抽屉原理
什么是抽屉原理
![什么是抽屉原理](https://img.taocdn.com/s3/m/4ad1045e11a6f524ccbff121dd36a32d7375c7d0.png)
什么是抽屉原理
抽屉原理是一种用以解释某种情况下的现象或情况的原理,常常用于说明在一定条件下,将若干物体均匀放置在一定数量的抽屉或容器中,那么必然会有至少一个抽屉或容器中放置的物体数量超过平均值。
此原理源自于数学和概率统计学中的原理。
抽屉原理的具体内容可以通过以下例子来说明:假设有10个
苹果,要将它们放入5个抽屉中,不论如何放置,至少会有一个抽屉中放置的苹果数量超过平均值,即至少会有一个抽屉中放置2个或以上的苹果。
这个原理适用于很多不同的情况,包括计算机科学、组合数学、概率统计学等领域。
例如,在计算机科学中,抽屉原理可以用来解释哈希函数的冲突现象,即在将大量的键映射到有限数量的哈希槽中时,必然会有多个键映射到同一个槽中。
需要注意的是,抽屉原理并不是指完全相同的物体或情况,而是指在一定条件下的某种相似性的现象。
它虽然不能提供精确的答案,但对于解释和推断问题有一定的参考价值,因为它揭示了现实世界中很多不可避免的规律和现象。
抽屉原理通俗易懂
![抽屉原理通俗易懂](https://img.taocdn.com/s3/m/6371e265777f5acfa1c7aa00b52acfc789eb9fc2.png)
抽屉原理通俗易懂抽屉原理是一种两个或以上独立理据联合使用,来解释或解决问题的原理。
它源自一位20世纪英国数学家早期发明的一组独立理据,它用于支持和证明一个结论的真实性。
这些心理现象往往被称为“抽屉原理”,原因是该原理可以将模糊的思想比喻为一个多格子的抽屉,每个格子代表一个独立的理由,并且抽屉里面仍有一些格子没有被填满,因此当它可以达到一个新的抽屉时,所有未被填充的格子就会被填充,以形成一个新的事实或结论。
这种认识机制通常以一种范式方式表达,即从一个想法证明推理出另一个想法的步骤。
这些结论往往形成了一个完整的推理,因此这种方法通常被用来论证和证明一个原则或观点的真实性。
抽屉原理的核心是独立的理据和论据,它们总是被用作基础来出发,然后根据可证明的结论来确定最终的结果。
它的原理是,当需要达到一个结论或出现一个事实时,我们可以将所有相关的信息综合起来,形成一个完整的“抽屉”,而不是仅仅通过一个结论或一个事实来推理。
所有独立的理据和论据必须被有选择地整合在一起,并仔细地重新研究,以获得一个完整的理解。
此外,整个抽屉必须最终形成一个合理的结论,也就是所谓的,“抽屉原理”。
在抽屉原理中用到的最常见的技巧是统一理论、比较和对比。
统一的理论是指在理论的范围之内,将不同的观点和理论综合起来,并结合之前掌握的信息形成统一的思维模式以达到更好的结论。
比较和对比则是关注更加细节的信息,根据可比性来进行比较和对比,以便更准确地了解情况,从而得出最终的结论。
抽屉原理的最重要的好处是它能够帮助人们正确和客观地对待一个问题,并准确地评估其后果。
当可以运用抽屉原理处理问题时,就不需要仅仅依靠偏见和猜测来解决问题。
相反,抽屉原理可以帮助人们发现所有有效的选择,而不是停留在偏见和自身的想法中。
它还可以帮助那些不被意识到的问题得到有效解决,从而获得更好的结果。
抽屉原理是什么意思
![抽屉原理是什么意思](https://img.taocdn.com/s3/m/ffba789d51e2524de518964bcf84b9d528ea2cbd.png)
抽屉原理是什么意思抽屉原理(也称为鸽巢原理)是数学中的一个重要原理,它描述的是一种概率现象。
抽屉原理可以简单地概括为:如果有n+1个物体要放进n个抽屉中,那么无论如何放置,至少有一个抽屉中必然会有两个或更多物体。
抽屉原理最早可以追溯到古希腊数学家彼得·建设者(Peter C. D)在1939年提出的鸽巢定理,后来由是美国数学家罗森(R. R*) 在1964年将其普及并以抽屉原理的名字命名。
这个原理的简单解释是很容易理解的。
假设有5个苹果和4个抽屉,我们需要将这些苹果放入抽屉中去。
无论如何摆放,必然会有至少一个抽屉中放入了两个或更多的苹果。
这是因为若将5个苹果放入4个抽屉,我们只能在某一个抽屉中放2个苹果,而按照抽屉原理的规定,至少会有一个抽屉中放入了两个或更多的物体。
抽屉原理的应用非常广泛,不仅仅局限于数学领域。
它可以应用于各个领域,如计算机科学、生物学、物理学等。
在计算机科学中,抽屉原理可以用于解决许多问题。
例如,在散列函数中,如果我们将 n个关键字映射到 m个槽位中(假设 n>m),那么至少会有一个槽位中有多个关键字映射。
这是因为抽屉原理告诉我们,无论以何种方式映射,始终会有两个关键字映射到同一个槽位上。
生物学中,抽屉原理可以用于解释遗传学中的基因频率。
在一个种群中,如果有 n 个个体,而有 m 种不同的基因,则至少会有个体携带相同的基因,而原因也是抽屉原理的应用。
物理学中,抽屉原理可以类比于波动理论。
例如,如果我们在一条线上有 n 个波峰,而只有 m 个波谷(n>m),则必然会有至少两个波峰在同一个波谷之间。
抽屉原理指导我们认识到,波动现象中特定的波峰和波谷的存在不能无限地隔离。
在生活中,我们也可以看到抽屉原理的应用。
例如,如果我们参加一个聚会,那么如果参与人数超过了场地的容纳能力,那么至少会有两个人被安排坐在同一张桌子上。
总结一下,抽屉原理是一种重要的概率现象,可以简单地概括为:在一定条件下,将多个物体放置到较少的容器中,必然会出现某个容器放入了两个或更多物体。
简单抽屉原理
![简单抽屉原理](https://img.taocdn.com/s3/m/2fafbcfbf61fb7360b4c6572.png)
简单抽屉原理
抽屉原理一:把一些苹果随意放入若干个抽屉,如果苹果个数多于抽屉个数,那么一定能找到一个抽屉,里面至少有2个苹果。
抽屉原理二:把m个苹果放入n个抽屉(m大于n),结果有两种可能:
1、如果m÷n没有余数,那么就一定有抽屉至少放了“m÷n”个苹果。
2、如果m÷n有余数,那么就一定有抽屉至少放了“m÷n的商加1”个苹果。
例1:一个鱼缸里有4个品种的鱼,每种鱼都有很多条,至少要捞出多少条鱼,才能保证其中有5条相同品种的鱼?
例2:一个布袋里有大小相同颜色不同的一些木球,其中红色的有10个,黄色的有8个,蓝色的有3个,绿色的有1个。
现在闭着眼睛从中摸球,请问:(1)至少要取出多少个球,才能保证取出的球至少有三种颜色?
(2)至少要取出多少个球,才能保证其中必有红球和黄球?
练习:
1、有13个人参加聚会,其中a说,至少有两个人是同一个月出生,对吗?
2、任意1830人中,至少有多少人同一天生日?
3、有红黄绿蓝四种颜色的球,且每种球都有四个,至少要摸出多少个球,才能保证四种颜色的球都有?。
抽屉原理
![抽屉原理](https://img.taocdn.com/s3/m/c21c12d8c1c708a1284a448c.png)
解: 第一行中的5个小方格用黑、白两种颜色去染,至少有 3个小方格同色.不妨设第一行的前3个为白格. 现在考虑位于这3个白格下面的那个3×4的长方形,用黑、 白两种颜色去染这个3×4的长方形,有以下两种情况: ①若在某一行的3个方格中出现两个白格,则它们与上方第 一行相应的两个白格可组成四角同为白色的长方形。 ②若在4×3的长方形的任意一行的3个小方格中都不含两个 白格,也就是每一行的3个小方格所涂的颜色只有一白二黑 或三黑,则只有下面(1)、(2)、(3)、(4)共4种可 能.如果(4)出现在某一行中,那么不管其他三行(1)、 (2)、(3)、(4)中的哪种情况,必有一个四角为黑色 小方格的长方形.如果(4)未出现,则在这四行中只能出现 (1)、(2)、(3)这3种情况,由抽屉原理可知,必有 两行染色方式完全相同,显然这两行中的4个黑色小方格可 构成四角同黑的长方形.
A
B
C
D
E
例2.一副扑克牌(去掉两张 王牌),每人随意摸两张牌, 至少有多少人才能保证他们当 中一定有两人所摸两张牌的花 色情况是相同的?
例2.一副扑克牌(去掉两张王牌),每人随意摸两张牌, 至少有多少人才能保证他们当中一定有两人所摸两张牌的花 色情况是相同的?
解: 扑克有方块、梅花、黑桃、红桃4种花色, 2张牌的花色可以有:2方块,2梅花,2红桃,2黑 桃,1方块1梅花,1方块1黑桃,1方块1红桃,1梅 花1黑桃,1梅花1红桃,1黑桃1红桃共计10种情况.
证法1:每一列的三个格用黑、白两种颜色染色.所有 可能的染法只有如下图中的八种:
如果某一列是方式(1),即三格均为白色, 则其余6列中只要再有第(1)(2)(3)(4)种方式之 一(即该列中至少有两个白格)显然存在一个四角格都是 白色的长方形. 若第(1)、(2)、(3)、(4)种方式均未出现,其余 6列就只能是(5)、(6)、(7)、(8)这四种方式, 根据抽屉原理,其中至少有两列染色方式完全一样. 又(5)~(8)中每一列至少有两格染黑色,所以一定存 在一个长方形,它的四角格颜色都是黑色。 同理可知,如果有一列是第(8)种方式,即三格均为黑 色,那么也存在四角同色的长方形。 如果在7列中(1)、(8)两种方式都未出现,则只有 (2)、(3)、(4)、(5)、(6)、(7)这六种方式 染这4列, 根据抽屉原理,至少有两列染色方式完全一样,所以仍然 存在四角同色的长方形
什么叫抽屉原理
![什么叫抽屉原理](https://img.taocdn.com/s3/m/ed97ae6c4a35eefdc8d376eeaeaad1f3469311de.png)
什么叫抽屉原理抽屉原理,又称鸽巢原理,是离散数学中的一个重要概念。
它在计算机科学、信息论、密码学等领域有着广泛的应用。
抽屉原理的核心思想是,如果有n个物品要放到m个抽屉里,且n大于m,那么至少有一个抽屉里会放多于一个物品。
抽屉原理最早的数学表述可以追溯到德国数学家Dirichlet提出的“鸽巢原理”,他认为如果有n只鸽子要放到m个巢里,且n大于m,那么至少有一个巢里会放多于一个鸽子。
这个概念后来被推广到了更一般的情况,即n个物品放到m个抽屉中。
抽屉原理的应用非常广泛。
在计算机科学中,抽屉原理被用来证明哈希算法的冲突不可避免,也被用来解决一些图论中的问题。
在信息论中,抽屉原理被用来证明数据压缩算法的存在性。
在密码学中,抽屉原理被用来分析密码学算法的安全性。
可以说,抽屉原理是离散数学中最基本的原理之一,它的重要性不言而喻。
抽屉原理的证明方法有很多种,其中比较直接的一种方法是采用反证法。
假设所有的抽屉里都放了不多于一个物品,然后根据n个物品和m个抽屉的关系,通过推理可以得出矛盾,从而证明了抽屉原理的成立。
除了直接的证明方法,抽屉原理还可以通过一些具体的例子来加深理解。
比如,假设有11个苹果要放到10个抽屉里,根据抽屉原理,至少有一个抽屉里会放多于一个苹果。
这个例子直观地展示了抽屉原理的成立。
在实际应用中,抽屉原理可以帮助我们解决一些实际问题。
比如,在生活中,如果有12个月要安排在10个月份里,那么至少会有一个月份有安排了多于一个的活动。
在排课的情况下,如果有11个学生要安排在10节课里,那么至少会有一节课有多于一个的学生安排在其中。
这些都是抽屉原理在实际生活中的应用。
总的来说,抽屉原理是离散数学中一个非常重要的概念,它在计算机科学、信息论、密码学等领域有着广泛的应用。
通过理论证明和具体例子的分析,我们可以更好地理解抽屉原理的内涵和应用,为我们在实际问题中的解决提供了有力的工具。
抽屉原理
![抽屉原理](https://img.taocdn.com/s3/m/ba351379a417866fb84a8e21.png)
抽屉原理(又名鸽笼原理)什么是“抽屉原理”?举个简单例子来说明:把3个苹果分放在2个抽屉里,必定有1个抽屉里放了2个或2个以上苹果。
这就是“抽屉原理”。
道理很简单,谁都能理解,很容易用反证法证明。
用数学语言表达如下:抽屉原理一:把多于n个物体(n为正整数),放到n个抽屉里,必定有1个抽屉里放2个或2个以上的物体。
抽屉原理二:把多于m×n个物体(m、n为正整数),放到n个抽屉里,必定有1个抽屉里放m+1个或m+1个以上的物体。
以上原理是德国数学家狄利克雷首先发现的,所以也叫狄利克雷原理。
它是一个重要而又基本的数学原理。
应用它可以解决一些有趣的看起来相当复杂的问题。
举两个简单的例子:1.第四次人口普查表明,我国50岁以下的人口已经超过8亿。
试证明:在我国至少有2人的出生时间相差不超过2秒钟。
解:50年的秒数约等于15.8亿秒,设2秒为1个抽屉,抽屉总数小于8亿个,所以至少有2人的出生时间相差不超过2秒钟。
2.某工厂生产一种天平托盘1000付,要求每付两个托盘的重量相差≤1毫克,而该厂的冲床设备生产的产品重量误差是±5毫克,问该厂用这种冲床设备,至少要生产多少个托盘才能配出1000付符合要求的托盘?解:设10个重量相差为1毫克以内的抽屉:(-5<-4),(-4<-3),(-3<-2)……(+3<+4),(+4≤+5)。
最差的情况是每一个抽屉都是奇数,那么有10个托盘不能配对,所以只要生产2010个合格托盘,就能配出1000付符合要求的托盘。
以下几道题,请读者自己解:1.证明:在25人中,至少有3人属相相同。
2.6个小朋友,每人至少有1本书,一共有20本书,试证明:至少有2个小朋友有相同数量的书。
(提示:如果每人的书数量都不相同,至少要21本书。
)3.在2行5列的2×5的方格子中,随意用红、绿两种颜色染上,证明:不管怎样染,至少有两列着色完全相同.关于抽屉原理关于整除问题a.任意n+1个自然数中,总有两个自然数的差是n的倍数例1:任取8个自然数,必有两个数的差是7的倍数。
抽屉原理
![抽屉原理](https://img.taocdn.com/s3/m/77eca7fd0242a8956bece4c3.png)
抽屉原理抽屉原理又叫鸽笼原理,是德国数学家狄里克雷首先发现的,所以又叫狄里克雷原理。
这类问题似乎都有“存在”、“必有”、“至少有”这样的字眼。
在解决这类问题时,只要求证明存在,一般并不要求指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。
一、原理抽屉原理(一):把多于..n个的物体任意分放进n个空抽屉里(n是非0自然数),那么一定有....了2个物体。
...1个抽屉里至少放进抽屉原理(二):把多于..k.n个的物体任意分放进n个空抽屉里(k、n都是非0自然数),那么一定有....了(k+1)个...1个抽屉里至少放进物体。
抽屉原理(一)是抽屉原理(二)的特殊情况。
二、解决抽屉原理问题的关键:1、确认什么是被投放的“物体”,什么是“抽屉”;2、正确构造“抽屉”——最重要的关键;3、分清问题属于下述三类问题中的哪一类。
三、抽屉原理问题的三种类型和解法(一)已知被投物体的个数和抽屉数,求某一个抽屉里至少可以放进的物体个数。
方法:要把a个物体放进n个空抽屉,如果a÷n=b……c (c≠0且c﹤n),那么一定有一个抽屉至少可以放进(b.+.1.)个物体。
而不是(b+c)个物体。
(二)已知被投物体的个数和某一个抽屉里至少可以放进的物体个数,求抽屉数。
方法:(被投物体的个数-1)÷(某一个抽屉里至少可以放进的物体个数-1)=n……c (c﹤n),则n就是所求的抽屉数。
(三)已知抽屉数和某一个抽屉里至少可以放进的物体个数,求被投物体的个数。
方法:抽屉数×(某一个抽屉里至少可以放进的物体个数-1)+1,就是所求的被投物体的个数。
(2011—04—21)。
抽屉原理
![抽屉原理](https://img.taocdn.com/s3/m/6f1e36053968011ca3009162.png)
一、知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。
(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。
我们称这种现象为抽屉原理。
三、抽屉原理的解题方案(一)、利用公式进行解题苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里(2)余数=x ()()11x n -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里(二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.【例 1】 在一只口袋中有红色、黄色、蓝色球若干个,小聪明和其他六个小朋友一起做游戏,每人可以从口袋中随意取出2个球,那么不管怎样挑选,总有两个小朋友取出的两个球的颜色完全一样.你能说明这是为什么吗?【解析】 从三种颜色的球中挑选两个球,可能情况只有下面6种:红、红;黄、黄;蓝、蓝;红、黄;红、蓝;黄、蓝,我们把6种搭配方式当作6个“抽屉”,把7个小朋友当作7个“苹果”,根据抽屉原理,至少有两个“苹果”要放进一个“抽屉”中,也就是说,至少有两个人挑选的颜色完全一样.【巩固】 11名学生到老师家借书,老师的书房中有文学、科技、天文、历史四类书,每名学生最多可借两本不同类的书,最少借一本.试说明:必有两个学生所借的书的类型相同【解析】 设不同的类型书为A、B、C、D四种,若学生只借一本书,则不同的类型有A、B、C、D四种;若学生借两本不同类型的书,则不同的类型有AB 、AC 、AD 、BC 、BD 、CD 六种.共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”.如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同.【巩固】 体育用品的仓库里有许多足球、排球和篮球,有66个同学来仓库拿球,要求每个人至少拿一个,最多拿两个球,问至少有多少名同学所拿的球的种类是完全一样的?【解析】 以拿球配组的方式为抽屉,每人拿一个或两个球,所以抽屉有:足、排、篮、足足、排排、篮篮、足排、足篮、排篮共9种情况,即有9个抽屉,则:66973÷=,718+=,即至少有8名同学所拿球的种类是一样的.第八讲:抽屉原理(二)【巩固】 幼儿园买来很多玩具小汽车、小火车、小飞机,每个小朋友任意选择两件不同的,那么至少要有几个小朋友才能保证有两人选的玩具是相同的?【解析】 根有个小朋友就有三种不同的选择方法,当第四个小朋友准备拿时,不管他怎么选择都可以跟前面三个同学其中的一个选法相同.所以至少要有4个小朋友才能保证有两人选的玩具是相同的.总结: 本题是抽屉原理应用的典型例题,作为重点讲解.学生们可能会这么认为:铺垫:2件⨯3种6=件,6件÷2个3=人,要保证有相同的所以至少要有314+=人;对于例题中的题目同样2件⨯4种8=件,8件÷2个4=人,要保证有相同的所以至少要有415+=人.因为铺垫是正好配上数了,而例题中的问题在于4种东西任选两种的选择有几种.可以简单跟学生讲一下简单乘法原理的思想,但建议还是运用枚举法列表进行分析,按顺序列表可以做到不遗漏,不重复.【例 2】 红、蓝两种颜色将一个25⨯方格图中的小方格随意涂色(见下图),每个小方格涂一种颜色.是否存在两列,它们的小方格中涂的颜色完全相同?第二行第一行第五列第四列第三列第二列第一列【解析】 用红、蓝两种颜色给每列中两个小方格随意涂色,只有下面四种情形:蓝蓝红蓝蓝红红红将上面的四种情形看成四个“抽屉”,把五列方格看成五个“苹果”,根据抽屉原理,将五个苹果放入四个抽屉,至少有一个抽屉中有不少于两个苹果,也就是至少有一种情形占据两列方格,即这两列的小方格中涂的颜色完全相同.【例 3】 从2、4、6、8、、50这25个偶数中至少任意取出多少个数,才能保证有2个数的和是52? 【解析】 构造抽屉:{2,50},{4,48},{6,46},{8,44},,{24,28},{26},共13种搭配,即13个抽屉,所以任意取出14个数,无论怎样取,有两个数必同在一个抽屉里,这两数和为52,所以应取出14个数.或者从小数入手考虑,2、4、6、、26,当再取28时,与其中的一个去陪,总能找到一个数使这两个数之和为52.【巩固】 证明:在从1开始的前10个奇数中任取6个,一定有2个数的和是20.【解析】 将10个奇数分为五组(1、19),(3、17),(5、15),(7、13),(9、11),任取6个必有两个奇数在同一组中,这两个数的和为20.【巩固】 从1,4,7,10,…,37,40这14个数中任取8个数,试证:其中至少有2个数的和是41.【解析】 构造和为41的抽屉:(1,40),(4,37),(7,34),(10,31),(13,28),(16,25),(19,22),现在取8个数,一定有两个数取在同一个抽屉,所以至少有2个数的和是41.【巩固】从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34.【解析】我们用题目中的15个偶数制造8个抽屉,(2),(4,30),(6,28),…,(16,18),凡是抽屉中的有两个数,都具有一个共同的特点:这两个数的和是34.现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数在同一个抽屉中.由制造的抽屉的特点,这两个数的和是34.【例4】(北京市第十一届“迎春杯”刊赛)从1,2,3,4,…,1994这些自然数中,最多可以取个数,能使这些数中任意两个数的差都不等于9.【解析】方法一:把1994个数一次每18个分成一组,最后14个数也成一组,共分成111组.即1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18;19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36;…………………1963,1964,…,1979,1980;1981,1982, (1994)每一组中取前9个数,共取出9111999⨯=(个)数,这些数中任两个的差都不等于9.因此,最多可以取999个数.方法二:构造公差为9的9个数列(除以9的余数){}1,10,19,28,,1990,共计222个数{}2,11,20,29,,1991,共计222个数{}3,12,21,30,,1992,共计222个数{}4,13,22,31,,1993,共计222个数{}5,14,23,32,,1994,共计222个数{}6,15,24,33,,1986,共计221个数{}7,16,25,34,,1987,共计221个数{}8,17,26,35,,1988,共计221个数{}9,18,27,36,,1989,共计221个数每个数列相邻两项的差是9,因此,要使取出的数中,每两个的差不等于9,每个数列中不能取相邻的项.因此,前五个数列只能取出一半,后四个数列最多能取出一半多一个数,所以最多取⨯=个数1119999【巩固】从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12.【解析】在这20个自然数中,差是12的有以下8对:{20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}.另外还有4个不能配对的数{9},{10},{11},{12},共制成12个抽屉(每个括号看成一个抽屉).只要有两个数取自同一个抽屉,那么它们的差就等于12,根据抽屉原理至少任选13个数,即可办到(取12个数:从12个抽屉中各取一个数(例如取1,2,3,…,12),那么这12个数中任意两个数的差必不等于12).【巩固】(小学数学奥林匹克决赛)从1,2,3,4,…,1988,1989这些自然数中,最多可以取____个数,其中每两个数的差不等于4.【解析】将1~1989排成四个数列:1,5,9,…,1985,19892,6,10,…,19863,7,11,…,19874,8,12,…,1988每个数列相邻两项的差是4,因此,要使取出的数中,每两个的差不等于4,每个数列中不能取相邻的项.因此,第一个数列只能取出一半,因为有(19891)41498-÷+=项,所以最多取出249项,例如1,9,17,…,1985.同样,后三个数列每个最多可取249项.因而最多取出2494996⨯=个数,其中每两个的差不等于4.【例 5】 (2008年第八届“春蕾杯”小学数学邀请赛决赛)从1、2、3、4、5、6、7、8、9、10、11和12中至多选出 个数,使得在选出的数中,每一个数都不是另一个数的2倍.【解析】 把这12个数分成6个组:第1组:1,2,4,8第2组:3,6,12第3组:5,10第4组:7第5组:9第6组:11每组中相邻两数都是2倍关系,不同组中没有2倍关系.选没有2倍关系的数,第1组最多2个(1,4或2,8或1,8),第2组最多2个(3,12),第3组只有1个,第4,5,6组都可以取,一共2211118+++++=个.如果任意取9个数,因为第3,4,5,6组一共5个数中,最多能取4个数,剩下945-=个数在2个组中,根据抽屉原理,至少有3个数是同一组的,必有2个数是同组相邻的数,是2倍关系.【巩固】 从1到20这20个数中,任取11个不同的数,必有两个数其中一个是另一个数的倍数.【解析】 把这20个数分成以下10组,看成10个抽屉:(1,2,4,8,16),(3,6,12),(5,10,20),(7,14),(9,18),(11),(13),(15),(17),(19),前5个抽屉中,任意两个数都有倍数关系.从这10个抽屉中任选11个数,必有一个抽屉中要取2个数,它们只能从前5个抽屉中取出,这两个数就满足题目要求.【巩固】 从1,3,5,7,…,97,99中最多可以选出多少个数,使得选出的数中,每一个数都不是另一个数的倍数?【解析】 方法一:因为均是奇数,所以如果存在倍数关系,那么也一定是3、5、7等奇数倍.3×33:99,于是从35开始,1~99的奇数中没有一个是35~99的奇数倍(不包括1倍),所以选出35,37,39,…,99这些奇数即可.共可选出33个数,使得选出的数中,每一个数都不是另一个数的倍数.方法二:利用3的若干次幂与质数的乘积对这50个奇数分组.(1,3,9,27,81),(5,15,45),(7,21,63),(11,33),(13,39),(17,51),(19,57),(23,69),(25,75),(29,87),(31,93),(35),(37),(41),(43),…,(97)共33组.前11组,每组内任意两个数都存在倍数关系,所以每组内最多只能选择一个数.即最多可以选出33个数,使得选出的数中,每一个数都不是另一个数的倍数.评注:1~2n 个自然数中,任意取出n+1个数,则其中必定有两个数,它们一个是另一个的整数倍;从2,3.……,2n+1中任取n+2个数,必有两个数,它们一个是另一个的整数倍;从1,2,3.……3n 中任取2n+1个数,则其中必有两个数,它们中一个是另一个的整数倍,且至少是3倍;从1,2,3,……, mn 中任取(m-1)n+1个数,则其中必有两个数,它们中一个是另一个的整数倍,且至少是m 倍(m 、n 为正整数).【巩固】 从整数1、2、3、…、199、200中任选101个数,求证在选出的这些自然数中至少有两个数,其中的一个是另一个的倍数.【解析】 把这200个数分类如下:(1)1,12⨯,212⨯,312⨯,…,712⨯,(2)3,32⨯,232⨯,332⨯,…,632⨯,(3)5,52⨯,252⨯,352⨯,…,552⨯,…(50)99,992⨯,(51)101,(52)103,…(100)199,以上共分为100类,即100个抽屉,显然在同一类中的数若不少于两个,那么这类中的任意两个数都有倍数关系.从中任取101个数,根据抽屉原理,一定至少有两个数取自同一类,因此其中一个数是另一个数的倍数.【例 6】 从1,2,3,……49,50这50个数中取出若干个数,使其中任意两个数的和都不能被7整除,则最多能取出多少个数?【解析】 将1至50这50个数,按除以7的余数分为7类:[0],[1],[2],[3],[4],[5],[6],所含的数的个数分别为7,8,7,7,7,7,7.被7除余1与余6的两个数之和是7的倍数,所以取出的数只能是这两种之一;同样的,被7除余2与余5的两个数之和是7的倍数,所以取出的数只能是这两种之一;被7除余3与余4的两个数之和是7的倍数,所以取出的数只能是这两种之一;两个数都是7的倍数,它们的和也是7的倍数,所以7的倍数中只能取1个.所以最多可以取出877123+++=个【例 7】 从1,2,3,…,99,100这100个数中任意选出51个数.证明:(1)在这51个数中,一定有两个数互质;(2)在这51个数中,一定有两个数的差等于50;(3)在这51个数中,一定存在9个数,它们的最大公约数大于1.【解析】 (1)我们将1~100分成(1,2),(3,4),(5,6),(7,8),…,(99,100)这50组,每组内的数相邻.而相邻的两个自然数互质.将这50组数作为50个抽屉,同一个抽屉内的两个数互质.而现在51个数,放进50个抽屉,则必定有两个数在同一抽屉,于是这两个数互质.问题得证.(2)我们将1—100分成(1,51),(2,52),(3,53),…,(40,90),…(50,100)这50组,每组内的数相差50.将这50组数视为抽屉,则现在有51个数放进50个抽屉内,则必定有2个数在同一抽屉,那么这两个数的差为50.问题得证.(3)我们将1—100按2的倍数、3的奇数倍、既不是2又不是3的倍数的情况分组,有(2,4,6,8,...,98,100),(3,9,15,21,27,...,93,99),(5,7,11,13,17,19,23, (95)97)这三组.第一、二、三组分别有50、17、33个元素.最不利的情况下,51个数中有33个元素在第三组,那么剩下的18个数分到第一、二两组内,那么至少有9个数在同一组.所以这9个数的最大公约数为2或3或它们的倍数,显然大于1.【例 8】 有49个小孩,每人胸前有一个号码,号码从1到49各不相同.现在请你挑选若干个小孩,排成一个圆圈,使任何相邻两个小孩的号码数的乘积小于100,那么你最多能挑选出多少个孩子?【解析】 将1至49中相乘小于100的两个数,按被乘数分成9组,如下:(1×2)、(1×3)、(1×4)、…、(1×49);(2×3)、(2×4)、(2×5)、…、(2×49);(8×9)、(8×10)、(8 ×11)、(8×12);(9×10)、(9×11).因为每个数只能与左右两个数相乘,也就是每个数作为被乘数或乘数最多两次,所以每一组中最多会有两对数出现在圆圈中,最多可以取出18个数对,共18 ×2=36次,但是每个数都出现两次,故出现了18个数.例如:(10×9)、(9×11)、(1×8)、(8×12)、(12×7)、(7×13)、(13×6)、(6×14)、(14×5)、(5×15)、(15×4)、(4 ×16)、(16 X 3)、(3×17)、(17×2)、(2×18)、(18 ×1)、(1×10).共出现l ~18号,共18个孩子.若随意选取出19个孩子,那么共有19个号码,由于每个号码数要与旁边两数分别相乘,则会形成19个相乘的数对.那么在9组中取出19个数时,有19=9×2+1,由抽屉原则知,必有三个数对落入同一组中,这样某个数字会在数对中出现三次(或三次以上),由分析知,这是不允许的.故最多挑出18个孩子.【例9】要把61个乒乓球分装在若干个乒乓球盒中,每个盒子最多可以装5个乒乓球,问:至少有多少个盒子中的乒乓球数目相同?【解析】每个盒子不超过5个球,最“坏”的情况是每个盒子的球数尽量不相同,为1、2、3、4、5这5种各不相同的个数,共有:12345 15++++=,611541÷=,最不利的分法是:装1、2、3、4、5个球的各4个,还剩1个球,要使每个盒子不超过5个球,无论放入哪个盒子,都会使至少有5个盒子的球数相同.【例10】有苹果和桔子若干个,任意分成5堆,能否找到这样两堆,使苹果的总数与桔子的总数都是偶数?【解析】需先跟学生介绍奇偶性:奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数。
抽屉原理
![抽屉原理](https://img.taocdn.com/s3/m/82a3b04acf84b9d528ea7ab9.png)
抽屉原理知识点1. 最不利原则在日常生活和生产中,我们常常会遇到求最少值的问题,解答这类问题,常常需要从最不利的情况出发分析问题,这就是最不利原则。
最不利原则就是从“极端糟糕”的情况开始考虑问题,也就是说:找出最坏的情况是应用最不利原则解题的关键。
2. 抽屉原理抽屉原理I:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。
假定n个抽屉中,每一个抽屉内的物品都不到2件,那么每一个抽屉中的物品或者是l 件,或者没有。
这样n个抽屉中所放物品的总数就不会超过n件。
这与有多于n件物品的假设相矛盾。
说明抽屉原理I成立。
抽屉原理Ⅱ:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1件。
假定这n个抽屉中,每一个抽屉中的物品都不到(m十1)件,即每个抽屉里的物品不多于m件,这样n个抽屉中可放物品的总数就不会超过m×n件。
这与多于m×n件物品的假设相矛盾。
说明原来的假设不成立。
所以抽屉原理Ⅱ成立。
运用抽屉原理解题的步骤(1)确定什么作为“抽屉”;(2)把什么当作“物品”;(3)如果满足“物品”的数量多于“抽屉”的个数,则可以根据抽屉原理得出结论。
说明:对于有些问题,同样可以运用最不利原则解答。
典型例题例1 橱柜里有木筷子6根,竹筷子8根,从中最少摸出多少根筷子,才能保证有两双不同的筷子?提示“有两双不同的筷子”,实际上就是指木筷子、竹筷子各一双,即起码要有2+2=4(根)。
题目要求“保证有两双不同的筷子”,只摸出4根筷子是保证不了的。
从最坏的情况来考虑,一个人先摸出8根筷子,可能都是竹筷子,实际只满足了有一双筷子的要求,那么再摸2根,必然出现一双木筷子,合起来就是10根筷子。
这就是所说的“最不利情况”。
解由于先摸出8根筷子,都是竹筷子,只满足两双不同筷子要求的一部分,是最坏的情况,再摸出2根,必有一双木筷子出现。
8+2=10(根),所以,从中最少摸出l0根筷子,才能保证有两双不同的筷子。
抽屉原理
![抽屉原理](https://img.taocdn.com/s3/m/86fb97d276eeaeaad1f33002.png)
抽屉原理(一)一.基本原理抽屉原理一:把m 个元素分成n 类个则至少有一类有⎥⎦⎤⎢⎣⎡>n m n m ),(.抽屉原理二:把无穷多个元素分成有限类,则至少有一类包含无穷多个元素.二.实例精选1.有10人参加某次会议,每一位代表至少认识其余9位中的一位,证明:这10人中至少有两人认识的人数相等.2.在前2189个正整数中任取8个数,求证:存在两个数,它们之间的比值在]3,31[内.3.已知整数{}1,0,1,,,,,,,,10211021-∈i x x x x a a a 使得对列证明:存在一个非零数 , 和式10102211x a x a x a +++ 能被1001整除.4.任意给定正整数m ,求证:一定有m 的某一整数倍,它完全由0和1两数字组成.5.设n a a a n 是,,,21 个任意给定的整数,求证:其中一定可以找到紧连在一起的若干个数,使得它们的和可被n 整除.6.任意给定10个自然数,试证明:可以用减、乘两种运算把它们适当连起来,其结果能被1890整除.7.(1)任意100个整数,求证一定可以从中找出若干个整数,使得它们的和被100整除; (2)证明:从任意200个整数中,一定可以找出100个数,它们的和能被100整除.8.对于n+1个不同的自然数,如果每一个数都小于2n ,那么从中选出三个数,使其中两个数之和等于第三个数.9.设集合{}证明:,2,,3,2,1n A =(1)若B是A的任一n+1阶子集,B中一定存在两个数是互素的;(2)一个可被另阶子集中存在两个数,的任意1+n A 一个整除.10.证明:在任意的11个无穷小数中,一定可以找到两个小数,它们的差或者含有无穷多个数字0或者含有无穷多个数字9.三.练习1.证明任意52个正整数,一定可以找到两个数a ,b ,使a+b 或b a -被140整除.2.从1,4,7,10,100,97, 这些数中,任取20个不同的整数形成一个集合A ,求证:A 中必有两组不同的数,其和都是104.3.证明:对任何自然数n ,必有其某一整数倍,使之包含9,,2,1,0 中的每一个数字. 4.设有一十进制无穷小数{}为是偶数,是奇数,且n i a a a a a a a A 21321,9,,2,1,0(.0 ∈= 为有理数的个位数,求证:A )2(21>+--n a a n n .5.已知2n 个自然数满足下列两个条件:n a a a 221,,, .4)2(;21)1(221221n a a a n a a a n n =+++≤≤≤≤≤ 求证:)21(2n i a n i ≤≤必可表示为若干个之和.6.设m 为任一偶数,有m 个正整数,其中每一个均不超过m ,并且所有这些数的和为2m ,求证:一定可以把这m 个正整数分为两组,使得每组中各数之和均为m .抽屉原理(二)一.基本原理抽屉原理一:把m 个元素分成n 类个则至少有一类有⎥⎦⎤⎢⎣⎡>n m n m ),(.抽屉原理二:把无穷多个元素分成有限类,则至少有一类包含无穷多个元素.二.抽屉的构造方法1.整除性问题:常以剩余类为抽屉;2.集合问题:常以元素的性质划分集合构造抽屉; 3.其它问题:常将状态不同的元素分类构造抽屉.三.例题精选1.平面上有定点A,B和任意四点4321,,,P P P P ,求证:这四点中一定有两点j i P P , 31|s i n s i n |)(≤∠-∠≠B AP B AP j i j i 使得. 解:将正弦值的范围[0,1]分成三个区间:]1,32[],32,31[],31,0[即可.2.平面上任意5个整点,两两连接线段的中点之中一定有一个整点. 解:5个点的纵横坐标的奇偶性必有两个相同.3.坐标平面上任意给定13个整点,其中任三点不共线,求证:必有以其中3点为顶点的三角形,其重心是整点.解:横坐标模3的余数为0,1,2,13个点至少有5个点的横坐标模3同余;这5个点的纵坐标模3的余数为0,1,2各有一个,则取这3个,它们的纵,横坐标的和模3余0;否则,必有3个模3同余.得证.4.设正方形ABCD被9条直线相截,每条都把它分成2个四边形,且两者面积之比都是3:2,证明:至少有3条直线共点.解:与一组对边相交的直线至少有5条,至少有三条过点P或Q5.在边长为1的正三角形内,任取7个点,其中任意三点不共线,证明:其中必有三点构成的三角形的面积不超过123. 解:关键:6.在边长为1的正方形内(包括边界)任意放101个点,任何三点都不共线,证明:总可以找三点,以这三点为顶点的三角形面积不大于1. 解:法一:P ∙Q∙关键:把正方形50等分,再证明矩形内接三角形面积不超过矩形面积的一半. 法二:直接把正方形分成100个小正方形,逐步减少抽屉个数,经行33次后,必有 一个小正方形中有3个点.7.在直径为5的圆内任意放入10个点,证明:存在两个点,它们间的距离小于2.关键:3254412225224254<-=⋅⋅⋅-+=AB8.从全世界每个城市各起飞1架飞机,分别落在离它最近的一个城市(若有几个距离一样近,可任选1个).证明:每个城市降落的飞机一定不会超过6架. 关键:假设降落到A城市的飞机多于6架,以A为中心,以到它较远的B城的距离作圆,将圆6等分为6 个区域,则至少有2架落入同一区域, 由DA CA CD ,60或则≤︒≤∠CAD ,故飞机D 应降落在C城,而不是A城,矛盾.9.49个学生解3个问题,每个问题的得分是从0到7的整数,证明存在两个学生A,B,对每个问题,A的得分都不小于B的得分.OACBABCD4四.练习1.设点P是正n 边形的一个内点,证明:该正n 边形存在两个顶点A和B,使得ππ≤∠<-A P B n)21(.2.平面上任意给定6个点(它们无三点共线),试证明:总能找到三点,使得这三点为顶点的三角形的内角中有不超过︒30的角.3.边长为4的正三角形内任意放入11个点,求证:其中有两个点,它们之间的距离不超过332. 4.圆上(圆内和边界)任取8个点,则至少有2个点,其距离小于半径.5.半径为19的圆C内有650个点,证明:存在内半径为2,外半径为3的圆环,它至少盖住其中的10个点.。
什么是抽屉原理
![什么是抽屉原理](https://img.taocdn.com/s3/m/5c4f63b7900ef12d2af90242a8956bec0875a546.png)
什么是抽屉原理抽屉原理,又称鸽巢原理,是一种基本的组合数学原理。
它最早由德国数学家德尔·费歇特在19世纪提出,并由意大利数学家拉蒂亚在20世纪初给出了更为精确的表述。
抽屉原理在计算机科学、密码学、概率论等领域都有着广泛的应用。
抽屉原理的核心思想是,如果有n个物品要放到m个抽屉中,且n>m,那么至少有一个抽屉中至少有两个物品。
这个原理的直观解释是,如果有更多的物品要放到较少的抽屉中,那么必然会出现某个抽屉里放不下的情况,从而导致至少有一个抽屉里有多个物品。
抽屉原理的应用非常广泛。
在密码学中,抽屉原理可以用来证明一些密码学算法的安全性,例如生日攻击。
在概率论中,抽屉原理可以用来证明一些概率事件的发生概率。
在计算机科学中,抽屉原理可以用来分析算法的时间复杂度和空间复杂度。
除了上述应用之外,抽屉原理还有一些更加有趣的应用。
例如在生活中,我们经常会遇到这样的情况,一个班级有30个学生,但是只有25个座位,那么根据抽屉原理,至少会有5个学生共用一个座位。
再比如,如果一个国家有1000万人口,但是只有1000个不同的姓氏,那么根据抽屉原理,至少会有10000个人拥有相同的姓氏。
抽屉原理在解决实际问题时,通常需要结合一些其他的数学知识和技巧。
例如在证明某个事件必然发生时,需要通过逻辑推理和数学推导来进行论证。
在计算机科学中,抽屉原理通常与数据结构和算法相结合,用来分析和设计高效的算法。
总之,抽屉原理是一种非常基础但又非常重要的数学原理,它在解决实际问题时有着广泛的应用。
通过理解和掌握抽屉原理,我们可以更好地理解和应用数学知识,提高解决实际问题的能力。
希望本文对抽屉原理有所帮助,谢谢阅读。
第10讲 抽屉原理
![第10讲 抽屉原理](https://img.taocdn.com/s3/m/2383094987c24028915fc37f.png)
第10讲 抽屉原理抽屉原理又叫鸽笼原理、狄里克雷( P. G. Dirchlet,1805~1895,德国)原理、重叠原理、鞋盒原理. 这一最简单的思维方式在解题过程中却可以演变出很多奇妙的变化和颇具匠心的运用. 抽屉原理常常结合几何、整除、数列和染色等问题出现,抽屉原理I :把1+n 件东西任意放入n 只抽屉里,那么至少有一个抽屉里有两件东西。
抽屉原理II :把m件东西放入n 个抽屉里,那么至少有一个抽屉里至少有⎥⎦⎤⎢⎣⎡n m 件东西。
抽屉原理III :如果有无穷件东西,把它们放在有限多个抽屉里,那么至少有一个抽屉里含无穷件东西。
应用抽屉原理解题,关键在于构造抽屉。
构造抽屉的常见方法有:图形分割、区间划分、整数分类(剩余类分类、表达式分类等)、坐标分类、染色分类等等,下面举例说明。
A 类例题例1 如图,分别标有1到8的两组滚珠均匀放在内外两个圆环上,开始时相对的滚珠所标数字都不相同,当两个圆环按不同方向转动时,必有某一时刻,内外两环中至少有两对数字相同的滚珠相对.分析 转动一周形成7个内外两环两对数字相同的时刻,以此构造抽屉。
证明 内外两个圆环转动可把一个看成是相对静止的,只有一个外环在转动.当外环转动一周后,每个滚珠都会有一次内环上标有相同数字的滚珠相对的时刻,这样的时刻将出现8次.但一开始没有标有相同数字的滚珠相对,所以外环转动一周的过程中最多出现7个时刻内外标有相同数字的滚珠相对,故必有一个时刻内外两环中至少有两对数字相同的滚珠相对.说明 转动一周内外两环两对的8个时刻排除显然不合题意的初始时刻是本题的突破口。
例2 7月份的天热得人都不想工作,只想呆在有空调的房间里.可小张却没有办法休假,因为他是一个空调修理工,为了让更多人好好休息,他只能放弃自己的休息.在过去的7月份里,小张每天至少修理了一台空调.由于技术过硬,每一台空调都能在当天修理好.8月1日结算的时候,大家发现小张在7月份一共修理了56台空调.求证:存在连续的若干天(也可以是1天),在这些天里,小张恰好修理了5台空调. 分析 本题的难点在于将题中结论转化为抽屉原理的数学模型。
抽屉原理的分类
![抽屉原理的分类](https://img.taocdn.com/s3/m/c265f2b4bb0d4a7302768e9951e79b896802689c.png)
抽屉原理的分类抽屉原理(也称为鸽巢原理或鸽笼原理)是由瑞士数学家德里克·斯特里奇与英国逻辑学家恩斯特·累克于20世纪初提出的一个基本概念,用于描述一个重要的原理:如果将n+1个物体放进n个抽屉里,至少会有一个抽屉里会放入两个物体。
抽屉原理的分类主要分为基本抽屉原理、进化版抽屉原理和亥姆霍兹定理三类。
1. 基本抽屉原理(Pigeonhole Principle):基本抽屉原理是最简单、最直接的抽屉原理表现形式。
它指的是,当将多于一个的物体分配到有限个的容器(抽屉)中,必然会出现一个容器中放入两个或以上的物体。
这个原理可以应用于很多实际问题,例如:班级里的学生数量超过了座位数,那么必然会有两个学生坐在同一个座位上。
2. 进化版抽屉原理(Generalized Pigeonhole Principle):进化版抽屉原理是对基本抽屉原理的扩展和应用。
它指出,如果有n个容器和m个物体,而m>n,则至少有一个容器中必须放置⌈m/n⌉个物体。
其中,⌈m/n ⌉表示m除以n并向上取整。
这个原理可以应用于更复杂的问题,例如:如果有11个苹果放在10个篮子里,那么至少有一个篮子里会有2个苹果。
3. 亥姆霍兹定理(Helmholtz Principle):亥姆霍兹定理是抽屉原理的一个推论和应用,它指出,如果有m个元素分配到n个位置(经过一些规则),则至少有⌈m/n⌉个位置上会有元素。
这个原理可以应用于更加复杂的问题,例如:在棋盘上放置国际象棋的棋子,无论如何放置,都会有至少⌈m/64⌉个位置上会有棋子。
抽屉原理的应用广泛,既可以用于数学和逻辑问题的求解,也可以用于算法和计算机科学的设计中。
通过抽屉原理,我们可以得出一些重要的推论和结论,帮助我们分析和解决各种实际问题。
总之,抽屉原理是数学和逻辑中的一个基本概念,它描述了一种容器和物体之间的关系,即在一定条件下,将多个物体放入有限个容器中,必然会有一个容器中放入两个或以上的物体。
抽屉原理和最不利原则
![抽屉原理和最不利原则](https://img.taocdn.com/s3/m/9883c73800f69e3143323968011ca300a6c3f69c.png)
抽屉原理和最不利原则一、抽屉原理抽屉原理(也被称为鸽笼原理)是数学中一种基本原理,它是由鸽笼和抽屉的类比而得名。
根据抽屉原理,如果n+1个物体被放置到n个容器之中,那么至少有一个容器内含有两个或者更多的物体。
换句话说,抽屉原理表明,当物体数量超过容器数量时,至少有一个容器将会装有多个物体。
这个原理可以应用于各种场景,例如,如果有11个学生坐在一排座位上,而只有10个座位,那么至少有一个学生将会没有座位坐。
抽屉原理在数学和计算机科学中有广泛的应用。
例如,在计算机科学中,抽屉原理可以用来证明哈希函数的碰撞概率、证明图的着色问题等等。
最不利原则是指在做决策时,应该假设每一项决策都是以对自己最不利的方式进行的。
也就是说,在进行决策时,应该考虑最不利的情况,并希望能够在最不利的情况下找到最好的解决方案。
最不利原则在决策分析和优化问题中具有重要作用。
通过考虑最不利的情况,可以防止决策者产生过于乐观或者主观的判断,从而更好地制定决策方案。
最不利原则可以应用于各种领域,例如商业决策、政治决策和战略决策等。
在商业决策中,经营者应该考虑到市场环境变化和竞争对手的行动,以保持企业的竞争力。
在政治决策中,政府领导者应该考虑到各种社会和经济因素,以制定合理的政策。
在战略决策中,军事指挥官应该考虑到敌方的最强势和最危险的行动,以便做出战略部署。
最不利原则帮助我们克服幻觉和假设,从而更加客观地进行决策。
通过考虑最不利的情况,我们能够更好地准备好应对各种风险和挑战,并找到最佳的解决方案。
总结:抽屉原理和最不利原则都是数学领域中的重要原则,它们在不同的背景下有着不同的应用。
抽屉原理通过简单的类比,帮助我们理解当物体数量超过容器数量时,必然会有一些容器装有多个物体的情况。
最不利原则则在决策分析和优化问题中起着重要的作用,通过考虑最不利的情况,可以制定出最佳的决策方案。
这两个原则都帮助我们在面对不同的问题和情境时,能够更加准确地进行分析和决策。
【小高数学知识点】抽屉原理
![【小高数学知识点】抽屉原理](https://img.taocdn.com/s3/m/f8c559b751e79b89680226e7.png)
抽屉原理一、知识结构图抽屉原理二、方法讲解抽屉原理有时也被称为鸽巢原理,它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原则。
它是组合数学中一个重要而又基本的数学原理,应用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用,因为许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决。
1、抽屉原理将多于n 件的物品任意放到n 个抽屉中,那么至少有一个抽屉中的物品不少于2件。
例如:有5个苹果放进4个抽屉,那么一定有一个抽屉至少放了 个苹果;将多于m×n 件的物品任意放到n 个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。
例如:如果把96个苹果放入8个抽屉,那么一定会有抽屉至少放了_______个苹果。
如果把97个苹果放入8个抽屉,那么一定会有抽屉至少放了_______个苹果。
如果把98个苹果放入8个抽屉,那么一定会有抽屉至少放了_______个苹果。
2、最不利原则这是一种从反面思考问题的思想,也是抽屉原理中非常重要的思考方法,就是从最不利的方向出发分析问题。
例如:口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球各20个。
问:一次最少摸出几个球,才能保证至少有4个小球颜色相同?解析:(1)如果碰巧一次取出的4个小球的颜色都相同,答案是 ,这是从最有利原则考虑的,这是最少摸出几个球就可能有4个球颜色相同,而不是“保证至少有4个小球颜色相同”。
(2)为了“保证至少有4个小球颜色相同”,就要从最“不利”的情况考虑。
如果最不利的情况都满足题目要求,那么其它情况必然也能满足题目要求。
“最不利”的情况是什么呢?那就是我们摸出 个红球、 个黄球和 个蓝球,此时三种颜色的球都是 个,却无 个球同色。
这样摸出的 个球是“最不利”的情形。
这时再摸出一个球,无论是红、黄或蓝色,都能保证有4个小球颜色相同。
所以回答应是最少摸出 个球。
抽屉原理
![抽屉原理](https://img.taocdn.com/s3/m/7d7bdcea51e79b8968022685.png)
抽屉原理抽屉原理又称鸽巢原理,最先由德国数学家狄利克雷明确地提出来的。
因此,也称为狄利克雷原理。
原理1:如果把x+k(k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。
原理2:如果把mx+k(x>k≥1))个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多的元素。
例1:六年级有367名学生,①有没有两个学生的生日是同一天?②至少有多少名同学是在同一个月出生?[分析]①把一年的天数看成抽屉,把学生人数看成元素。
一年最多有366天,把367个元素放到366个抽屉中至少有一个抽屉中有两个元素,就是至少有两个学生的生日是同一天。
②把一年的月份数看成抽屉,把学生数看成元素。
一年有12个月,把367个元素放入12个抽屉中,根据原理2可以求出:367÷12= 30……7,,即至少有31名同学是同一个月出生。
解:①平年有365天,闰年有366天。
把367名同学放入366个抽屉中,至少有一个抽屉里有两个人,因此肯定有两个同学的生日是同一天。
②367÷12=30(个)……73(名))30+1 =31(名)答:肯定有两个同学在同一天出生;至少有31名同学在同一个月出生。
[温馨提示]利用抽屉原理解题时要注意区分哪些是抽屉,哪些是元素,区分清楚后按照①构造抽屉,指出元素;②把元素放入(或取出)抽屉;③说明理由,得出结论。
练习一:1.37只鸽子飞回6个鸽舍,至少有几只鸽子飞回同一个鸽舍?2.从一副扑克牌(去掉大小王)中任意取出14 支牌,至少有几支是同一个花色? 至少有几支是同一个点数?例2:夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。
规定每人必须参加一项或两项活动。
那么至少有几名营员参加的活动项目完全相同?[分析]本题的抽屉不是那么明显,因为问的是“至少有几名营员参加的活动项目完全相同”,所以应该把活动项目当成抽屉,营员当成物品。
抽屉原理
![抽屉原理](https://img.taocdn.com/s3/m/ae42436a011ca300a6c39076.png)
抽屉原理一.什么是抽屉原理?实例1:把3个苹果放在两个抽屉里,不论怎样放,“必有一个抽屉里至少放了2个苹果”。
实例2:把七只山雀,任意装入3只鸟笼内,则其中必有一只鸟笼至少装有3只山雀。
上述问题共同点都是在“任意放入”的条件下,得出“必然的结论”,这就是抽屉原理的基本思想二.抽屉原理的几种常见形式原理1。
把m 件物体,任意放在)(m n n <个抽屉里,则其中必有一个抽屉里至少放有两件物体。
原理2。
把)1(≥+k k mn 个物体放进n 个抽屉,则至少有一个抽屉里要放进1+m 个或更多个物体原理3。
把)1(321≥++++k k m m m m n 个物体放入n 个抽屉里,那么或在第一个抽屉里至少放入11+m 个物体,或在第二个抽屉里至少放入12+m 个物体,……,或在第n 个抽屉里至少放入1+n m 个物体。
原理4。
把m 个物体任意放在n 只抽屉里,那么总有一只抽屉里,至多有⎥⎦⎤⎢⎣⎡n m 个物体。
三.构造抽屉的几种常用方法在运用抽屉原理解题时,怎样才能构造出符合条件的抽屉呢?关键要合理地进行分类,无论怎样分类,都应当先确定分类的对象,再确定分类的标准,下面就常见的的设计抽屉的方法介绍如下1.分割图形构造抽屉例1. 在边长为1的正三角形中任意放置五个点,则必有两点,它们之间的距离不超过21。
分析:在正三角形内(包括边界)任意两点间的距都不超过其边长(其它多边形无此性质),根据这个性质,如果能把原来正三角形划分为四个边长为21的正三角形即可 解:设正三角形ABC 边长为1,连接三边中点DE 、EF 、FD ,则构成四个边长为21的小正三角形,任意放置五个点,依据抽屉原理,至少在一个小正三角形内(包括边界)不少于两点,它们之间的距离不大于小正三角形的边长。
即证。
例2. 在一个边长为1的正方形内任意给定9点,求证:在以这些点为顶点的各个三角形中,必有一个三角形,它的面积不大于81。
分析:首先要考虑这个正方形需要分割几块,才能保证在某一块里至少有3个点,根据抽屉原理319=+⎥⎦⎤⎢⎣⎡k ,可知,4=k 这就是说,把正方形分割成4块, 证明:将正方形分成四个面积为41的小正方形,根据抽屉原理2,至少有一个小正方形EFGH 所含(在内部或周界上)的给定点不少于3149=+⎥⎦⎤⎢⎣⎡个,设为A 、B 、C ,显然,若A 、B 、C共线,则命题成立,如果它们不共线,总可以用如图的方法将ABC ∆部分,那么212121==+≤+=∆∆∆EFGH MFGN EMNH CBD ABD ABC S S S S S S例3. 把93⨯的矩形分成27个单位小方格,将每个小方格任意涂上红色或蓝色。
一、抽屉原理简介
![一、抽屉原理简介](https://img.taocdn.com/s3/m/c35e05745acfa1c7aa00cc19.png)
一、抽屉原理简介抽屉原理又称鸽巢原理,“抽屉原理”最先是由19世纪的德国数学家狄里克雷(Dirichlet)运用于解决数学问题的,所以又称“狄里克雷原理”原理1:把m个物体任意分放进n个空抽屉里(m>n,n是非0自然数),那么一定有一个抽屉中放进了至少2个物体。
原理2:把多于个kn物体任意分放进n个空抽屉里(k是正整数),那么一定有一个抽屉中放进了至少(k+1)个物体。
原理3:无穷多个元素分成n个集合,则至少有一个集合中含有无穷多个元素。
在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明是通过什么方式把这个存在的物体(或人)找出来。
现行的小学课本中只编排了抽屉原理1、2的教学。
二、运用抽屉原理解题的步骤第一步:分析题意。
分清什么是“东西”,什么是“抽屉”,也就是什么作“要分的物体”,什么可作“抽屉”。
第二步:制造抽屉。
这个是关键的一步,这一步就是如何设计抽屉。
根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。
第三步:运用原理。
观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。
三、理解抽屉原理要注意几点(1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。
(2)“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。
(3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,但这里只需保证存在一个达到要求的抽屉就够了。
(4)将a件物品放入n个抽屉中,如果a÷n= m……b,其中b是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1)件。
四、教学建议1.应让学生初步经历“数学证明”的过程。
抽屉原理
![抽屉原理](https://img.taocdn.com/s3/m/127dd36f0b1c59eef8c7b459.png)
抽屉原理内容提要:第一抽屉原理:把(mn+1)个物体放入n 个抽屉中,其中必有一个抽屉中至少有(m+1)个物体。
第二抽屉原理:把(mn -1)个物体放入n 个抽屉中,其中必有一个抽屉中至多有(m —1)个物体。
(1)如果用{}n m 表示不小于n m 的最小整数,例如{37=3,{}236= 。
那么抽屉原则可定义为:m 个元素分成n 个集合(m 、n 为正整数m>n ),则至少有一个集合里元素不少于{}n m 个。
(2)根据{}n m 的定义,己知m 、n 可求{}nm ; 己知{}n m ,则可求n m 的范围,例如己知{}n m =3,那么2<nm ≤3;己知{}3x =2,则 1<3x ≤2,即3<x ≤6,x 有最小整数值4。
例题:例1某校有学生2000人,问至少有几个学生生日是同一天?分析:我们把2000名学生看作是苹果,一年365天(闰年366天)看作是抽屉,即把m (2000)个元素,分成n(366)个集合,至少有一个集合的元素不少于{n m个 解:∵=3662000536617 ∴{}3662000=6 答:至少有6名学生的生日是同一天例2.从1到10这十个自然数中,任意取出6个数,其中至少有两个是倍数关系,试说明这是为什么。
解:我们把1到10的奇数及它们的倍数放在同一集合里,则可分为5个集合,它们是:{1,2,4,8,},{3,6,},{5,10},{7},{9}。
∵要在5个集合里取出6个数,∴至少有两个是在同一集合,而在同一集合里的任意两个数都是倍数关系。
(本题的关键是划分集合,想一想为什么9不能放在3和6的集合里)。
例3.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。
分析:本题似乎茫无头绪,从何入手?其关键何在?其实就在“两个数”,其中一个是另一个的整数倍。
我们要构造“抽屉”,使得每个抽屉里任取两个数,都有一个是另一个的整数倍,这只有把公比是正整数的整个等比数列都放进去同一个抽屉才行,这里用得到一个自然数分类的基本知识:任何一个正整数都可以表示成一个奇数与2的方幂的积,即若m ∈N+,K ∈N+,n ∈N,则m=(2k-1)·2n ,并且这种表示方式是唯一的,如1=1×2°,2=1×21,3=3×2°,…… 证明:因为任何一个正整数都能表示成一个奇数乘2的方幂,并且这种表示方法是唯一的,所以我们可把1-100的正整数分成如下50个抽屉(因为1-100中共有50个奇数):(1){1,1×2,1×22,1×23,1×24,1×25,1×26};(2){3,3×2,3×22,3×23,3×24,3×25};(3){5,5×2,5×22,5×23,5×24};(4){7,7×2,7×22,7×23};(5){9,9×2,9×22,9×23};(6){11,11×2,11×22,11×23};……(25){49,49×2};(26){51};…… (50){99}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《抽屉原理》
说课稿
一、说教材
1、教学内容:我说课的内容是人教版六年级数学下册数学广角《抽屉原理》第一课时,也就是教材70-71页的例1和例2.
2、教材地位及作用及学情分析
本单元用直观的方法,介绍了“抽屉原理”的两种形式,并安排了很多具体问题和变式,帮助学生通过“说理”的方式来理解“抽屉原理”,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。
教材中,有三处孩子们不好理解的地方:1)“总有一个”、“至少”这两个关键词的解读;2)为了达到“至少”而进行“平均分”的思路,3)把什么看做物体,把什么看做抽屉,这样一个数学模型的建立。
六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。
于是我安排通过例1的直观操作教学,及例2的适当抽象建模,让全体学生真实地经历“抽屉原理”的探究过程,把他们在学习中可能会遇到的几个困难,弄懂、弄通,建立清晰的基本概念、思路、方法。
3、本节课的教学目标
根据《数学课程标准》和教材内容,我确定本节课学习目标如下:知识性目标:初步了解抽屉原理,会用抽屉原理解决简单的实际问题。
能力性目标:经历抽屉原理的探究过程,通过实践操作,发现、归纳、总结原理。
情感性目标:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学的魅力。
4、教学重、难点的确定
教学重点:经历抽屉原理的探究过程,发现、总结并理解抽屉原理。
教学难点:理解抽屉原理中“至少”的含义,并会用抽屉原理解决实际问题。
二、说教法、学法
六年级学生既好动又内敛,于是教法上本节课主要采用了设疑激趣法、讲授法、实践操作法。
课堂始终以设疑及观察思考讨论贯穿于整个教学环节中,采用师生互动的教学模式进行启发式教学。
学法上主要采用了
自主合作、探究交流的学习方式。
体现数学知识的形成过程,感受数学学习的乐趣。
三、说教学过程:
一、游戏激趣,初步体验。
师:同学们,你们玩过抢椅子的游戏吗?现在,老师这里准备了2把椅子,请3个同学上来,谁愿来?
1.游戏要求:你们3位同学围着椅子走动,等音乐定下来后请你们3个都坐在椅子上,每个人必须都坐下。
2.师:老师不用看就知道总有一把椅子上至少坐着两名同学,是这样的吗?如果不相信咱们再做一次,好不好?
引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
【设计意图:第一次与学生接触,在课前进行的游戏激趣,一使教师和学生进行自然的沟通交流;二激发学生的兴趣,引起探究的愿望;三为今天的探究埋下伏笔。
】
二、操作探究,发现规律。
1、提出问题:把4支铅笔放进3个文具盒中,不管怎么放,总有一个文具盒至少放进支铅笔。
让学生猜测“至少会是”几支?
2、验证结论:不管学生猜测的结论是什么,都要求学生借助实物进行操作,来验证结论。
学生以小组为单位进行操作和交流时,教师深入了解学生操作情况,找出列举所有情况的学生。
(1)先请列举所有情况的学生进行汇报,一说明列举的不同情况,二结合操作说明自己的结论。
(教师根据学生的回答板书所有的情况)
学生汇报完后,教师再利用枚举法的示意图,指出每种情况中都有几支铅笔被放进了同一个文具盒。
【设计意图:抽屉原理对于学生来说,比较抽象,特别是“总有一个文具盒中至少放进2支铅笔”这句话的理解。
所以通过具体的操作,列举所有的情况后,引导学生直接关注到每种分法中数量最多的文具盒,理
解“总有一个文具盒”以及“至少2支”。
让学生初步经历“数学证明”的过程,训练学生的逻辑思维能力。
】
(2)提出问题:不用一一列举,想一想还有其它的方法来证明这个结论吗?
学生汇报了自己的方法后,教师围绕假设法,组织学生展开讨论:为
什么每个文具盒里都要放1支铅笔呢?请相互之间讨论一下。
在讨论的基础上,教师小结:假如每个文具盒放入一支铅笔,剩下的一支还要放进一个文具盒,无论放在哪个文具盒里,一定能找到一个文具里至少有2支铅笔。
只有平均分才能将铅笔尽可能的分散,保证“至
少”的情况。
【设计意图:鼓励学生积极的自主探索,寻找不同的证明方法,在枚举法的基础上,学生意识到了要考虑最少的情况,从而引出假设法渗透平均分的思想。
】
(3)初步观察规律。
教师继续提问:6支铅笔放进5个文具盒里呢?你还用一一列举所有的摆法吗?7支铅笔放进6个文具盒里呢?100支铅笔放进99个文具盒呢?你发现了什么?
【设计意图:让学生在这个连续的过程中初步感知方法的优劣,发展了学生的类推能力,形成比较抽象的数学思维。
】
3、运用抽屉原理解决问题。
出示第70页做一做,让学生运用简单的抽屉原理解决问题。
在说理的过程中重点关注“余下的2只鸽子”如何分配?
【设计意图:从余数1到余数2,让学生再次体会要保证“至少”必须尽量平均分,余下的数也要进行二次平均分。
】
4、发现规律,初步建模。
我们将铅笔、鸽子看做物体,文具盒、鸽舍看做抽屉,观察物体数和抽屉数,你发现了什么规律?(学生用自己的语言描述,只要大概意思正确即可)
小结:只要物体数量比抽屉的数量多,总有一个抽屉至少放进2个物体。
这就叫做抽屉原理。
现在你能解释为什么老师肯定前两排的同学中至少有2人的生日是同一个月份吗?
【设计意图:通过对不同具体情况的判断,初步建立“物体”“抽屉”的模型,发现简单的抽屉原理。
研究的问题来源于生活,还要还原到生活中去,所以请学生对课前的游戏的解释,也是一个建模的过程,让学生体会“抽屉”不一定是看得见,摸得着。
】
5、用有余数的除法算式表示假设法的思维过程。
(1)教学例2,可以出示问题后,让学生说理,然后问:这个思考过程可以用算式表示出来吗?
(2)做一做:8只鸽子飞回3个鸽舍,至少有3支鸽子飞进同一个鸽舍。
为什么?
【设计意图:在例1和做一做的基础上,相信学生会用平均分的方法解决“至少”的问题,将证明过程用有余数的除法算式表示,为下一步,学生发现结论与商和余数的关系做好铺垫。
】
三、巩固练习。
扑克牌游戏
①师与生配合做
教师洗牌学生抽其中的任意5张,教师猜其中至少有2张是同花色的。
②学生做游戏
要求探寻规律并说明理由。
【设计意图:用游戏的形式激发学生的兴趣,用抽屉原理解决具体问题进行建模,让学生体会抽屉的形式是多种多样的。
】
四、小结全课,激发热情
1、今天的你有什么收获?
我们将铅笔、鸽子、扑克看做物体数,文具盒、鸽舍、四种花色看做抽屉,观察物体数和抽屉数,你发现了什么规律?(学生用自己的语言描述,只要大概意思正确即可)
小结:只要物体数量比抽屉的数量多,总有一个抽屉至少放进2个物体。
这就叫做抽屉原理。
2、介绍课外知识。
介绍抽屉原理的发现者——数学家狄里克雷。
【设计意图:让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。
】。