.对角线互相平分【分析】由AB=CD,AB∥CD,推出四边形ABCD是平行四边形,推出∠DAB=∠DCB,AD∥BC,OA=OC,OB=OD,由此即可判断.【解答】解:如图,∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∴∠DAB=∠DCB,AD∥BC,OA=OC,OB=OD,∴选项A、B、D正确,故选C3.如图,在四边形ABCD中,AB∥CD,要使四边形ABCD是平行四边形,可添加的条件不正确的是()A.AB=CD B.BC∥AD C.∠A=∠C D.BC=AD【分析】根据平行四边形的判定方法,逐项判断即可.【解答】解:∵AB∥CD,∴当AB=CD时,由一组对边平行且相等的四边形为平行四边形可知该条件正确;当BC∥AD时,由两组对边分别的四边形为平行四边形可知该条件正确;当∠A=∠C时,可求得∠B=∠D,由两组对角分别相等的四边形为平行四边形可知该条件正确;当BC=AD时,该四边形可能为等腰梯形,故该条件不正确;故选D.4.如图,在四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形,则应增加的条件是()A.AB=CD B.∠BAD=∠DCB C.AC=BD D.∠ABC+∠BAD=180°【分析】根据平行四边形的判定方法,以及等腰梯形的性质等知识一一判断即可.【解答】解:A、错误.四边形ABCD是等腰梯形时,也满足条件.B、正确.∵AD∥BC,∴∠BAD+∠ABC=180°,∵∠BAD=∠DCB,∴∠DCB+∠ABC=180°,∴AB∥CD.∴四边形ABCD是平行四边形.C、错误.四边形ABCD是等腰梯形时,也满足条件.D、错误.∵∠ABC+∠BAD=180°,∴AD∥BC,与题目条件,重复,无法判断,四边形是不是平行四边形.故选B.5.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A.①,②B.①,④C.③,④D.②,③【分析】确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.【解答】解:∵只有②③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点,∴带②③两块碎玻璃,就可以确定平行四边形的大小.故选D.6.根据图中所给的边长长度及角度,判断下列选项中的四边形是平行四边形的为()A. B.C.D.【分析】利用平行四边形的判定定理、等腰梯形的判定及梯形的判定方法分别对每个选项判断后即可确定答案.【解答】解:A、上、下这一组对边平行,可能为等腰梯形;B、上、下这一组对边平行,左右一组对边相等,可能为等腰梯形,也可能为平行四边形,但等腰梯形的底角不可能是90°,所以为平行四边形,C、上、下这一组对边平行,可能为梯形;D、上、下这一组对边平行,可能为梯形.故选:B.7.如图所示,四边形ABCD是平行四边形,按下列条件得到的四边形BFDE是平行四边形的个数是()①图甲,DE⊥AC,BF⊥AC②图乙,DE平分∠ADC,BF平分∠ABC③图丙,E是AB的中点,F是CD的中点④图丁,E是AB上一点,EF⊥AB.A.3个B.4个C.1个D.2个【分析】①由DE⊥AC,BF⊥AC,可得DE∥BF,又由四边形ABCD是平行四边形,利用△ACD与△ACB的面积相等,即可判定DE=BF,然后由一组对边平行且相等的四边形是平行四边形,证得四边形BFDE是平行四边形;②由四边形ABCD是平行四边形,DE平分∠ADC,BF平分∠ABC,易证得△ADE≌△CBF,则可判定DE∥BF,DE=BF,继而证得四边形BFDE是平行四边形;③由四边形ABCD是平行四边形,E是AB的中点,F是CD的中点,易证得DF∥BE,DF=BE,继而证得四边形BFDE是平行四边形;④无法确定DF=BE,只能证得DF∥BE,故不能判定四边形BFDE是平行四边形.【解答】解:①∵四边形ABCD是平行四边形,∴S△ACD=S△ABC,∵DE⊥AC,BF⊥AC,∴DE∥BF,S△ACD=AC•DE,S△ABC=AC•BF,∴DE=BF,∴四边形BFDE是平行四边形;②∵四边形ABCD是平行四边形,∴∠ADC=∠ABC,AD=CB,AD∥BC,∴∠DAE=∠BCF,∵DE平分∠ADC,BF平分∠ABC,∴∠ADE=∠CBF,在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴DE=BF,∠AED=∠BFC,∴∠DEF=∠BFE,∴DE∥BF,∴四边形BFDE是平行四边形;③证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵E是AB的中点,F是CD的中点,∴DF=CD,BE=AB,∴DF=BE,∴四边形BFDE是平行四边形;④∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵E是AB上一点,EF⊥AB,无法判定DF=BE,∴四边形BFDE不一定是平行四边形.故选A.8.如图,由9个全等的等边三角形拼成一个几何图案,这个图案中共有平行四边形()A.15个 B.14个 C.13个 D.12个【分析】根据全等三角形的性质及平行四边形的判定,可找出15个平行四边形.【解答】解:两个全等的等边三角形,以一边为对角线构成的四边形是平行四边形,这样的两个平行四边形又可组成较大的平行四边形,从该图案中可以找出15个平行四边形.故选:A.9.如图是由4 个边长为1 的正方的平行四边形的个数是形构成的网格.用没有刻度的直尺在这个网格中最多可以作出一组对边长度为的平行四边形的个数是()A.2 个B.4 个C.6 个D.8 个【分析】根据勾股定理,两直角边分别为1、2的直角三角形的斜边为,平行四边形的对边相等解答.【解答】解:∵=,∴所作出的平行四边形每一个倾斜方向分别有3个,共有6个.故选C.10.如图,▱ABCD中,过对角线BD上一点作EF∥BC,GH∥AB,图中面积相等的平行四边形有()对.A.2对B.3对C.4对D.5对【分析】根据平行四边形的性质证全等三角形,然后利用等量关系推出面积相等.【解答】解:∵四边形ABCD是平行四边形,∴S△ABD=S△CBD.∵BP是平行四边形BEPG的对角线,∴S△BEP=S△BGP,∵PD是平行四边形HPFD的对角线,∴S△HPD=S△FPD.∴S△ABD﹣S△BEP﹣S△HPD=S△BCD﹣S△BGP﹣S△PFD,即S▱AEPH=S▱GCFP,∴S▱ABGH=S▱BCFE,同理S▱AEFD=S▱GCDH.即:S▱ABGH=S▱BCFE,S▱AHPE=S▱GCFP,S▱AEFD=S▱GCDH.故选:B.11.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A.6 B.12 C.20 D.24【分析】根据勾股定理,可得EC的长,根据平行四边形的判定,可得四边形ABCD的形状,根据平行四边形的面积公式,可得答案.【解答】解:在Rt△BCE中,由勾股定理,得CE===5.∵BE=DE=3,AE=CE=5,∴四边形ABCD是平行四边形.四边形ABCD的面积为BC•BD=4×(3+3)=24,故选:D.12.如图,在△ABC中,AB=AC=8,D是BC上一动点(D与B、C不重合),且DE∥AB,DF∥AC,则四边形DEAF的周长是()A.24 B.18 C.16 D.12【分析】根据等角对等边可得∠B=∠C,再根据两直线平行,同位角相等可得∠B=∠CDE,然后根据等角对等边可得CE=DE,同理可得BF=DF,然后求出四边形DEAF的周长=AB+AC,代入数据进行计算即可得解.【解答】解:∵AB=AC,∴∠B=∠C,∵DE∥AB,∴∠B=∠CDE,∴CE=DE,同理可得BF=DF,∴四边形DEAF的周长=AF+DF+DE+AE=AF+BF+CE+AE=AB+AC,∵AB=AC=8,∴四边形DEAF的周长=8+8=16.故选C.13.如图,平行四边形ABCD中,E,F分别是边BC,AD上的点,有下列条件:①AE∥CF;②BE=FD;③∠1=∠2;④AE=CF,若要添加其中一个条件,使四边形AECF一定是平行四边形,则添加的条件可以是()A.①②③④B.①②③C.②③④D.①③④【分析】由四边形ABCD是平行四边形,可得AD∥BC,AD=BC,∠BAD=∠BCD,然后利用平行四边形的判定分别分析求解,即可求得答案;注意利用举反例的方法可排除错误答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∠BAD=∠BCD,∴当①AE∥CF时,四边形AECF是平行四边形;故正确;当②BE=FD时,CE=AF,则四边形AECF是平行四边形;故正确;当③∠1=∠2时,∠EAF=∠ECF,∵∠EAF+∠AEC=180°,∠AFC+∠ECF=180°,∴∠AFC=∠AEC,∴四边形AECF是平行四边形;故正确;④若AE=AF,则四边形AECF是平行四边形或等腰梯形.故错误.故选B.14.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE=∠CBF;④∠ABE=∠CDF.其中不能判定四边形DEBF是平行四边形的有()A.0个B.1个C.2个D.3个【分析】若是四边形的对角线互相平分,可证明这个四边形是平行四边形,②不能证明对角线互相平分,只有①③④可以.【解答】解:由平行四边形的判定方法可知:若是四边形的对角线互相平分,可证明这个四边形是平行四边形,②不能证明对角线互相平分,只有①③④可以,故选B.15.如图,平行四边形ABCD中,AB=6cm,AD=10cm,点P在AD 边上以每秒1cm的速度从点A向点D 运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有()A.1 次B.2次C.3次D.4次【分析】由四边形ABCD为平行四边形可得出PD∥BQ,结合平行四边形的判定定理可得出当AP=BQ时以P、D、Q、B四点组成的四边形为平行四边形,分0<t<、<t<5、5<t<及<t<10四种情况考虑,在每种情况中由AP=BQ即可列出关于t的一元一次方程,解之即可得出结论.【解答】解:∵四边形ABCD为平行四边形,∴PD∥BQ.若要以P、D、Q、B四点组成的四边形为平行四边形,则AP=BQ.设运动时间为t.当0<t<时,AP=t,PD=10﹣t,CQ=4t,BQ=10﹣4t,∴10﹣t=10﹣4t,方程无解;当<t<5时,AP=t,PD=10﹣t,BQ=4t﹣10,∴10﹣t=4t﹣10,解得:t=4;当5<t<时,AP=t,PD=10﹣t,CQ=4t﹣20,BQ=30﹣4t,∴10﹣t=30﹣4t,解得:t=;当<t<10时,AP=t,PD=10﹣t,BQ=4t﹣30,∴10﹣t=4t﹣30,解得:t=8.综上所述:当运动时间为4秒、秒或8秒时,以P、D、Q、B四点组成的四边形为平行四边形.故选C.16.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是10+2;④四边形ACEB 的面积是16.则以上结论正确的个数是()A.1个B.2个C.3个D.4个【分析】证明AC∥DE,再由条件CE∥AD可证明四边形ACED是平行四边形;根据线段的垂直平分线证明AE=EB可得△BCE是等腰三角形;首先利用三角函数计算出AD=4,CD=2,再算出AB长可得四边形ACEB的周长是10+2,利用△ACB和△CBE的面积和可得四边形ACEB的面积.【解答】解:①∵∠ACB=90°,DE⊥BC,∴∠ACD=∠CDE=90°,∴AC∥DE,∵CE∥AD,∴四边形ACED是平行四边形,故①正确;②∵D是BC的中点,DE⊥BC,∴EC=EB,∴△BCE是等腰三角形,故②正确;③∵AC=2,∠ADC=30°,∴AD=4,CD=2,∵四边形ACED是平行四边形,∴CE=AD=4,∵CE=EB,∴EB=4,DB=2,∴CB=4,∴AB==2,∴四边形ACEB的周长是10+2故③正确;④四边形ACEB的面积:×2×4+×4×2=8,故④错误,故选:C.二.填空题(共12小题)17.如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成了一个四边形ABCD,当线段AD=3时,线段BC的长为3.【分析】由条件可知AB∥CD,AD∥BC,可证明四边形ABCD为平行四边形,可得到AD=BC.【解答】解:由条件可知AB∥CD,AD∥BC,∴四边形ABCD为平行四边形,∴BC=AD=3.故答案为3.18.如图,平行四边形ABCD中,AE=CG,DH=BF,连接E,F,G,H,E,则四边形EFGH是平行四边形.【分析】利用四边形ABCD是平行四边形,得出AD=BC,AB=CD,∠A=∠C,∠B=∠D,再利用证明△AEH ≌△CGF与△EBF≌△GDH,从而得出四边形EFGH两条对边相等,进而得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∠A=∠C,∠B=∠D,∵AE=CG,DH=BF,∴AD﹣DH=BC﹣BF,AB﹣AE=CD﹣CG,即:AH=CF,BE=DG,在△AEH和△CGF中,∵AH=CF,∠A=∠C,AE=CG,∴△AEH≌△CGF(SAS),∴EH=FG,在△EBF和△GDH中,∵DH=BF,∠B=∠D,BE=DG,∴△EBF≌△GDH,∴EF=HG,∴四边形EFGH是平行四边形.故答案为:平行四边形.19.如图,AC、BD是相交的两条线段,O分别为它们的中点.当BD绕点O旋转时,连接AB、BC、CD、DA所得到的四边形ABCD始终为平行四边形.【分析】利用对角线互相平分的四边形是平行四边形判定即可.【解答】解:∵AC、BD是相交的两条线段,O分别为它们的中点,∴当BD绕点O旋转时,始终有AO=OC,DO=BO,∴利用对角线互相平分的四边形是平行四边形可以得到:连接AB、BC、CD、DA所得到的四边形ABCD始终为平行四边形.故答案为:平行四边.20.如图,在▱ABCD中,EF∥BC,MN∥CD,EF与MN相交于点O,除外,图中还有8个平行四边形.【分析】由平行四边形的性质和已知条件得出AB∥CD∥MN,AD∥BC∥EF,即可得出图中还有8个平行四边形.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∵EF∥BC,MN∥CD,∴AB∥CD∥MN,AD∥BC∥EF,∴四边形ABNM、四边形CDMN、四边形AEFD、四边形MOFD、四边形AEOM、四边形DFOM、四边形BEON、四边形CFON是平行四边形,即除▱ABCD外,还有8个平行四边形.故答案为:8.21.如图,直线EF与▱ABCD的对角线AC平行,分别交DA,CB的延长线于点E,F,直线GH与AC平行,分别交CD,BA的延长线于点G,H,则EF与HG的关系是EF=HG,EF∥HG.【分析】根据平行四边形的性质得到AD∥BC,AD=BC,AB∥CD,AB=CD,推出四边形EFCA是平行四边形,四边形ACGH是平行四边形,得到EF=AC,HG=AC,等量代换即可得到结论.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,AB∥CD,AB=CD,∵EF∥AC,∴四边形EFCA是平行四边形,∴EF=AC,∵HG∥AC,∴四边形ACGH是平行四边形,∴HG=AC,∴EF=HG,EF∥HG.故答案为:EF=HG,EF∥HG.22.如图,为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,给出如下的判断:①四边形ABCD为平行四边形;②BD的长度增大;③四边形ABCD的面积不变;④四边形ABCD的周长不变.其中正确的序号是①②④.【分析】①正确.根据平行四边形的判定方法即可判断.②正确.观察图象即可判断.③错误.面积是变小了.④正确.根据平行四边形性质即可判断.【解答】解:∵两组对边的长度分别相等,∴四边形ABCD是平行四边形,故①正确,∵向右扭动框架,∴BD的长度变大,故②正确,∵平行四边形ABCD的底不变,高变小了,∴平行四边形ABCD的面积变小,故③错误,∵平行四边形ABCD的四条边不变,∴四边形ABCD的周长不变,故④正确.故答案为①②④23.如图,点E,F分别放在▱ABCD的边BC、AD上,AC、EF交于点O,请你添加一个条件(只添一个即可),使四边形AECF是平行四边形,你所添加的条件是AF=CE.【分析】根据平行四边形的性质得出AF∥CE,再根据平行四边形的判定定理得出即可.【解答】解:AF=CE,理由是:∵四边形ABCD是平行四边形,∴AD∥BC,即AF∥CE,∵AF=CE,∴四边形AECF是平行四边形,故答案为:AF=CE.24.如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为12.【分析】由于AF∥BC,从而易证△AEF≌△DEC(AAS),所以AF=CD,从而可证四边形AFBD是平行四边形,所以S四边形AFBD=2S△ABD,又因为BD=DC,所以S△ABC=2S△ABD,所以S四边形AFBD=S△ABC,从而求出答案.【解答】解:∵AF∥BC,∴∠AFC=∠FCD,在△AEF与△DEC中,∴△AEF≌△DEC(AAS).∴AF=DC,∵BD=DC,∴AF=BD,∴四边形AFBD是平行四边形,∴S四边形AFBD=2S△ABD,又∵BD=DC,∴S△ABC=2S△ABD,∴S四边形AFBD=S△ABC,∵∠BAC=90°,AB=4,AC=6,∴S△ABC=AB•AC=×4×6=12,∴S四边形AFBD=12.故答案为:1225.如图,△ABC中,AB=30,BC=24,AC=27,O为△ABC内一点,过点O作GM∥AB,交AC于G,交BC于M,过点O作EN∥AC,交AB于E,交BC于N,过点O作DF∥BC,交AC于D,交AB于F,连接GE,FM,DN.若GE∥DF,FM∥EN,DN∥GM,则△ODN,△OGE,△OFM的周长之和为81.【分析】根据平行四边形的判定定理证明四边形OEFM是平行四边形,根据平行四边形的性质得到OM=EF,同理推导即可.【解答】解:∵GM∥AB,FM∥EN,∴四边形OEFM是平行四边形,∴OM=EF,∵GM∥AB,EN∥AC,∴四边形GAEO是平行四边形,∴GO=AE,∵DF∥BC,DN∥AB,∴四边形DFBN是平行四边形,∴DN=FB,∴GO+DN+OM=AE+EF+BF=AB=30,同理,GE+OD+OF=CN+NM+BM=BC=24,ON+OE+MF=CD+DG+GA=AC=27,∴△ODN,△OGE,△OFM的周长之和为AC+BC+AB=81,故答案为:81.26.已知A(﹣2,2),B(1,﹣2),C(5,1),以A,B,C为顶点的平行四边形的第四个顶点D的坐标为(8,﹣3)(2,5),(﹣6,﹣1).【分析】首先画出坐标系,再分别以AB、AC、BC为对角线作出平行四边形,进而可得D点坐标.【解答】解:如图所示:第四个顶点D的坐标为(8,﹣3)(2,5),(﹣6,﹣1).故答案为:(8,﹣3)(2,5),(﹣6,﹣1).27.如图,在10个边长都为1的小正三角形的网格中,点P是网格的一个顶点,以点P为顶点作格点平行四边形(即顶点均在格点上的四边形),请你写出所有可能的平行四边形的对角线的长1或或或2或3.【分析】首先确定以P为顶点的平行四边形有哪几个,然后根据勾股定理即可求得对角线的长.【解答】解:平行四边形有:PABD,PACE,PMND,PMQE,APMD,APNE,PQGA.平行四四边形PABD,平行四边形PMND对角线长是1和;平行四边形PACE和PMQE的对角线长是:和;平行四边形APNE的对角线长是:2和;平行四边形PQGA的对角线长是3和.故答案为:1或或或2或3.28.如图,在四边形ABCD中,AB∥DC,E是AD中点,EF⊥BC于点F,BC=5,EF=3.(1)若AB=DC,则四边形ABCD的面积S=15;(2)若AB>DC,则此时四边形ABCD的面积S′=S(用“>”或“=”或“<”填空).【分析】(1)若AB=DC,则四边形ABCD是平行四边形,据此求出它的面积是多少即可.(2)连接EC,延长CD、BE交于点P,证△ABE≌△DPE可得S△ABE=S△DPE、BE=PE,由三角形中线性质可知S△BCE=S△PCE,最后结合S四边形ABCD=S△ABE+S△CDE+S△BCE可得答案.【解答】解:(1)∵AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∴四边形ABCD的面积S=5×3=15,故答案为:15.(2)如图,连接EC,延长CD、BE交于点P,∵E是AD中点,∴AE=DE,又∵AB∥CD,∴∠ABE=∠P,∠A=∠PDE,在△ABE和△DPE中,∵,∴△ABE≌△DPE(AAS),∴S△ABE=S△DPE,BE=PE,∴S△BCE=S△PCE,则S四边形ABCD=S△ABE+S△CDE+S△BCE=S△PDE+S△CDE+S△BCE=S△PCE+S△BCE=2S△BCE=2××BC×EF=15,∴当AB>DC,则此时四边形ABCD的面积S′=S,故答案为:=.三.解答题(共13小题)29.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.【分析】(1)由SSS证明△ABC≌△DFE即可;(2)连接AF、BD,由全等三角形的性质得出∠ABC=∠DFE,证出AB∥DF,即可得出结论.【解答】证明:(1)∵BE=FC,∴BC=EF,在△ABC和△DFE中,,∴△ABC≌△DFE(SSS);(2)解:如图所示:由(1)知△ABC≌△DFE,∴∠ABC=∠DFE,∴AB∥DF,∵AB=DF,∴四边形ABDF是平行四边形.30.如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.(1)求证:四边形BCED是平行四边形;(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.【分析】(1)由已知角相等,利用对顶角相等,等量代换得到同位角相等,进而得出DB与EC平行,再由内错角相等两直线平行得到DE与BC平行,即可得证;(2)由角平分线得到一对角相等,再由两直线平行内错角相等,等量代换得到一对角相等,再利用等角对等边得到CN=BC,再由平行四边形对边相等即可确定出所求.【解答】(1)证明:∵∠A=∠F,∴DE∥BC,∵∠1=∠2,且∠1=∠DMF,∴∠DMF=∠2,∴DB∥EC,则四边形BCED为平行四边形;(2)解:∵BN平分∠DBC,∴∠DBN=∠CBN,。

平行四边形性质判定练习题

平行四边形性质判定练习题

平行四边形性质判定练习题平行四边形是几何学中常见的一个概念,它具备一些独特的性质和判定条件。

为了更好地理解和应用这些性质,下面将通过一些练习题来帮助你巩固对平行四边形的认识。

练习题一:已知四边形ABCD,AB∥CD。

如果∠BAD = 80°,则∠ADC等于多少度?解析:由于AB∥CD,根据平行线性质可知∠BAD + ∠ADC = 180°。

又∠BAD = 80°,代入得80° + ∠ADC = 180°,解方程得∠ADC = 100°。

练习题二:在平行四边形ABCD中,已知AB = 6 cm,BC = 8 cm,AD = 5 cm,求CD的长度。

解析:由平行四边形的性质可知,对角线相等,即AC = BD。

又ABCD为平行四边形,AB∥CD,所以AD与BC平行,根据平行线性质可知∠ADC = ∠CBD。

根据余弦定理,可以得出∠ADC关于边长AD、CD、AC的关系:AD² + CD² - 2·AD·CD·cos∠ADC = AC²代入已知数据,得5² + CD² - 2·5·CD·cos∠ADC = AC²根据AC = BD,即6² + 8² = 10²,可以求得AC = 10 cm。

再代入已知数据,得25 + CD² - 10·CD·cos∠ADC = 100整理得CD² - 10·CD·cos∠ADC - 75 = 0根据解一元二次方程的方法,求得CD = 15 cm。

练习题三:平行四边形ABCD中,已知AB = 7 cm,将ABCD绕点A逆时针旋转120°得到四边形A'B'C'D',连接DD'交AC于点E。

平行四边形的判定练习题(含答案)

平行四边形的判定练习题(含答案)

平行四边形的判定练习题(含答案)(1)因为AD∥BC,AB=CD,所以ABCD是平行四边形.()(2)因为AB∥CD,AD=BC,所以ABCD是平行四边形.()(3)因为AD∥BC,AD=BC,所以ABCD是平行四边形.()(4)因为AB∥CD,AD∥BC,所以ABCD是平行四边形.()(5)因为AB=CD,AD=BC,所以ABCD是平行四边形.()(6)因为AD=CD,AB=AC,所以ABCD是平行四边形.()5.已知AD∥BC,要使四边形ABCD为平行四边形,需要增加条件________.6.如图所示,∠1=∠2,∠3=∠4,问四边形ABCD是不是平行四边形.7.如图所示,在四边形ABCD中,AB=CD,BC=AD,E,F 为对角线AC上的点,且AE=CF,求证:BE=DF.8.如图所示,D为△ABC的边AB上一点,DF交AC于点E,且AE=CE,FC∥AB.求证:CD=AF.9.如图所示,已知四边形ABCD是平行四边形,在AB 的延长线上截取BE=•AB,BF=BD,连接CE,DF,相交于点M.求证:CD=CM.10.如图所示,在四边形ABCD中,DC∥AB,以AD,AC为边作□ACED,延长DC•交EB于F,求证:EF=FB.知能点2 三角形的中位□线11.如图所示,已知E为□ABCD中DC边的延长线上的一点,且CE=DC,连接AE,分别交BC,BD于点F,G,连接AC交BD于点O,连接OF,求证:AB=2OF.12.如图所示,在ABCD中,EF∥AB且交BC于点E,交AD于点F,连接AE,BF•交于点M,连接CF,DE交AD.于点N,求证:MN∥AD且MN=1213.如图所示,DE是△ABC的中位线,BC=8,则DE=_______.14.如图所示,在□ABCD中,对角线AC,BD交于点O,OE∥BC交CD•于E,•若OE=3cm,则AD的长为(). A.3cm B.6cm C.9cm D.12cm 15.如图所示,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,AD的中点,•则四边形EFGH是平行四边形吗?为什么?16.如图所示,在△ABC中,AC=6cm,BC=8cm,AB=10cm,D,E,F分别是AB,BC,CA的中点,求△DEF的面积.规律方法应用17.如图所示,A,B两点被池塘隔开,在A,B外选一点C,连接AC和BC,•并分别找出AC和BC的中点M,N,如果测得MN=20m,那么A,B两点间的距离是多少?18.如图所示,在□ABCD中,AB=2AD,∠A=60°,E,F 分别为AB,CD的中点,EF=1cm,那么对角线BD的长度是多少?你是怎样得到的?19.如图所示,在△ABC中,E为AB的中点,CD平分∠ACB,AD⊥CD于点D.•(BC-AC).试说明:(1)DE∥BC.(2)DE=12开放探索创新20.如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AD•于E,EF∥BC交AC于F,那么AE与CF相等吗?请验证你的结论.中考真题实战21.(长沙)如下左图所示,在四边形ABCD中,AB∥CD,要使四边形ABCD•为平行四边形,则应添加的条件是________.(添加一个即可)22.(呼和浩特)如上右图所示,已知E,F,G,H是四边形ABCD各边的中点,•则S四边形EFGH :S四边形ABCD的值是_________.23.(南京)已知如图19-1-55所示,在Y ABCD中,E,F分别是AB,CD的中点.求证:(1) △AFD≌△CEB.(2)四边形AECF是平行四边形.答案:1.C 2.C 3.D4.(1)× (2)× (3)∨ (4)∨ (5)∨ (6)×5.AD=BC或AB∥CD6.解:∵∠1=∠2,∴AD∥BC.又∵∠3=∠4,∴AB∥CD.∴四边形ABCD是平行四边形.7.证明:∵AB=CD,BC=AD,∴四边形ABCD是平行四边形.∴AB∥CD,∴∠BAE=∠DCF.又∵AE=CE,∴△ABE≌△CDF(SAS),∴BE=EF.8.证明:∵FC∥AB,∴∠DAC=∠ACF,∠ADF=∠DFC.又∵AE=CE,∴△ADE≌△CFE(AAS),∴DE=EF.∵AE=CE,∴四边形ADCF为平行四边形.∴CD=AF.9.证明:∵四边形ABCD是平行四边形.∴AB//DC.又∵BE=AB,∴BE//DC,∴四边形BDCE是平行四边形.∵DC∥BF,∴∠CDF=∠F.同理,∠BDM=∠DMC.∵BD=BF,∴∠BDF=∠F.∴∠CDF=∠CMD,∴CD=CM.10.证明:过点B作BG∥AD,交DC的延长线于G,连接EG.∵DC∥AB,∴ABGD是平行四边形,∴BG// AD.在□ACED中,AD//CE,∴CE//BG.∴四边形BCEG为平行四边形,∴EF=FB.11.证明:∵四边形ABCD是平行四边形,∴AB//CD,AD=BC.∵CE=CD,∴AB//CE,∴四边形ABEC为平行四边形.∴BF=FC,∴OF//1AB,即AB=2OF.212.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC.又∵EF∥AB,∴EF∥CD.∴四边形ABEF,ECDF均为平行四边形.又∵M,N分别为Y ABEF和Y ECDF对角线的交点.∴M为AE的中点,N为DE的中点,即MN为△AED的中位线.∴MN∥AD且MN=12AD.13.4 14.B15.解:EFGH是平行四边形,连接AC,在△ABC中,∵EF是中位线,∴EF//12AC.同理,GH//12AC.∴EF//GH,∴四边形EFGH为平行四边形.16.解:∵EF,DE,DF是△ABC的中位线,∴EF=12AB,DE=12AC,DF=12BC.又∵AB=10cm,BC=8cm,AC=6cm,∴EF=5cm,DE=3cm,DF=4cm,而32+42=25=52,即DE2+DF2=EF2.∴△EDF为直角三角形.∴S△EDF =12DE·DF=12×3×4=6(cm2).17.解:∵M,N分别是AC,BC的中点.∴MN是△ABC的中位线,∴MN=12AB.∴AB=2MN=2×20=40(m).故A,B两点间的距离是40m.18.解:连接DE.∵四边形ABCD是平行四边形,∴AB//CD.∵DF=12CD,AE=12AB,∴DF//AE.∴四边形ADFE是平行四边形.∴EF=AD=1cm.∵AB=2AD,∴AB=2cm.∵AB=2AD,∴AB=2AE,∴AD=AE.∴∠1=∠4.∵∠A=60°,∠1+∠4+∠A=180°,∴∠1=∠A=∠4=60°.∴△ADE是等边三角形,∴DE=AE.∵AE=BE,∴DE=BE,∴∠2=∠3.∵∠1=∠2+∠3,∠1=60°,∴∠2=∠3=30°.∴∠ADB=∠3+∠4=90°.=cm).19.解:延长AD交BC于F.(1)∵AD⊥CD,∴∠ADC=∠FDC=90°.∵CD平分∠ACB,∴∠ACD=∠FCD.在△ACD与△FCD中,∠ADC=∠FDC,DC=DC,∠ACD=∠FCD.∴△ACD≌△FCD,∴AC=FC,AD=DF.又∵E为AB的中点,∴DE∥BF,即DE∥BC.(2)由(1)知AC=FC,DE=12BF.∴DE=12(BC-FC)=12(BC-AC).20.解:AE=CF.理由:过E作EG∥CF交BC于G,∴∠3=∠C.∵∠BAC=90°,AD⊥BC,∴∠ABC+∠C=90°,∠ABD+∠BAD=90°.∴∠C=∠BAD,∴∠3=∠BAD.又∵∠1=∠2,BE=BE,∴△ABE≌△GBE(AAS),∴AE=GE.∵EF∥BC,EG∥CF,∴四边形EGCF是平行四边形,∴GE=CF,∴AE=CF.21.答案不唯一,如AB=CD或AD∥BC.22.1223.解:(1)在□ABCD中,AD=CB,AB=CD,∠D=∠B.∵E,F分别为AB,CD的中点,∴DF=12CD,BE=12AB,∴DF=BE,∴△AFD≌△CEB.(2)在□ABCD中,AB=CD,AB∥CD.由(1)得BE=DF,∴AE=CE,∴四边形AECF是平行四边形.。

平行四边形的判定常考题(含详细解析)

平行四边形的判定常考题(含详细解析)

一、选择题<共14小题)1、<2003•广西)如图所示,在△ABC中,AB=AC=5,D是BC上的点,DE∥AB交AC于点E,DF∥AC交AB于点F,那么四边形AFDE的周长是< )A、5B、10C、15D、202、在四边形ABCD中,AB∥CD,若ABCD不是梯形,则∠A:∠B:∠C:∠D可能为< )A、2:3:6:7B、3:4:5:6C、3:5:7:9D、4:5:4:53、<2006•佛山)如图,平面上两颗不同高度、笔直的小树,同一时刻在太阳光线照射下形成的影子分别是AB、DC,则< )b5E2RGbCAPA、四边形ABCD是平行四边形B、四边形ABCD是梯形C、线段AB与线段CD相交D、以上三个选项均有可能4、<2005•柳州)不能判断四边形ABCD是平行四边形的是< )A、AB=CD,AD=BCB、AB=CD,AB∥CDC、AB=CD,AD∥BCD、AB∥CD,AD∥BC5、<2004•聊城)如图,有两块全等的含30°角的三角板拼成形状不同的平行四边形,最多可以拼成< )p1EanqFDPwA、1个B、2个C、3个D、4个6、<2002•山西)A,B,C,D在同一平面内,从①AB∥CD,②AB=CD,③BC∥AD,④BC=AD这四个中任选两个作为条件,能使四边形ABCD为平行四边形的选法有< )DXDiTa9E3dA、6种B、5种C、4种D、3种7、<1998•内江)能判定四边形是平行四边形的条件是< )A、一组对边平行,另一组对边相等B、一组对边相等,一组邻角相等C、一组对边平行,一组邻角相等D、一组对边平行,一组对角相等8、已知四边形ABCD,AC与BD相交于点O,如果给出条件AB∥CD,那么还不能判定四边形ABCD为平行四边形,以下四种说法正确的是< )RTCrpUDGiT①如果再加上条件BC=AD,那么四边形ABCD一定是平行四边形;②如果再加上条件∠BAD=∠BCD,那么四边形ABCD一定是平行四边形;③如果再加上条件AO=CO,那么四边形ABCD一定是平行四边形;④如果再加上条件∠DBA=∠CAB,那么四边形ABCD一定是平行四边形.A、①②B、①③④C、②③D、②③④9、已知四边形ABCD的对角线相交于O,给出下列5个条件①AB∥CD;②AD∥BC;③AB=CD;④∠BAD=∠DCB.从以上4个条件中任选2个条件为一组,能推出四边形ABCD为平行四边形的有< )5PCzVD7HxAA、6组B、5组C、4组D、3组10、在四边形ABCD中,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD中任选两个使四边形ABCD为平行四边形的选法有jLBHrnAILg< )A、3B、4C、5D、611、四边形ABCD中,AD∥BC,当满足下列< )条件时,四边形ABCD是平行四边形.A、∠A+∠C=180°B、∠B+∠D=180°C、∠A+∠B=180°D、∠A+∠D=180°12、以不在同一直线上的三个点为顶点作平行四边形,最多能作< )A、4个B、3个C、2个D、1个13、在下列给出的条件中,能判定四边形ABCD为平行四边形的是< )A、AB=BC,CD=DAB、AB∥CD,AD=BCC、AB∥CD,∠A=∠CD、∠A=∠B,∠C=∠D14、下列哪组条件能判别四边形ABCD是平行四边形< )A、AB∥CD,AD=BCB、AB=CD,AD=BCC、∠A=∠B,∠C=∠DD、AB=AD,CB=CD二、填空题<共4小题)15、<2018•常德)如图,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则应添加的条件是_________.<添加一个条件即可,不添加其它的点和线).xHAQX74J0X16、<2009•郴州)如图,在四边形ABCD中,已知AB=CD,再添加一个条件_________ <写出一个即可),则四边形ABCD是平行四边形.<图形中不再添加辅助线)LDAYtRyKfE17、如图,△ABC、△ACE、△ECD都是等边三角形,则图中的平行四边形有哪些_________ _________ .Zzz6ZB2Ltk18、把边长为3,5,7的两个全等三角形拼成四边形,一共能拼成_________ 种不同的四边形,其中有_________ 个平行四边形.dvzfvkwMI1三、解答题<共8小题)19、<2018•贵阳)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.rqyn14ZNXI求证:<1)△AFD≌△CEB;<2)四边形ABCD是平行四边形.20、<2018•本溪)我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形.请解答下列问题:EmxvxOtOco<1)写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称;<2)探究:当等对角线四边形中两条对角线所夹锐角为60°时,这对60°角所对的两边之和与其中一条对角线的大小关系,并证明你的结论.SixE2yXPq521、<2006•镇江)已知:如图,在四边形ABCD中,AC与BD相交于点O,AB∥CD,AO=CO.6ewMyirQFL求证:四边形ABCD是平行四边形.22、<2004•万州区)已知:如图,已知:D是△ABC的边AB上一点,CN∥AB,DN交AC于,若MA=MC,求证:CD=AN.kavU42VRUs23、如图,在△ABC中,D是BC边的中点,F、E分别是AD及其延长线上的点,CF∥BE.<1)求证:△BDE≌△CDF;<2)请连接BF,CE,试判断四边形BECF是何种特殊四边形,并说明理由.24、如图,F、C是线段AD上的两点,AB∥DE,BC∥EF,AF=DC,连接AE、BD,求证:四边形ABDE是平行四边形.y6v3ALoS8925、<2006•泰安)已知:如图,以△ABC的边AB为直径的⊙O交边AC于点D,且过点D的切线DE平分边BC.M2ub6vSTnP<1)BC与⊙O是否相切?请说明理由;<2)当△ABC满足什么条件时,以点O,B,E,D为顶点的四边形是平行四边形?并说明理由.26、<2007•南宁)如图,在△ABC中,点D,E分别是AB,AC边的中点,若把△ADE绕着点E顺时针旋转180°得到△CFE.0YujCfmUCw<1)请指出图中哪些线段与线段CF相等;<2)试判断四边形DBCF是怎样的四边形,证明你的结论.答案与评分标准一、选择题<共14小题)1、<2003•广西)如图所示,在△ABC中,AB=AC=5,D是BC上的点,DE∥AB交AC于点E,DF∥AC交AB于点F,那么四边形AFDE的周长是< )eUts8ZQVRdA、5B、10C、15D、20考点:平行四边形的性质;等腰三角形的性质;平行四边形的判定。

平行四边形判定专项练习30题

平行四边形判定专项练习30题

平行四边形的判定专项练习30题(有答案)求证:四边形ABCD 为平行四边形.I __ D ZX73 .已知四边形 ABCD 的对角线 AC 与BD 交于点0,现给出四个条件: ①0A=0C ;②AB=CD ;③/BAD= ZDCB ;④AD //BC •请你从中选择两个,推出四边形ABCD 为平行四边形,并写出你的推理过程.(1 )从以上4个条件中任意选取 2个条件,能推出四边形 ABCD 是平行四边形的有(用序号表示) __________________ . (2 )从(1 )中选出一种情况,写出你的推理过程.4 .如图,已知:点 B 、E 、F 、D 在一条直线上,DF=BE , AE=CF .请从下列三个条件中选择一个合适的条件,添 加到已知条件中,使四边形 ABCD 是平行四边形,并说明理由,供选择的三个条件(请从其中选择一个):2 .如图,四边形 ABCD 中,/ BAC=90,AB=11 ABCD 是平行四边形.-x , BC=5 , CD=x - 5 , AD=x - 3, AC=4.AD //BC , ED //BF , AF=CE ,求证:①AB=DC :② BC=AD ;③/AED= /CFB .5 .如图,在? ABCD中,AC交BD于点0,点E,点F分别是OA , OC的中点,请判断线段BE,7 .如图,已知BE丄AD , CF丄AD,且BE=CF .求证:(1 ) AD是△ABC的中线;(2)请连接BF、CE,试判断四边形BECF是何种特殊四边形,并说明理由.DF的位置关6.如图所示, 以△ABC的三边为边在BC的同侧分别作三个等边三角形厶ABD、ABCE、△XCF ,猜想: 四边形ADEFA8 .如图,矩形ABCD的两条对角线AC和BD相交于点O, E、F是BD上的两点,且/ AEB= /CFD .求证:四边形AECF是平行四边形.9 .如图:在四边形ABCD 中,AD //BC, AB=CD , E 是BC 上一点,DE=AB .10 .如图,已知AB //DC, E是BC的中点,AE , DC的延长线交于点F;(1 )求证:△ ABE 也£CE;11 .等边△ ABC 中,点D 在BC 上,点E 在AB 上,且CD=BE ,以AD 为边作等边△ ADF ,如图.求证:四边形 CDFE 是平行四边形.足为F ,连结DF . 求证:(1 )MBC 也△AF ; (2)四边形ADFE 是平行四边形.别从A 、C 同时出发,点 P 以2cm/秒的速度由A 向D 运动,点Q 以3cm/秒的速度由C 向B 运动.12 •如图,分别以 Rt △ABC 的直角边 AC 及斜边 AB 向外作等边△ ACD 、等边△ ABE .若/BAC=30,EF 丄 AB ,垂13 .已知:如图,在△ ABC 中,中线BE , CD 交于点O , F , G 分别是OB , OC 的中点.求证:四边形 DFGE 是平14 •如图所示:在四边形ABCD 中,AD //BC 、BC=18cm , CD=15cm , AD=10cm , AB=12cm ,动点P 、Q 分行四边形.实用标准文案(1 )几秒钟后,四边形ABQP为平行四边形?并求出此时四边形ABQP的周长PDCQ的周长.15 •求证:顺次连接四边形各边中点所得的四边形是平行四边形.16 .△ABC中,中线BE、CF相交于0 , M是BO的中点,N是CO的中点, 求证:四边形MNEF是平行四边形.17 .如图,AD=DB , AE=EC , FG //AB, AG //BC.(1 )证明:△ AGE ^/CFE;(2)说明四边形ABFG是平行四边形;(3)研究图中的线段DE, BF, FC之间有怎样的位置关系和数量关系.18 .如图,△ ABC和△ADE都是等边三角形,点D在BC边上,AB边上有一点F,且BF=DC,连接EF、EB.(1 )求证:△ ABE 也△CD ;19 .已知在△ ABC中,D、E分别是AB、AC的中点,点F在DE的延长线上,且EF=DE ,图中有几个平行四边形? 请说明你的理由.20 .如图,在△ ABC中,AD是中线,点E是AD的中点,过A点作BC的平行线交CE的延长线于点F,连接BF. 求证:四边形AFBD是平行四边形.21 .如图:在四边形ABCD中,AD //BC, E是BC的中点,BC=2AD .找出图中所有的平行四边形,并选择一个22 •求证:两组对角分别相等的四边形是平行四边形.23 .已知:如图,A、B、C、D在同一条直线上,且AB=CD , AE //DF , AE=DF .求证:四边形 EBFC 是平行四边形.24 .如图,在△ ABC 中,D 是BC 边的中点,E 、F 分别在 AD 及其延长线上,CE//BF ,连接BE 、CF .形BFCE 是平行四边形吗?为什么?25 .已知点E 、F 、G 、H 分别为四边形 ABCD 四边的中点,试问四边形 EFGH 的形状并说明理由.26 .如图,已知四边形 ABCD 中AD=BC ,点A 、B 、E 在同一条直线上,且/ B= /EAD ,试说明四边形平行四边形.图中的四边ABCD 是28 .已知:△ ABC 的中线BD 、CE 交于点O , F 、G 分别是OB 、OC 的中点.求证:四边形 29 .如图,△ ACD 、MBE>ABCF 均为直线 BC 同侧的等边三角形.当 AB 丰AC 时,求证: 边形.30 .已知:在四边形 ABCD 中,AD //BC ,且 AB=DC=5 , AC=4 , BC=3 .求证:四边形ABCD 为平行四边形.ABCD 是平行四边形.DEFG 是平行四边形.四边形 ADFE 为平行四平行四边形的判定30题参考答案:1.TAD //BC,•••/DAE= ZBCF,TED //BF,•••/DEF= ZBFE,•••厶ED= ZCFB,又T AF=CE ,•••AE=CF ,在△ADE和ACBF中:T/DAE= ZBCF,ZAED= ZCFB,AE=CF ,.•.念DE 也zCBF (AAS ),•••AD=CB ,即:AD //CB , AD=CB ,•四边形ABCD是平行四边形,2.T/BAC=90° , AB=11 - x , BC=5 , AC=4 . •••(11 - x) 2+4 2=5 2,解得:x i =8 , X2=14 > 11 (舍去),当x=8 时,BC=AD=5 , AB=CD=3 ,•四边形ABCD为平行四边形.3. (1 )解:能推出四边形ABCD是平行四边形的有①④、③④;故答案是:①④、③④;(2 )以①④为例进行证明.如图,在四边形ABCD中,OA=OC , AD //BC .证明:T AD //BC, •••/DAO= ZBCO .•••在△KOD 与△COB 中,r ZDA0-ZBC0{DA=0CZAOD-ZDOB (对顶角相等)•••ZAOD 也ZCOB (ASA ),•••AD=BC ,•••在四边形ABCD中,AD二BC, •四边形ABCD为平行四边形.4.选择①,VDF=BE , AE=CF, AB=CD ,•ZABE也/CDF ( sss),•ZABE= /CDF ,•••AB //CD,又TAB=CD ,•四边形ABCD是平行四边形.5. BE=DF , BE //DF因为ABCD是平行四边形,所以OA=OC , OB=OD ,因为E, F分别是OA, OC的中点,所以OE=OF ,36 •四边形ADEF是平行四边形.连接ED、EF,•••念BD 'ABCE'^ACF分别是等边三角形, •••AB=BD,BC=BE,/DBA= /EBC=60 °•••/DBE= /ABC ••••念BC 也QBE.同理可证厶ABC也/EEC,•••AB=EF , AC=DE .VAB=AD , AC=AF ,•••AD=EF , DE=AF .•••/BED= ZCFD .VZBDE= /CDF , BE=CF ,•••/BED也EFD .•••BD=CD .•••AD是EABC的中线.(2)四边形BECF是平行四边形,由(1)得:BD=CD , ED=FD .•四边形BECF是平行四边形8 •四边形ABCD是矩形•••AB //CD , AB=CD , •••/ABE= /CDF ,又v/AEB= ZCFD , /•ZABE也EDF ,•••BE=DF ,又•••四边形ABCD是矩形,•••OA=OC , OB=OD , •••OB - BE=OD - DF , •••OE=OF ,•四边形AECF是平行四边形9.TAD //BC, AB=CD , •四边形ABCD是等腰梯形,•••/B= ZC ,VDE=AB ,•••DE=CD ,•ZDEC= ZC ,•ZDEC= ZB ,•••AB //DE,•四边形ABED是平行四边形.10. (1 )证明:T AB //DC, •/= Z , ZFCE= ZEBA , •••E为BC中点,•••CE=BE, 所以BFDE是平行四边形,所以BE=DF , BE//DFT在ZABE 和AFCE 中,Z1= Z , ZFCE= ZEBA , CE=BE ,(2)四边形ABFC是平行四边形;理由:由(1 )知:AABE^△CE,•••EF=AE ,VCE=BE,•四边形ABFC是平行四边形11 •连接BF,•••念DF和AABC是等边三角形,/FAD=60 • /FAD -Z EAD= /CAB -ZEAD , •••/FAB= /CAD , 在AFAB和ADAC中;AF=AD彳ZFAB=ZCAD ,I AB=AC• △AB BAAC (SAS), •••BF=DC , ZABF= ZACD=60 VBE=CD ,•••BF=BE ,•ZBFE是等边三角形,•••ZACD BABE ( SAS),•••AD=CE=DF ,VEF=CD ,•四边形CDFE是平行四边形.5 D C12• (1 )vAABE为等边三角形,EF±AB ,•••EF 为ZBEA 的平分线,Z AEB=60 °,AE=AB , •••ZFEA=30。

平行四边形判定 (证明题)

平行四边形判定 (证明题)

AE FBCDABCDF EG平行四边形的判定1.平行四边形的判定方法:边:1.两组是平行四边形。

2.两组是平行四边形。

3.一组是平行四边形。

角: 4.两组是平行四边形。

对角线:5.是平行四边形。

1.如图,剪两张对边平行的纸条,随意交叉叠放在一起,转动其中一张,重合的部分构成了一个四边形.线段AD 和BC 的长度有什么关系?2.已知:如图,AD∥BC,ED∥BF,且AE=CF.求证:四边形ABCD 是平行四边形.3.如图,平行四边形ABCD 中,G 是CD 上一点,BG 交AD 延长线于E,AF=CG,求证:DF=BG4.已知如图所示,在四边形ABCD 中,AB CD BC AD E F ==,,、是对角线AC 上两点,且AE CF =.求证:BE DF =.5.在平行四边形ABCD 中,E、F 为对角线BD 上的三等分点。

求证:四边形AFCE 是平行四边形。

6.已知,如图所示,在平行四边形ABCD 中,BN=DM,BE=DF.求证:四边形MENF 是平行四边形.7.如图所示,平行四边形ABCD 中,AC BD 、相交于点O E F ,、在对角线BD 上,且BE DF .求证:四边形AECF 是平行四边形.8.如图,在平行四边形ABCD 中,AD=BC,AE⊥BD,CF⊥BD,垂足为E、F,AE=CF,求证:四边形ABCD 是平行四边形。

9.已知:如图,四边形AEFD 和EBCF 都是平行四边形,求证:四边形ABCD 是平行四边形.10.如图,在ABCD 中,点E,F 分别在AD,BC 边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE 是平行四边形.AEBCFDO NAMDFCBE11.如图在平面直角坐标系中,点A(-1,0)B(2,0)C(0,1)为顶点构造平行四边形,下列各点中不能做平行四边形顶点坐标的是()A(3,1)B(-4,1)C(1,-1)D(-3,1)12.如图,在□ABCD中,E、F分别在边BA、DC的延长线上,已知AE=CF,P、Q分别是DE和FB的中点,求证:四边形EQFP是平行四边形.13.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,且AD=12cm,AB=8cm,DC=10cm,若动点P从A 点出发,以每秒2cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B 点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:(1)BC=cm;(2)当t为多少时,四边形PQCD成为平行四边形。

1--(正式)平行四边形的判断题

1--(正式)平行四边形的判断题

平行四边形的判断题
1、两组对边分别平行的四边形是平行四边形。

(√)
2、一组对边平行且相等的四边形是平行四边形。

(√)
3、两组对边分别相等的四边形是平行四边形。

(√)
4、两组对角分别相等的四边形是平行四边形。

(√)
5、对角线互相平分的四边形是平行四边形。

(√)
6、一组对边平行,另一组对边相等的四边形是平行四边形。

(X)
7、一组对边平行,对角线的交点平分一条对角线的四边形是平行四边形。

(√)
*8、一组对边相等,一组对角相等的四边形是平行四边形。

(X )
9、一组对边平行,一组对角相等的四边形是平行四边形。

(√)
10、一组对边相等,对角线的交点平分一条对角线的四边形是平行四边形。

(X)
*11、一组对角相等,连接这组对角顶点的对角线平分另一条对角线的四边形是平行四边形。

(√)
12、一组对角相等,连接这组对角顶点的对角线被另一条对角线的平分四边形是平行四边形。

(X )
13、如是一个四边形是中心对称图形,那么这个四边形是平行四边形。

(√)
14、有两组邻角互补的四边形是平行四边形。

(X )
15、任意四边形的中点四边形是平行四边形。

(√)
16、矩形的中点四边形是菱形,菱形的中点是矩形,正方形的中点四边形是正方形。

(√)。

八年级数学(下)第十八章《平行四边形的判定》同步练习(含答案)

八年级数学(下)第十八章《平行四边形的判定》同步练习(含答案)

八年级数学(下)第十八章《平行四边形的判定》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,DE是△ABC的中位线,且△ADE的周长为20,则△ABC的周长为A.30 B.40C.50 D.无法计算【答案】B2.如图,在四边形ABCD中,AB=CD,BC=AD,若∠D=120°,则∠C的度数为A.60°B.70°C.80°D.90°【答案】A【解析】∵AB=CD,BC=AD,∴四边形ABCD是平行四边形,∴AD∥BC,∴∠C+∠D=180°,∵∠D=120°,∴∠C=60°.故选A.3.四边形ABCD中,从∠A,∠B,∠C,∠D的度数之比中,能判定四边形ABCD是平行四边形的是A.1∶2∶3∶4 B.2∶3∶2∶3C.2∶2∶3∶3 D.1∶2∶2∶3【答案】B【解析】根据对角相等的四边形是平行四边形,A.1∶2∶3∶4,对角不相等,不能;B.2∶3∶2∶3,对角相等,能;C.2∶2∶3∶3,对角不相等,不能;D.1∶2∶2∶3,对角不相等,不能,故选B.4.依次连接任意四边形各边的中点,得到一个特殊图形,则这个图形一定是A.平行四边形B.矩形C.菱形D.梯形【答案】A【解析】如图,连接AC,∵四边形ABCD各边中点是E、F、G、H,∴HG∥AC,HG=12AC,EF∥AC,EF=12AC,∴EF=GH,EF∥GH,∴四边形EFGH是平行四边形.故选A.5.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是A.AB∥CD,AD∥BC B.OA=OC,OB=ODC.AD=BC,AB∥CD D.AB=CD,AD=BC【答案】C6.如图,ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCD的周长为A.20 B.16 C.12 D.8【答案】B【解析】∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE =12BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选B.7.如图,在ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,当E,F满足下列哪个条件时,四边形DEBF不一定是平行四边形A.AE=CF B.DE=BFC.∠ADE=∠CBF D.∠AED=∠CFB【答案】BD选项:∵∠AED=∠CFB,∴∠DEO=∠BFO ,∴DE∥BF,在△DOE和△BOF中,DOE BOF DEO BFO OD OB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DOE≌△BOF,∴DE=BF,∴四边形DEBF是平行四边形.故选项正确.故选B.8.如图,E,F分别是□ABCD的边AB,CD的中点,则图中平行四边形的个数共有A.2个B.3个C.4个D.5个【答案】C【解析】∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB,∵E、F分别是边AB、CD的中点,∴DF=FC=12DC,AE=EB=12AB,∵DC=AB,∴DF=FC=AE=EB,∴四边形DFBE和CFAE都是平行四边形,∴DE∥FB,AF∥CE,∴四边形FHEG是平行四边形,故选C.二、填空题:请将答案填在题中横线上.9.如图,A、B两点被池塘隔开,在AB外选一点C,连接AC、BC,取AC、BC的中点D、E,量出DE=a,则AB=2a,它的根据是__________.【答案】三角形的中位线等于第三边的一半10.如图,在四边形ABCD中,AD∥BC,点E是BC边的中点,连接DE并延长,交AB的延长线于F点.已知AB=4,∠F=∠CDE,则BF的长为__________.【答案】4【解析】因为∠F=∠CDE,所以AB∥CD,因为AD∥BC,所以四边形ABCD是平行四边形,所以AB=CD,因为点E是BC边的中点,所以ED=EF,又因为∠F=∠CDE,∠DEC=∠FEB,所以△ECD≌△EBF,所以BF=CD,所以BF=AB,因为AB=4,所以BF=4,故答案为:4.11.如图,四边形ABCD中,AD∥BC,E是DC上一点,连接BE并延长交AD的延长线于点F,连接CF,BD,请你只添加一个条件:__________,使得四边形BDFC为平行四边形.【答案】DE=EC(答案不唯一)【解析】答案不唯一,比如:BD∥CF,构成两组对边分别平行的四边形是平行四边形;DF=BC,构成一组对边平行且相等的四边形是平行四边形;DE=EC,可以证明BE=EF,构成对角线相互平分的四边形是平行四边形,等等.故答案:DE=EC(答案不唯一).12.如图,在平行四边形ABCD中,对角线交于点O,点E、F在直线AC上(不同于A、C),当E、F的位置满足__________的条件时,四边形DEBF是平行四边形.【答案】AE=CF(答案不唯一)三、解答题:解答应写出文字说明、证明过程或演算步骤.13.如图,已知D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分.【解析】∵D、E、F分别是△ABC各边的中点,根据中位线定理知:DE∥AC,DE=AF,EF∥AB,EF=AD,∴四边形ADEF为平行四边形,故AE与DF互相平分.14.如图,ABCD中,E、F分别是AB、CD上的点,AE=CF,M、N分别是DE、BF的中点.求证:四边形ENFM是平行四边形.【解析】∵四边形ABCD是平行四边形,∴AB∥CD.∵AE=CF,∴FD=EB,∴四边形DEBF是平行四边形,∴DE∥FB,DE=FB.∵M、N分别是DE、BF的中点,∴EM=FN.∵DE∥FB,∴四边形MENF是平行四边形.15.如图,点M,N在线段AC上,AM=CN,AB∥CD,AB=CD.求证:∠1=∠2.16.如图1,平行四边形ABCD中,对角线BD、AC交于点O.将直线AC绕点O顺时针旋转分别交BC、AD于点E、F.(1)在旋转过程中,线段AF与CE的数量关系是__________.⊥,当旋转角至少为__________︒时,四边形ABEF是平行四边形,并证明(2)如图2,若AB AC此时的四边形是ABEF是平行四边形.【解析】(1)相等,理由如下: 如图,在ABCD 中,AD ∥BC ,OA =OC ,∴∠1=∠2,在△AOF 和△COE 中,1234OA OC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOF ≌△COE (ASA ), ∴AF =CE .(2)当旋转角为90︒时,90COE ∠=︒,如图,又∵AB ⊥AC , ∴∠BAO =90°, ∠AOF =90°, ∴∠BAO =∠AOF , ∴AB ∥EF ,∵四边形ABCD 是平行四边形, ∴AD ∥BC , 即:AF ∥BE , ∵AB ∥EF ,AF ∥BE ,∴四边形ABEF 是平行四边形.。

平行四边形的判定的综合练习

平行四边形的判定的综合练习

利用平行四边形的中心对称性,你认 为平行四边形还有哪些性质?
A
D
B
C
平行四边形的性质:
(2)边 平行四边形的对边平行且相等.
CA
BD
DB
AC
平行四边形的性质:
(3)角
平行四边形的对角相等; 平行四边形的邻角互补.(不是定理)
CA
BD
DB
AC
平行四边形的性质: (4)对角线
平行四边形的对角线互相平分.
1. 平行四边形的定义:
两组对边分别平行的四边形叫做平行四边形. 如图四边形ABCD是平行四边形
记作:“ ABCD” 读作: “平行四边形ABCD”
几何语言 ∵AB//CD,AD//BC ∴四边形ABCD是平行四边形
2. 平行四边形的性质:
不稳定性,内角和为360度, 对边平行,邻角互补
画一个平行四边形,并把它剪下来,再 画一个与它一样的平行四边形,将它们重合 在一起,使上面一个绕它的对角线交点旋转 1800,你有什么发现?
A
D
O

B
C
ABCD绕它的点O旋转180°后与自身重合,
这时我们说 ABCD是中心对称图形,点O叫对称 中心。
我们来证实□ABCD是中心对称图
形。如图: A ∠1
D
∠4 连结AC,取AC
中点O
O
∠3
B
∠2
C
1、□ABCD绕点O旋转180度,因为O是AC的中点,所以点A与
点C重合,点C与点A重合;
2、因为AD//CB,可知∠1=∠2所,以旋转后CB落在射线AD上;
因为AB//CD,可知∠3=∠4,所以旋转后AB落在射线CD上。
因为两条直线相交只有一个交点,所以点B(AB和CB的交点) 与点D(CD和AD的交点)重合,同理,点D和点B重合。

平行四边形的判定典型题

平行四边形的判定典型题

平行四边形的判定例题1:BD是平行四边形ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需要添加的一个条件是_________练习:1、如图,已知:E、F是平行四边形ABCD对角线AC 上的两点,并且AE=CF。

求证:四边形BFDE是平行四边形。

2.如图所示,在平行四边形ABCD中,P1、P2是对角线BD的三等分点,求证:•四边形AP1CP2是平行四边形.3、如图所示,在四边形ABCD中,M是BC中点,AM、BD互相平分于点O,那么请说明AM=DC 且AM∥DC例题2:(2013•镇江)如图,AB∥CD,AB=CD,点E、F在BC上,且BE=CF.(1)求证:△ABE≌△DCF;OMAB CD(2)试证明:以A 、F 、D 、E 为顶点的四边形是平行四边形. 练习:1、11、如图,在□ABCD 中,已知两条对角线相交于点O ,E 、F 、G 、H 分别是AO 、BO 、CO 、DO 的中点,以图中的点为顶点,尽可能多地画出平行四边形2.(2012•惠城区模拟)如图,D 是AB 上的一点,DF 与AC 相交于E ,DE=EF ,CF∥BA.求证:四边形ADCF 是平行四边形.3、已知:如图所示,平行四边形ABCD 的对角线AC 、BD•相交于点O ,EF 经过点O 并且分别和AB 、CD 相交于点E 、F ,又知G 、H 分别为OA 、OC 的中点.求证:四边形EHFG 是平行四边形.例题3:、如图4.4-17,等边三角形ABC 的边长为a ,P 为△ABC 内一点,且PD ∥AB ,PE ∥BC ,PF ∥AC ,那么,PD+PE+PF 的值为一个定值.这个定值是多少?请你说出这个定值的来历.H GFE O A BCDHGFEO A BC DHGFE O ABCD HG FE O ABCD练习1:如图,平行四边形ABCD中,AF=CH,DE=BG。

求证:EG和HF互相平分。

(完整版)平行四边形的判定练习及答案

(完整版)平行四边形的判定练习及答案

诘你添加一个适当的条 A.1: 2 :B.2 : 2 :C.2 : 3 : 平行四边形的判定二、课中强化(10分钟训 练)1•如图3,在 匚ABCD 中,对角线F 满足F 列哪个条件时,四边形AC 、BD 相交于点0,E 、F 是对角线AC 上的两点,当E 、 DEBF 不一定是平行四边形( A.AE=CFC.Z ADE=/CBFB.DE=BF D. / AED= / CFB 2•如图 4,AB\|DC, DC=EF=10 , DE=CF=8,则图中的平行四边形有由分别是 ___________________3.如图5,E 、F 是平行四边形ABCD 对角线BD 上的两点,'使四边形AECF 是平行四边形.4.如图6,AD=BC,要使四边形ABCD 是平行四边形,还需补充的一个条件是: __________三、课后巩固(30分钟训练)1 •以不在同一直线上的三个点为顶点作 平行四边形最多能作() A.4个 B.3个 C.2个 D.1个2. 下面给出了四边形ABCD 中/A 、/ B 、/ C 、/ D 的度数之比,其中能判定四边形ABCD 是平行四边形的是()3. 九根火柴棒排成如右图形状 ,图中 __个平行四边形,你判断的根据是 __________________4. 已知四边形ABCD 的对角线AC 、BD 相交于点O,给出下列5个条件:①AB // CD ; OA=OC ; ③AB=CD :④/ BAD= / DCB ; ® AD // BC.(1)从以上5个条件中任意选取2个条件,能推出四边形ABCD 是平行四边形的有(用序图4图5 图6⑵对由以上5个条件中任意选取2个条件,不能推出四边形ABCD 是平行匹边形的,请选取一种 情形举出反例说明 •5•若三条线段的长分别为 平行四边形?20 cm,14 cm,16 cm,以其中两条为对角线 ,另一条为一边,是否可以画 6•如图,E 、F 是四边形ABCD 的对角线AC 上的两点,AF=CE , DF=BE , DF// BE.求证:(】)△AFD ©A CEB;(2)四边形ABCD 是平行四边形.17•如图,已知DC // AB ,且DC= —AB, E 为AB 的中点• 2⑴求证:△ AED EBC ;(2)观察图形,在不添加辅助线的情况下,除厶 EBC 夕卜,请再写出两个与厶AED 的面积相等 的三角形(直接写出结果,不要求证明): __________________________________8•如图,已知二1ABCD中DE丄AC,BF丄AC,证明四边形DEBF为平行四边形9•如图,已知■ ABCD中,E、F分别是AB、CD的中点•求证:(1) △ AFD ©A CEB;⑵四边形AECF是平行四边形•二、课中强化(10分钟训练)1懈析:当E、F满足AE=CF时,由平行四边形的对角线相等知OB=OD,OA=OC ,故OE=OF.可知四边形DEBF是平行四边形•当E、F满足/ ADE= / CBF 时,因为AD // BC,所以/ DAE= / BCF.又AD=BC,可证出厶ADE OA CBF,所以DE=BF,/ DEA= / BFC.故/ DEF= / BFE.因此DE// BF,可知四边形DEBF是平行四边形•类似地可说明D也可以•答案:B2•解析:因为ABWDC,根据一组对边平行且相等的四边形是平行四边形可判定四边形ABCD是平行四边形;DC=EF , DE=CF,根据两组对边分别相等的四边形是平行四边形可判定四边形CDEF是平行四边形•答案:四边形ABCD,四边形CDEF —组对边平行且相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形3•解析:根据平行四边形的定义和判定方法可填BE=DF ; Z BAE= / CDF^-答案:BE=DF或ZBAE=ZCDF等任何一个均可4•解析:根据平行四边形的判定定理,知可填(DAD// BC,② AB=CD,③ ZA+ZB=180。

初二数学平行四边形的判定试题

初二数学平行四边形的判定试题

初二数学平行四边形的判定试题1.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB∥DC,AD=BC【答案】D【解析】A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意.2.下列条件中,能确定一个四边形是平行四边形的是()A.一组对边相等B.一组对角相等C.两条对角线相等D.两条对角线互相平分【答案】D【解析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边;(5)对角线互相平分的四边形是平行四边形.根据判定方法知D正确.3.如图所示,在四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需要条件()A.AB=DC B.∠1=∠2C.AB=AD D.∠D=∠B【答案】D【解析】A、符合条件AD∥BC,AB=DC,不符合平行四边形的判定方法,故本选项错误;B、根据∠1=∠2,推出AD∥BC,不能推出平行四边形,故本选项错误;C、根据AB=AD和AD∥BC不能推出平行四边形,故本选项错误;D、∵D∥BC,∴∠1=∠2,∵∠B=∠D,∴∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD是平行四边形,故本选项正确.4.如图,在四边形ABCD中,已知AB=CD,再添加一个条件 _______(写出一个即可),则四边形ABCD是平行四边形.(图形中不再添加辅助线)【答案】AD=BC(答案不唯一)【解析】可再添加一个条件AD=BC,根据两组对边分别相等的四边形是平行四边形,四边形ABCD是平行四边形.5.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点.若再增加一个条件________(答案不惟一),就可推得BE=DF.【答案】AE=CF或∠AEB=∠CFD或∠ABE=∠CDF【解析】∵平行四边形ABCD中两组对边平行且相等,∴要使BE=DF.则当AE=CF、∠AEB=∠CFD或∠ABE=∠CDF时,满足BE=DF.6.如图,四边形ABCD中,对角线BD⊥AD,BD⊥BC,AD=11-x,BC=x-5,则当x=_______时,四边形ABCD是平行四边形.【答案】8【解析】∵BD⊥AD,BD⊥BC,∴AD∥BC,只要AD=BC,四边形ABCD是平行四边形.因为AD=BC,所以11-x=x-5,x=8.7.如图,在△ABC中,D是BC边的中点,F、E分别是AD及其延长线上的点,CF∥BE.(1)求证:△BDE≌△CDF;(2)请连接BF,CE,试判断四边形BECF是何种特殊四边形,并说明理由.【答案】(1)证明:∵CF∥BE,∴∠FCD=∠EBD.∵D是BC的中点,∴CD=BD.∵∠FDC=∠EDB,∴△CDF≌△BDE(ASA).(2)解:四边形BECF是平行四边形.理由:∵△CDF≌△BDE,∴DF=DE,DC=DB.∴四边形BECF是平行四边形.【解析】(1)利用CF∥BE和D是BC边的中点可以得到全等条件证明△BDE≌△CDF;(2)根据(1)的结论和平行四边形的判定容易证明四边形BECF是平行四边形.8.如图,在△ABC中,D是BC上的点,O是AD的中点,过A作BC的平行线交BO的延长线于点E,则四边形ABDE是什么四边形?并说明理由.【答案】四边形ABCD是平行四边形,理由是:∵AE∥BC,∴∠EAO=∠ODB,∠AEO=∠DBO,∵O是AD的中点,∴AO=OD,∵在△AOE和△DOB中∵∠EAO=∠BDO,∠AEO=∠DBO, AO=OD,∴△AOE≌△DOB,∴OB=OE,∵AO=OD,∴四边形ABDE是平行四边形.【解析】根据平行线性质求出∠EAO=∠ODB,∠AEO=∠DBO,证△AOE≌△DOB,推出OB=OE,根据平行四边形的判定求出即可.9.已知:如图,在▱ABCD中,点E在AD上,连接BE,DF∥BE交BC于点F,AF与BE交于点M,CE与DF交于点N.求证:四边形MFNE是平行四边形.【答案】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,又∵DF∥BE,∴四边形BEDF是平行四边形,∴DE=BF,ME∥NF,∴AD-DE=BC-BF,即AE=CF,又∵AE∥CF,∴四边形AFCE是平行四边形,∴MF∥NE,∴四边形MFNE是平行四边形.【解析】利用平行四边形的判定定理及定义:两组对边分别平行的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两条对角线互相平分的四边形是平行四边形;两组对角分别相等的四边形是平行四边形.10.在△ABC中,AB=AC,点P为△ABC所在平面内一点.(1)当点P在BC边上,过点P分别作PD∥AC交AB于点D,PE∥AB交AC于点E,如图1.证明:AB=PD+PE;(2)当点P在△ABC外部时,过点P分别作PD∥AC交AB于点D,PE∥AB交AC于点E,交BC于点F,请你在图2中画出相应的图形,并直接写出PD,PE,PF与AB满足的数量关系.(不必说明理由)【答案】(1)证明:PD∥AC,PE∥AB,∴四边形ADPE是平行四边形,∴PD=AE,AD=PE,∵AB=AC,∴∠B=∠C,又∵∠DPB=∠C,∴∠B=∠DPB,∴DP=DB,∴PD+PE=BD+AD=AB;(2)已知如图: PE+PD-PF="AB"【解析】(1)证平行四边形ADPE,推出PD=AE,PE=AD,根据等腰三角形性质推出∠B=∠C=∠DPB,推出DP=DB即可;(2)PD,PE,PF与AB满足的数量关系是PE+PD-PF=AB,如图2中,PD=AE可证,EF=PE-PF=CE,即PE+PD-PF=AC=AB.。

平行四边形性质与判定(题型较全)

平行四边形性质与判定(题型较全)

初二数学平行四边形1.下列条件中,能判别四边形ABCD 是平行四边形的是( )A .AB=BC=CDB .∠B+∠C=180°,∠C+∠D=180°C .AB=BC ,CD=DAD .∠A+∠B=180°,∠C+∠D=180°2.若A 、B 、C 是不在同一直线上的三点,则以这三点为顶点画平行四边形,可画( )A .1个B .2个C .3个D .4个3.下列说法正确的是( )A .平行四边形的对角线相等B .一组对边平行,另一组对边相等的四边形是平行四边形C .平行四边形的对角线交点到一组对边的距离相等D .沿平行四边形的一条对角线对折,这条对角线两旁的图形能够重合4.下列条件不能判定四边形ABCD 为平行四边形的是( )A .AB=CD ,AD=BCB .AB=AD ,BC=CDC .AB ∥CD ,AB=CD D .∠A=∠C ,∠B=∠D5.四边形ABCD 中,AD ∥BC ,要判别它是平行四边形还需满足( )A .∠A+∠C=180°B .∠B+∠D=180°C .∠A+∠B=180°D .∠A+∠D=180°6.如图,四边形ABED 和四边形AFCD 都是平行四边形,AF 和DE 相交成直角,AG=3cm ,DG=4cm ,□ABED 的面积是,则四边形ABCD 的周长为( )A .49cmB .43cmC .41cmD .46cm第6题图 第7题图7.如图,点E 、F 分别是□ABCD 的边AB 、CD 的中点,DE 、BF 交于AC 于M 、N ,则( )A .AM=MEB .AM=BEC .AM=CND .AM ⊥MD8、在平行四边形ABCD 中,=∠︒=∠-∠C ,B A 则609.□ABCD ,AC 、BD 相交于点O ,AC=4cm ,BD=6cm ,AB=3cm ,则△ABO 的周长是________。

平行四边形练习题40道

平行四边形练习题40道

平行四边形40题一.选择题”1.下列给出的条件中,不能判定四边形ABCD是平行四边形的是()A.AB∥CD,∠A=∠C B.AB=CD,∠B=∠DC.AD=BC,AD∥BC D.AB=CD,AD=BC2、下列条件中,能判定四边形ABCD为平行四边形的个数是()①AB∥CD,AD=BC;②AB=CD,AD=BC;③∠A=∠B,∠C=∠D;④AB=AD,CB=CDA.1个B.2个C.3个D.4个3、下列给出的条件中,不能判定四边形ABCD是平行四边形的是()A.AB∥CD,∠A=∠C B.AB=CD,∠B=∠DC.AD=BC,AD∥BC D.AB=CD,AD=BC4.下面给出了四边形ABCD中∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD是平行四边形的是()A.1:2:3:4B.2:2:3:3C.2;3:2:3D.2:3:3:25.如图,在四边形ABCD中,对角线AC,BD相交于点O,AB∥CD,添加下列条件不能使四边形ABCD 成为平行四边形的是()A.AB=CD B.OB=ODC.∠BCD+∠ADC=180°D.AD=BC6.如图,E,F是四边形ABCD的对角线BD上的两点,AE∥CF,AB∥CD,BE=DF,则下列结论①AE=CF,②AD=BC,③AD∥BC,④∠BCF=∠DAE其中正确的个数为()A.1个B.2个C.3个D.4个7.如图,两条平行线l1,l2被另外一组平行线l3,l4,l5所截,交点分别为A,B,C,D,E,F.则下列结论错误的是()A.AB=DE B.AD=CF C.AB=BC D.AC=DF8.小峰不慎将一块平行四边形玻璃打碎成如图所示的四块,为了能在商店配到一块与原来相同的玻璃,他带了两块碎玻璃,其编号应该是()A.①,②B.①,④C.③,④D.②,③9.如图,分别以Rt△ABC的直角边AC,斜边AB为边向外作等边三角形△ACD和△ABE,F为AB的中点,连接DF,EF,∠ACB=90°,∠ABC=30°.则以下4个结论:①AC⊥DF;②四边形BCDF为平行四边形;③DA+DF=BE;④其中,正确的是()A.只有①②B.只有①②③C.只有③④D.①②③④10.如图,E、F分别是平行四边形ABCD的边AD、BC上的点,且BE∥DF,AC分别交BE、DF于点G、H.下列结论:①四边形BFDE是平行四边形;②△AGE≌△CHF;③BG=DH;④S△AGE:S△CDH=GE:DH,其中正确的个数是()A.1B.2个C.3个D.4个11.▱ABCD中,E、F分别在边AB和CD上,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.AE=CF B.AF=EC C.∠DAF=∠BCE D.∠AFD=∠CEB12.如图,E是▱ABCD边AD延长线上一点,连接BE,CE,BD,BE交CD于点F.添加以下条件,不能判定四边形BCED为平行四边形的是()A.∠ABD=∠DCE B.DF=CF C.∠AEB=∠BCD D.∠AEC=∠CBD13.如图,两条宽度分别为1和2的方形纸条交叉放置,重叠部分为四边形ABCD,若AB+BC=6,则四边形ABCD的面枳是()A.4B.2C.8D.614.如图,在平行四边形ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM =∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动:点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动,点P运动到F点时停止运动,点Q也同时停止运动,当点P运动()秒时,以点P、Q、E、F为顶点的四边形是平行四边形.A.2B.3C.3或5D.4或515.如图,在△ABC中,点D,E,F分别是AB,BC,AC的中点,连接DE,EF,DF,则下列说法不正确的是()A.S△DEF=S△ABCB.△DEF≌△F AD≌△EDB≌△CFEC.四边形ADEF,四边形DBEF,四边形DECF都是平行四边形D.四边形ADEF的周长=四边形DBEF的周长=四边形DECF的周长二.填空题(共10小题)16.如图,在▱ABCD中,对角线AC、BD相交于点E,AC⊥BC.若AC=4,AB=5,则BD的长为.17.如图,两条宽度分别为2和4的纸条交叉放置,重叠部分为四边形ABCD,若AB•BC=100,则四边形ABCD的面积是.18.如图所示,在▱ABCD中E,F分别在BC,AD上,若想使四边形AFCE为平行四边形,须添加一个条件,这个条件可以是,①AF=CF;②AE=CF;③∠BAE=∠FCD;④∠BEA=∠FCE.19.如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,则图中面积相等的平行四边形共有对.20.如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,点F从点B出发沿射线BC以2cm/s的速度运动.如果点E、F同时出发,设运动时间为t(s)当t=s时,以A、C、E、F为顶点四边形是平行四边形.21.如图,四边形ABCD中,AD∥BC,AD=3,BC=8,E是BC的中点,点P以每秒1个单位长度的速度从A点出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B 运动,点P停止运动时,点Q也随之停止运动.当运动时间t=秒时,以点P,Q,E,D为顶点的四边形是平行四边形.22.已知点A(1,0),B(4,0),C(0,2),在平面内找一点M使得以M、A、B、C为顶点的四边形为平行四边形,则点M的坐标为.23.已知点A(2,2),B(﹣2,0),C(3,﹣1),且以A,B,C,D为顶点的四边形是平行四边形,则点D的坐标为:.24.在平面直角坐标系xOy中,已知点A(1,1),B(﹣1,1),如果以A,B,C,O为顶点的四边形是平行四边形,那么满足条件的所有点C的坐标为.25.如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为平行四边形;③AD =4AG;④△DBF≌△EF A.其中正确结论的序号是.三.解答题(共15小题)26.在▱ABCD中,E,F分别是AB,DC上的点,且AE=CF,连接DE,BF,AF.(1)求证:四边形DEBF是平行四边形;(2)若AF平分∠DAB,AE=3,DE=4,BE=5,求AF的长.27、如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.若AC=2,CE=4;(1)求证:四边形ACED是平行四边形.(2)求BC的长.28.如图,四边形ABCD中,AB∥CD,AC与BD相交于点O,AO=CO.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,AB=10,求BC的长.29、如图,在▱ABCD中,AF平分∠BAD交BC于点F,CE平分∠BCD交AD于点E.(1)若AD=12,AB=8,求CF的长;(2)连接BE和AF相交于点G,DF和CE相交于点H,求证:EF和GH互相平分.30.如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.(1)求证:四边形BDEF为平行四边形;(2)当∠C=30°,时,求D,F两点间的距离.31.如图,在平行四边形ABCD中,∠BAD和∠DCB的平分线AE,CF分别交BC,AD于点E,F,点M,N分别是AE,CF的中点,连接FM,EN(1)求证:BE=DF;(2)求证:四边形FMEN是平行四边形.32.如图,四边形ABCD的对角线AC、BD相交于点O,AO=CO,EF过点O且与AD、BC分别相交于点E、F,OE=OF(1)求证:四边形ABCD是平行四边形;(2)连接AF,若EF⊥AC,△ABF周长是15,求四边形ABCD的周长.33.如图,在▱ABCD中,O为AC的中点,EF过点O,分别交AD,CB的延长线于点E,F.(1)求证:四边形AFCE是平行四边形.(2)若AC平分∠BAE,AB=6,AE=8,求BF的长.34.如图,在平行四边形ABCD中,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是平行四边形;(2)若BD=BC=5,CD=6,求平行四边形AEBD的面积.35.如图,E、F是▱ABCD的对角线AC上的两点,且BE⊥AC,DF⊥AC,连接BE、ED、DF、FB.(1)求证:四边形BEDF为平行四边形;(2)若BE=4,EF=2,求BD的长.36、如图,在平行四边形ABCD中,点E、F别在BC,AD上,且BE=DF.(1)如图①,求证:四边形AECF是平行四边形;(2)如图②,若∠BAC=90°,且AB=3.AC=4,求平行四边形ABCD的周长.37.如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于对角线AC,垂足是E,连接BE.(1)求证:四边形ABCD是平行四边形;(2)若△ABE是等边三角形,四边形BCDE的面积等于2,求CE的长.38.如图,在△ABC中,∠BAC=70°,∠ABC和∠ACB的角平分线交于D点,E、F、G、H分别是线段AB、AC、BD、CD的中点.(1)求∠BDC的度数;(2)证明:四边形EGHF为平行四边形.39.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是ts(0<t≤15).过点D作DF⊥BC 于点F,连接DE,EF.(1)求证:四边形AEFD是平行四边形;(2)当t为何值时,△DEF为直角三角形?请说明理由.40、【阅读材料】在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为(,)【运用】(1)已知O为▱ABCD的对角线AC与BD交点,点B的坐标为(4,3),则点D的坐标为(﹣1,1),则O的坐标为(,2);(2)在直角坐标系中,有A(﹣1,2),B(3,1),C(1,4)三点,另有一点D与点A,B,C构成平行四边形的顶点,求点D的坐标.(提示:运用阅读材料完成)。

中考数学总复习《平行四边形的判定与性质》练习题及答案

中考数学总复习《平行四边形的判定与性质》练习题及答案

中考数学总复习《平行四边形的判定与性质》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图在四边形ABCD中AB=CD,对角线AC、BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF、CE,若DE=BF,则下列结论不一定正确的是()A.CF=AE B.OE=OFC.△CDE为直角三角形D.四边形ABCD是平行四边形2.如图四边形ABCD中AB∥CD,∥B=∥D点E为BC延长线上一点,连接AE,AE交CD于点H,∥DCE的平分线交AE于点G.若AB=2AD=10,点H为CD的中点,HE=6,则AC的值为()A.9B.√97C.10D.3 √103.如图在Rt∥ABC中∥ACB=90°,分别以AB、AC为腰向外作等腰直角三角形∥ABD和∥ACE,连结DE,CA的延长线交DE于点F,则与线段AF相等的是()A.AC B.AB C.BC D.AB4.如图在菱形ΑΒCD中∠Α=60∘,AD=8,F是ΑΒ的中点.过点F作FΕ⊥ΑD,垂足为Ε.将ΔΑΕF沿点Α到点Β的方向平移,得到ΔΑ′Ε′F ′.设Ρ、Ρ′分别是ΕF、Ε′F ′的中点,当点Α′与点Β重合时,四边形ΡΡ′CD的面积为()A.28√3B.24√3C.32√3D.32√3−85.下列说法中错误的是()A.平行四边形的对角线互相平分B.对角线互相垂直的四边形是菱形C.菱形的对角线互相垂直D.对角线互相平分的四边形是平行四边形6.如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD7.如图点A是直线l外一点,在l上取两点B,C,分别以A,C为圆心,BC,AB的长为半径作弧,两弧交于点D,分别连接AB,AD,CD,若∥ABC+∥ADC=120°,则∥A的度数是()A.100°B.110°C.120°D.125°8.如图在∥ABC中AB=AC=10,BC=12,点D是BC上一点,DE∥AC,DF∥AB,则∥BED与∥DFC的周长的和为()A.34B.32C.22D.209.如图在平面直角坐标系中点A(1,5),B(4,1),C(m,−m),D(m−3,−m+4),当四边形ABCD 的周长最小时,则m 的值为().A.√2B.32C.2D.310.如图分别在四边形ABCD的各边上取中点E,F,G,H,连接EG,在EG上取一点M,连接HM,过F作FN∥HM,交EG于N,将四边形ABCD中的四边形①和②移动后按图中方式摆放,得到四边形AHM′G′和AF′N′E,延长M′G′,N′F′相交于点K,得到四边形MM′KN′.下列说法中错误的是()A.S四边形MM′KN′=S四边形ABCD B.HM=NFC.四边形MM′KN′是平行四边形D.∠K=∠AHM′11.如图,已知∥ABC与∥CDA关于点O成中心对称,过点O任作直线EF分别交AD,BC于点E,F,则下则结论:①点E和点F,点B和点D是关于中心O的对称点;②直线BD必经过点O;③四边形ABCD 是中心对称图形;④四边形DEOC与四边形BFOA的面积必相等;⑤∥AOE与∥COF成中心对称.其中正确的个数为()A.2B.3C.4D.512.如图P为平行四边形ABCD内一点,过点P分别作AB、AD的平行线交平行四边形于E、F、G、H四点,若S四边形AHPE=3,S四边形PFCG=5,则S∥PBD为()A.0.5B.1C.1.5D.2二、填空题13.如图在平行四边形ABCD中点E,F分别在BC,AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).14.如图在Rt△ABC中AC=2√3,BC=2,点P是斜边AB上任意一点,D是AC的中点,连接PD并延长,使DE=PD.以PE,PC为边构造平行四边形PCQE,则对角线PQ的最小值为.15.如图▱ABCD中∥BAD=120°,E、F分别在CD和BC的延长线上,AE∥BD,EF∥BC,EF=5√3,则AB的长是16.如图在∥ABC中∥ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD= 13BD,连接DM、DN、MN.若AB=6,则DN=.17.若AC=10,BD=8,那么当AO=DO=时,四边形ABCD是平行四边形。

(完整版)平行四边形专项练习题

(完整版)平行四边形专项练习题

平行四边形专项练习题一.选择题(共12小题)1.在下列条件中,能够判定一个四边形是平行四边形的是()A.一组对边平行,另一组对边相等B.一组对边相等,一组对角相等C.一组对边平行,一条对角线平分另一条对角线D.一组对边相等,一条对角线平分另一条对角线2.设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A.a>b B.a=b C.a<b D.b=a+180°3.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S34.在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论正确的有()①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④5.如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2 B.3 C.4 D.66.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为()A.8 B.10 C.12 D.147.如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为()A.B.4C.2D.8.如图,在▱ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是()A.AG平分∠DAB B.AD=DH C.DH=BC D.CH=DH 9.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B 为()A.66°B.104°C.114°D.124°10.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO 的周长是()A.10 B.14 C.20 D.2211.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3种 B.4种C.5种D.6种12.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④ D.④⑤二.填空题(共6小题)13.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=.14.如图,在▱ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是.15.如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件(写一个即可),使四边形ABCD是平行四边形.16.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为.17.如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN=.18.如图,在△ABC中,点D、E、F分别是边AB、BC、CA上的中点,且AB=6cm,AC=8cm,则四边形ADEF的周长等于cm.三.解答题(共8小题)19.如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.20.如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.21.已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.22.如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC 上(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.23.如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.24.如图,▱ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N.(1)求证:四边形CMAN是平行四边形.(2)已知DE=4,FN=3,求BN的长.25.如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:(1)DE=BF;(2)四边形DEBF是平行四边形.26.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.参考答案与解析一.选择题1.【分析】根据平行四边形的判定方法以及全等三角形的判定方法一一判断即可.解:A、错误.这个四边形有可能是等腰梯形.B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.故选C.2.【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论.解:∵四边形的内角和等于a,∴a=(4﹣2)•180°=360°.∵五边形的外角和等于b,∴b=360°,∴a=b.故选B.3.【分析】设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c表示),得出S1,S2,S3之间的关系,由此即可解决问题.解:设等腰直角三角形的直角边为a,正方形边长为c,则S2=(a+c)(a﹣c)=a2﹣c2,∴S2=S1﹣S3,∴S3=2S1﹣2S2,∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1﹣2S2=4S1.故选A.4.【分析】当▱ABCD的面积最大时,四边形ABCD为矩形,得出∠A=∠B=∠C=∠D=90°,AC=BD,根据勾股定理求出AC,即可得出结论.解:根据题意得:当▱ABCD的面积最大时,四边形ABCD为矩形,∴∠A=∠B=∠C=∠D=90°,AC=BD,∴AC==5,①正确,②正确,④正确;③不正确;故选:B.5.【分析】由平行四边形的性质和角平分线得出∠F=∠FCB,证出BF=BC=8,同理:DE=CD=6,求出AF=BF﹣AB=2,AE=AD﹣DE=2,即可得出结果.解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵CF平分∠BCD,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF﹣AB=2,AE=AD﹣DE=2,∴AE+AF=4;故选:C.6.【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB,得出AF=AB=6,同理可证DE=DC=6,再由EF的长,即可求出BC的长.解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=6,AD=BC,∴∠AFB=∠FBC,∵BF平分∠ABC,∴∠ABF=∠FBC,则∠ABF=∠AFB,∴AF=AB=6,同理可证:DE=DC=6,∵EF=AF+DE﹣AD=2,即6+6﹣AD=2,解得:AD=10;故选:B.7.【分析】先由平行四边形的性质和角平分线的定义,判断出∠CBE=∠CFB=∠ABE=∠E,从而得到CF=BC=8,AE=AB=12,再用平行线分线段成比例定理求出BE,然后用等腰三角形的三线合一求出BG,最后用勾股定理即可.解:∵∠ABC的平分线交CD于点F,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CBE=∠CFB=∠ABE=∠E,∴CF=BC=AD=8,AE=AB=12,∵AD=8,∴DE=4,∵DC∥AB,∴,∴,∴EB=6,∵CF=CB,CG⊥BF,∴BG=BF=2,在Rt△BCG中,BC=8,BG=2,根据勾股定理得,CG===2,故选:C.8.【分析】根据作图过程可得得AG平分∠DAB,再根据角平分线的性质和平行四边形的性质可证明∠DAH=∠DHA,进而得到AD=DH,解:根据作图的方法可得AG平分∠DAB,∵AG平分∠DAB,∴∠DAH=∠BAH,∵CD∥AB,∴∠DHA=∠BAH,∴∠DAH=∠DHA,∴AD=DH,∴BC=DH,故选D.9.【分析】由平行四边形的性质和折叠的性质得出∠ACD=∠BAC=∠B′AC,由三角形的外角性质求出∠BAC=∠ACD=∠B′AC=∠1=22°,再由三角形内角和定理求出∠B 即可.解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;故选:C.10.【分析】直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案.解:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周长是:14.故选:B.11.【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.解:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;∴有4种可能使四边形ABCD为平行四边形.故选:B.12.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN 的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.二.填空题13.【分析】由平行四边形的性质和折叠的性质得出∠D1AE=∠BAD,得出∠D1AD=∠BAE=55°即可.解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠的性质得:∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD=∠BAE=55°;故答案为:55°.14.【分析】根据平行四边形性质得出AD∥CB,AB∥CD,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB中求出∠APB=90°,由勾股定理求出BP,证出AD=DP=5,BC=PC=5,得出DC=10=AB,即可求出答案.解:∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB+∠PBA=(∠DAB+∠CBA)=90°,在△APB中,∠APB=180°﹣(∠PAB+∠PBA)=90°;∵AP平分∠DAB,∴∠DAP=∠PAB,∵AB∥CD,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP是等腰三角形,∴AD=DP=5,同理:PC=CB=5,即AB=DC=DP+PC=10,在Rt△APB中,AB=10,AP=8,∴BP==6,∴△APB的周长=6+8+10=24;故答案为:24.15.【分析】根据平行四边形的定义或判定定理即可解答.解:可以添加:AD∥BC(答案不唯一).故答案是:AD∥BC.16.【分析】结合题意,总结可知,每个图中三角形个数比图形的编号的4倍少3个三角形,即可得出结果.解:第①是1个三角形,1=4×1﹣3;第②是5个三角形,5=4×2﹣3;第③是9个三角形,9=4×3﹣3;∴第n个图形中共有三角形的个数是4n﹣3;故答案为:4n﹣3.17.【分析】连接CM,根据三角形中位线定理得到NM=CB,MN∥BC,证明四边形DCMN是平行四边形,得到DN=CM,根据直角三角形的性质得到CM=AB=3,等量代换即可.解:连接CM,∵M、N分别是AB、AC的中点,∴NM=CB,MN∥BC,又CD=BD,∴MN=CD,又MN∥BC,∴四边形DCMN是平行四边形,∴DN=CM,∵∠ACB=90°,M是AB的中点,∴CM=AB=3,∴DN=3,故答案为:3.18.【分析】首先证明四边形ADEF是平行四边形,根据三角形中位线定理求出DE、EF即可解决问题.解:∵BD=AD,BE=EC,∴DE=AC=4cm,DE∥AC,∵CF=FA,CE=BE,∴EF=AB=3cm,EF∥AB,∴四边形ADEF是平行四边形,∴四边形ADEF的周长=2(DE+EF)=14cm.故答案为14.三.解答题19.【分析】(1)由平行四边形的性质得出AD∥BC,AB∥CD,证出∠DAE=∠F,∠D=∠ECF,由AAS证明△ADE≌△FCE即可;(2)由全等三角形的性质得出AE=EF=3,由平行线的性质证出∠AED=∠BAF=90°,由勾股定理求出DE,即可得出CD的长.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAE=∠F,∠D=∠ECF,∵E是▱ABCD的边CD的中点,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS);(2)解:∵ADE≌△FCE,∴AE=EF=3,∵AB∥CD,∴∠AED=∠BAF=90°,在▱ABCD中,AD=BC=5,∴DE===4,∴CD=2DE=8.20.【分析】(1)由在▱ABCD中,E是BC的中点,利用ASA,即可判定△ABE≌△FCE,继而证得结论;(2)由AD=2AB,AB=FC=CD,可得AD=DF,又由△ABE≌△FCE,可得AE=EF,然后利用三线合一,证得结论.证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABE=∠FCE,∵E为BC中点,∴BE=CE,在△ABE与△FCE中,,∴△ABE≌△FCE(ASA),∴AB=FC;(2)∵AD=2AB,AB=FC=CD,∴AD=DF,∵△ABE≌△FCE,∴AE=EF,∴DE⊥AF.21.【分析】利用平行线的性质得出∠BAE=∠CFE,由AAS得出△ABE≌△FCE,得出对应边相等AE=EF,再利用平行四边形的判定得出即可.解:四边形ABFC是平行四边形;理由如下:∵AB∥CD,∴∠BAE=∠CFE,∵E是BC的中点,∴BE=CE,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS);∴AE=EF,又∵BE=CE∴四边形ABFC是平行四边形.22.【分析】(1)选取①②,利用ASA判定△BEO≌△DFO即可;(2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.证明:(1)选取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.23.【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF=BC,DG∥BC且DG=BC,从而得到DE=EF,DG∥EF,再利用一组对边平行且相等的四边形是平行四边形证明即可;(2)先判断出∠BOC=90°,再利用直角三角形斜边的中线等于斜边的一半,求出EF 即可.解:(1)∵D、G分别是AB、AC的中点,∴DG∥BC,DG=BC,∵E、F分别是OB、OC的中点,∴EF∥BC,EF=BC,∴DG=EF,DG∥EF,∴四边形DEFG是平行四边形;(2)∵∠OBC和∠OCB互余,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∵M为EF的中点,OM=3,∴EF=2OM=6.由(1)有四边形DEFG是平行四边形,∴DG=EF=6.24.【分析】(1)只要证明CM∥AN,AM∥CN即可.(2)先证明△DEM≌△BFN得BN=DM,再在RT△DEM中,利用勾股定理即可解决问题.(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,∵AM⊥BD,CN⊥BD,∴AM∥CN,∴CM∥AN,AM∥CN,∴四边形AMCN是平行四边形.(2)∵四边形AMCN是平行四边形,∴CM=AN,∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴DM=BN,∠MDE=∠NBF,在△MDE和△NBF中,,∴△MDE≌△NBF,∴ME=NF=3,在Rt△DME中,∵∠DEM=90°,DE=4,ME=3,∴DM===5,∴BN=DM=5.25.【分析】(1)根据全等三角形的判定方法,判断出△ADE≌△CBF,即可推得DE=BF.(2)首先判断出DE∥BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF是平行四边形即可.证明:(1)∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB,∴∠DAE=∠BCF,在△ADE和△CBF中,∴△ADE≌△CBF,∴DE=BF.(2)由(1),可得△ADE≌△CBF,∴∠ADE=∠CBF,∵∠DEF=∠DAE+∠ADE,∠BFE=∠BCF+∠CBF,∴∠DEF=∠BFE,∴DE∥BF,又∵DE=BF,∴四边形DEBF是平行四边形.26.【分析】(1)直接利用三角形中位线定理得出DE BC,进而得出DE=FC;(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长.(1)证明:∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE BC,∵延长BC至点F,使CF=BC,∴DE=FC;(2)解:∵DE FC,∴四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.。

平行四边形的性质判定练习题

平行四边形的性质判定练习题

1第一部分 平行四边形的性质练习题 例题1、平行四边形得周长为50cm ,两邻边之差为5cm,求各边长。

变题1.平行四边形ABCD 的周长为40cm,两邻边AB 、AC 之比为2:3,则AB=_______,BC=________. 变题2.四边形ABCD 是平行四边形,∠BAC=90°,AB=3,AC=4,求AD 的长。

例题2.平行四边形ABCD 中,∠A-∠B=20°,求平行四边形各内角的度数。

变题3.平行四边形ABCD 中,AE 平分∠DAB, ∠DEA=20°,则∠C=_________,∠B_________. 变题4.如图,在平行四边形ABCD 中,∠BAC=34°, ∠ACB=26°,求∠DAC 与∠D 的度数。

例题3.如图,在平行四边形ABCD 中,CE ⊥AD,CF ⊥BA 交BA 的延长线于F ,∠FBC=30°,CE=3cm,CF=5cm,求平行四边形ABCD 的周长。

变题5.如图,平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,求平行四边形面积。

1、如图,四边形ABCD 是平行四边形,AB=6cm,BC=8cm ,∠B=70°,则AD=________,CD=______,∠D=_______,∠A=______,∠C=_______.2、平行四边形ABCD 的周长为40cm,两邻边AB 、AC 之比为2:3,则AB=_______,BC=________.3、平行四边形得周长为50cm ,两邻边之差为5cm,则长边是________ ,短边是__________.4、平行四边形ABCD 中,∠A-∠B=20°, 则∠A=_______ ∠B=________5、.平行四边形ABCD 中,AE 平分∠DAB, ∠DEA=20°,则∠C=____,∠B_____.6、平行四边形 ABCD 中,∠A+∠C=200°.则:∠A= _______,∠B= _________ .7、如图,平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,求平行四边形面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形的判定练习
1.如图,•已知AD•∥BC ,•要使四边形ABCD•为平行四边形,•需要添加的条件是_______.(只需填写
一个)
2. 在四边形ABCD 中,AB ∥CD ,∠A =∠C ,求证:四边形ABCD 是平行四边形.
3.已知:如图,在四边形ABCD 中,对角线AC 和BD 交于点O ,且OA=OC ,AB ∥DC ,求证:四边形ABCD 是平行四边形。

4.如图,已知在四边形ABCD 中,AD=BC ,∠D=∠DCE .求证:四边形ABCD•是平行四边形.
5、如图,在□ABCD 中,E 、F 分别是BC 、AD 上的点,且AE ∥CF ,AE 与CF 相等吗?说明理由.
6.如图,已知四边形ABCD 和四边形AEFD 都是平行四边形,求证:四边形BCFE•是平行四边形.
7.有一个四边形的四边长分别是a ,b ,c ,d ,且有a 2+b 2+c 2+d 2=2(ac+bd ).
求证:此四边形是平行四边形.
D
A
C
O
8.如图,已知ABCD ,E ,F 是对角线BD 所在直线上的两点,且AE ∥CF ,求证:CE ∥AF .
9.□ABCD 中,AC 、BD 交于点O ,AE=CF ,求证:BE=DF
10.(变式练习1)如图,已知ABCD 中,对角线AC ,BD 交于点O ,点E ,F ,G ,H 分别是OB ,OC ,OD ,OA•的中点,求证:四边形EFGH 是平行四边形.
11、(变式练习2)□ABCD 中,AC 、BD 交于点O ,AE=CF ,BM=DN
求证:四边形MFNE 是平行四边形
12. (变式练习3)如图,平行四边形ABCD 中,E 、F 是AC 上两点,且AE=CF ,又点M 、N 分别在AB 、CD 上,且MF ∥EN ,MN 交AC 于O 。

求证:EF 与MN 互相平分。

13、(变式练习4)如图所示,□ABCD 的对角线AC 、BD 交于O ,EF 过点O 交AD 于E ,交BC 于F ,G 是OA 的中点,H 是OC 的中点,四边形EGFH 是平行四边形,说明理由.
14. □ABCD 中,E 、F 分别是边AD 、BC 上的点,请你自行规定E 、F 在边AD 、BC 上的位置,然后补充题设、提出结论并证明(要求:至少编制两个正确的命题,且补充题设不能相同).
N M
F
E O
A F
E O A C B
平行四边形的判定练习
15.□ABCD 中,DE 平分∠ADC 交AB 于E ,BF 平分∠ABC 交CD 于F , 求证:(1)四边形 DEBF 是平行四边形(2)DE=BF 16.(变式练习)□ABCD 中,DE 平分∠ADC 交BC 的延长线于E ,BF 平分∠ABC 交AB 的延长线于F ,求证:四边形 DEBF 是平行四边形
17.已知:如图所示,在ABCD 中,E 、F 分别为AB 、CD 的中点,求证四边形AECF 是平行四边形.
18. (变式练习1)如图所示,平行四边形ABCD 中,M 、N 分别为AD 、BC 的中点,连结AN 、DN 、BM 、
CM ,且AN 、BM 交于点P ,CM 、DN 交于点Q .四边形MGNP 是平行四边形吗?为什么?
19. (变式练习2)如图,E 、F 分别为口ABCD 的边AD 、BC 的中点。

求证:(1)BE=DF ;(2)O 为GH 的中点。

20.如图,已知
ABCD 中,E ,F 分别是边AB ,CD 的中点,求证:EF=BC .
21.(变式练习)如图,在
ABCD 中,E ,F 分别是AB ,CD 的中点,以图中的点为顶点,尽可能多地
F
E C
D
B F E
C
D B
A A
B
C
F
G H E
O
画出平行四边形,并选择其中一个平行四边形,说明它是平行四边形的理由.
22.□ABCD 中,E 在AB 上,F 在CD 上,且AE=CF,
求证:(1)四边形DEBF 是平行四边形(2)DE=BF
23.□ABCD 中,E 在AB 上,F 在CD 上,且AE=CF,M 为DE
中点,N 为FB 中点,求证:FM=NE ME=NF
24.□ABCD 中,E 在AB 上,F 在CD 上,且AE=CF,求证:FM=NE
ME=NF
25.如图所示,BD 是ABCD 的对角线,AE ⊥BD 于E ,CF ⊥BD 于F ,求证:四边形AECF 为平行四边形. 26.如图,在□ABCD 中,点E 是AD 的中点,BE 的延长线与CD 的延长线相交于点F
(1)求证:△ABE ≌△DFE ;(2)试连结BD 、AF ,判断四边形ABDF 的形状,并证明你的结论.
27.如图,已知ABCD ,分别延长BC ,DA 至点E ,F ,如果∠E=∠ F. 求证:四边形FBED 是平行四边形.
28、 已知如图:在ABCD 中,延长AB 到E ,延长CD 到F ,使BE =DF ,
E F D B N M
E D
B N
M E F D
B
则线段AC 与EF 是否互相平分?说明理由.
平行四边形的判定练习
29.如图所示,已知点D 是△ABC 的边AB 上的中点,点E 是AC 上的一点,DF ∥BE,EF ∥AB,证明:AE 、DF 互相平分
30.如图14,E 、F 是四边形ABCD 的对角线AC 上的两点,AF=CE ,DF=BE ,DF ∥BE . 求证:(1)⊿AFD ≌⊿CEB .(2)四边形ABCD 是平行四边形.
31.已知:如图,在四边形ABCD 中,AB =DC ,AD =BC ,点E 在BC 上,点F 在AD 上,AF =CE ,EF 与对角线BD 相交于点O ,求证:O 是BD 的中点.
32.如图,已知AC ∥DE 且AC=DE ,AD ,CE 交于点B ,AF ,DG 分别是△ABC ,△BDE 的中线,•求证:四边形AGDF 是平行四边形.
33.如图,已知AD 是△ABC 的边BC 上的中线,△BME 是△AMD 绕点M 按顺时针方向旋转180°得到的,连结AE ,求证:DE=AC .
34.如图,在□ABCD 中,∠DAB=60°,点E 、F 分别在CD 、AB 的延长线上,且AE=AD ,CF=CB . 求证:四边形AFCE 是平行四边形.
F
D B C A
E
A D F
C B
E
35.如图所示,某城市部分街道示意图,AF ∥BC ,EC ⊥BC ,BA ∥DE ,BD ∥AE ,EF=FC ,甲、乙两人同时从B 站乘车到F 站,甲乘1路车,路线是B →A →E →F ,乙乘2路,路线是B →D →C →F ,假设两车速度相同,途中耽误时间相同,那么谁先到达F 站,请说明理由.
36.在平行四边形ABCD 中,BN =DM ,BE =DF ,求证:四边形MENF 是平行四边形.
37如图,在ABCD 中,AB=2AD ,延长AD 到F,使DF=AD,再延长DA 到E,使AE=AD,求证:BF ⊥CE.
38.如图19-1-29,ABCD 中,对角线AC 、BD 相交于点O ,过点O 作两条直线分别与AB ,BC ,CD ,AD 交于G ,F ,H ,E 四点。

求证:四边形EGFH 是平行四边形。

39.如图19-1-30,分别以△ABC 的三边为边长,在BC 的同侧作等边三角形ABD ,等边三角形BCE ,等边三角形ACF ,连接DE ,EF 。

求证:四边形ADEF 是平行四边形。

40.如图19-1-31,在ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为点E ,F ,点G ,H 分别为AD ,BC 的中点,试证明EF 和GH 互相平分。

41.如图3,在ABC △中,D 是BC 边的中点,F E ,分别是AD 及其延长线上的点,CF BE ∥,连结BF CE ,,试判断四边形BECF 是何种特殊四边形,并说明理由。

42.如图2,平行四边形ABCD 中,E 、G 、F 、H 分别是四条边上的点,且AE =CF ,BG =DH ,试说明:
EF 与GH 相互平分.
图3。

相关文档
最新文档