圆的对称性-教案

合集下载

九年级数学下册《圆的对称性》教案、教学设计

九年级数学下册《圆的对称性》教案、教学设计
-运用问题驱动法,引导学生通过自主探究、合作讨论等方式,发现并理解圆的对称性质。
-使用直观演示法,利用多媒体和几何画板等工具,形象直观地展示圆的对称性质,帮助学生克服难点。
2.教学过程:
-导入:通过展示生活中具有对称美的圆形物体,激发学生的兴趣,引导学生关注圆的对称性。
-新课导入:以学生已有的知识为基础,引导学生通过观察、思考和讨论,发现圆的对称性质。
-知识讲解:系统讲解圆的轴对称和中心对称的概念,强调对称轴和对称中心的作用。
-实践应用:设计具有挑战性的问题,让学生运用圆的对称性解决问题,巩固所学知识。
-归纳总结:引导学生总结圆的对称性质,形成知识体系,加深理解。
3.教学评价:
-采用形成性评价,关注学生在课堂上的表现,及时给予反馈,指导学生改进学习方法。
-结合圆的对称性质,尝试解决以下问题:如何在圆中找到一条弦,使得这条弦平分给定的两条弧?
3.创新作业:
-利用圆的对称性,设计一个创意图案,要求具有美观性和实用性,如可以作为装饰画或应用于生活用品;
-与同学合作,开展一次关于圆的对称性的研究,可以选择历史、文化、艺术等方面的课题,进行深入研究并撰写研究报告。
九年级数学下册《圆的对称性》教案、教学设计
一、教学目标Βιβλιοθήκη (一)知识与技能1.理解圆的轴对称和中心对称的概念,掌握圆的对称轴和对称中心;
2.学会运用圆的对称性分析解决问题,如求圆上的对称点、对称线段等;
3.能够运用圆的对称性进行简单的图案设计,培养学生的审美观念和创新能力;
4.掌握圆的弦、弧、圆心角等基本概念,并能运用其性质解决相关问题。
五、作业布置
为了巩固学生对圆的对称性的理解,提高他们的几何思维和创新能力,特布置以下作业:

小学数学《圆的对称性》教案

小学数学《圆的对称性》教案

小学数学《圆的对称性》教案教学目标:1. 了解圆的对称轴和对称中心的概念。

2. 能通过画图判断圆是否有对称轴或者对称中心。

3. 能通过对称绘制图形。

教学重点:1. 圆的对称轴的概念和判断方法。

2. 圆的对称中心的概念和判断方法。

3. 对称绘制图形的方法。

教学难点:1. 对称绘制复杂图形。

2. 发现和利用圆的对称性质。

3. 培养学生观察、推理和绘图能力。

教学准备:1. 教师准备圆盘、圆规、铅笔等。

2. 学生准备笔、纸、橡皮等。

教学过程:一、导入新课1. 介绍圆的对称性质。

2. 引导学生回忆以前所学无线扭结的对称性质,进一步巩固学生对“对称”的理解。

二、讲授新课1. 圆的对称轴1)定义:将一个圆分成两个部分的直线叫做圆的对称轴。

2)判断方法:如果有一条直线让以它为对称轴对称的两个部分完全重合,那么这条直线就是圆的对称轴。

3)练习:教师出示一些图形,让学生判断圆的对称轴。

2. 圆的对称中心1)定义:它是圆上任意两点的中垂线的交点。

2)判断方法:圆上的任意两点的中垂线应相交于同一点上,这个点就是圆的对称中心。

3)练习:让学生结合图形,判断圆的对称中心。

3. 对称绘制图形1)定义:利用圆的对称性质进行绘制。

2)练习:让学生利用圆的对称中心和对称轴,画出不同的图形。

三、课堂练习1. 让学生在小组内练习对称绘制图形。

2. 教师出题,让学生分组展开竞赛。

四、作业布置1. 巩固课堂所学的内容,完成课后习题。

2. 要求学生在日常生活中,注意观察圆的对称性质。

五、课堂总结通过本节课的学习,学生掌握了圆的对称轴和对称中心的概念,能利用圆的对称性质进行对称绘制图形,这也为日常生活中的很多情况做好了准备。

3.2 圆的对称性(教案)-北师大版数学九年级下册

3.2 圆的对称性(教案)-北师大版数学九年级下册

第2节圆的对称性1.经历探索圆的对称性及相关性质的过程.2.理解圆的中心对称性及圆心角、弧、弦之间的相等关系.3.进一步体会和理解研究几何图形的各种方法.1.经历探索圆的对称性及相关性质的过程,进一步体会和理解研究几何图形的各种方法.2.培养学生独立探索、相互合作交流的精神.1.结合本课教学内容向学生渗透事物之间可相互转化的辩证唯物主义教育.2.渗透圆的内在美,并使得学生在小组合作中尝试交流,在“做数学”中体会数学的严谨性.【重点】理解并掌握圆的对称性及圆心角、弧、弦之间的相等关系.【难点】应用圆心角、弧、弦之间的相等关系定理解决有关问题.【教师准备】多媒体课件和教学圆规.【学生准备】1.复习圆心角、弧、弦等概念以及旋转的有关知识.2.圆规和自制圆形纸片.导入一:同学们,通过上节课的学习我们对圆已经有了初步的认识,圆与我们的生活有着密切的联系.请欣赏下面一些生活中美丽的图案,让我们一起走进圆的美丽世界.课件出示:【引入】因为有圆,万物才显得富有生机,我们的生活才会如此的美好!这些图案蕴含着一种对称美,你知道圆是什么样的对称图形吗?[设计意图]从美丽和谐的图案出发,发现圆的对称美的同时,开门见山引入新课,具有明显对比的图片非常容易激发学生的兴趣和引起学生的共鸣,提高了学生的学习兴趣,同时也让学生体会到数学来源于生活,增强学好本节课的信心.导入二:我们已经学习了几何图形的对称性,圆是什么对称图形?请说明理由.[设计意图]通过问题的形式,直入正题,让学生对本节课的探究内容一目了然.[过渡语]我们已经了解了一些几何图形的对称性,既有轴对称图形,也有中心对称图形,那么圆是什么对称图形呢?课件出示:如图所示,圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?思路一猜想【学生活动】学生凭借经验猜想:圆是轴对称图形,有无数条对称轴的结论.教师引导学生思考:圆的对称轴是直径还是直径所在的直线?【教师点评】圆是轴对称图形,有无数条对称轴,对称轴是直径所在的直线.思路二折纸【学生活动】学生交流后,想到可以利用折叠的方法,解决上述问题.学生利用自制的圆形纸片边动手实验,边思考把一个圆对折以后,圆的两部分重合,折痕是一条过圆心的直线,由于过圆心可以作无数条直线,这样便可知圆有无数条对称轴.师出示折叠示意图:【学生活动】学生观察分析这些对称轴的特点,发现它们都经过圆心.[过渡语]通过上面的实验,我们探索了圆的轴对称性,下面我们继续通过实验探索圆是不是中心对称图形.【想一想】一个圆绕着它的圆心旋转任意一个角度,还能与原来的图形重合吗?【学生活动】学生利用准备好的圆,同伴合作,共同操作完成,交流得出结论.【师生小结】一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.【教师点评】一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合的性质就是圆的旋转不变性;而圆的中心对称性是其旋转不变性的一个特例.圆是中心对称图形,对称中心为圆心.[设计意图]问题可以激发学生学习数学的兴趣,而兴趣又是最好的老师.通过设计一连串的问题情境容易引发学生学习和探究的兴趣,在动手操作中既复习圆的意义,又探索出圆的对称性.【做一做】在等圆☉O和☉O'中,分别作相等的圆心角∠AOB和∠A'O'B'(如图所示),将两圆重叠、并固定圆心,然后将其中一个圆旋转一个角度,使得OA与O'A'重合,你能发现哪些等量关系?说一说你的理由.【活动方式】分小组进行实验操作,小组之间交流.【师生活动】教师巡视、指导学生,等学生完成后,请各小组组长汇总,展示结果,教师板书.思路一旋转能使∠AOB和∠A'O'B'完全重合,从而可以得到OA=OB=O'A'=O'B',∠OAB=∠OBA=∠O'A'B'=∠O'B'A',AB=A'B',=,是通过证明△AOB≌△A'O'B'得到的.思路二由两圆旋转可知:点A与点A'重合,点B与点B'重合,所以=,AB=A'B'(叠合法).【学生小结】在等圆中,相等的圆心角所对的弧相等,所对的弦相等.【问题】你能对圆心角、弧、弦之间的相等关系进行证明吗?【学生活动】学生先独立解答,然后互相讨论交流.代表展示:证明:∵半径OA与O'A'重合,∠AOB=∠A'O'B',∴半径OB与O'B'重合.∵点A与点A'重合,点B与点B'重合,∴与重合,弦AB与弦A'B'重合.∴=,AB=A'B'.【议一议】上面的结论,在同圆中成立吗?【学生活动】学生思考、猜想后得出肯定的结论.【教师点评】圆心角、弧、弦之间相等关系定理:在同圆或等圆中,相等的圆心角所对的弧相【想一想】(1)在同圆或等圆中,如果两个圆心角所对的弧相等,那么它们所对的弦相等吗?这两个圆心角相等吗?(2)在同圆或等圆中,如果两条弦相等,你能得出什么结论?【学生活动】学生思考、猜想后得出结论,然后互相交流、讨论,统一想法.【教师活动】要求学生说明得出的结论的理由.(证明△AOB≌△A'O'B'或叠合法)【师生总结】在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.【教师强调】注意事项:(1)不能忽略“在同圆或等圆中”这个前提条件.(2)此定理中的“弧”一般指劣弧.(3)要结合图形深刻体会圆心角、弧、弦这三个概念和“所对”一词的含义,否则易错用此关系.[设计意图]“学起于思,思起于疑,无疑则无知”,所以通过让学生提出疑难,再解决疑难的方式来理解圆心角、弧、弦之间相等关系定理的含义,从而引发出圆心角、弧、弦之间相等关系定理的如图所示,AB,DE是☉O的直径,C是☉O上的一点,且=.BE与CE的大小有什么关系?为什么?〔解析〕通过观察可以猜想BE=CE.因为BE与CE都是☉O的弦,要证明弦相等,可证明弦所对的弧相等,因为=,又=,继而可得=.解:BE=CE.理由是:∵∠AOD=∠BOE,∴=.又∵=,∴=.∴BE=CE.【议一议】在得出本节结论的过程中,你用到了哪些方法?与同伴进行交流.【学生活动】学生思考后进行交流,得出本节课采用的方法:折叠、轴对称、旋转、推理证明等.[设计意图]本环节主要是通过例题透析,训练学生的知识综合应用能力,使其在巩固应用的基础上,拓展知识面,培养他们的概括、推理能力.1.圆的对称性:轴对称图形和中心对称图形.2.圆心角、弧、弦之间的关系:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.1.下列命题中,正确的是()A.圆只有一条对称轴B.圆的对称轴不止一条,但只有有限条C.圆有无数条对称轴,每条直径都是它的对称轴D.圆有无数条对称轴,每条直径所在的直线都是它的对称轴解析:圆有无数条对称轴,每条对称轴都是直径所在的直线.故选D.2.若圆的一条弦把圆分成度数比为1∶3的两条弧,则优弧所对的圆心角为()A.45°B.90°C.135°D.270°解析:如图所示,∵圆的一条弦把圆分成度数比为1∶3的两条弧,∴∠AOB∶大角∠AOB=1∶3,∴大角∠AOB=360°×=270°.故选D.3.如图所示,已知AB是☉O的直径,==,∠BOC=40°,那么∠AOE等于()A.40°B.60°C.80°D.120°解析:∵==,∠BOC=40°,∴∠BOE=3∠BOC=120°,∴∠AOE=180°-∠BOE=60°.故选B.(第4题图)4.如图所示,直尺ABCD的一边与量角器的零刻度线重合,若从量角器的中心O引射线OF经过刻度120°,交AD于点E,则∠DEF=.解析:由已知量角器的一条刻度线OF的读数为120°,即∠BOF=120°,得∠COF=180°-∠BOF=60°,∵AD∥BC,∴∠DEF=∠COF=60°.故填60°.2圆的对称性1.圆的对称性.(1)圆是轴对称图形,其对称轴是任意一条过圆心的直线.(2)圆是中心对称图形,对称中心为圆心.2.圆心角、弧、弦之间相等关系定理.(1)在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.(2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.一、教材作业【必做题】1.教材第72页随堂练习第1,2,3题.2.教材第72页习题3.2第1,2题.【选做题】教材第73页习题3.2第3题.二、课后作业【基础巩固】1.如图所示,在☉O中,∠B=37°,则劣弧AB的度数为()A.106°B.126°C.74°D.53°2.如图所示,在☉O中,=,∠A=30°,则∠B等于()A.150°B.75°C.60°D.15°3.如图所示,=,若AB=3,则CD=.4.如图所示,AB是☉O的直径,点C在☉O上,∠AOC=40°,D是弧BC的中点,则∠ACD=.【能力提升】5.如图所示,AB是☉O的直径,四边形ABCD内接于☉O,若BC=CD=DA=4cm,则☉O的周长为()A.5πcmB.6πcmC.9πcmD.8πcm6.(2014·菏泽中考)如图所示,在△ABC中,∠C=90°,∠A=35°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,则的度数为.7.如图所示,=,D,E分别是半径OA和OB的中点,CD与CE的大小有什么关系?为什么?【拓展探究】8.如图所示,AB是☉O的直径,点C,D在圆上,且=.若∠AOD=110°,求的度数.【答案与解析】1.A(解析:连接OA,∵OA=OB,∠B=37°,∴∠A=∠B=37°,∠O=180°-2∠B=106°.)2.B(解析:在☉O中,∵=,∴AB=AC,∴△ABC是等腰三角形,∴∠B=∠C.又∠A=30°,∴∠B==75°.故选B.)3.3(解析:∵=,∴-=-,即=,∴CD=AB=3.)4.125°(解析:连接OD,∵AB是☉O的直径,∠AOC=40°,∴∠BOC=140°,∠ACO=70°,∵D是弧BC的中点,∴∠COD=70°,∴∠OCD=55°,∴∠ACD=∠ACO+∠OCD=70°+55°=125°.)5.D(解析:如图所示,连接OD,OC.∵AB是☉O的直径,四边形ABCD内接于☉O,BC=CD=DA=4cm,∴==,∴∠AOD=∠DOC=∠BOC=60°.又OA=OD,∴△AOD是等边三角形,∴OA=AD=4cm,∴☉O的周长=2×4π=8π(cm).故选D.)6.70°(解析:∵∠C=90°,∠A=35°,∴∠B=55°,连接CD,∵CB=CD,∴∠BDC=55°,∴∠BCD=70°.∴的度数为70°.)7.解:CD=CE.理由如下:如图所示,连接OC,∵D,E分别是OA,OB的中点,∴OD=OE,又∵=,∴∠DOC=∠EOC,又OC=OC,∴△CDO≌△CEO,∴CD=CE.8.解:如图所示,连接OC.∵∠AOD=110°,∴∠DOB=70°.又∵=,∴∠COD=∠DOB=70°,∴∠AOC=∠AOD-∠COD=110°-70°=40°,∴的度数为40°.本节课首先利用课件出示生活中的圆形图片,利用圆的对称美引入新课,极大地活跃了课堂气氛,激发了学生学习的积极性.然后在课堂上可以先给学生留有充足的动手实验和思考的时间,在学生探究完成后利用多媒体进行动态演示,使探究的结论更加直观形象.同时,通过学生自己动手体验知识的形成过程,使学生获得成功的体验,使他们的观察、分析、归纳等能力都得到了进一步提升.本节课学生操作和自主学习的时间较多,所以教学时间不太容易把握,造成不能顺利完成课堂教学任务.合理安排时间,对于有些学生感觉有难度的知识点,可以通过小组交流讨论,这样既可以增强交流的意识,又节约了时间.随堂练习(教材第72页)1.解:如碗口、圆桌、方向盘等.2.解:如图所示.答案不唯一.3.解:四边形OACB是菱形.理由如下:如图所示,∵C是的中点,∴=.又∵∠AOB=120°,∴∠AOC=∠BOC=60°.∵OA=OC=OB,∴△AOC和△BOC都是等边三角形.∴OA=OB=AC=BC.∴四边形OACB是菱形.习题3.2(教材第72页)1.解:△ABC与△DCB全等.理由如下:∵AB=DC,BC=CB,∴=,∴AC=DB.∴在△ABC与△DCB中,AB=DC,BC=CB,AC=DB,∴△ABC≌△DCB(SSS).2.解:(1)OE=OF.理由如下:∵OE⊥AB,OF⊥CD,OA=OB,OC=OD,∴∠OEB=∠OFD=90°,∠EOB=∠AOB,∠FOD=∠COD,∵∠AOB=∠COD,∴∠EOB=∠FOD,∵在△EOB和△FOD中,∠OEB=∠OFD,∠EOB=∠FOD,OB=OD,∴△EOB≌△FOD(AAS),∴OE=OF.(2)AB=CD,=,∠AOB=∠COD.理由如下:∵OE⊥AB,OF⊥CD,∴∠OEB=∠OFD=90°,∵在Rt△BEO和Rt△DFO中,OB=OD,OE=OF,∴Rt△BEO≌Rt△DFO(HL),∴BE=DF,同理,AE=CF,∴AB=CD,∴=,∠AOB=∠COD.3.解:=.理由如下:连接OC,∵OD∥AC,∴∠BOD=∠A,∠ACO=∠COD.∵OA=OC,∴∠A=∠ACO,∴∠BOD=∠COD,∴=.1.本节课的重点是通过实验探究出圆的对称性,并利用对称性总结归纳出圆心角、弧、弦之间的相等关系,所以动手操作是学生探究学习的重点.2.让学生在课前预习的同时准备好本节课所需要的学具;在探究的过程中,要亲身体验实验过程,切记眼高手低,要在与同伴一起的操作过程中深刻理解圆的对称性,并对所探究出的结论进行及时总结,得出一般性的结论.3.要注意类比、转化、数形结合思想在探究过程中的运用.。

(完整版)《圆的对称性》教案

(完整版)《圆的对称性》教案

《圆的对称性》教案教学目标1.知识与技能(1)理解圆的轴对称性和中心对称性,会画出圆的对称轴,会找圆的对称中心;(2)掌握圆心角、弧和弦之间的关系,并会用它们之间的关系解题.2.过程与方法(1)通过对圆的对称性的理解,培养学生的观察、分析、发现问题和概括问题的能力,促进学生创造性思维水平的发展和提高;(2)通过对圆心角、弧和弦之间的关系的探究,掌握解题的方法和技巧.3.情感、态度与价值观经过观察、总结和应用等数学活动,感受数学活动充满了探索性与创造性,体验发现的乐趣.教学重难点重点:对圆心角、弧和弦之间的关系的理解.难点:能灵活运用圆的对称性解决有关实际问题,会用圆心角、弧和弦之间的关系解题.教学过程一、创设情境,导入新课问:前面我们已探讨过轴对称图形,哪位同学能叙述一下轴对称图形的定义?(如果一个图形沿着某一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴).问:我们是用什么方法来研究轴对称图形?生:折叠.今天我们继续来探究圆的对称性.问题1:前面我们已经认识了圆,你还记得确定圆的两个元素吗?生:圆心和半径.问题2:你还记得学习圆中的哪些概念吗?忆一忆:1.圆:平面上到____________等于______的所有点组成的图形叫做圆,其中______为圆心,定长为________.2.弧:圆上_____叫做圆弧,简称弧,圆的任意一条____的两个端点分圆成两条弧,每一条弧都叫做圆的半径.__________称为优弧,_____________称为劣弧.3.___________叫做等圆,_________叫做等弧.4.圆心角:顶点在_____的角叫做圆心角.二、探究交流,获取新知知识点一:圆的对称性1.圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?2.大家交流一下:你是用什么方法来解决这个问题的呢?动手操作:请同学们用自己准备好的圆形纸张折叠:看折痕经不经过圆心?学生讨论得出结论:我们通过折叠的方法得到圆是轴对称图形,经过圆心的一条直线是圆的对称轴,圆的对称轴有无数条.知识点二:圆的中心对称性.问:一个圆绕着它的圆心旋转任意一个角度,还能与原来的图形重合吗?让学生得出结论:一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合,我们把圆的这个特性称之为圆的旋转不变性.圆是中心对称图形,对称中心为圆心.做一做:在等圆⊙O 和⊙O ' 中,分别作相等的圆心角∠AOB 和A O B '''∠(如图3-8),将两圆重叠,并固定圆心,然后把其中的一个圆旋转一个角度,得OA 与OA '重合.你能发现哪些等量关系吗?说一说你的理由.小红认为»¼''=AB A B ,''=AB A B ,她是这样想的: ∵半径OA 重合,'''∠∠=AOB A O B ,∴半径OB 与OB '重合,∵点A 与点A '重合,点B 与点B '重合,∴»AB 与¼A B ''重合,弦AB 与弦A B ''重合, ∴»AB =¼A B '',AB =A B ''. 生:小红的想法正确吗?同学们交流自己想法,然后得出结论,教师点拨.结论:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.知识点三:圆心角、弧、弦之间的关系.问:在同圆或等圆中,如果两个圆心角所对的弧相等,那么它们所对的弦相等吗?这两个圆心角相等吗?你是怎么想的?学生之间交流,谈谈各自想法,教师点拨.结论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.三、例题讲解例:如图3-9,AB ,DE 是⊙O 的直径,C 是⊙O 上的一点,且»»=AD CE ,BE 与CE 的大小有什么关系?为什么?解:BE =CE ,理由是:∵∠AOD =∠BOE ,∴»»=AD BE , 又∵»»22=+AD CEa b∴»»=BE CE,∴BE=CE.议一议在得出本结论的过程中,你用到了哪些方法?与同伴进行交流.四、随堂练习1.日常生活中的许多图案或现象都与圆的对称性有关,试举几例.2.利用一个圆及其若干条弦分别设计出符合下列条件的图案:(1)是轴对称图形但不是中心对称图形;(2)是中心对称图形但不是轴对称图形;(3)既是轴对称图形又是中心对称图形.3.已知,A,B是⊙O上的两点,∠AOB=120°,C是»AB的中点,试确定四边形OACB 的形状,并说明理由.五、知识拓展如图,在△ABC中,∠C=90°,∠B=25°,以点C为圆心,AC为半径的圆交AB于点D,求»AD所对的圆心角的度数.六、自我小结,获取感悟1.对自己说,你在本节课中学习了哪些知识点?有何收获?2.对同学说,你有哪些学习感悟和温馨提示?3.对老师说,你还有哪些困惑?七、布置作业7273-P习题1-3题.。

初中数学初三数学下册《圆的对称性》教案、教学设计

初中数学初三数学下册《圆的对称性》教案、教学设计
2.逻辑推理和证明过程的严密性。
-在证明圆的对称性质和相关定理时,学生可能会出现推理不严、论证不完整的情况。
-教学中应注重培养学生的逻辑思维能力,通过师生共同讨论、互评作业等方式,提高证明的严密性和准确性。
(三)教学设想
1.创设情境,激发兴趣。
-教学将从生活中的圆引入,如车轮、硬币等,让学生感受到圆的对称美和实用性,激发学习兴趣。
(三)学生小组讨论
1.问题驱动的讨论:教师提出具有挑战性的问题,引导学生进行小组讨论,共同探讨圆的对称性质在实际问题中的应用。
-设计不同难度的题目,让学生在讨论中逐步掌握圆的对称性质。
-学生在小组内分享解题思路和策略,提高合作交流能力。
2.教师巡回指导:教师在各小组之间巡回指导,观察学生的讨论过程,给予及时的反馈和建议。
3.培养学生的逻辑推理能力和批判性思维。
-在证明圆的相关性质时,学生需要运用严密的逻辑推理,教师指导学生进行批判性思考,检验证明过程的严密性和正确性。
(三)情感态度与价值观
1.培养学生欣赏数学美的情感,激发学习数学的兴趣。
-通过展示圆在各种文化和艺术中的应用,让学生体会圆的对称美,从而增强对数学美的感知和欣赏。
3.培养学生的几何直观和空间想象力。
-通过作图和观察几何图形,学生应能够发展对圆及其相关图形的直观认识。
-教学设想中应包含多种直观教具和动态软件,帮助学生构建几何图形的空间想象。
(二)教学难点
1.圆的对称性质在复杂几何问题中的运用。
-学生在解决涉及圆的复杂问题时,往往难以发现对称性的应用。
-教学中应采用问题驱动的教学方法,引导学生通过分析问题特点,逐步发现并运用对称性质。
-教师可以通过展示生活中的圆实例,让学生体验圆的对称美,提高他们对数学美的感知能力。

圆的对称性 教案

圆的对称性 教案

圆的对称性教案教案标题:圆的对称性教案目标:1. 理解圆的对称性概念;2. 掌握圆的对称性特征及其应用;3. 培养学生观察、分析和解决问题的能力;4. 提高学生的几何思维能力和创造力。

教学重点:1. 圆的对称性概念;2. 圆的对称性特征;3. 圆的对称性应用。

教学难点:1. 理解圆的对称性特征;2. 运用圆的对称性解决问题。

教学准备:1. 教学投影仪或黑板;2. 圆规、直尺、铅笔等绘图工具;3. 圆形物体或图片。

教学过程:Step 1:导入新知1. 引入圆的对称性的概念,与学生一起回顾对称性的概念和常见形状的对称性特征。

2. 提问学生:你们知道圆是否具有对称性吗?为什么?Step 2:探究圆的对称性特征1. 展示一个圆形物体或图片,让学生观察,并讨论圆的对称性特征。

2. 引导学生发现圆的对称轴,并解释圆的对称性特征。

Step 3:巩固对称性特征1. 给学生分发练习题,让他们找出圆的对称轴并标出。

2. 学生互相交换练习题,检查答案并互相讨论。

Step 4:应用圆的对称性解决问题1. 引导学生思考如何利用圆的对称性解决实际问题。

2. 给学生提供一些实际问题,让他们运用圆的对称性进行解答。

Step 5:拓展活动1. 给学生展示一些具有圆对称性的艺术品或建筑物,让他们欣赏并分析其中的对称性特征。

2. 鼓励学生设计自己的圆对称艺术品或建筑物,并展示给同学们。

Step 6:总结与评价1. 与学生一起总结圆的对称性概念和特征。

2. 对学生的学习情况进行评价和反馈。

教学延伸:1. 鼓励学生探究其他形状的对称性特征,并与圆的对称性进行比较。

2. 给学生提供更复杂的圆对称性问题,培养他们的解决问题的能力。

教学资源:1. 圆形物体或图片;2. 练习题;3. 具有圆对称性的艺术品或建筑物图片。

教学评估:1. 教师观察学生在课堂上的参与情况;2. 学生完成的练习题和解答问题的能力;3. 学生设计的圆对称艺术品或建筑物的创造力和表现力。

2圆的轴对称性(教案)

2圆的轴对称性(教案)

2圆的轴对称性(教案)教学目标:1. 理解圆的轴对称性的概念。

2. 学会运用圆的轴对称性解决问题。

3. 培养学生的观察能力、思考能力和动手能力。

教学重点:圆的轴对称性的概念和运用。

教学难点:理解和掌握圆的轴对称性的运用。

教学准备:圆的模型、剪刀、彩纸、黑板、粉笔。

教学过程:一、导入(5分钟)1. 引导学生观察黑板上的圆,提问:你们能找到一个方法,将这个圆分成两个完全相同的部分吗?2. 让学生尝试使用剪刀将圆分成两个完全相同的部分,观察并讨论结果。

二、探究圆的轴对称性(15分钟)1. 引导学生思考:什么样的直线可以将圆分成两个完全相同的部分?2. 让学生尝试画出不同的直线,并观察它们是否能够将圆分成两个完全相同的部分。

3. 引导学生发现:只有通过圆心的直线才能将圆分成两个完全相同的部分。

4. 解释圆的轴对称性的概念:圆是轴对称图形,任何一条通过圆心的直线都是圆的对称轴。

三、运用圆的轴对称性(15分钟)1. 让学生尝试使用圆的轴对称性解决实际问题,如剪出两个完全相同的圆片。

2. 引导学生发现:利用圆的轴对称性,可以很容易地剪出两个完全相同的圆片。

3. 让学生尝试使用圆的轴对称性解决其他问题,如设计对称的图案等。

四、总结与评价(5分钟)1. 让学生总结本节课所学的内容,分享自己的收获。

2. 对学生的学习情况进行评价,鼓励他们的努力和进步。

教学反思:本节课通过让学生观察、实践和思考,引导他们理解圆的轴对称性的概念,并学会运用圆的轴对称性解决问题。

在教学过程中,要注意关注学生的学习情况,及时给予指导和帮助,确保他们能够理解和掌握圆的轴对称性的运用。

要鼓励学生积极参与课堂活动,培养他们的观察能力、思考能力和动手能力。

六、实例分析:圆的对称图案(15分钟)1. 展示一些具有对称性的圆图案,如圆环、圆圈等。

2. 让学生观察并讨论这些图案的特点和对称性。

3. 引导学生发现:圆的对称图案可以通过轴对称性来设计和创造。

数学圆的对称性教案设计

数学圆的对称性教案设计

数学圆的对称性教案设计篇一:圆的对称性教学设计圆的对称性教学设计宝鸡市陈仓区贾村镇第二初级中学王彦红圆的对称性(第二课时)一、教学背景分析教学内容分析:本节圆的对称性(第二课时)主要内容是圆心角、弧、弦之间的关系,它由圆的旋转不变性引出,是圆的轴对称性学习之后圆的又一重要性质,圆心角、弧、弦之间的相等关系在以后的证明和计算中有着重要的作用。

学生情况分析:学生在第二学段已经学习过中心对称与中心对称图形,对于直线型的图形如平行四边形、矩形、菱形等中心对称图形有一定的了解,了解中心对称的概念以及相关的性质。

前一节已经学习过弦、弧等圆的有关概念和垂径定理的内容,利用垂径定理及推论解决了与直径、弦、弧等有关的问题,对于圆是中心对称图形和圆具有旋转不变性容易理解。

但对弦、弧以及要学到的圆心角、弦心距等之间的关系,并且怎样利用这些关系解决一些有关的证明和计算等方面,学生缺乏亲身体验和总结。

教学方式及教学准备:教学方式:任务驱动问题教学小组合作探究教学准备:学生课前准备圆形纸片(两个等圆);教师制作几何画板课件;辅助教学的CAI软件二、教学目标知识目标:理解圆的旋转不变性,掌握圆心角、弧、弦之间的关系定理及其推论,会用这三者之间的关系进行简单的证明。

能力目标:通过本节课的学习培养学生观察、实验、探究、归纳和概括能力。

情感态度与价值观:结合本课教学内容向学生渗透事物之间可相互转化的辩证唯物主义教育;渗透圆的内在美。

并使得学生在小组合作中尝试交流,在“做数学”中体会数学的严谨性。

三、教学重点、难点重点:圆心角、弧、弦之间的关系定理及其推论难点:对定理中“在同圆或等圆中”前提条件的理解,以及从感性到理性的认识,发现归纳能力的培养。

四、教学过程设计教学进程创设情境直观感知教学内容知识链接:问题1:什么是中心对称图形?中心对称图形有什么性质?问题2:说出你所了解的中心对称图形。

情境引入:课件展示(我来转一转)如图是一个转盘,转盘分成六个相同的扇形,颜色分为红、绿两种颜色,指针的位置固定。

圆的轴对称性(教案)

圆的轴对称性(教案)

圆的轴对称性教学目标:1. 让学生理解圆的轴对称性的概念。

2. 使学生掌握圆的轴对称性的性质和特点。

3. 培养学生的观察能力、思维能力和动手能力。

教学重点:1. 圆的轴对称性的概念。

2. 圆的轴对称性的性质和特点。

教学难点:1. 圆的轴对称性的性质和特点的理解和应用。

教学准备:1. 圆规、直尺、剪刀、彩笔等绘图工具。

2. 圆形教具和实物。

教学过程:一、导入(5分钟)1. 向学生介绍圆的轴对称性的概念。

2. 引导学生思考圆的轴对称性在实际生活中的应用。

二、新课(15分钟)1. 讲解圆的轴对称性的性质和特点。

2. 通过示例和练习,让学生理解和掌握圆的轴对称性的性质和特点。

三、课堂练习(10分钟)1. 让学生利用圆的轴对称性,剪出一个对称的图案。

2. 让学生观察和分析生活中常见的对称图案,并说明其轴对称性。

四、拓展(5分钟)1. 引导学生思考圆的轴对称性与其他几何图形的轴对称性的联系和区别。

2. 让学生举例说明圆的轴对称性在其他学科领域的应用。

1. 回顾本节课所学的内容,让学生巩固圆的轴对称性的概念和性质。

2. 鼓励学生在日常生活中发现和欣赏圆的轴对称性的美。

教学反思:本节课通过讲解、练习和拓展,使学生了解了圆的轴对称性的概念和性质,并能够应用到实际生活中。

在课堂练习环节,学生通过动手操作,进一步巩固了对称性的理解。

在拓展环节,学生思考了圆的轴对称性与其他几何图形的轴对称性的联系和区别,提高了思维能力。

总体来说,本节课达到了预期的教学目标。

六、案例分析(10分钟)1. 提供几个含有圆的轴对称性的案例,如圆形桌面、圆形门把手等。

2. 让学生分析这些案例中圆的轴对称性的应用和作用。

七、实践操作(15分钟)1. 让学生利用圆的轴对称性,设计一个对称的图案或艺术品。

2. 学生可以利用彩笔、剪刀、纸张等材料,发挥创造力,完成自己的设计作品。

八、课堂讨论(10分钟)1. 让学生展示自己的设计作品,并分享设计思路和感受。

圆的对称性教学设计

圆的对称性教学设计

圆的对称性教学设计一、教学目标:1. 学生能够理解圆的对称性概念,并能应用到实际问题中。

2. 学生掌握圆的对称性性质,能够运用这一性质解决与圆的对称性有关的数学问题。

3. 学生培养观察、分析和推理的能力。

二、教学内容:1. 圆的对称轴及性质。

2. 圆内与圆对称的点的性质。

3. 与圆相关的对称图形的性质。

4. 运用圆的对称性解决实际问题。

三、教学过程:Step 1 引入(5分钟)引导学生回顾已学的相关知识,如什么是对称轴、什么是对称图形等,为圆的对称性的引入做铺垫。

Step 2 探究圆的对称轴及性质(15分钟)1. 要求学生将一张白纸剪成一个小圆形,然后用铅笔沿着圆形的边缘剪去一小段。

2. 让学生观察并描述剪下的小段。

3. 引导学生发现剪下的小段与原来的圆是否对称。

4. 引导学生找出圆的对称轴。

5. 通过多个小组的讨论,让学生总结出圆的对称轴的性质。

Step 3 圆内与圆对称的点的性质(20分钟)1. 让学生画一个半径为5cm的圆。

2. 让学生在圆内随便选取一个点,然后通过一条线将这个点与圆心连接。

3. 引导学生观察这条线段与圆的性质,并找出几个有关的点。

4. 让学生总结出这些点与圆的对称性质,并找出规律。

Step 4 与圆相关的对称图形的性质(20分钟)1. 让学生观察一些和圆有关的对称图形,如圆环、圆柱等。

2. 引导学生分析这些图形的性质,并总结出与圆的对称性有关的特点。

3. 让学生在小组内进行讨论,并展示自己的观察结果。

Step 5 运用圆的对称性解决实际问题(20分钟)1. 准备一些与圆的对称性有关的实际问题,如使用圆的对称性画出一幅有规律的图案等。

2. 让学生在小组内合作解决这些问题,并展示解决过程和答案。

Step 6 总结与拓展(10分钟)1. 让学生回顾本节课所学的内容,并复述圆的对称性的性质和应用。

2. 提出一些推广问题,引导学生进一步扩展和应用圆的对称性的知识。

四、教学评估:1. 在教学过程中,教师能通过观察学生的表现,评估学生对圆的对称性的理解程度。

圆的轴对称性(教案)

圆的轴对称性(教案)

圆的轴对称性教学目标:1. 理解圆的轴对称性概念。

2. 学会运用圆的轴对称性解决实际问题。

3. 培养学生的观察能力、思考能力和动手能力。

教学重点:圆的轴对称性的概念及其应用。

教学难点:圆的轴对称性的理解和运用。

教学准备:圆形教具、剪刀、直尺、画纸等。

教学过程:一、导入(5分钟)1. 教师出示圆形教具,引导学生观察圆的特点。

2. 提问:你们能找出圆的对称轴吗?为什么?3. 学生回答,教师总结:圆的任何一条直径都可以作为圆的对称轴。

二、探究圆的轴对称性(10分钟)1. 教师引导学生动手操作,用剪刀沿圆的直径剪开,观察剪开后的两部分。

2. 提问:你们发现剪开后的两部分有什么特点?3. 学生回答,教师总结:剪开后的两部分完全重合,说明圆是轴对称图形。

三、学习圆的轴对称性(10分钟)1. 教师讲解圆的轴对称性的概念,引导学生理解圆的轴对称性。

2. 学生通过观察、思考,总结圆的轴对称性的性质和特点。

四、运用圆的轴对称性解决问题(10分钟)1. 教师出示实际问题,如:在圆形桌布上摆放餐具,如何使餐具的摆放对称?2. 学生运用圆的轴对称性解决实际问题,教师给予指导。

五、总结与拓展(5分钟)1. 教师引导学生总结本节课所学内容,巩固圆的轴对称性的概念和应用。

2. 学生通过动手操作,尝试创造具有轴对称性的图形,拓展思维。

教学反思:通过本节课的教学,学生应掌握圆的轴对称性的概念及其应用,能够运用圆的轴对称性解决实际问题。

在教学过程中,要注意引导学生观察、思考,培养学生的动手能力。

结合学生的实际情况,适当增加拓展环节,提高学生的创新能力。

六、案例分析:圆的轴对称性在生活中的应用(10分钟)1. 教师展示生活中具有轴对称性的物品,如剪刀、闹钟等,引导学生观察其对称性。

2. 提问:这些物品为什么设计成轴对称性?有什么好处?3. 学生回答,教师总结:轴对称性可以使物品更加美观、实用。

七、练习与巩固(10分钟)1. 教师出示练习题,要求学生运用圆的轴对称性解决问题。

圆的对称性教案

圆的对称性教案

圆的对称性教案圆的对称性教案一、教学目标:1. 理解圆的对称性概念。

2. 能够识别并描述圆的各种对称图形。

3. 能够根据已知的对称点绘制圆的对称图形。

4. 能够应用圆的对称性解决实际问题。

二、教学重点:1. 理解圆的对称性概念。

2. 能够识别并描述圆的各种对称图形。

三、教学难点:1. 能够应用圆的对称性解决实际问题。

四、教学过程:1. 导入新课通过展示一些圆形的图案,引起学生的兴趣,引出课题:“你们看到的这些图案有什么共同之处?”让学生进行讨论。

2. 引入新知通过引导学生讨论,引出圆的对称性的概念,即圆上的任意一点和圆心之间的连线,在圆上折叠时能够重合。

引导学生发现圆的对称轴是通过圆心的。

3. 讲解示范通过讲解和示范,让学生理解并掌握圆的对称性的基本概念和性质。

4. 练习巩固让学生进行一些练习,巩固对圆的对称性的理解和应用。

5. 拓展延伸通过讲解一些拓展内容,如对称图形的绘制方法和实际应用等,拓展学生对圆的对称性的理解和应用。

6. 总结回顾通过与学生一起总结和回顾所学的知识,确保学生对圆的对称性有清晰的理解和掌握。

五、教学方法:1. 合作探究法:通过合作学习、讨论、实践等方式,引导学生主动参与学习和思考。

2. 示例法:通过展示实际例子和解释说明,帮助学生更好地理解和掌握知识。

3. 练习巩固法:通过练习题和问题,巩固和拓展学生的知识与能力。

六、教学资源:1. 教学课件。

2. 圆形图案。

3. 讲解示范用具。

七、教学评估:通过课堂讨论、练习和问题,对学生的掌握程度进行评估。

八、教学扩展:可以进一步引导学生探索圆的对称性在实际生活中的应用,如建筑设计、艺术作品等。

九、教学反思:通过本堂课的教学活动,学生对圆的对称性概念、性质和应用有了初步的了解。

但是在教学过程中,老师需要更加引导学生思考、参与和探索,提高学生的主动学习能力和解决问题的能力。

同时,老师还需根据学生的实际情况和学习进度,进行灵活的教学调整,以达到更好的教学效果。

2圆的轴对称性(教案)

2圆的轴对称性(教案)

2圆的轴对称性教学目标:1. 让学生理解圆的轴对称性概念。

2. 使学生掌握圆的轴对称性的性质和运用。

3. 培养学生的观察能力、思考能力和实践能力。

教学重点:1. 圆的轴对称性的概念。

2. 圆的轴对称性的性质和运用。

教学难点:1. 圆的轴对称性的性质的理解和运用。

教学准备:1. 教学课件或黑板。

2. 圆的模型或图片。

3. 剪刀、彩纸等手工材料。

教学过程:一、导入(5分钟)1. 向学生介绍轴对称性的概念,引导学生回顾已学的轴对称图形的知识。

2. 展示一些圆的图片,让学生观察并讨论这些圆是否具有轴对称性。

二、新课讲解(15分钟)1. 向学生讲解圆的轴对称性的定义和性质。

2. 通过示例和练习,让学生理解圆的轴对称性的运用。

三、课堂练习(10分钟)1. 让学生独立完成一些有关圆的轴对称性的练习题。

2. 引导学生互相讨论和解答疑问。

四、动手实践(10分钟)1. 让学生利用剪刀、彩纸等手工材料,制作自己喜欢的圆的轴对称图形。

2. 让学生展示自己的作品,并解释其轴对称性的运用。

五、总结与反思(5分钟)1. 让学生回顾本节课所学的圆的轴对称性的概念和性质。

2. 引导学生思考如何运用圆的轴对称性解决实际问题。

教学延伸:1. 引导学生进一步研究其他图形的轴对称性。

2. 让学生尝试运用圆的轴对称性解决实际问题,如设计图案、规划路线等。

教学反思:本节课通过导入、新课讲解、课堂练习、动手实践和总结与反思等环节,让学生掌握了圆的轴对称性的概念和性质,并能够运用到实际问题中。

在教学过程中,注意引导学生观察、思考和实践,培养学生的观察能力、思考能力和实践能力。

通过学生的动手实践,培养了学生的创新意识和团队合作精神。

但在教学过程中,也要注意关注学生的学习情况,及时解答学生的疑问,提高教学效果。

六、课堂讨论与探索(10分钟)1. 引导学生进行小组讨论,探讨圆的轴对称性在实际生活中的应用,如设计、建筑、艺术等领域。

2. 各小组派代表分享讨论成果,总结圆的轴对称性的实际应用。

圆对称性教学设计

圆对称性教学设计

圆对称性教学设计一、教学目标1.认识和理解圆的对称性。

2.通过实例观察、探索和解决问题,培养学生的观察和分析能力。

3.培养学生的合作和沟通能力。

二、教学重点1.理解圆对称的概念。

2.能够在实例中发现并描述圆的对称性。

3.能够通过实例绘制具有圆对称性的图形。

三、教学内容与过程分析1.导入(10分钟)学生已经学习过对称性的知识,由此可引出圆的对称性,并通过提问让学生回顾对称性的概念。

2.学习(15分钟)通过展示一些具有圆对称性的图形,引导学生观察、发现并描述圆的对称性,并对对称轴、对称中心进行解释。

3.活动一:观察对称(30分钟)通过实例让学生观察、探究具有圆对称性的图形,分析并找出其中的对称轴和对称中心。

活动要求:学生分组,每组给予一张具有圆对称性的图形,要求观察图形并讨论找出其中的对称轴和对称中心,并展示给全班。

教师提示:教师可以提供一些具有圆对称性的图形,通过引导问题,让学生发现图形的对称轴和对称中心。

4.活动二:绘制对称图形(30分钟)学生通过对具有圆对称性的图形进行反复观察,根据观察的结果尝试绘制具有圆对称性的图形。

活动要求:学生分组,每组给予一张具有圆对称性的图形,要求学生通过观察图形,尝试用圆规绘制出对称部分,并展示给全班。

教师提示:引导学生明确绘制的步骤和方法,帮助学生理解圆规的作用和使用方法。

5.归纳(10分钟)学生通过活动的实践,得出圆对称性的特点,并进行归纳总结。

教师引导学生一起总结圆对称性的特点,并让学生记录在黑板上。

6.作业:完成练习册上的相关练习题(10分钟)布置相关练习题,要求学生在完成后交给老师。

四、教学手段与资源1.多媒体教学设备2.图形绘制工具:圆规、直尺等3.教学PPT4.练习册五、教学评估1.通过活动一和活动二中的小组展示,观察学生对圆对称性的理解和表达能力。

2.通过批改作业,了解学生对圆对称性的掌握程度。

六、教学延伸1.对称轴和对称中心不一定位于图形的中心,可以设计更多具有圆对称性的图形,引导学生发现不同位置的对称轴和对称中心。

圆的对称性教案苏科版

圆的对称性教案苏科版

圆的对称性教案苏科版教案标题:圆的对称性教案(苏科版)教学目标:1. 理解圆的对称性概念,并能够识别和描述圆的各种对称性质。

2. 能够运用对称性原理解决与圆相关的问题。

3. 培养学生观察、分析和推理的能力。

教学重点:1. 圆的对称性概念的理解和运用。

2. 圆的各种对称性质的识别和描述。

教学准备:1. 教师准备:教学课件、圆规、直尺、圆形物体等。

2. 学生准备:纸和铅笔。

教学过程:Step 1:导入新知1. 引入圆的对称性概念:教师通过展示圆形物体,引导学生观察并讨论圆的对称性质。

2. 提出问题:教师提问学生,圆有哪些对称性质?学生可以提出圆的中心对称、旋转对称等。

Step 2:学习圆的对称性质1. 中心对称:教师通过示范和解释,引导学生理解中心对称的概念,并进行实际操作。

学生可以用圆规和直尺画出圆的中心对称图形。

2. 旋转对称:教师通过示范和解释,引导学生理解旋转对称的概念,并进行实际操作。

学生可以用圆规和直尺画出圆的旋转对称图形。

Step 3:巩固与拓展1. 练习:教师提供一些练习题,让学生运用所学的对称性质解决问题。

例如,给出一个图形,要求学生判断该图形是否具有圆的对称性质,并解释原因。

2. 拓展:教师可以提供一些拓展问题,让学生思考更复杂的对称性质。

例如,如何利用圆的对称性质构造一个具有多个对称轴的图形?Step 4:归纳总结1. 教师引导学生总结圆的对称性质,并进行概念的澄清和强化。

2. 学生进行小结:学生用自己的话总结所学的内容,并回答教师提出的问题。

Step 5:作业布置1. 教师布置书面作业,要求学生练习判断图形是否具有圆的对称性质,并解释原因。

2. 鼓励学生自主探索,寻找身边具有圆的对称性质的实例,并进行观察和描述。

教学延伸:1. 教师可以引导学生进一步探究圆的对称性质在日常生活中的应用,如建筑设计、艺术作品等。

2. 教师可以组织学生进行小组讨论或展示,分享自己发现的具有圆的对称性质的实例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的对称性
(南充市建华中学 张懿)
教学目标:
使学生知道圆是中心对称图形和轴对称图形,并能运用其特有的性质推出在同一个圆中,圆心角、弧、弦之间的关系,能运用这些关系解决问题,培养学生善于从实验中获取知识的科学的方法。

重点难点:
1、重点:由实验得到同一个圆中,圆心角、弧、弦三者之间的关系。

2、难点:运用同一个圆中,圆心角、弧、弦三者之间的关系解决问题。

教学过程:
一、由问题引入新课:要同学们画两个等圆,并把其中一个圆剪下,让两个圆的圆心重合,使得其中一个圆绕着圆心旋转,可以发现,两个圆都是互相重合的。

如果沿着任意一条直径所在的直线折叠,圆在这条直线两旁的部分会完全重合。

由以上实验,同学们发现圆是中心对称图形吗?对称中心是哪一点?圆不仅是中心对称圆形,而且还是轴对称图形,过圆心的每一条直线都是圆的对称轴。

二、新课
1、同一个圆中,相等的圆心角所对的弧相等、所对的弦相等。

垂直于弦的直径平分弦,并且平分弦所对的两条弧。

实验1、将图形23.1.3中的扇形AOB 绕点O 逆时针旋转某个角度,得到图23.1.4中的图形,同学们可以通过比较前后两个图形,发现AOB AOB ∠=∠,AB AB =,AB AB =。

实质上,AOB ∠确定了扇形AOB 的大小,所以,在同一个圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等。

问题:在同一个圆中,如果弧相等,那么所对的圆心角,所对的弦是否相等呢? 在同一个圆中,如果弦相等,那么所对的圆心角,所对的弧是
否相等呢?
实验2、如图23.1.7,如果在图形纸片上任意画一条垂直于直径CD 的弦AB ,垂足为P ,再将纸片沿着直径CD 对折,比较AP 与PB 、AC ︵与CB ︵
,你能发现什么结论?
显然,如果CD 是直径,AB 是⊙O 中垂直于直径的弦,那么AP BP =,AC BC =,AD BD =。

请同学们用一句话加以
概括。

( 垂直于弦的直径平分弦,并且平分弦所对的两条弧) 2、同一个圆中,圆心角、弧、弦之间的关系的应用。

(1)思考:如图,在一个半径为6米的圆形花坛里,准备种植六种不同颜色的花卉,要求每种花卉的种植面积相等,请你帮助设计种植方案。

(2)如图23.1.5,在⊙O 中,AC BC =,145∠=︒,求2∠的度数。


23.1.3

23.1.4 图23.1.7
3、课堂练习
(1)如图,在⊙O 中,AB ︵=AC ︵
,∠B =70°.
求∠C 度数.
(第1题
)
(第2题)
(2)如图,AB 是直径,BC ︵=CD ︵=DE ︵
,∠BOC =40°,求∠AOE 的度数
(3)已知,在⊙O 中,弦AB 的长为8cm ,圆心O 到AB 的距离为3cm ,求⊙O 的半径。

三、课堂小结
本节课我们通过实验得到了圆不仅是中心对称图形,而且还是轴对称图形,而由圆的对称性又得出许多圆的许多性质,即(1)同一个圆中,相等的圆心角所对弧相等,所对的弦相等。

(2)在同一个圆中,如果弧相等,那么所对的圆心角,所对的弦相等。

(3)在同一个圆中,如果弦相等,那么所对的圆心角,所对的弧相等。

(4)垂直于弦的直径平分弦,并且平分弦所对的两条弧。

四、作业 P52 习题。

相关文档
最新文档