难点29排列组合的应用问题

合集下载

如何应用排列组合解决实际问题

如何应用排列组合解决实际问题

如何应用排列组合解决实际问题排列组合是组合数学中重要的一个分支,可以用来解决各种实际问题。

它主要研究的是对事物进行选择、排序或分组的方式和方法。

本文将介绍如何应用排列组合解决实际问题,并通过一些例子来说明其应用。

一、排列的应用排列是指从一组事物中按照一定的顺序选取若干个进行排列。

它在实际问题中经常用于确定事件的顺序或次序,如赛车比赛名次的确定、球队比赛对阵的安排等。

例子1:某校有10名学生,要选出3名代表参加比赛。

问有多少种选法?解析:由于选出的代表有顺序之分,所以这是一个排列问题。

根据排列的计算公式,可以得出答案为10P3=10×9×8=720种选法。

例子2:某公司要从5名员工中选取3名代表参加会议,其中一人必须是经理。

问有多少种选法?解析:由于选出的代表有顺序之分,并且经理必须选中,所以这又是一个排列问题。

首先确定经理的选择,只有1种可能;然后从剩余的4名员工中选取2名,共有4P2=12种选法。

因此,总的选择方式为1×12=12种。

二、组合的应用组合是指从一组事物中选取若干个不考虑其顺序的组合方式。

它在实际问题中广泛应用于确定事件的组合、分组等情况,如选课、分组旅行等。

例子3:某班有10名学生,要从中选取5名学生组成一个团队。

问有多少种选法?解析:由于选出的团队不考虑顺序,所以这是一个组合问题。

根据组合的计算公式,可以得出答案为10C5=252种选法。

例子4:某城市有8个景点,旅行团要从中选择3个景点进行游览。

问有多少种选法?解析:由于选出的景点不考虑顺序,所以这又是一个组合问题。

根据组合的计算公式,可以得出答案为8C3=56种选法。

三、排列组合综合应用在实际问题中,有些情况既包含了排列又包含了组合,需要综合运用排列组合的知识来解决。

例子5:某超市有8种水果,要从中选购5种水果放入购物篮中,问有多少种选法?解析:由于选出的水果不考虑顺序,所以这是一个组合问题。

根据组合的计算公式,可以得出答案为8C5=56种选法。

解排列组合应用题的26种策略

解排列组合应用题的26种策略

解排列组合应用题的26种策略排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握.解排列组合问题的基础是两个基本原理,分类用加法原理,分步用乘法原理,问题在于怎样合理地进行分类、分步,特别是在分类时如何做到既不重复,又不遗漏,正确分每一步,这是比较困难的。

要求我们周密思考,细心分析,理解并掌握解题的常用方法和技巧,掌握并能运用分类思想、转化思想、整体思想、正难则反等数学思想解决排列组合问题。

实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1、相邻排列——捆绑法:n个不同元素排列成一排,其中某k个元素排在相邻位置上,有多少种不同排法?先将这k个元素“捆绑在一起”,看成一个整体,当作一个元素同其它元素一起排列,共有种排法.然后再将“捆绑”在一起的元素进行内部排列,共有种方法.由乘法原理得符合条件的排列,共种.例1.五人并排站成一排,如果必须相邻且在的右边,那么不同的排法种数有()A、60种B、48种C、36种D、24种解析:把视为一人,且固定在的右边,则本题相当于4人的全排列,种,答案:.例2 有3名女生4名男生站成一排,女生必须相邻,男生必须相邻,共有多少种不同的站法?解:先把3名女生作为一个整体,看成一个元素,4名男生作为一个整体,看成一个元素,两个元素排列成一排共有种排法;女生内部的排法有种,男生内部的排法有种.故合题意的排法有种.2.相离排列——插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.将n个不同元素排成一排,其中k个元素互不相邻,有多少种排法?先把个元素排成一排,然后把k个元素插入个空隙中,共有排法种.例3 五位科学家和五名中学生站成一排照像,中学生不相邻的站法有多少种?解:先把科学家作排列,共有种排法;然后把5名中学生插入6个空中,共有种排法,故符合条件的站法共有种站法.例4.七位同学并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种解析:除甲乙外,其余5个排列数为种,再用甲乙去插6个空位有种,不同的排法种数是种,选.3、定序问题---倍缩法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.此法也被叫消序法.将n个不同元素排列成一排,其中某k个元素的顺序保持一定,有多少种不同排法?n个不同元素排列成一排,共有种排法;k个不同元素排列成一排共有种不同排法.于是,k个不同元素顺序一定的排法只占排列总数的分之一.故符合条件的排列共种.例5.五人并排站成一排,如果必须站在的右边(可以不相邻)那么不同的排法种数是()A、24种B、60种C、90种D、120种解析:在的右边与在的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即种,选.例6. A,B,C,D,E五个元素排成一列,要求A在B 的前面且D在E的前面,有多少种不同的排法?解:5个不同元素排列一列,共有种排法. A,B两个元素的排列数为;D,E两个元素的排列数为.因此,符合条件的排列法为种.4、标号排位问题---分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例7.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有()A、6种B、9种C、11种D、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选.5、留空排列——借元法例8、一排10个坐位,3人去坐,每两人之间都要留空位,共有种坐法。

排列组合问题的解决方法

排列组合问题的解决方法

排列组合问题的解决方法排列组合问题是数学中的一个重要概念,也是许多实际问题中常见的一种情况。

在解决排列组合问题时,我们需要运用一定的方法和技巧,以得到准确的答案。

本文将介绍一些常见的解决排列组合问题的方法。

一、排列问题的解决方法排列是从若干个元素中选取一部分进行排序的问题。

在解决排列问题时,我们可以运用以下方法:1.全排列法:全排列法适用于待排元素个数较少的情况。

通过穷举待排元素的所有可能排列,我们可以得到准确的答案。

但当待排元素个数较多时,全排列法的计算量会变得非常大,不适用于实际问题。

2.递归法:递归法是解决排列问题的常用方法之一。

通过不断缩小问题规模,并通过递归调用自身来解决子问题,最终得到排列问题的解。

递归法的优点是代码简洁易懂,但在处理大规模问题时,其效率可能较低。

3.数学公式法:对于一些特殊的排列问题,我们可以运用数学公式来求解。

比如,计算从n个元素中选取m个元素进行排列的方法数,可以使用排列组合公式P(n,m) = n! / (n-m)!来计算。

二、组合问题的解决方法组合是从若干个元素中选取一部分进行组合的问题。

在解决组合问题时,我们可以运用以下方法:1.枚举法:枚举法是解决组合问题的常用方法之一。

通过枚举待选元素的所有可能组合,我们可以得到准确的答案。

但同样地,当待选元素个数较多时,枚举法的计算量会非常大。

2.递归法:递归法同样适用于解决组合问题。

通过不断缩小问题规模,并通过递归调用自身来解决子问题,最终得到组合问题的解。

递归法的优点是代码简洁易懂,但在处理大规模问题时,其效率可能较低。

3.数学公式法:对于一些特殊的组合问题,我们可以运用数学公式来求解。

比如,计算从n个元素中选取m个元素进行组合的方法数,可以使用排列组合公式C(n,m) = n! / (m!(n-m)!)来计算。

三、排列组合问题的综合应用在实际问题中,排列组合常常与其他数学概念和方法相结合,以解决更为复杂的问题。

利用排列组合解决实际组合问题的技巧

利用排列组合解决实际组合问题的技巧

利用排列组合解决实际组合问题的技巧在数学中,排列组合是一种常见的求解实际组合问题的方法。

通过排列组合,我们可以计算出给定条件下的可能性数量,并解决一些实际生活中遇到的问题。

本文将介绍一些利用排列组合解决实际组合问题的技巧。

一、排列组合的基本概念排列组合是指在一定条件下,从给定的元素中选取若干个进行排列或组合的方法。

其中,“排列”表示从一组元素中选取若干个进行有序排列,而“组合”表示从一组元素中选取若干个进行无序组合。

要解决排列组合问题,我们需要了解一些基本概念。

首先是阶乘的概念,表示从1到某个自然数之间所有整数的乘积,记作n!。

其次是排列数和组合数的概念,排列数用P表示,组合数用C表示。

排列数表示从n个不同元素中选取m个元素进行排列的方法数,而组合数表示从n个不同元素中选取m个元素进行组合的方法数。

二、利用排列组合解决实际问题的技巧1. 有放回抽样问题有放回抽样问题是指在一组元素中进行多次选择,并将选择的元素放回原组中。

解决这类问题时,我们可以使用排列或组合的方法。

具体来说,如果我们需要选择若干个元素,并且同一个元素可以选择多次,那么我们可以使用排列方法求解;如果同一个元素只能选择一次,那么我们可以使用组合方法求解。

2. 无放回抽样问题无放回抽样问题是指在一组元素中进行选择,但选择后不放回原组中。

解决这类问题时,我们同样可以使用排列或组合的方法。

具体来说,如果我们需要选择若干个元素,并且要求选择的元素有序,那么我们可以使用排列方法求解;如果不要求选择的元素有序,那么我们可以使用组合方法求解。

3. 多条件限制问题在实际组合问题中,有时会存在多个条件限制的情况。

解决这类问题时,我们可以利用排列组合的技巧逐个考虑每个条件,并将不同条件的计算结果进行相乘或相加,得到最终的解答。

4. 二项式定理应用二项式定理是排列组合中的一个重要定理,可以用来展开一个二项式的幂。

在解决实际组合问题时,我们可以利用二项式定理简化计算过程,得出问题的解答。

排列组合在数学问题中的应用

排列组合在数学问题中的应用

排列组合在数学问题中的应用在数学中,排列组合是一种非常重要的概念,它在解决各种数学问题中起到了关键的作用。

排列组合不仅仅在数学领域有应用,也广泛应用于许多其他领域,如计算机科学、统计学、经济学等等。

本文将探讨排列组合在数学问题中的应用,并阐述其重要性。

一、排列组合的定义排列和组合是两个与集合相关的概念,它们描述了从给定对象中取出若干元素形成一个子集的方式。

- 排列:从n个不同元素中取出m个元素,按照一定的顺序排列起来,称为一个排列。

排列的个数用符号P(n,m)表示。

- 组合:从n个不同元素中取出m个元素,不考虑元素的顺序,称为一个组合。

组合的个数用符号C(n,m)表示。

二、排列组合的应用1. 数学竞赛问题:在数学竞赛中,排列组合是经常出现的考点。

学生需要通过排列组合的知识,解决各种组合数学问题,如有多少种不同的座位安排方式,有多少种不同的密码组合等等。

2. 概率问题:排列组合也与概率问题密切相关。

在概率计算中,我们经常需要计算某事件的发生概率。

而排列组合可以帮助我们计算事件的总数和有利结果的总数,从而计算出事件的概率。

3. 组合优化问题:在某些实际问题中,我们需要找到最佳的组合方式,以达到某种最优化的目标。

比如,在物流配送中,我们希望找到一种最优的配送路线组合,使得总体成本最低。

4. 计算机科学问题:在计算机科学中,排列和组合也有广泛的应用。

比如,在密码学中,排列和组合常用于生成和破解密码;在算法设计中,排列和组合可以用于解决图论问题、排序问题等。

5. 统计学问题:在统计学中,排列组合可以用于计算样本空间总数、计算事件发生的方式数以及计算排列组合的期望值等。

6. 经济学问题:在经济学中,排列组合有时被用来解决资源的分配问题、市场需求分析问题等。

综上所述,排列组合在数学问题中起到了不可替代的作用,它们能够帮助我们解决各种复杂的计数和计算问题。

无论是在数学竞赛中、在概率计算中、还是在计算机科学、统计学、经济学等领域中,排列组合都发挥着重要的作用。

排列组合问题的几种巧解方法

排列组合问题的几种巧解方法

排列组合问题的几种巧解方法排列组合应用问题是历年高考必考题目,因其内容比较抽象、题型繁多、灵活多变、解题方法独特,与学生原有解题经验甚不相同,而成为高中数学教学的一个难点。

但只要我们认真审题,明确题目属于排列还是组合问题,或是排组混合问题,抓住问题本质特征,把握基本思想,灵活应用基本原理,注意讲究一些基本策略和方法技巧,善于分类讨论,适当转化,就能开拓思路,化难为易,使问题迎刃而解。

求解排列组合问题除了掌握两个基本原理(加法原理和乘法原理)外,没有现成的方法可套,只能根据具体问题灵活采用各种技巧。

本文就此通过一些实例介绍一下解决此类问题的一些常见的技巧。

一、对等法。

在有些问题中,某种限制条件的肯定与否定是对等的,各占全体的二分之一,在求解中只要求出全体,就可以得到所求。

例如:期中安排考试科目9门,语文要在数学之前考,有多少种不同的安排顺序?分析:对于任何一个排列问题,就其中的两个元素来讲的话,他们的排列顺序只有两种情况,并且在整个排列中,他们出现的机会是均等的,因此要求其中的某一种情况,能够得到全体,那么问题就可以解决了。

并且也避免了问题的复杂性。

解:不加任何限制条件,整个排法有种,“语文安排在数学之前考”,与“数学安排在语文之前考”的排法是相等的,所以语文安排在数学之前考的排法共有种。

二、插入法。

对于某两个元素或者几个元素要求不相邻的问题,可以用插入法,即先排好没有限制条件的元素,然后将有限制条件的元素按要求插入排好元素后的空档之中即可。

例如:学校组织老师学生一起看电影,同一排电影票12张。

8个学生,4个老师,要求老师在学生中间,且老师互不相邻,共有多少种不同的坐法?分析:此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待。

所涉及问题是排列问题。

解:先排学生共有种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有种选法。

根据乘法原理,共有的不同坐法为种。

排列组合综合应用问题

排列组合综合应用问题
④分为甲、乙、丙三组,每组4人;
⑤分为三组,每组4人。
练习1:有12 人。按照下列要求分配,求不同的 分法种数。
答案
①C125.C74.C33
② C125.C74.C33
③ C125.C74.C33.A33
④C124.C84.C44
⑥分成三组,其中一组2人,另外两组都是 5人。
⑥C122.
C105.C55 A22
1.非平均分配问题中,没有给出组名与给出
01
平均分配。这样分配问题就解决了。 结论:给出组名(非平均中未指明 各组个数)的要在未给出组名的种 数的基础上,乘以组数的阶乘。
3.部分平均分配问题中,先考虑不平均分配,剩下的就是
02
例2:求不同的排法种数。 ①6男2女排成一排,2女相邻; ② 6男2女排成一排,2女不能相邻; ③4男4女排成一排,同性者相邻; ④4男4女排成一排,同性者不能相邻。
×××× a;
说明:在解题过程中,有时用“排一排”会使思路更清楚。 “具体排”是一种好方法,它是把抽象转化为具体的一种思 维方法
分析: ①由2女捆绑成一人与6男全排列,再把2女全排列, 有A77.A22种 “捆绑法”
②把6男2女8人全排列,扣去 2 女“ 相邻”就是2女“ 不相邻”,所以有A88-A77.A22种。“排除法”
② 还可用“插空法”直接求解:先把6男全排列,再在6男相邻的7个空位中排2女,所以共有A66.A72种.
02
直接法:先组: 分三类。第一类,没有甲、乙,有C54种; 第二类,有甲无乙或有乙无甲,有 2C53种;第三类,既有甲又有乙。有C52种。
03
引例(曾经作过的题): 4名运动员出组成4×100米接力队,参加校运会,其中甲,乙两人不同时跑中间两棒的安排方法有多少种?

运用排列组合解决实际问题

运用排列组合解决实际问题

运用排列组合解决实际问题在日常生活中,我们常常会遇到各种各样的问题,有些问题看似复杂,但实际上可以通过排列组合的方法解决。

排列组合是数学中的一个重要概念,它可以帮助我们解决很多实际问题。

本文将探讨一些运用排列组合解决实际问题的例子。

首先,让我们考虑一个经典的问题:在一群人中选出几个人组成小组。

假设有10个人,我们要从中选出3个人组成小组,问有多少种不同的选法?这个问题可以通过排列组合来解决。

首先,我们需要确定选出的3个人的顺序,因此是一个排列问题。

从10个人中选出3个人的排列数可以表示为10P3,即10个人中选出3个人的排列数为10 × 9 × 8 = 720。

然而,由于小组成员的顺序并不重要,我们需要除以3!(3的阶乘)来消除重复计数。

因此,最终的答案是720 / 3! = 120,即有120种不同的选法。

接下来,我们考虑一个更具挑战性的问题:在一家餐厅的菜单中,有5种主菜和3种甜点可供选择。

如果我们要选一道主菜和一道甜点,问有多少种不同的选择方式?这个问题可以通过排列组合的方法解决。

首先,我们需要从5种主菜中选出一种,这是一个组合问题,可以表示为C(5, 1) = 5。

然后,我们需要从3种甜点中选出一种,同样是一个组合问题,可以表示为C(3, 1) = 3。

最后,我们需要将选出的主菜和甜点组合起来,因此有5 × 3 = 15种不同的选择方式。

除了上述问题,排列组合还可以应用于更复杂的实际情境。

例如,在一个班级中,有10个男生和8个女生。

如果我们要选出一个由3个人组成的代表团,其中至少有一个男生和一个女生,问有多少种不同的代表团选择方式?这个问题可以通过排列组合的方法解决。

首先,我们可以计算出所有可能的代表团选择方式,即从18个人中选出3个人的组合数,表示为C(18, 3) = 816。

然后,我们需要减去不符合要求的选择方式,即全是男生或全是女生的选择方式。

全是男生的选择方式有C(10, 3) = 120种,全是女生的选择方式有C(8, 3) = 56种。

高中数学知识点总结排列组合问题的应用与计算

高中数学知识点总结排列组合问题的应用与计算

高中数学知识点总结排列组合问题的应用与计算高中数学知识点总结:排列组合问题的应用与计算在高中数学中,排列组合是一个重要的概念和工具,用于解决各种实际问题。

本文将总结排列组合的基本概念以及其在实际问题中的应用和计算方法。

一、排列与组合的基本概念排列和组合都是从一组对象中选择若干个对象进行排列或组合,以求解不同的问题。

1. 排列:从n个不同元素中选取r个元素,按照一定顺序排列的方式称为排列。

排列的数目用符号P表示,计算公式为P(n,r) = n! / (n-r)!2. 组合:从n个不同元素中选取r个元素,不考虑排列顺序的方式称为组合。

组合的数目用符号C表示,计算公式为C(n,r) = n! / (r!*(n-r)!)二、排列组合问题的应用排列组合在实际问题中的应用非常广泛,涉及到各个领域,以下是一些典型的应用场景。

1. 选组委会:从n个人中选取r个人作为组委会成员,这是一个典型的组合问题。

2. 分配座位:在一列座位中,n个人按照一定顺序坐下,这是一个排列问题。

3. 分配任务:将n项任务分配给r个人来完成,这是一个组合问题。

4. 排队问题:n个人按照一定规则排成一列,这是一个排列问题。

5. 抽奖问题:从n个参与者中抽取r个人作为获奖者,这是一个组合问题。

三、排列组合问题的计算方法在计算排列和组合的数目时,可以借助计算机软件、公式或者计算器来简化计算过程。

下面将介绍一些常用的计算方法。

1. 阶乘计算:n!表示n的阶乘,即从1到n的连乘积。

可以使用计算器来计算阶乘,或者使用编程语言中的阶乘函数。

2. 计算排列数:根据排列的定义,可以通过阶乘计算公式来求解排列数。

3. 计算组合数:根据组合的定义,可以利用排列的公式来求解组合数。

四、排列组合问题的解题步骤解决排列组合问题的关键是确定问题类型以及适用的计算方法,以下是一些解题的基本步骤。

1. 确定问题类型:首先要明确问题是一个排列还是组合问题,根据问题中的条件来判断。

分析和应用排列组合解决实际问题

分析和应用排列组合解决实际问题

分析和应用排列组合解决实际问题排列组合是数学中的一种重要概念,它在解决实际问题中有着广泛的应用。

本文将对排列组合的含义进行分析,并通过具体例子来展示如何应用排列组合解决实际问题。

一、排列组合的概念排列和组合是排列组合学中的两个基本概念,它们用于描述从给定元素集合中选择若干个元素组成不同子集的方式。

排列是指从给定元素集合中选择若干个元素按照一定顺序排列的方式。

在排列中,每个元素只能选择一次,并且顺序不同即被视为不同的排列。

组合是指从给定元素集合中选择若干个元素组成不同的子集的方式。

在组合中,选择元素的顺序不重要,即选择同样的元素,顺序不同的情况下被视为相同的组合。

排列组合的应用广泛,既包括数学问题,也包括生活中的实际问题。

下面通过几个具体例子来展示如何应用排列组合解决实际问题。

二、应用实例一:选课组合假设某学生可以选择若干门课程,每个课程的选择顺序不同将产生不同的选课组合。

现有5门课程可供选择,学生可以选择其中的2门或3门或更多门。

问学生有多少种不同的选课组合?解答:根据排列的概念,我们可以得知,从5门课程中选择2门的选课组合有P(5,2)种,选择3门的选课组合有P(5,3)种,选择4门的组合有P(5,4)种,选择5门的组合有P(5,5)种。

所以学生的不同选课组合总数为P(5,2)+P(5,3)+P(5,4)+P(5,5)。

三、应用实例二:座位安排某音乐厅有10个座位,现有8位合唱团成员需要就座。

其中4位男声合唱,4位女声合唱。

要求男女合唱团成员必须交叉坐,且不能相邻。

问有多少种不同的座位安排方案?解答:我们首先确定男声和女声的座位安排,根据排列的概念,男声的座位安排有P(4,4)种,女声的座位安排有P(4,4)种。

由于男声和女声的座位是交叉坐的,所以男声和女声的座位安排方案相乘,即P(4,4)×P(4,4)。

四、应用实例三:密码锁某个密码锁的密码为4位数字,每个位上的数字可以是0-9中的任意一个。

高中数学中的排列组合应用题

高中数学中的排列组合应用题

高中数学中的排列组合应用题在高中数学学习中,排列组合是一个非常重要的内容。

它不仅能够帮助我们理解数学概念,还可以应用于实际生活中的问题。

本文将介绍一些高中数学中常见的排列组合应用题,以加深我们对这个概念的理解。

一、购买礼物假设小明要为他的朋友买生日礼物,商店里有3种不同的礼物供他选择。

如果他打算买2件礼物作为生日礼物,那么他有多少种不同的选择方式?解析:根据排列组合的知识,我们可以用组合的公式来计算小明的选择方式。

因为他要购买的礼物是无序的,所以使用组合公式。

根据组合公式,我们有C(3,2) = 3 种不同的选择方式。

二、选课方案某高中有10门不同的选修课供学生选择,每个学生必须选择5门。

那么学生有多少种不同的选课方案?解析:根据排列组合的知识,我们可以用组合的公式来计算学生的选课方案。

因为选修课的顺序对学生来说是无关紧要的,所以使用组合公式。

根据组合公式,我们有C(10,5) = 252 种不同的选课方案。

三、分组问题某班级有20名学生,他们要分成4个小组参加活动。

每个小组的人数可以不同,但要求每个小组至少有1人。

那么有多少种不同的分组方式?解析:根据排列组合的知识,我们可以用组合的公式来计算分组方式。

因为每个小组的人数可以不同,所以使用组合公式。

根据组合公式,我们有C(19,3) * C(16,3) * C(13,3) = 846720 种不同的分组方式。

四、密码问题某交易平台的密码由4位数字组成,每位数字可以是0-9的任意一个数字。

那么共有多少种不同的密码组合?解析:根据排列组合的知识,我们可以用排列的公式来计算密码组合。

因为每位数字可以重复出现,所以使用排列公式。

根据排列公式,我们有P(10,4) = 5040 种不同的密码组合。

五、编码问题某公司对员工的编号规则是3位数字和3位字母的组合,数字和字母都可以重复使用,且顺序可以任意排列。

那么共有多少种不同的员工编号方式?解析:根据排列组合的知识,我们可以用排列的公式来计算员工编号方式。

难点29 排列、组合的应用问题 .doc

难点29 排列、组合的应用问题 .doc
2018/10/25
2019/4/25
乐公(消)行罚决字〔2018〕0005号
18
海东市平安区馥郁轩柴火园
92632121MA7534597B
电器线路的敷设不符合规定
依据《中华人民共和国消防法》第六十六条
2018年2月26日,给予青海市平安区馥郁轩柴火园责令停产停业,并处罚款人民币伍仟元整的处罚
海东市 消防支队平安大队
2018/10/25
2019/4/25
宁甘公(消)行罚决字〔2018〕0006号
16
青海盐湖新域资产管理有限公司
91630000661937394N
对存在的消防隐患逾期未改
依据《中华人民共和国消防法》第六十条第一款第七项
2018年2月13日,给予青海盐湖海纳化工有限公司罚款人民币叁万元整的处罚
西宁市 消防支队甘河大队
2018/10/25
2019/4/25
宁中公(消)行罚决字〔2018〕0037号
13
西宁市城东区沈家洪城火锅店
92630102MA757CT26P
未经消防安全检查擅自投入使用、营业
依据《中华人民共和国消防法》第五十八条第一款第五项
2018年2月21日,给予西宁市城东区沈家洪城火锅店责令停止使用,并处罚款人民币叁万元整的处罚
西宁市 消防支队城西区大队
2018/10/25
2019/4/25
宁西公(消)行罚决字〔2018〕0017号
3
西宁市城西区川奇大草原烤肉店
92630104MA75P21E7R
未进行消防设计备案
依据《中华人民共和国消防法》第五十八条第二款
2018年2月23日,给予西宁市城西区川奇大草原烤肉店罚款人民币伍仟元整的处罚

高考数学难点突破_难点29__排列、组合的应用问题

高考数学难点突破_难点29__排列、组合的应用问题

难点29 排列、组合的应用问题排列、组合是每年高考必定考查的内容之一,纵观全国高考数学题,每年都有1~2道排列组合题,考查排列组合的基础知识、思维能力.●难点磁场(★★★★★)有五张卡片,它们的正、反面分别写0与1,2与3,4与5,6与7,8与9,将其中任意三张并排放在一起组成三位数,共可组成多少个不同的三位数? ●案例探究[例1]在∠AOB 的OA 边上取m 个点,在OB 边上取n 个点(均除O 点外),连同O 点共m +n +1个点,现任取其中三个点为顶点作三角形,可作的三角形有( )1212111121212121211211C C C D.C C C C C C C.C C C C .C B C C C A.C n m n m n m m n n m mn n m m n n m +++++++++命题意图:考查组合的概念及加法原理,属★★★★★级题目.知识依托:法一分成三类方法;法二,间接法,去掉三点共线的组合.错解分析:A 中含有构不成三角形的组合,如:C 11+m C 2n 中,包括O 、B i 、B j ;C 11+n C 2m 中,包含O 、A p 、A q ,其中A p 、A q ,B i 、B j 分别表示OA 、OB 边上不同于O 的点;B 漏掉△A i OB j ;D 有重复的三角形.如C 1m C 21+n 中有△A i OB j ,C 21+m C 1n 中也有△A i OB j .技巧与方法:分类讨论思想及间接法.解法一:第一类办法:从OA 边上(不包括O )中任取一点与从OB 边上(不包括O )中任取两点,可构造一个三角形,有C 1m C 2n 个;第二类办法:从OA 边上(不包括O )中任取两点与OB 边上(不包括O )中任取一点,与O 点可构造一个三角形,有C 2m C 1n 个;第三类办法:从OA 边上(不包括O )任取一点与OB 边上(不包括O )中任取一点,与O 点可构造一个三角形,有C 1m C 1n 个.由加法原理共有N =C 1m C 2n +C 2m C 1n +C 1m C 1n 个三角形.解法二:从m +n +1中任取三点共有C 31++n m 个,其中三点均在射线OA (包括O 点),有C 31+m 个,三点均在射线OB (包括O 点),有C 31+n 个.所以,个数为N =C 31++n m -C 31+m -C 31+n 个.答案:C[例2]四名优等生保送到三所学校去,每所学校至少得一名,则不同的保送方案的总数是_________.命题意图:本题主要考查排列、组合、乘法原理概念,以及灵活应用上述概念处理数学问题的能力,属★★★★级题目.知识依托:排列、组合、乘法原理的概念.错解分析:根据题目要求每所学校至少接纳一位优等生,常采用先安排每学校一人,而后将剩的一人送到一所学校,故有3A 34种.忽略此种办法是:将同在一所学校的两名学生按进入学校的前后顺序,分为两种方案,而实际题目中对进入同一所学校的两名学生是无顺序要求的.技巧与方法:解法一,采用处理分堆问题的方法.解法二,分两次安排优等生,但是进入同一所学校的两名优等生是不考虑顺序的.解法一:分两步:先将四名优等生分成2,1,1三组,共有C 24种;而后,对三组学生安排三所学校,即进行全排列,有A 33种.依乘法原理,共有N =C 2433A =36(种).解法二:分两步:从每个学校至少有一名学生,每人进一所学校,共有A 34种;而后,再将剩余的一名学生送到三所学校中的一所学校,有3种.值得注意的是:同在一所学校的两名学生是不考虑进入的前后顺序的.因此,共有N =21A 34·3=36(种). 答案:36●锦囊妙记排列与组合的应用题,是高考常见题型,其中主要考查有附加条件的应用问题.解决这类问题通常有三种途径:(1)以元素为主,应先满足特殊元素的要求,再考虑其他元素.(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.前两种方式叫直接解法,后一种方式叫间接解法.在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算和作答.解排列与组合应用题常用的方法有:直接计算法与间接计算法;分类法与分步法;元素分析法和位置分析法;插空法和捆绑法等八种.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想.●歼灭难点训练一、填空题1.(★★★★)从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax +By +C =0中的A 、B 、C ,所得的经过坐标原点的直线有_________条(用数值表示).2.(★★★★★)圆周上有2n 个等分点(n >1),以其中三个点为顶点的直角三角形的个数为_________.二、解答题3.(★★★★★)某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A ,有5次出牌机会,每次只能出一种点数的牌但张数不限,此人有多少种不同的出牌方法?4.(★★★★)二次函数y =ax 2+bx +c 的系数a 、b 、c ,在集合{-3,-2,-1,0,1,2,3,4}中选取3个不同的值,则可确定坐标原点在抛物线内部的抛物线多少条?5.(★★★★★)有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数.(1)全体排成一行,其中甲只能在中间或者两边位置.(2)全体排成一行,其中甲不在最左边,乙不在最右边.(3)全体排成一行,其中男生必须排在一起.(4)全体排成一行,男、女各不相邻.(5)全体排成一行,男生不能排在一起.(6)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变.(7)排成前后二排,前排3人,后排4人.(8)全体排成一行,甲、乙两人中间必须有3人.6.(★★★★★)20个不加区别的小球放入编号为1、2、3的三个盒子中,要求每个盒内的球数不小于它的编号数,求不同的放法种数.7.(★★★★)用五种不同的颜色,给图中的(1)(2)(3)(4)的各部分涂色,每部分涂一色,相邻部分涂不同色,则涂色的方法共有几种?8.(★★★★)甲、乙、丙三人值周一至周六的班,每人值两天班,若甲不值周一、乙不值周六,则可排出不同的值班表数为多少?参考答案难点磁场解:(间接法):任取三张卡片可以组成不同三位数C35·23·A33(个),其中0在百位的有C24·22·A22(个),这是不合题意的,故共有不同三位数:C35·23·A33-C24·22·A22=432(个).歼灭难点训练一、1.解析:因为直线过原点,所以C=0,从1,2,3,5,7,11这6个数中任取2个作为A、B两数的顺序不同,表示的直线不同,所以直线的条数为A26=30.答案:302.解析:2n个等分点可作出n条直径,从中任选一条直径共有C1n种方法;再从以下的(2n-2)个等分点中任选一个点,共有C122-n种方法,根据乘法原理:直角三角形的个数为:C1n ·C122-n=2n(n-1)个.答案:2n(n-1)二、3.解:出牌的方法可分为以下几类:(1)5张牌全部分开出,有A55种方法;(2)2张2一起出,3张A一起出,有A25种方法;(3)2张2一起出,3张A一起出,有A45种方法;(4)2张2一起出,3张A分两次出,有C23A35种方法;(5)2张2分开出,3张A一起出,有A35种方法;(6)2张2分开出,3张A分两次出,有C23A45种方法.因此,共有不同的出牌方法A55+A25+A45+A23A35+A35+C23A45=860种.4.解:由图形特征分析,a>0,开口向上,坐标原点在内部⇔f(0)=c<0;a<0,开口向下,原点在内部⇔f(0)=c>0,所以对于抛物线y=ax2+bx+c来讲,原点在其内部⇔af(0)=ac<0,则确定抛物线时,可先定一正一负的a和c,再确定b,故满足题设的抛物线共有C13C14A22A16=144条.5.解:(1)利用元素分析法,甲为特殊元素,故先安排甲左、右、中共三个位置可供甲选择.有A13种,其余6人全排列,有A66种.由乘法原理得A13A66=2160种.(2)位置分析法.先排最右边,除去甲外,有A16种,余下的6个位置全排有A66种,但应剔除乙在最右边的排法数A15A55种.则符合条件的排法共有A16A66-A15A55=3720种.(3)捆绑法.将男生看成一个整体,进行全排列.再与其他元素进行全排列.共有A33A55=720种.(4)插空法.先排好男生,然后将女生插入其中的四个空位,共有A33A44=144种.(5)插空法.先排女生,然后在空位中插入男生,共有A44A35=1440种.(6)定序排列.第一步,设固定甲、乙、丙从左至右顺序的排列总数为N,第二步,对甲、乙、丙进行全排列,则为七个人的全排列,因此A77=N×A33,∴N =3377AA= 840种.(7)与无任何限制的排列相同,有A77=5040种.(8)从除甲、乙以外的5人中选3人排在甲、乙中间的排法有A35种,甲、乙和其余2人排成一排且甲、乙相邻的排法有A23A33.最后再把选出的3人的排列插入到甲、乙之间即可.共有A35×A22×A33=720种.6.解:首先按每个盒子的编号放入1个、2个、3个小球,然后将剩余的14个小球排成一排,如图,|O|O|O|O|O|O|O|O|O|O|O|O|O|O|,有15个空档,其中“O”表示小球,“|”表示空档.将求小球装入盒中的方案数,可转化为将三个小盒插入15个空档的排列数.对应关系是:以插入两个空档的小盒之间的“O”个数,表示右侧空档上的小盒所装有小球数.最左侧的空档可以同时插入两个小盒.而其余空档只可插入一个小盒,最右侧空档必插入小盒,于是,若有两个小盒插入最左侧空档,有C23种;若恰有一个小盒插入最左侧空档,有1313CC种;若没有小盒插入最左侧空档,有C213种.由加法原理,有N=2131131323CCCC++=120种排列方案,即有120种放法.7.解:按排列中相邻问题处理.(1)(4)或(2)(4).可以涂相同的颜色.分类:若(1)(4)同色,有A35种,若(2)(4)同色,有A35种,若(1)(2)(3)(4)均不同色,有A45种.由加法原理,共有N=2A35+A45=240种.8.解:每人随意值两天,共有C26C24C22个;甲必值周一,有C15C24C22个;乙必值周六,有C15C24C22个;甲必值周一且乙必值周六,有C14C13C22个.所以每人值两天,且甲必不值周一、乙必不值周六的值班表数,有N=C26C24C22-2C15C24C22+ C14C13C22=90-2×5×6+12=42个.Von Neumann说过:In mathematics you don't understand things .You just get used to them.掌握了课本,一般的数学题就都可以做了。

排列组合的应用

排列组合的应用

排列组合的应用排列组合是数学中的一个重要概念,广泛应用于各个领域。

它可以帮助我们解决各种有关选择、安排和组合的问题。

一、排列组合的定义和基本概念排列和组合是两个不同的概念,它们分别用于描述不同的问题。

1. 排列排列是指从一组元素中按照一定的顺序取出若干个元素,形成不同的序列。

对于n个不同的元素,如果取其中m个元素进行排列,且要求其顺序不同,则称为从n个元素中取m个元素的排列。

排列的计算公式为P(n,m) = n!/(n-m)!,其中n!表示n的阶乘。

2. 组合组合是指从一组元素中无序地取出若干个元素,形成一个子集。

对于n个不同的元素,如果取其中m个元素进行组合,且要求其顺序不重要,则称为从n个元素中取m个元素的组合。

组合的计算公式为C(n,m) = n!/[(n-m)! * m!],其中n!表示n的阶乘。

二、排列组合的应用场景排列组合在实际问题中有着广泛的应用,下面将介绍几个常见的应用场景。

1. 排队队列问题在排队或者排队进入场所的问题中,我们经常需要考虑不同人员的排列方式。

例如,某餐馆有5个座位,有8个人排队等候就餐,求解不同的就餐排列方式可以使用排列的概念。

又如,书店的书架上有8本不同的书,每个书架只能摆放4本书,求解书架的摆放方案可以使用排列的概念。

2. 扑克牌问题在扑克牌游戏中,我们常常需要计算不同牌型的可能性。

例如,有一副扑克牌,从中取5张牌,求解不同的取牌顺序的排列方式可以使用排列的概念。

又如,在德州扑克中,我们需要计算不同的牌型组合方式,根据手中的牌和底牌计算出最终的牌型。

3. 彩票中奖概率问题在购买彩票时,我们常常关心中奖的概率。

例如,某种彩票共有30个号码,每次开奖从中选择6个号码,求解中一等奖的概率可以使用组合的概念。

又如,如果我们只需要中三等奖,即猜对其中三个号码的概率,可以使用排列的概念进行计算。

4. 字母排列问题在密码破解、单词游戏等问题中,我们需要计算字母的排列组合方式。

解排列组合应用题的26种策略

解排列组合应用题的26种策略

解排列组合应用题的26种策略排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握.解排列组合问题的基础是两个基本原理,分类用加法原理,分步用乘法原理,问题在于怎样合理地进行分类、分步,特别是在分类时如何做到既不重复,又不遗漏,正确分每一步,这是比较困难的。

要求我们周密思考,细心分析,理解并掌握解题的常用方法和技巧,掌握并能运用分类思想、转化思想、整体思想、正难则反等数学思想解决排列组合问题。

实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1、相邻排列——捆绑法:n 个不同元素排列成一排,其中某k 个元素排在相邻位置上,有多少种不同排法?先将这k 个元素“捆绑在一起”,看成一个整体,当作一个元素同其它元素一起排列,共有种排法.然后再将“捆绑”在一起的元素进11n k n k A -+-+行内部排列,共有种方法.由乘法原理得符合条件的排列,共k k A 种.11n k k n k k A A -+-+·例1.五人并排站成一排,如果必须相邻且在的右e d c b a ,,,,b a ,b a 边,那么不同的排法种数有()A 、60种B 、48种C 、36种D 、24种解析:把视为一人,且固定在的右边,则本题相当于4人的b a ,b a全排列,种,答案:.4424A =D 例2 有3名女生4名男生站成一排,女生必须相邻,男生必须相邻,共有多少种不同的站法?解:先把3名女生作为一个整体,看成一个元素,4名男生作为一个整体,看成一个元素,两个元素排列成一排共有种排法;女生内部22A 的排法有种,男生内部的排法有种.故合题意的排法有33A 44A 种.234234288A A A =··2.相离排列——插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.将n 个不同元素排成一排,其中k 个元素互不相邻,有多()k n k -≤少种排法?先把个元素排成一排,然后把k 个元素插入个空隙()n k -(1)n k -+中,共有排法种.1k n k A -+例3 五位科学家和五名中学生站成一排照像,中学生不相邻的站法有多少种?解:先把科学家作排列,共有种排法;然后把5名中学生插入655A 个空中,共有种排法,56A 故符合条件的站法共有种站法.555686400A A =·例11.(1)4名优秀学生全部保送到3所大学去,每所大学至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有种方法,再把三组学生分配到三24C 所大学有种,故共有种方法.33A 234336C A =说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( )A 、480种B 、240种C 、120种D 、96种答案:.B 9、名额分配问题---隔板法:例12:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为种.6984C =10、限制条件的分配问题---分类法:例13.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案种;②若甲参加而乙不参加,48A 先安排甲有3种方法,然后安排其余学生有方法,所以共有;③38A 383A 若乙参加而甲不参加同理也有种;④若甲乙都参加,则先安排甲乙,383A 有7种方法,然后再安排其余8人到另外两个城市有种,共有方28A 287A 法.所以共有不同的派遣方法总数为种.433288883374088A A A A +++=11、多元问题----分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例14(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0,1,2,3,4共5种情况,分别有个,55A 个,合并总计300个,选.1131131131343333323333,,,A A A A A A A A A A A B (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能方法共有:种.()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=13、定位问题----优先法:有限制条件,某个或几个元素要排在指定位置,通常要优先考虑这个或几个元素受限位置或受限元素,再排其它的元素。

排列组合问题的类型及解答策略

排列组合问题的类型及解答策略

排列组合问题的类型及解答策略排列组合问题是概率论的一个重要内容,常见于数学和统计学的相关考试中。

它涉及将一组元素按照一定的规则进行排列或组合,从而求解出不同可能性的个数。

在数学领域中,排列与组合属于不同的问题类型,需要采用不同的解答策略。

首先,我们来讨论排列问题。

排列指的是从给定的一组元素中按照一定顺序选取若干个元素,形成一个有序的排列。

对于排列问题,常见的求解策略有全排列和有限排列两种。

全排列问题是指将给定的所有元素进行排列,即对于每一个元素都有可能处于不同的位置。

解答全排列问题时,可以使用递归算法。

首先确定第一个位置的元素,然后将剩余的元素进行全排列,依次确定后面的位置,直到所有元素都被排列。

全排列问题的解答策略比较直接,但对于元素较多的情况下,可能会导致运行时间较长。

有限排列问题是指从给定的一组元素中选取若干个元素进行排列,但排列的长度有限制,即不一定需要将所有元素都排列出来。

解答有限排列问题时,可以使用递归算法或迭代算法。

递归算法的思路与全排列问题类似,需要确定每个位置的元素,但要考虑到排列的长度限制。

迭代算法则可以通过循环来实现,每次选取一个元素并确定位置,直到达到排列长度限制或所有元素都被选取。

接下来,我们讨论组合问题。

组合指的是从给定的一组元素中选取若干个元素,形成一个无序的组合。

对于组合问题,常见的求解策略有全组合和有限组合两种。

全组合问题是指将给定的所有元素进行组合,即对于每一个元素都有可能被选取或不被选取。

解答全组合问题时,可以使用位运算的思想。

假设元素个数为n,可以使用n位二进制数表示每个元素的选取状态,0表示不选取,1表示选取。

通过遍历所有可能的二进制数,即可得到全组合的解。

有限组合问题是指从给定的一组元素中选取若干个元素进行组合,但组合的个数有限制。

解答有限组合问题时,可以使用递归算法或迭代算法。

递归算法的思路是从第一个元素开始选取,然后对剩余元素进行组合,依次确定后面的元素,直到达到组合个数限制或所有元素都被选取。

利用排列组合解决问题

利用排列组合解决问题

利用排列组合解决问题在我们日常生活和工作中,经常会遇到一些需要通过排列组合来解决的问题。

排列组合是数学中的一个分支,它研究的是对象的排列和组合方式。

通过灵活运用排列组合的知识,我们可以解决一些看似复杂的问题,提高解决问题的效率。

一、排列组合在生活中的应用1. 座位安排问题假设有n个人参加一个座位有限的宴会,座位有m个。

我们需要计算出一共有多少种不同的座位安排方式。

这就是一个经典的排列问题。

根据排列的定义,我们可以得出结论:共有m个座位,第一个人有m种选择,第二个人有m-1种选择,第三个人有m-2种选择,以此类推,最后一个人只有1种选择。

因此,总的座位安排方式为m*(m-1)*(m-2)*...*1,即m的阶乘。

2. 邮箱密码问题在使用邮箱时,我们通常需要设置一个密码来保护我们的隐私。

假设密码由n个字符组成,每个字符有m种选择。

那么,一共有多少种不同的密码组合方式呢?这就是一个典型的组合问题。

根据组合的定义,我们可以得出结论:共有n个字符,第一个字符有m种选择,第二个字符有m种选择,以此类推,最后一个字符也有m种选择。

因此,总的密码组合方式为m^n。

3. 选课问题在大学里,学生通常需要选择一定数量的课程来修读。

假设有n门课程可供选择,每个学生需要选择m门课程。

那么,一共有多少种不同的选课方式呢?这就是一个经典的组合问题。

根据组合的定义,我们可以得出结论:共有n门课程,第一个学生有n种选择,第二个学生有n-1种选择,第三个学生有n-2种选择,以此类推,最后一个学生只有1种选择。

因此,总的选课方式为n*(n-1)*(n-2)*...*1,即n的阶乘。

二、排列组合在工作中的应用1. 产品组合问题在市场营销中,我们常常需要组合不同的产品来满足消费者的需求。

假设有n个产品可供选择,每个消费者需要选择m个产品。

那么,一共有多少种不同的产品组合方式呢?这就是一个经典的组合问题。

根据组合的定义,我们可以得出结论:共有n个产品,第一个消费者有n种选择,第二个消费者有n-1种选择,第三个消费者有n-2种选择,以此类推,最后一个消费者只有1种选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

难点29 排列、组合的应用问题排列、组合是每年高考必定考查的内容之一,纵观全国高考数学题,每年都有1~2道排列组合题,考查排列组合的基础知识、思维能力.●难点磁场(★★★★★)有五张卡片,它们的正、反面分别写0与1,2与3,4与5,6与7,8与9,将其中任意三张并排放在一起组成三位数,共可组成多少个不同的三位数? ●案例探究[例1]在∠AOB 的OA 边上取m 个点,在OB 边上取n 个点(均除O 点外),连同O 点共m +n +1个点,现任取其中三个点为顶点作三角形,可作的三角形有( )1212111121212121211211C C C D.C C C C C C C.C C C C .C B C C C A.C n m n m n m m n n m mn n m m n n m +++++++++命题意图:考查组合的概念及加法原理,属★★★★★级题目.知识依托:法一分成三类方法;法二,间接法,去掉三点共线的组合.错解分析:A 中含有构不成三角形的组合,如:C 11+m C 2n 中,包括O 、B i 、B j ;C 11+n C 2m 中,包含O 、A p 、A q ,其中A p 、A q ,B i 、B j 分别表示OA 、OB 边上不同于O 的点;B 漏掉△A i OB j ;D 有重复的三角形.如C 1m C 21+n 中有△A i OB j ,C 21+m C 1n 中也有△A i OB j .技巧与方法:分类讨论思想及间接法.解法一:第一类办法:从OA 边上(不包括O )中任取一点与从OB 边上(不包括O )中任取两点,可构造一个三角形,有C 1m C 2n 个;第二类办法:从OA 边上(不包括O )中任取两点与OB 边上(不包括O )中任取一点,与O 点可构造一个三角形,有C 2m C 1n 个;第三类办法:从OA 边上(不包括O )任取一点与OB 边上(不包括O )中任取一点,与O 点可构造一个三角形,有C 1m C 1n 个.由加法原理共有N =C 1m C 2n +C 2m C 1n +C 1m C 1n 个三角形.解法二:从m +n +1中任取三点共有C 31++n m 个,其中三点均在射线OA (包括O 点),有C 31+m 个,三点均在射线OB (包括O 点),有C 31+n 个.所以,个数为N =C 31++n m -C 31+m -C 31+n 个.答案:C[例2]四名优等生保送到三所学校去,每所学校至少得一名,则不同的保送方案的总数是_________.命题意图:本题主要考查排列、组合、乘法原理概念,以及灵活应用上述概念处理数学问题的能力,属★★★★级题目.知识依托:排列、组合、乘法原理的概念.错解分析:根据题目要求每所学校至少接纳一位优等生,常采用先安排每学校一人,而后将剩的一人送到一所学校,故有3A 34种.忽略此种办法是:将同在一所学校的两名学生按进入学校的前后顺序,分为两种方案,而实际题目中对进入同一所学校的两名学生是无顺序要求的.技巧与方法:解法一,采用处理分堆问题的方法.解法二,分两次安排优等生,但是进入同一所学校的两名优等生是不考虑顺序的.解法一:分两步:先将四名优等生分成2,1,1三组,共有C 24种;而后,对三组学生安排三所学校,即进行全排列,有A 33种.依乘法原理,共有N =C 2433A =36(种).解法二:分两步:从每个学校至少有一名学生,每人进一所学校,共有A 34种;而后,再将剩余的一名学生送到三所学校中的一所学校,有3种.值得注意的是:同在一所学校的两名学生是不考虑进入的前后顺序的.因此,共有N =21A 34·3=36(种). 答案:36●锦囊妙记排列与组合的应用题,是高考常见题型,其中主要考查有附加条件的应用问题.解决这类问题通常有三种途径:(1)以元素为主,应先满足特殊元素的要求,再考虑其他元素.(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.前两种方式叫直接解法,后一种方式叫间接解法.在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算和作答.解排列与组合应用题常用的方法有:直接计算法与间接计算法;分类法与分步法;元素分析法和位置分析法;插空法和捆绑法等八种.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想.●歼灭难点训练一、填空题1.(★★★★)从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax +By +C =0中的A 、B 、C ,所得的经过坐标原点的直线有_________条(用数值表示).2.(★★★★★)圆周上有2n 个等分点(n >1),以其中三个点为顶点的直角三角形的个数为_________.二、解答题3.(★★★★★)某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A ,有5次出牌机会,每次只能出一种点数的牌但张数不限,此人有多少种不同的出牌方法?4.(★★★★)二次函数y =ax 2+bx +c 的系数a 、b 、c ,在集合{-3,-2,-1,0,1,2,3,4}中选取3个不同的值,则可确定坐标原点在抛物线内部的抛物线多少条?5.(★★★★★)有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数.(1)全体排成一行,其中甲只能在中间或者两边位置.(2)全体排成一行,其中甲不在最左边,乙不在最右边.(3)全体排成一行,其中男生必须排在一起.(4)全体排成一行,男、女各不相邻.(5)全体排成一行,男生不能排在一起.(6)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变.(7)排成前后二排,前排3人,后排4人.(8)全体排成一行,甲、乙两人中间必须有3人.6.(★★★★★)20个不加区别的小球放入编号为1、2、3的三个盒子中,要求每个盒内的球数不小于它的编号数,求不同的放法种数.7.(★★★★)用五种不同的颜色,给图中的(1)(2)(3)(4)的各部分涂色,每部分涂一色,相邻部分涂不同色,则涂色的方法共有几种?8.(★★★★)甲、乙、丙三人值周一至周六的班,每人值两天班,若甲不值周一、乙不值周六,则可排出不同的值班表数为多少?参考答案难点磁场解:(间接法):任取三张卡片可以组成不同三位数C35·23·A33(个),其中0在百位的有C24·22·A22(个),这是不合题意的,故共有不同三位数:C35·23·A33-C24·22·A22=432(个).歼灭难点训练一、1.解析:因为直线过原点,所以C=0,从1,2,3,5,7,11这6个数中任取2个作为A、B两数的顺序不同,表示的直线不同,所以直线的条数为A26=30.答案:302.解析:2n个等分点可作出n条直径,从中任选一条直径共有C1n种方法;再从以下的(2n-2)个等分点中任选一个点,共有C122-n种方法,根据乘法原理:直角三角形的个数为:C1n ·C122-n=2n(n-1)个.答案:2n(n-1)二、3.解:出牌的方法可分为以下几类:(1)5张牌全部分开出,有A55种方法;(2)2张2一起出,3张A一起出,有A25种方法;(3)2张2一起出,3张A一起出,有A45种方法;(4)2张2一起出,3张A分两次出,有C23A35种方法;(5)2张2分开出,3张A一起出,有A35种方法;(6)2张2分开出,3张A分两次出,有C23A45种方法.因此,共有不同的出牌方法A55+A25+A45+A23A35+A35+C23A45=860种.4.解:由图形特征分析,a>0,开口向上,坐标原点在内部⇔f(0)=c<0;a<0,开口向下,原点在内部⇔f(0)=c>0,所以对于抛物线y=ax2+bx+c来讲,原点在其内部⇔af(0)=ac<0,则确定抛物线时,可先定一正一负的a和c,再确定b,故满足题设的抛物线共有C13C14A22A16=144条.5.解:(1)利用元素分析法,甲为特殊元素,故先安排甲左、右、中共三个位置可供甲选择.有A13种,其余6人全排列,有A66种.由乘法原理得A13A66=2160种.(2)位置分析法.先排最右边,除去甲外,有A16种,余下的6个位置全排有A66种,但应剔除乙在最右边的排法数A15A55种.则符合条件的排法共有A16A66-A15A55=3720种.(3)捆绑法.将男生看成一个整体,进行全排列.再与其他元素进行全排列.共有A33A55=720种.(4)插空法.先排好男生,然后将女生插入其中的四个空位,共有A33A44=144种.(5)插空法.先排女生,然后在空位中插入男生,共有A44A35=1440种.(6)定序排列.第一步,设固定甲、乙、丙从左至右顺序的排列总数为N,第二步,对甲、乙、丙进行全排列,则为七个人的全排列,因此A77=N×A33,∴N=3377AA= 840种.(7)与无任何限制的排列相同,有A77=5040种.(8)从除甲、乙以外的5人中选3人排在甲、乙中间的排法有A35种,甲、乙和其余2人排成一排且甲、乙相邻的排法有A23A33.最后再把选出的3人的排列插入到甲、乙之间即可.共有A35×A22×A33=720种.6.解:首先按每个盒子的编号放入1个、2个、3个小球,然后将剩余的14个小球排成一排,如图,|O|O|O|O|O|O|O|O|O|O|O|O|O|O|,有15个空档,其中“O”表示小球,“|”表示空档.将求小球装入盒中的方案数,可转化为将三个小盒插入15个空档的排列数.对应关系是:以插入两个空档的小盒之间的“O”个数,表示右侧空档上的小盒所装有小球数.最左侧的空档可以同时插入两个小盒.而其余空档只可插入一个小盒,最右侧空档必插入小盒,于是,若有两个小盒插入最左侧空档,有C23种;若恰有一个小盒插入最左侧空档,有1313CC种;若没有小盒插入最左侧空档,有C213种.由加法原理,有N=2131131323CCCC++=120种排列方案,即有120种放法.7.解:按排列中相邻问题处理.(1)(4)或(2)(4).可以涂相同的颜色.分类:若(1)(4)同色,有A35种,若(2)(4)同色,有A35种,若(1)(2)(3)(4)均不同色,有A45种.由加法原理,共有N=2A35+A45=240种.8.解:每人随意值两天,共有C26C24C22个;甲必值周一,有C15C24C22个;乙必值周六,有C15C24C22个;甲必值周一且乙必值周六,有C14C13C22个.所以每人值两天,且甲必不值周一、乙必不值周六的值班表数,有N=C26C24C22-2C15C24C22+ C14C13C22=90-2×5×6+12=42个.。

相关文档
最新文档