线性代数第一章1-3PPT课件

合集下载

线性代数ppt课件

线性代数ppt课件


x1

b1a22 a11a22
a12b2 a12a21

x2

a11b2 a11a22
b1a21 a12a21

x1

b1a22 a11a22
a12b2 a12a21

x2

a11b2 a11a22
b1a21 a12a21

5
第一章 行列式
我们用符号
aa1211表aa示1222代数和a11a22a12a21
解: 1 3 … (2n-1) 2 4 … 2k… (2n)
D3x24x189x2x212x25x6
即x25x60
x2或x3
值得注意的是:四阶及四阶以上行列式没有像二、三阶 行列式那样的对角线法则
13
第一章 行列式 §1-2 全排列及其逆序数
[引例]用1、2、3三个数字 可以组成多少个没有重复数字的 三位数?
[解依] 次选定百位数、十位数、个位数。 百位数有3种选法 十位数有2种选法 个位数有1种选法 所以可以组成6个没有重复数字的三位数 这6个三位数是 123 132 213 231 312 321
十八世纪开始,行列式开始作为独立的数学概念被研究。 十九世纪以后,行列式理论进一步得到发展和完善。
3
第一章 行列式
莱布尼茨:历史上少见的通才,被誉为 十七世纪的亚里士多德。在数学上,他 和牛顿先后独立发明了微积分。在哲学 上,莱布尼茨的“乐观主义”最为著名 。 他对物理学的发展也做出了重大贡献 。
并称它为三阶行列式。
10
第一章 行列式
2、行列式中的相关术语
行列式的元素、行、列、主对角线、副对角线 3、三阶行列式的计算 (对角线法则或沙路法则 )

线性代数第-章向量空间PPT课件

线性代数第-章向量空间PPT课件

3
子空间在映射下的变化
线性映射可以导致子空间中的向量发生旋转、平 移或拉伸等变化。
子空间与线性映射的相互影响
子空间对线性映射的限制
子空间的性质可以影响线性映射的作用范围和结果。
线性映射对子空间的构造
通过选择特定的线性映射,可以构造出具有特定性质的子空间。
子空间与线性映射的关系
子空间和线性映射之间存在密切的关系,它们在许多数学问题中都 扮演着重要的角色。
详细描述
子空间是向量空间的一个非空子集,这个子集中的向量之间同样可以进行加法运算和数乘运算,并且这些运算也 满足封闭性、结合性和交换性等性质。子空间的定义是为了研究向量空间的一个特定部分,以便更好地理解和应 用向量空间。
向量空间的基与维数
总结词
基是向量空间中线性无关的向量组,它能够生成整个向量空间;维数则是向量空间的基 所包含的向量个数。
向量空间的推广到矩阵空 间
将向量空间中的元素推广到矩阵,形成矩阵 空间,使得线性变换和矩阵运算的结合更加 紧密,为解决实际问题提供更多数学工具。
向量空间的推广到函数空 间
将向量空间的元素推广到函数,形成函数空 间,使得函数的线性组合、内积等运算成为 可能,为解决实际问题提供更多数学工具。
向量空间的应用前景
判定条件二
如果存在一个线性映射f:V→W,使得V和W的基底之间存在一一对应关系,并且 这种对应关系保持向量加法和标量乘法的运算关系,则称V和W同构。
同构的应用场景
线性变换
几何变换
同构映射可以应用于线性变换中,将 一个向量空间中的线性变换转移到另 一个向量空间中。
同构映射可以应用于几何变换中,如 旋转、平移等,将一个向量空间中的 几何变换转移到另一个向量空间中。

线性代数第一章ppt

线性代数第一章ppt
线性代数第一章
目录
CONTENTS
• 绪论 • 线性方程组 • 向量与向量空间 • 矩阵 • 特征值与特征向量
01
绪论
线性代数的定义与重要性
线性代数是数学的一个重要分支,主要研究线性方程组、向量空间、矩阵 等线性结构。它在科学、工程、技术等领域有着广泛的应用。
线性代数的重要性在于其提供了一种有效的数学工具,用于解决各种实际 问题中的线性关系问题,如物理、化学、生物、经济等。
向量空间中的零向量是唯一确定的,且对于任意 向量a,存在唯一的负向量-a。
向量空间的运算与性质
向量空间中的加法满足交换律和结合 律,即对于任意向量a和b,存在唯一 的和向量a+b;且对于任意三个向量a、 b和c,(a+b)+c=a+(b+c)。
向量空间中的数乘满足结合律和分配 律,即对于任意标量k和l,任意向量a 和b,存在唯一的结果k*(l*a)=(kl)*a 和(k+l)*a=k*a+l*a。
圆等。
经济学问题
线性方程组可以用来描述经济现象和 规律,例如供需关系、生产成本、利
润最大化等。
物理问题
线性方程组可以用来描述物理现象和 规律,例如力学、电磁学、热力学等。
计算机科学
线性方程组在计算机科学中有广泛的 应用,例如机器学习、图像处理、数 据挖掘等。
03
向量与向量空间
向量的定义与性质
01 向量是具有大小和方向的量,通常用有向线 段表示。 02 向量具有模长,即从起点到终点的距离。
特征值与特征向量的计算方法
定义法
幂法
谱分解法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特征 值和特征向量。这种方法适用于 较小的矩阵,但对于大规模矩阵 来说效率较低。

线性代数1-3

线性代数1-3

0aL MM 0 0L b(1)2n1 0 0 L MM 0cL c 0L
0 0L MM a bL cdL MM 0 0L 0 0L
00 MM 00 00 MM 0d 00
ad (1)2n12n1 D2n2 bc(1)2n1 (1)12n1 D2n2
(ad bc)D2n2
x y z x 31 r2 r3 3 0 2 y 0 1 1.
1 1 1 z 21
例5 解方程 解 方法一
11 1L 1 1 x 1 L 1 1 2x L MM M 11 1L
1 1 1 0. M n x
11 1L 1 1 x 1 L 1 1 2x L MM M 11 1L
解 将行列式按第一列展开
00 00 00
. MM 75 27
7 5L 27L Dn 7 M M 0 0L 0 0L
00 50L 00 27L M M 2 M M 75 00L 27 00L
00 00 MM 75 27
50L 00
27L 00
7Dn1 2 M M
MM
00L 75
00L 27

D2n (ad bc)D2(n1) .
所以
D2n (ad bc)D2(n1) (ad bc)2 D2(n2) L

(ad

bc)n1
D2

(ad

bc)n1
a c
b (ad bc)n . d
例8 计算行列式
7 5 0L 2 7 5L 0 2 7L Dn M M M 0 0 0L 0 0 0L
0 2 3 3
0 0 7 5
1 2 1 0
1 2 1 0

线性代数课件PPT第一章 行列式 S1_3 行列式定义

线性代数课件PPT第一章 行列式 S1_3 行列式定义
任意一项前面的符号就是
(1) (i1,i2, ,in) ( j1, j2, , jn)
特别的,若我们把各项的列指标按自然顺序排列成
a a k11 k2 2 aknn 时,则有该项前符号应为: (1) (k1,k2 , ,kn ) (1,2, ,n) (1) (k1,k2 , ,kn )
因此n阶行列式的展开式也可以定义为
11 j2 jn
( j2 jn ) 2 j2
anjn

a22 a23
B a32 a33
a2n
a3n
(1) ( j2
a jn ) 2 j2
anjn
j2 jn
an2 an3
ann
故 左端= a11 B =右端.
14
回顾: 在行列式的定义中,为了决定每一项的正负号,我们把 n个元按行标自然顺序排列起来。
6
例1 计算反对角行列式 0 0 0 1
0020
0300
解: (分析)
4000
展开式中项的一般形式是 a1 a p1 2 a p2 3 a p3 4 p4 若 p1 4 a1 p1 0, 所以 p1 只需要取4 ,
同理可得 p2 3, p3 2, p4 1
即行列式中不为零的项为 a a a a 14 23 32 41 .
a a a 1 j1 2 j2 3 j3
j1 j1 j3 是1,2,3 的某个排列。这样的排列共有 P33 3! 6
个,分别对应了展开式中的六项。
2
再来计算各项列指标构成排列的反序数:
a11 a12 a13
a21 a22 a23 a11a22a33 a12a23a31 a13a21a32
a31 a32 a33
a11 a12

同济大学《线性代数》 PPT课件

同济大学《线性代数》 PPT课件

称为三阶行列式.
二阶行列式的对角线法则 并不适用!
三阶行列式的计算 ——对角线法则
a11 a12 a13 D a21 a22 a23
a31 a32 a33
实线上的三个元素的乘积冠正号, 虚线上的三个元素的乘积冠负号.
a11a22a33 a12a23a31 a13a21a32 a13a22a31a12a21a33 a11a23a32

a11
a22 a32
a23 a33
a12
a21 a31
a23 a33
a13
a21 a31
a22 a32
结论 三阶行列式可以用二阶行列式表示.
思考题 任意一个行列式是否都可以用较低阶的行列式表示?
在n 阶行列式中,把元素 aij 所在的第 i 行和第j 列划后,
留下来的n-1阶行列式叫做元素 aij 的余子式,记作 M ij .
验证 1 7 5 6 6 2 196
175 3 5 8 196
358
662
175 175 于是 6 6 2 3 5 8
358 662
推论1 如果行列式有两行(列)完全相同,则此行列式为零.
证明 互换相同的两行,有 D D,所以
. D0
性质3 行列式的某一行(列)中所有的元素都乘以同一个
结论 因为行标和列标可唯一标识行列式的元素,所以行列 式中每一个元素都分别对应着一个余子式和一个代数余子式.
二、行列式按行(列)展开法则
定理1 行列式等于它的任一行(列)的各元素与其对应 的代数余子式乘积之和,即
D

ai1
Ai1

ai 2
Ai
2

L

线性代数第一章课件

线性代数第一章课件

(五)性质5:把行列式的某一列(行) 的各元素乘以同一数,然后加到另一列 (行)对应的元素上去,行列式不变.
(以数 k 乘第 j 列加到第 i 列上,记作:ci kc j 以数 k 乘第


j 行加到第 i 行上,记作: ri krj )
a11 a21 an1
a1i a2i ani
a11
aij
的第一个下标i称为行标,表明该元
素位于第i行,第二个下标j称为列标,表明 该元素位于第j列,位于第i行第j列的元素称
为行列式的 i, j 元


a11 到 a22 的实联线称为主对角

线, a12
a21
的虚联线称为副对
角线 。
3、二元线性方程组的解
a11 x1 a12 x2 b1 的解为 a21 x1 a22 x2 b2
第一章 行列式 § 1-1 n阶行列式的定义
一、二阶与三阶行列式 ㈠ 二阶行列式与二元线性方程组 1、二阶行列式计算式:
D
a11
a12
a21 a22
a11a22 a12 a21
2、相关名称 a11 a12 在二阶行列式 中,把数 a21 a22
aij i 1.2; j 1.2 称为行列式的元素,元素
注意不要与绝对值记号相混淆。
a a
2、n阶行列式展开式的特点 (1)行列式由n!项求和而成 (2)每项是取自不同行、不同列的n个 元素乘积,每项各元素行标按自然顺序 排列后就是行列式的一般形式,
1
j1 j2
jn
a1 j1 a2 j2
anjn
(3)若行列式每项各元素的行标按自然 数的顺序排列,列标构成n级排列 j1 j2 jn j1 j2 jn 则该项的符号为 1

线性代数 课件-PPT精品文档

线性代数  课件-PPT精品文档

16
线性代数
出版社 科技分社
• 1.4
• 从行列式的定义看,一般低阶行列式的计 算比高阶行列式的计算简便.
• 定义2 在n阶行列式D=Δ(aij)中,把元素aij 所在的第i行和第j列划去,剩下元素按原来 的相对位置不变形成的一个n-1阶行列式, 17
线性代数
出版社 科技分社
• 称之为D中元素aij的余子式,记为Mij;称 Aij=(-1)i+jMij为aij的代数余子式.
28
线性代数
出版社 科技分社
• 2.2.3 矩阵的乘法 • 定义4 设A=(ai k)m×s,B=(bk j)s×n,则称C=(cij)m×n
为矩阵A与B的乘积,记为C=AB,
29
线性代数
出版社 科技分社
• 2.2.4
• 定义5 把矩阵A的行列依次互换得到的新 矩阵称为A的转置矩阵,记为AT.
30
• 性质1 向量组线性无关的充分必要条件是 向量组所含向量的个数等于其秩.
• 性质2 设向量组A的秩为r1,向量组B的秩 为r2,如果A组能由B组线性表示,则r1≤r2.
• 性质3 等价的向量组有相同的秩.
57
线性代数
• 证 设矩阵
• 3.4
出版社 科技分社
58
线性代数
• 定理8 正交向量组一定线性无关.
36
线性代数
出版社 科技分社
• 这里k≤min(m,n),共有CkmCkn个k阶子式. • 定义9 如果矩阵A有一个不等于零的r阶子
式D,并且所有r+1阶子式(如果有)全等于零, 则称D为矩阵A的最高阶非零子式,称r为矩 阵A的秩,记为R(A)=r,并规定零矩阵的秩 等于零.

线性代数_课件

线性代数_课件

2020/3/1
22
五、关于等价定义的说明
对于行列式中的任一项
(1) a1p1...aipi ...a jpj ...anpn
(1)
其中 1...i... j...n为自然排列, 为列下标排
列 p1...pi...p j... pn 的逆序数。对换 (1) 中元
素a

ip i
a jp
j
成:
(1) a1p1...a jpj ...aipi ...anpn
解:∵ 排列p1 p2 p3…pn与排列 pn…p3 p2 p1的逆序
数之和等于1~ n 这 n 个数中任取两个数的组合
数即 :

(
p1 p2... pn )

(
pn
pn1... p1)

Cn2

n(n 1) 2

(
pn
pn1... p1)

n(n 1) 2

k
2020/3/1
9
例4 求排列(2k)1(2k 1)2(2k 2)...(k 1)k
a22 ...
... a2n ... ...
a11a22...ann
0 0 ... ann
2020/3/1
16
3) 次上三角行列式
a1,1 ... a1,n1 a1,n
a2,1 ... a2,n1 ... ... ...
0 ...
n ( n 1)
(1) 2 a1,na2,n1...an,n
例6 若 a13a2ia32a4k , a11a22a3ia4k , ai2a31a43ak 4 为四阶行列式的项,试确定i与k,使前两项带正号, 后一项带负号。

实用线性代数课件第一章

实用线性代数课件第一章
线性代数
第一章 矩阵与行列式 1 矩阵及其运算 2 n阶行列式 3 可逆矩阵 4 分块矩阵
线性代数
线性代数是研究离散变量之间线性关系的基础理论之一, 矩阵与行列式是线性代数中重要且应用广泛的两个概念,两者 之间既有区别又有联系。矩阵是一个数表,它的行数与列数可 以不同;行列式是一种代数运算公式,可将其视为方阵的函数; 同时,行列式又是方阵特性的一个重要标志。
A 150 180
70 40
而表
1-2
的数据组成了一个
2×3
矩阵
B


2 3.5
0.9 0.5
00.2.35
例 1.3 中确定二元线性方程组(1.1)的数表是一个 2×3 矩阵

a11 a21
a12 a22
b1 b2

,通常称之为方程组(1.1)的增广矩阵;
而由方程组中未知量的系数构成的矩阵

a11 a21
a12 a22

,称为方
程组(1.1)的系数矩阵。
线性代数
元素为实数的矩阵称为实矩阵,元素为复数的矩阵称为复矩 阵。本书中的矩阵都指实矩阵。
若两个矩阵的行数相等、列数也相等,则称它们是同型矩阵。
定义1.2 设矩阵 A (aij )mn 和 B (bij )mn 是同型矩阵,
0 1
0 2
A

B


2 1
2 1
.
线性代数
线性代数
矩阵的线性运算满足如下规律:
设 k, l, 为数, A, B,C 为同型矩阵,则有: (1) 加法结合律 (A B) C A (B C) (2) 加法交换律 A B B A (3) 数乘结合律 k(lA) (kl) A (4) 数乘分配律 k(A B) kA kB (k l)A kA lA

线性代数第一章第一节PPT课件

线性代数第一章第一节PPT课件

01递Biblioteka 公式法02递推公式法是根据行列式的性质和结构特点,利用递推公式来
计算行列式的方法。
递推公式法可以大大简化高阶行列式的计算过程,提高计算效
03
率。
行列式的计算方法
分块法
1
2
分块法是将高阶行列式分成若干个小块,然后利 用小块来计算整个行列式的方法。
3
分块法可以简化高阶行列式的计算过程,特别是 当行列式具有特定的结构特点时,分块法可以大 大提高计算效率。
01
向量空间
02
向量空间是线性代数中的一个重要概念,而行列式在向量 空间的定义和性质中也有着重要的应用。例如,通过行列 式可以判断一个向量集合是否构成向量空间,以及向量空 间的一些基本性质。
03
行列式在向量空间中的应用可以帮助我们更好地理解线性 代数的本质和结构特点。
05
特征值与特征向量
特征值与特征向量的定义
转置等特殊运算。
向量与矩阵的关系
关联性
04
向量可以用矩阵来表示,矩 阵中的每一行可以看作是一 个向量。
01 03
•·
02
向量和矩阵在数学中是密切 相关的概念,矩阵可以看作 是向量的扩展。
04
行列式
行列式的定义与性质
基本概念
行列式是由数字组成的方阵,按照一定的规则计 算出的一个数。
行列式具有一些基本的性质,如交换律、结合律、 分配律等。
向量可以用有向线段、坐 标系中的点或有序数对来 表示。
向量有大小和方向两个基 本属性,大小表示向量的 长度,方向表示向量的指 向。
矩阵的定义与运算
•·
02
基础运算
01
03
矩阵是一个由数字组成的矩 形阵列,表示二维数组。

华中《线性代数》PPT课件 第一章

华中《线性代数》PPT课件 第一章

这n个数的次序是可以任意交换的.一般地,n阶行列式
中的任意一个乘积项都可以写成
ai1j1ai2j2…ainjn
(1-12
其中i1i2…in;j1j2…jn是1,2,…,n的两个n级排列.下面
确定式(1-12)所带的符号.
第五节 行列式的性质
为了根据式(1-3)确定式(1-12)所带的符号,就 需要把这n个数,按行标从小到大的顺序进行重新排列, 也就是排成
(1-3)
其中
表示对所有n级排列的求和.通常把式
(1-3)等号右边的求和项称为行列式D的展开式.
第一节 行列式的概念
提示
在式(1-1)中,我们把aij(i,j=1,2,…,n)称为行 列式D的元素,元素aij的第一个下标i称为行标,表示其 处于第i行,第二个下标j称为列标,表示其处于第j列.有 时也把式(1-1)中的行列式简记成D=|aij|n1.
第一章 行列式
教学基本要求
(1)理解行列式的概念. (2)掌握行列式的基本性质. (3)会应用行列式的定义、性质和有关定理计算行列式. 行列式是一种特定的算式,它作为数学工具在数学的许多分 支中有着广泛的应用.其作为研究矩阵的有效工具之一,实质上是 一种特定的算式,它是对方阵按一定法则进行计算得到的一个数.
第五节行列式的性质性质15将行列式的某一行列的所有元素同乘以一个数k加到另外一行列上行列式丌变即第五节行列式的性质证将式121等号右端的行列式记为d则由性质14和性质13的推论13有第五节行列式的性质思考是否所有的行列式都可以按行列式的定义来计算
线性代数
第一章 行列式
第一节 行列式的概念 第二节 排列与逆序 第三节 二阶和三阶行列式 第四节 n阶行列式 第五节 行列式的性质 第六节 行列式的计算

线性代数课件第一章

线性代数课件第一章
一个标准次序(例如 n 个不同的自然数,可规定由小到 大为标准次序),于是在这 n 个元素的任一排列中,当 某两个元素的先后次序与标准次序不同时,就说有 1 个
逆序. 一个排列中所有逆序的总数叫做这个排列的逆 序数.
在一个 n 阶排列中,任何一个数对不是构成逆序 就是构成顺序.如果我们把顺序的个数称为顺序数,则 一个 n 阶排列的顺序数与逆序数的和为 n(n –1)/2 .
a12a21) a12a21)
x1 x2
b1a22 a11b2
a12b2 b1a21
, .
当 a11a22 – a12a21 0 时,求得方程组(1)的解为
x1
x2
b1a22
a11a22 a11b2
a11a22
a12b2
a12a21 b1a21
a12a21
, .
(2)
为了记忆该公式,引入记号
(为偶排列). 带负号的三项列标排列:132 , 213 , 321
(为奇排列). 故三阶行列式可以写成
a11 a12 a13
a21 a22 a23 (1)t a1p1 a2 p2 a3 p3 ,
a31 a32 a33
其中 t 为排列 p1p2p3 的逆序数, 表示对1,2,3 三个 数的所有排列 p1p2p3 求和.
a11 a21
a12 a22
a11a22 a12a21
并称之为二阶行列式.其中 aij 称为行列式的元素,
aij 的两个下标表示该元素在行列式中的位置,第一个下
标称为行标, 表示该元素所在的行,第二个下标称为列
标,表示该元素所在的列,常称 aij 为行列式的(i , j ) 元1由a11成a11baaa1a1111b122二12二aaa22122b222阶22阶22ba1abaa行行11112aa22baa22ba11a1列12列22a22122baaa112式12式1222,.1b12的,,. 定即bb12 义aa,12(22 ,(22a)11b)2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1234
例3
0421
D
?
0056
0008
12340421Fra bibliotekD 0
0
5
6 a a a a 11 22 33 44 1 4 5 8 160.
0008
同理可得下三角行列式
a11
0 00
a21 a22 0 0
an1
an2
an3 ann
a11a22 ann .
例4 证明对角行列式
1 2
12 n;
t132 1 0 1, 奇排列 负号,
a11 a12 a13
a21 a22 a23 (1)t a1 p1a2 p2 a3 p3 .
a31 a32 a33
二、n阶行列式的定义
定义 设有n2 个数,排成 n 行n列的数表
a11 a12
a1n
a21 a22
a2n
an1 an2
ann
作出表中位于不同行不同列的 n 个元素的乘积,
对应于
1 1 2x 1
1 t a11a22a33a44 1 t1234a11a22a34a43
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
17
结束语
当你尽了自己的最大努力时,失败 也是伟大的,所以不要放弃,坚持 就是正确的。
n
2
1
nn1
1 2 12 n .
n
证明 第一式是显然的,下面证第二式.
若记 i ai,ni1, 则依行列式定义
2
1
a1n
a2,n1
n
an1
1 tnn121a1na2,n1 an1
nn1
1 2 12 n .
证毕
三、小结
1 、行列式是一种特定的算式,它是根据求解 方程个数和未知量个数相同的一次方程组的需 要而定义的.
2、 n 阶行列式共有 n!项,每项都是位于不同 行、不同列 的 n个元素的乘积,正负号由下标排
列的逆序数决定.
思考题
x1 1 2
已知 f x 1 x 1 1
32 x 1 1 1 2x 1 求 x3 的系数.
思考题解答
解 含 x3 的项有两项,即
x1 1 2
f x 1 x 1 1
32 x 1
3、 n 阶行列式的每项都是位于不同行、不同 列 n 个元素的乘积;
4、 一阶行列式 a a 不要与绝对值记号相混淆;
5、 a1 p1a2 p2 anpn 的符号为 1t .
例1 计算对角行列式
0001 0020 0300 4000
解 分析 展开式中项的一般形式是 a a a a 1 p1 2 p2 3 p3 4 p4 若 p1 4 a1 p1 0, 从而这个项为零,
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
演讲人:XXXXXX 时 间:XX年XX月XX日
解 分析
展开式中项的一般形式是 a1 p1a2 p2 anpn . pn n, pn1 n 1, pn3 n 3, p2 2, p1 1, 所以不为零的项只有 a11a22 ann .
a11 a12 a1n
0 a22 a2n
1
a a a t 12n
11 22
nn
0 0 ann a11a22 ann .
t 为这个排列的逆序数.
a11 a12 D a21 a22
an1 an2
a1n
a2n
1 a a t p1 p2 pn 1 p1 2 p2
anpn
p1 p2 pn
ann
说明
1、行列式是一种特定的算式,它是根据求解方 程个数和未知量个数相同的一次方程组的需要而 定义的;
2、 n 阶行列式是 n! 项的代数和;
所以 p1只能等于 4, 同理可得 p2 3, p3 2, p4 1
即行列式中不为零的项为a14a a 23 32a41 .
0001
0 0
0 3
2 0
0 0
1t43211 2 3 4
24.
4000
例2 计算上三角行列式
a11 a12 a1n 0 a22 a2n
0 0 ann
说明
(1)三阶行列式共有 6 项,即 3! 项.
(2)每项都是位于不同行不同列的三个元素的 乘积.
(3)每项的正负号都取决于位于不同行不同列 的三个元素的下标排列.
例如 a a a 13 21 32 列标排列的逆序数为
t312 1 1 2, 偶排列 正号
a a a 11 23 32
列标排列的逆序数为
第三节 n阶行列式的定义
一、概念的引入
三阶行列式
a a a 11
12
13
D a21 a22 a23 a a a 11 22 33 a a a 12 23 31 a a a 13 21 32
a31 a32 a33 a a a 13 22 31 a a a 11 23 32 a a a 12 21 33
并冠以符号(1)t,得到形如(1)t a1p1a2 p2 anpn的 项,共n!项,所有这些项的代数和
(1)t a1p1a2 p2 anpn
称为n阶行列式,
a11 a12
a1n
记作 D a21 a22
a2n
an1 an2
ann
简记作 det(aij ). 数 aij 称为行列式 det(aij ) 的元素. 其中 p1 p2 pn 为自然数 1,2,,n 的一个排列,
相关文档
最新文档