第七章 3.万有引力理论的成就
万有引力理论的成就_课件
02
CATALOGUE
万有引力理论的发展
理论的完善
牛顿提出万有引力
定律
牛顿在17世纪提出了万有引力定 律,解释了物体之间的相互吸引 作用,并给出了数学表达式来描 述这种力。
开普勒行星运动三
定律
开普勒通过观察行星运动,提出 了行星运动三定律,揭示了行星 运动的规律,为万有引力理论的 发展奠定了基础。
哈雷彗星轨道预测
基于牛顿的万有引力定律,哈雷 成功预测了彗星轨道,证实了万 有引力定律的正确性。
科学成就
解释了天体运动规律
万有引力理论解释了天体之间的相互吸引作用,以及 天体运动的规律,为天文学的发展奠定了基础。
推动了物理学发展
万有引力理论的出现,推动了物理学的发展,引发了 一系列的科学革命。
促进了科技应用
万有引力理论的应用,推动了航天科技的发展,实现 了人类探索宇宙的梦想。
对后世的影响
激发了科学家们的探索精神
01
万有引力理论的出现,激发了科学家们的探索精神,推动了科
学技术的不断进步。
为后世科学研究提供了方法论
对宇宙起源与演化的研究
大爆炸理论
基于广义相对论和量子力学的Байду номын сангаас究,提出宇宙起源于一个极度高温和高密度的状 态,即大爆炸。
宇宙演化
通过对宇宙起源与演化的研究,科学家们进一步理解了宇宙的构造和演化过程, 以及各种物理现象的起源和本质。
05
CATALOGUE
万有引力理论的未来展望
技术的进步对万有引力理论的影响
行星轨道计算
基于万有引力理论,天文学家能够计算行星轨道,为太空探索和 宇宙航行提供重要依据。
万有引力理论的成就与宇宙航行-高一物理同步备课系列(人教版2019必修第二册)
★其他环绕天体围绕中心天体做匀速圆周运动时,求解中心天体质量的方法类似。
(1)只能求出中心天体的质量M,不能求出环绕天体的质量m。
特别说明:
(2)地球的公转周期(365天)、地球自转周期(1天)、月球绕地球的公转周期(27.3天)等,在估算天体质量时,常作为已知条件。
算一算:设地面附近的重力加速度g=9.8m/s2,地球半径R =6.4×106m,引力常量G=6.67×10-11 N·m2/kg2,试估算地球的质量。
方法一:重力加速度法(g、R)
科学真是迷人。根据零星的事实,增加一点猜想,竟能赢得那么多的收获! ——马克·吐温
想一想:还有其他方法吗?
算一算:已知月球绕地球周期T=27.3天,月地平均距离r=3.84×108m,引力常量G=6.67×10-11 N·m2/kg2,试估算地球的质量。
3. 第三宇宙速度(逃逸速度):如果物体的速度大于或等于16.7km/s,物体就摆脱了太阳引力的束缚,飞到太阳系以外的宇宙空间去。这个速度叫第三宇宙速度。
宇宙速度
注意:宇宙速度都是针对发射速度;以上三个宇宙速度都是地球上的宇宙速度。.
说明:(1)第一宇宙速度是发射人造地球卫星的最小发射速度,当V发=7.9km/s时,卫星恰好环绕地球表面做匀速圆周运动;要使卫星在较高的轨道上运行,就必须使发射速度大于7.9km/s。
(2)极地轨道:卫星轨道平面与赤道平面垂直,卫星通过两极上空。
(3)倾斜轨道(一般轨道) :卫星轨道和赤道成某一的角度。
F引Байду номын сангаас
(6)人造地球卫星的运行速度和发射速度间的大小关系: V运≤7.9km/s ≤ V发< 11.2km/s
《万有引力理论的成就》课件
本课件将介绍万有引力理论的丰功伟绩,以及其对现代物理学的重要性。
引言
万有引力理论自17世纪诞生以来,为人类对宇宙的理解提供了不竭的动力。 本文将介绍引力理论的创立者、基本概念以及其众多的应用领域。
万有引力理论的提出者
伽利略
通过实验和观察,提出了自由落体的定律,为后续的引力研究奠定了基础。
开普勒
通过大量观测数据,总结出了行星运动的三大定律,揭示了行星运动背后的引力机制。
牛顿
在伽利略和开普勒的基础上,提出了万有引力定律,为引力理论树立了坚实的数学基础。
万有引力理论的基本概念
引力常数
万有引力的力量大小由引力常数 决定,是描述物体间相互作用力 的重要参数。
质量
物体的质量决定了它产生的引力 大小,质量越大,引力越强。
万有引力理论的推广
爱因斯坦的相对论
爱因斯坦的相对论推翻了牛顿普适的引力理论,提出了 新的引力观念,给物理学带来了革命性的变革。
引力波的发现
科学家们成功探测到引力波,这一发现进一步验证了万 有引力理论,并为宇宙研究带来了全新的突破。
结论
万有引力理论是现代物理学的基石,无处不在。 从伽利略到爱因斯坦,科学家们通过不断发展和创新,推进了引力理论的进程。 引力理论的不断壮大为人类探索宇宙提供了坚实的基础。
距离
物体间的距离越近,引力越强, 距离越远,引力越弱。
万有引力理论的应用
1
火箭发射的计算
2
万有引力理论帮助科学家计算出火箭的速度
和轨道,实现了人类登上太空的壮举。
3
行星运动的研究
万有引力理论对行星运动轨道、引力相互作 用的解释以及天体物理学研究提供了重要依 据。
7.3万有引力理论的成就
海王星
冥王星
四、预测哈雷彗星的回归
牛顿还用月球和太阳的万有引力解释了潮汐现象,用万有引力定律和其他力学 定律,推测地球呈赤道处略为隆起的扁平形状。
诺贝尔物理学奖获得者,物理学家冯·劳厄说: “没有任何东西像牛顿引力理论对行星轨道的计算那样, 如此有力地树起人们对年轻的物理学的尊敬。从此以后, 这门自然科学成了巨大的精神王国…… ”
思考:重力加速度法可以测出地球质量,能测出太阳质量吗?
2.环绕天体法(借助外援法)
测出卫星绕中心天体做匀速圆周运动的半径r和周期T.
(只能求中心天体质量)
√
√
√ √
三、发现未知天体
亚当斯和勒维耶
在1781年发现的第七个行星—天王星的运 动轨道,总是同根据万有引力定律计算出来的 有一定偏离.当时有人预测,肯定在其轨道外还 有一颗未发现的新星,这就是后来发现的第八大 行星—海王星.
海王星的实际轨道由英国剑桥大学的学生 亚当斯和法国年轻的天文爱好者勒维耶根据天 王星的观测资料各自独立地利用万有引力定律 计算出来的.
1846年9月23日晚,由德国的伽勒在柏林天文台用望远镜在勒维耶预言的位置 附近发现了这颗行星——海王星.
1930年,汤博发现了太阳系的后来曾被称为第九大行星的冥王星. 海王星、 冥王星的发现最终确立了万有引力定律的地位,也成为科学史上的美谈。
二、计算天体的质量和密度
1.重力加速度法(自力更生法)
已知天体表面的重力加速度g和天体半径R.
G的测出赋予万有引力定律以生命,卡文迪许 被誉为“第一个测出地球质量的人”
针对训练1.宇航员在月球表面将一片羽毛和一个铁锤从同一高度
由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t落到月球表面.已知引力常量为G,月球的半径 为R.求:(不考虑月球自转的影响) (1)月球表面的自由落体加速度大小g月;(2)月球的质量M;
【高中物理】万有引力理论的成就(环绕天体的运行、双星系统) 高一下学期物理人教版2019必修第二册
(1)地球、火星遵循什么样的动力学规律?
(2)如何比较火星与地球的线速度、角速度、周期以及向心加速度的大小?
(1)环绕模型: 万有引力提供向心力
G
=Fn=man= =
=
=
一、环绕天体的运行规律
1.由
= man , 得 an =
即 r1+r2=L
二、双星系统
2.双星规律
已知两双星质量m1、m2 , 距离为L , (引力常量为G)
求: (1).双星的轨道半径r1,r2之比
(2).双星的轨道半径r1,r2大小
(3).双星的角速度
1.双星特点
(1). Fn=
(1).
=
(3). ω =
(2). r1 =
[针对训练2] 如图所示,两个星球A、B
组成双星系统,它们在相互之间的万有引
力作用下,绕连线上某点做周期相同的匀
速圆周运动.已知A、B星球的质量分别
为mA 、mB ,引力常量为G.求 (其中L
为两星的中心距离,T为两星的运动周期
).
GmA+mB
4π2
系统集成 第73页
5.(多选)(2018·全国·高考真题)2017年,人类第一次直接探测到来自
万有引力作用下同时绕某点(公共圆心)做匀
速圆周运动,已知mA=bmB,且b>1,则下
列结论正确的是(
)
A.天狼星A和天狼星B的绕行方向可能相反
B.天狼星A和天狼星B的公共圆心可以不在质心连线上
C.天狼星A和天狼星B的向心加速度大小之比为b∶1
万有引力理论的成就知识点
万有引力理论的成就知识点1.理论的提出:万有引力理论由英国科学家牛顿于17世纪提出。
他根据当时观测到的行星的运动规律,认为行星之间相互吸引的力与它们的质量和距离平方成正比,用公式F=G·(m1·m2)/r^2表示,其中F为引力的大小,G为引力常数,m1和m2分别为两个物体的质量,r为它们之间的距离。
2.解释宇宙的结构和运动:万有引力理论解释了行星、卫星、彗星、流星等天体运动的规律。
根据该理论,大质量的天体会产生巨大的引力,而其他物体则向该天体靠拢。
这解释了为什么地球绕着太阳运动,月球绕着地球运动,并且也解释了为什么彗星在靠近太阳的时候轨道会发生变化。
3.揭示地球上物体的重力:牛顿的万有引力理论还解释了地球上物体的重力。
根据该理论,地球和其他物体之间会有相互吸引的力,使物体有重量。
这就解释了为什么物体会往下掉,以及为什么我们能够站稳在地球上。
4.预测天体运动:万有引力理论使科学家们能够预测星体的运动。
根据牛顿的理论,科学家们可以计算出行星、卫星等天体的轨道,并预测它们的位置和运动速度。
这对于天文观测和导航等领域具有重要意义。
5.探索宇宙的途径:万有引力理论提供了探索宇宙的新途径。
该理论被用于解释星系的形成和演化、黑洞的存在和特性、宇宙的膨胀等现象。
它推动了宇宙学的发展,并使我们对宇宙有了更深入的了解。
6.验证和完善:万有引力理论在19世纪和20世纪得到了一系列的验证和完善。
首先,天文观测表明行星轨道的确服从牛顿的万有引力定律。
其次,爱因斯坦的相对论进一步完善了万有引力理论,提出了曲率时空的概念,解释了引力如何作用于物体,并对行星运动的微小差异进行了解释。
总的来说,万有引力理论的提出和进一步的研究推动了物理学和天文学的发展,为我们认识宇宙和探索宇宙提供了重要的理论基础。
它是自然界普适性最强、影响最为广泛的物理定律之一。
《万有引力理论的成就》ppt课件
未来发展
未来,随着科学技术的进步, 我们对万有引力理论的认识 将会进一步发展。
系外行星
发现了大量的系外行星,探索 了行星系统的多样性和形成机 制。
万有引力理论在地理学的应用
地球形状研究
通过测量重力场和地震数据,帮助研究地球的形状和内部结构。
大气环流研究
重力对大气运动起到重要作用,有助于分析气候和气象现象。
海洋潮汐和洋流研究
通过研究引力对海洋的影响,帮助解析潮汐和洋流运动。
万有引力理论在演化生物学的应用
2
相对对牛顿定律的修正
爱因斯坦的广义相对论颠覆了牛顿的引力理论,提供了更准确的描述。
3
黑洞的证实
通过观测天体运动和引力透镜效应,科学家成功证实了黑洞存在。
天体运动和分类的研究
太阳系
通过研究行星运动,我们对太 阳系的组成和演化有了更深入 的了解。
星系旋转
观测星系内恒星的运动,揭示 了星系旋转的现象和特点。
3 行星运动预测
借助万有引力定律,牛顿成功预测了行星的运动轨迹。
万有引力定律及其应用
定律
引力正比于质量 引力反比于距离平方 作用力互相作用
应用
用于计算天体之间的引力力量 解释了行星轨道的稳定性 解析了行星绕太阳和卫星绕行星的运动
万有引力作用机制的深入研究
1
引力波的发现
爱因斯坦广义相对论预测了引力波的存在,该预测于2015年被实验证实。
1 暗物质问题
观测数据表明,宇宙中存在大量的暗物质,其引力作用是理论难以解释的。
2 量子引力理论
量子力学和引力理论的统一仍然是物理学的一个未解之谜。
万有引力理论的成就优秀课件
万有引力理论证明了地球并非完美的圆形,而是一个稍微扁平的椭 球体,即地球的赤道略微膨出。
月球运动的解释
万有引力理论阐明了月球围绕地球运动的原理,解释了月球的轨道 、速度和加速度等关键要素。
理论推广
01
02
03
三体问题的提出
万有引力理论为解决多体 问题提供了基础,例如三 体问题,即三个天体之间 的运动规律。
利用万有引力理论,航天器可以通过微调其轨道参数来控制自身的姿态
,保持稳定姿态运行。
03
月球和火星探测
在月球和火星探测任务中,万有引力理论用于计算探测器在行星表面的
着陆点和轨道,确保安全可靠地完成探测任务。
在地球科学领域的应用
地震预测
通过研究地球板块间的 万有引力作用,可以预 测地震的发生,为地震 防范提供科学依据。
平方成反比。
行星轨道理论
根据万有引力定律,行星绕太阳 运行的轨道是一个椭圆,太阳位
于其中一个焦点。
引力与加速度
根据万有引力定律,地球表面上 的物体受到的引力可以等效于其
加速度,即地心引力。
02
CATALOGUE
万有引力理论的发展
理论验证
哈雷彗星的轨道预测
牛顿的万有引力理论成功地预测了哈雷彗星的轨道,这是该理论 的重要验证之一。
对未来科技发展的影响
1 2
引力波探测
万有引力理论激发了科学家对引力波探测的研究 ,有望为宇宙探索开辟新的途径。
暗物质与暗能量研究
万有引力理论为暗物质与暗能量等前沿研究提供 了理论基础,有助于揭示宇宙的奥秘。
3
未来航天技术
万有引力理论将继续在未来的航天技术中发挥关 键作用,如深空探测、太空殖民等。
万有引力理论的成就知识点
万有引力理论的成就知识点万有引力理论是由英国物理学家牛顿于17世纪提出的,被誉为物理学史上的伟大成就之一、它描述了地球上任何两个物体之间的引力相互作用,并说明了这种引力如何影响天体的运动,以及宇宙中天体的分布和演化。
在这篇文章中,我将详细介绍万有引力理论的成就,并提供一些相关的知识点以加深理解。
一、牛顿的贡献:1.引力定律:牛顿提出了引力定律,即任何两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。
这个定律可以用数学公式表示为F=G*(m1*m2)/r^2,其中F是引力,m1和m2分别是两个物体的质量,r是它们之间的距离,G是引力常数。
2.万有引力理论:牛顿根据引力定律推导出了万有引力理论,即地球上的万有引力与天体运动之间的关系。
根据这个理论,地球上的物体受到地心引力的作用,而天空中的天体则遵循太阳引力的作用。
牛顿还利用这个理论成功地阐述了行星和卫星的运动规律。
3.数学工具:为了解释和计算天体的运动,牛顿引入了微积分和微分方程等数学工具。
他使用几何方法研究了天体运动的几何性质,并利用微积分的方法推导出了它们的运动方程。
二、通过万有引力理论测量地球质量与引力常数:1.测量地球质量:牛顿利用万有引力理论提出了一种新的方法来测量地球的质量。
他假设地球是一个规则的球体,并利用引力定律计算了重力加速度。
然后,他利用观测到的物体在地球表面上自由下落的加速度,通过公式g=G*(M/r^2)计算地球的质量M,其中g是重力加速度,r是物体与地心的距离。
2.测量引力常数:利用万有引力理论,牛顿还尝试测量引力常数G的数值。
他设想用一个摆锤的实验来测量G,但由于当时实验条件的限制,他没有能够得到准确的数值。
然而,他的方法为后来的科学家提供了一个重要的思路,进一步研究和测量引力常数。
三、应用万有引力理论解释天体运动:1.行星运动:万有引力理论成功地解释了行星的运动。
根据牛顿的理论,行星绕太阳运动的轨道是椭圆形状,并且根据行星的质量和距离可以计算出它们的运动速度和周期。
7.3万有引力理论的成就课件(22张PPT)
m1m 2
2r 、G m1m 2 =m (2πf)2r ,r +r =L,
=m
(2πf)
1
1
2
2
1 2
L2
L2
2 2 3
4
f L ,故选项A错误,选项B正确;
联立解得:m1+m2=
G
v1=2πfr1、v2=2πfr2解得v1+v2=2πfL,故选项C正确;
各自的自转角速度无法估算,故选项D错误。 【正确答案】BC
1、英国亚当斯和法国勒维耶。根据天
哈雷依据万有引力定律,发现 1531 年、
王星的观测资料,利用万有引力定律
1607 年和 1682 年出现的这三颗彗星轨
计算出这颗“新”行星的轨道。德国
道看起来如出一辙,他大胆预言,这三
的伽勒在勒维耶预言的位置附近发现
次出现的彗星是同一颗星,周期约为 76
了这颗行星,人们称其为“笔尖下发
)
【典例6】宇航员站在某星球的一个斜坡上,以初速度v0水平扔出一个小球,经过时
间t小球落在斜坡上,经测量斜坡倾角为 θ,星球半径为R,引力常量为G,求星球的
质量。
【解析】小球位移偏向角为θ:
v0
tan
ϴ
y
x
g
2v0 tan
t
G
Mm
mg
R2
2v0 R 2 tan
M
Gt
专题:双星题型
定点做周期相同的匀速圆周运动。根据宇宙大爆炸理论,双星间的距离在缓
慢增加,设双星仍做匀速圆周运动,则下列说法正确的是(
)
A.双星相互间的万有引力增大
B.双星做圆周运动的周期增大
人教版高一 必修 第二册 第七章: 万有引力理论的成就(共18张PPT)
二、计算天体的质量
提出问题
二、计算天体的质量
拓展结论
二、计算天体的质量
提出问题
典型 例题
典型 例2 1969年7月21日,美国宇航员阿姆斯特朗在月球上烙下了人类 例题 第一只脚印,迈出了人类征服宇宙的一大步。在月球上,如果阿
姆斯特朗和同伴奥尔德林用弹簧秤测出质量为m的仪器的重力为F; 而另一位宇航员科林斯驾驶指令舱,在月球表面附近飞行一周,
/bkpt
二、计算天体的质量
提出问题
1. 行星绕太阳做什么运动?而通常可以认为行星做 什么运动?
结论:沿椭圆轨道运动,在通常情况下可以近似为圆形 轨道,即认为行星在做匀速圆周运动。
二、计算天体的质量
提出问题
2.行星绕太阳做圆周运动的向心力是由什么力提供的? 结论:太阳对行星的万有引力提供向心力。
G
6.671011
Jinxing education
/bkpt
在实验室里测量几个铅球之间的作用力,就可以 称量地球,这不能不说是一个科学奇迹。难怪一位外 行人、著名文学家马克·吐温满怀激情地说:“科学 真是迷人,根据零星的事实,增添一点猜想,就能赢 得那么多收获!”
Jinxing education
•
8.这个镜头写出了人间父爱最动人的 地方, 为了孩 子,做 父亲的 愿意牺 牲自己 的一切 ,愿意 承担一 切的辛 酸痛苦 ,表现 出父爱 的无私 、隐忍 、深厚 ,令人 感动。
Jinxing education
/bkpt
认为行星是密度均匀的球体,那么要确定该行星的密度,
只需要测量( C )
A.飞船的轨道半径
B.飞船的运行速度
C.飞船的运行周期
D.行星的质量
(2019)高中物理必修第二册第七章第3节万有引力理论的成就课件
空白演示
单击输入您的封面副标题
不要因为小小的争执,远离了你至亲的好友,也不要因为小小的怨恨,忘记了别人的大恩。பைடு நூலகம்假如可以选择时光,我想回到过去。那里有我的怀念,和爱我的你。 如果你是一名将领在战场上出现了一个比你要小上很多的敌方将领,而你用年龄来评价对方的实力那么我可以准确的告诉你你老的可以退休 了。 最可怕的敌人,就是没有坚强的信念。——罗曼·罗兰 人生如一杯茶,不能苦一辈子,但是总是要苦一阵子。 能把在面前行走的机会抓住的人,十有八九都会成功。 活在当下,别在怀念过去或者憧憬未来中浪费掉你现在的生活。 最可怕的敌人,就是没有坚强的信念。——罗曼·罗兰 活着一天,就是有福气,就该珍惜。当我哭泣我没有鞋子穿的时候,却发现有人没有脚。 生活中若没有朋友,就像生活中没有阳光一样。 勇气通往天堂,怯懦通往地狱。——塞内加 如果你看到面前的阴影,别怕,那是因为你的背后有阳光。 应当在朋友正是困难的时候给予帮助,不可在事情已经无望之后再说闲话。
万有引力理论的成就
答案:A
2.(对应要点二)已知引力常量G,那么在下列给出的各种情
境中,能根据测量的数据求出火星平均密度的是 ( )
A.在火星表面使一个小球做自由落体运动,测出下落的 高度H和时间t B.发射一颗贴近火星表面绕火星做圆周运动的飞船,测
出飞船的周期T
C.观察火星绕太阳的圆周运动,测出火星的直径D和火 星绕太阳运行的周期T D.发射一颗绕火星做圆周运动的卫星,测出卫星离火星 表面的高度H和卫星的周期T
总结: 应用万有引力定律可以计算天体的质量: 2 2 Mm mv 4 Mm 2 G 2 m r m 2 r G 2 mg r r T R
三、计算天体的密度
4 r Mm 2 M G 2 m r 2 GT r T M ρ V 若环绕天体m接近中心天体 4 3 V R M 表面飞行则密度多少? 3
万有引力理论的成就
万有引力提供天体做圆周运动的向心力
万有引力定律对物理学、天文学的发展具有深 远的影响;它把地面上物体运动的规律和天 体运动的规律统一起来;对科学文化发展起 到了积极的推动作用,解放了人们的思想, 给人们探索自然的奥秘建立了极大信心,使 人们有能力理解天地间的各种事物。时至今 日,数千颗人造卫星正在按照万有引力定律 为它们设定的轨道绕地球运转着。所以没有 万有引力定律,就没有今天的天空漫步,当 然也没有卫星通信时代了。以至于阿波罗8号 从月球返航的途中,当地面控制中心问及 “是谁在驾驶”的时候,指令长这样回答: “我想现在是牛顿在驾驶。”
2 3
2
3r 3 3 GT R
3
r=R
3 3 GT
练习三
一艘宇宙飞船飞近一个不知名的行星,并进入靠 近该行星表面的圆形轨道,宇航员进入预定的考 察工作,宇航员能不能仅用一只表通过测定时间 来测定该行星的密度?说明理由及推导过程
人教(2019)第七章万有引力与航天知识点填空
1 行星的运动一、两种对立的学说1.地心说①______是宇宙的中心,是静止不动的;太阳、月球以及其他星体都绕______运动;②地心说的代表人物是古希腊科学家______.2.日心说①______是宇宙的中心,是静止不动的,地球和其他行星都绕太阳运动;②日心说的代表人物是______.3.局限性①古人都把天体的运动看得很神圣,认为天体的运动必然是最完美、最和谐的______运动.②开普勒研究了______的行星观测记录,发现如果假设行星的运动是匀速圆周运动,计算所得的数据与观测数据______(填“不符”或“相符”).二、开普勒定律1.第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在____________上.2.第二定律:对任意一个行星来说,它与太阳的连线在相等的时间内扫过的______.3.第三定律:所有行星轨道的____________跟它的____________的比都相等.其表达式为a3T2=k,其中a是椭圆轨道的半长轴,T是公转周期,k是一个对所有行星____________的常量.三、行星运动的近似处理行星的轨道与圆十分接近,在中学阶段的研究中我们可按圆轨道处理.这样就可以说:1.行星绕太阳运动的轨道十分接近圆,太阳处在______.2.行星绕太阳做____________运动.3.所有行星____________的三次方跟它的公转周期T的二次方的____________,即r3T2=k.1.行星靠近太阳时运动速度小,远离太阳时运动速度大()2.行星轨道的半长轴越长,其自转的周期就越大()3.所有行星绕太阳运动的轨道都是椭圆,这些椭圆有一个共同的焦点,太阳就在此焦点上() 4.行星椭圆轨道的半长轴的三次方与公转周期的二次方之比为常数,此常数的大小与太阳和行星均有关()5.围绕同一天体运动的不同行星椭圆轨道不一样,但都有一个共同的焦点.()6.行星在椭圆轨道上运行速率是变化的,离太阳越远,运行速率越大.()2 万有引力定律一、行星与太阳间的引力行星绕太阳的运动可看作匀速圆周运动.设行星的质量为m ,速度为v ,行星到太阳的距离为r .天文观测测得行星公转周期为T ,则向心力F =m v 2r =______ ①根据开普勒第三定律:r 3T 2=k ② 由①②得:F =______③由③式可知太阳对行星的引力F ∝m r 2,根据牛顿第三定律,行星对太阳的引力F ′∝m 太r 2 则行星与太阳间的引力F ∝______,写成等式F =______.二、月—地检验1.猜想:地球与月球之间的引力F =G m 月m 地r 2,根据牛顿第二定律a 月=F m 月=______.地面上苹果自由下落的加速度a 苹=F ′m 苹=G m 地R 2. 由于r =60R ,所以a 月a 苹=______. 2.验证:已知①苹果自由落体加速度a 苹=g =9.8 m/s 2.②月球中心距地球中心的距离r =3.8×108 m.③月球公转周期T =27.3 d ≈2.36×106 s 则a 月=(2πT)2r =______m/s 2(保留两位有效数字) a 月a 苹=______(数值)≈______(比例). 3.结论:地面物体所受地球的引力、月球所受地球的引力,与太阳、行星间的引力,遵从______的规律.三、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的______,引力的大小与物体的__________________成正比,与它们之间______成反比.2.表达式:____________,其中G 叫作引力常量.四、引力常量1.牛顿得出了万有引力与物体质量及它们之间距离的关系,但没有测出引力常量G .2.英国物理学家______通过实验推算出引力常量G 的值.通常情况下取G =__________________.1.只有天体之间才存在万有引力.( )2.只要知道两个物体的质量和两个物体之间的距离,就可以由F =G m 1m 2r2计算物体间的万有引力.( ) 3.地面上的物体所受地球的万有引力方向一定指向地心.( )4.两物体间的距离趋近于零时,万有引力趋近于无穷大.( )5.重力和万有引力是不同性质的力( )6.在不考虑地球自转影响的情况下,可以认为地球表面物体的重力等于地球对它的万有引力( )7.在地球两极的物体,物体的重力等于万有引力( )3 万有引力理论的成就一、“称量”地球的质量1.思路:地球表面的物体,若不考虑地球自转的影响,物体的重力等于__________________.2.关系式:mg =G mm 地R 2.3.结果:m 地=gR 2G,只要知道g 、R 、G 的值,就可计算出地球的质量. 3.推广:若知道某星球表面的____________和星球______,可计算出该星球的质量.二、计算天体的质量1.思路:质量为m 的行星绕阳做匀速圆周运动时,____________充当向心力.2.关系式:Gmm 太r 2=m 4π2T 2r . 3.结论:m 太=4π2r 3GT 2,只要知道引力常量G ,行星绕太阳运动的周期T 和轨道半径r 就可以计算出太阳的质量.4.推广:若已知引力常量G ,卫星绕行星运动的周期和卫星与行星之间的距离,可计算出行星的质量.三、发现未知天体1.海王星的发现:英国剑桥大学的学生______和法国年轻的天文学家______根据天王星的观测资料,利用万有引力定律计算出天王星外“新”行星的轨道.1846年9月23日,德国的______在勒维耶预言的位置附近发现了这颗行星——海王星.2.其他天体的发现:海王星的轨道之外残存着太阳系形成初期遗留的物质,近100年来,人们发现了______、阋神星等几个较大的天体.四、预言哈雷彗星回归英国天文学家哈雷计算了1531年、1607年和1682年出现的三颗彗星的轨道,他大胆预言这三颗彗星是同一颗星,周期约为______,并预言了这颗彗星再次回归的时间.1759年3月这颗彗星如期通过了______点,它最近一次回归是1986年,它的下次回归将在______年左右.1.同一中心天体的两颗行星,公转半径越大,向心加速度越大.( )2.同一中心天体质量不同的两颗行星,若轨道半径相同,速率不一定相同.( )3.近地卫星的周期最小.( )4.地球同步卫星根据需要可以定点在北京正上空.( )5.极地卫星通过地球两极,且始终和地球某一经线平面重合.( )6.不同的同步卫星的质量不一定相同,但离地面的高度是相同的.( )4 宇宙航行1.会推导第一宇宙速度,知道三个宇宙速度的含义2.了解人造地球卫星的历史及现状,认识同步卫星的特点3.了解人类对太空的探索历程和我国载人航天工程的发展.一、宇宙速度:牛顿的设想及第一宇宙速度的推导牛顿曾提出过一个著名的理想实验:如图1所示,从高山上水平抛出一个物体,当抛出的速度足够大时,物体将环绕地球运动,成为人造地球卫星.据此思考并讨论以下问题:图11.当抛出速度较小时,物体做什么运动?当物体刚好不落回地面时,物体做什么运动?当抛出速度非常大时,物体还能落回地球吗?2.已知地球的质量为m地,地球半径为R,引力常量为G,若物体紧贴地面飞行而不落回地面,其速度大小为多少?3.已知地球半径R=6 400 km,地球表面的重力加速度g=10 m/s2,则物体环绕地球表面做圆周运动的速度多大?二、三个宇宙速度及含义三、人造地球卫星1.1.1957年10月4日,世界上第一颗人造地球卫星发射成功.1970年4月24日,我国第一颗人造地球卫星“东方红1号”发射成功.为我国航天事业作出特殊贡献的科学家钱学森被誉为“中国航2.地球同步卫星的特点地球同步卫星位于赤道上方高度约______处,因____________,也称静止卫星.地球同步卫星与地球以______的角速度转动,周期与地球自转周期______.四、载人航天与太空探索1.1961年苏联航天员加加林进入东方一号载人飞船,铸就了人类首次进入太空的丰碑.2.1969年,美国阿波罗11号飞船发射升空,拉开人类登月这一伟大历史事件的帷幕.3.2003年10月15日9时,我国神舟五号宇宙飞船把中国第一位航天员杨利伟送入太空,截至2017年底,我国已经将11名航天员送入太空,包括两名女航天员.4.2013年6月,神舟十号分别完成与天宫一号空间实验室的手动和自动交会对接;2016年10月19日,神舟十一号完成与天宫二号空间实验室的自动交会对接.2017年4月20日,我国发射了货运飞船天舟一号,入轨后与天宫二号空间实验室进行自动交会对接、自主快速交会对接等3次交会对接及多项实验.1.同步卫星的运行速度一定小于地球第一宇宙速度.()2.若物体的发射速度大于第二宇宙速度而小于第三宇宙速度,则物体绕太阳运行.()3.人造卫星绕地球在圆轨道上运行时的速度大于或等于7.9 km/s、小于11.2 km/s()4.第二宇宙速度是在地面附近使物体可以挣脱地球引力束缚,成为绕太阳运行的人造行星的最小发射速度()5.第一宇宙速度7.9 km/s是人造地球卫星绕地球做圆周运动的最大运行速度()6.同步通信卫星的角速度虽已确定,但高度和速率可以选择,高度增加,速率增大,高度降低,速率减小,仍同步()7.若已知地球的半径和地球表面的重力加速度,即可求出第一宇宙速度()6 卫星变轨问题和双星问题一、卫星的变轨问题1.如图是飞船从地球上发射到绕月球运动的飞行示意图.① 请思考:从绕地球运动的轨道上进入奔月轨道,飞船应采取什么措施?为什么?② 从奔月轨道进入月球轨道,又应采取什么措施?为什么?2.如图2,发射卫星时,先将卫星发射至近地圆轨道Ⅰ,在Q 点点火加速做离心运动进入椭圆轨道Ⅰ,在P 点点火加速,使其满足GMm r 2=m v 2r,进入圆轨道Ⅰ做圆周运动.图2① 设卫星在圆轨道Ⅰ和Ⅰ上运行时的速率分别为v 1、v 3,在椭圆轨道Ⅰ上经过Q 点和P 点时的速率分别为v Q 、v P ,试比较这几个速度的大小关系.② 试比较卫星在轨道Ⅰ、Ⅰ、Ⅰ上运行时的周期T 1、T 2、T 3的大小关系.③ 试比较卫星在轨道Ⅰ上的加速度大小a 1,轨道Ⅰ上的加速度大小a 3,椭圆轨道上经过Q 点和P 点的加速度大小a Q 、a P 的大小.④ 卫星从轨道Ⅰ到轨道Ⅰ需要在Q 点加速即vQ>v1;从轨道Ⅰ到轨道Ⅰ需要在P 点加速,即v3>vP ;又v1>v3,它们矛盾吗?二、航天器的对接问题若飞船和空间站在同一轨道上,飞船加速能否追上前方的空间站?。
人教版(新教材)必修二第七章第三节万有引力理论的成就解析版
第七章万有引力与宇宙航行 第三节万有引力理论成就【重难点突破】【例1】.(2021·山东·惠民二中高一月考)寻找地球外文明一直是科学家们不断努力的目标.为了探测某行星上是否存在生命,科学家们向该行星发射了一颗探测卫星,卫星在离行星表面高度为R 的轨道上绕该行星做匀速圆周运动,已知卫星周期为T ,卫星的质量为m ,引力常量为G ,行星的半径也为R ,求: (1)行星的质量M ;(2)行星的密度ρ; (结果用G 、M 、R 表示) 【答案】(1)23232R M GT π=;(2)224GT πρ=【解析】 (1)由万有引力提供向心力得:()2224G22Mmm R TR π= 解得 :23232M R GTπ= (2)由ρM V = , 34V 3R π= 解得:224GT πρ=【变式1】.(2021·辽宁本溪·高一期末)某行星的质量与地球的质量相等,但是它的半径只有地球半径的一半,已知地球的半径为R ,地球表面的重力加速度为g ,万有引力常量为G ,求:此行星表面的重力加速度; 【答案】4g ;【解析】 (1)在星球表面有重力等于万有引力,即 2Mmmg GR = 解得 2GMg R= 则有 222214114GM g R M R GM g M R R ===⨯=行行行地行地地行地 星球表面的重力加速度为 4g g =行【例2】.(2021·福建·福清西山学校高三月考)宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t 小球落回原处。
(取地球表面重力加速度g 1=10m/s 2,空气阻力不计, 该星球的半径与地球半径之比为R 星∶R 地=1∶4) 求:(1) 求该星球表面附近的重力加速度g 2; (2) 求该星球的质量与地球质量之比M 星∶M 地。
【答案】(1)22m/s ;(2)1:80【解析】 (1)竖直上抛运动的总时间 02v t g= 因为初速度相同,时间之比为1:5,所以星球表面的重力加速度 22112m/s 5g g == (2)设星球表面有一物体质量为m ,则2GMm mg R = 所以 GgR M 2= 即 21115480M M =⨯=星地 【变式2】.(2021·浙江·高一月考)1990年5月,紫金山天文台将他们发现的第2752号小行星命名为吴健雄星,该小行星的半径为16km 。
万有引力理论的成就-课件
准确性。
3
开普勒
观测行星运动,发现了行星轨道规律, 并证明了万有引力定律。
万有引力理论的应用
日地运动
解释了地球绕太阳运 动的规律,导致季节 变化等气候现象。
行星运动
解释了行星绕太阳的 轨道及行星间的相对 位置。
卫星轨道
计算和控制卫星在地 球轨道上的飞行路径 和速度。
地球重力
牵引物体朝向地心, 决定物体在地球表面 的重量。
万有引力理论的局限性
1 狭义相对论的挑战
对于高速运动和强引力环境下的物体,牛顿力学无法准确描述。
2 暗物质和暗能量的未知
目前对于宇宙中存在的暗物质和暗能量的本质和性质还没有完全理解。
结论
万有引力理论对现代物理学做出了重要贡献,并成为了探索宇宙奥秘和未知 领域的起点。我们仍然面临着挑战,但也期待着未来更深入的探索。
描述物体运动的基本规律, 包括惯性、力和作用反作用 原理。
牛顿运动பைடு நூலகம்律
解释物体受力后的加速度变 化,以及力和质量的关系。
牛顿万有引力定律
描述物体之间的引力与质量 和距离的关系,解释了宇宙 中的万有引力现象。
证明万有引力定律的实验
1
费马
通过勾股定理和光学原理,证明了万有
胡克
2
引力定律的数学形式。
通过钟摆实验,验证了万有引力定律的
万有引力理论的成就
万有引力理论是一项伟大的科学成就,它深刻影响了人们对于宇宙的认识。 让我们一起探索这一理论的奥秘和重要性。
简介
万有引力理论是描述物体之间相互作用的力,由英国科学家牛顿在17世纪提 出。这一理论的重要性在于它解释了宇宙中的运动规律,并奠定了经典物理 学的基础。
牛顿力学的贡献
牛顿三定律
万有引力理论的成就
万有引力理论的成就自古以来,人类对于宇宙中万物运动的规律一直充满了好奇与探索。
而伟大科学家牛顿的发现,令人耳目一新的万有引力理论,为人类揭开了宇宙奥秘的一道大门。
本文将重点探讨万有引力理论的成就,并对其对科学研究和日常生活的影响进行分析。
一、发现万有引力理论的牛顿伊萨克·牛顿,17世纪英国著名物理学家和数学家,被誉为“自然科学皇冠上最辉煌的明珠”。
在1665年至1666年牛顿在家等待着大规模瘟疫解除的这段时间里,开始了对万有引力的思考,并于1666年发表了他的第一个最重要的科学论著《自然哲学的数学原理》。
在这本著作中,牛顿提出了万有引力理论。
他认为,地球上的万物都受到了一种相互吸引的力量的支配,而这个力量就是“引力”。
在此基础上,牛顿进一步研究了行星运动规律,并成功解释了行星轨道的形状和运动速度等问题。
这一伟大的发现,使牛顿成为了科学史上的巨人,并为其之后的科学研究立下了坚实的基础。
二、1. 解释了行星运动规律牛顿的万有引力理论为解释行星运动的规律提供了重要的线索。
他根据开普勒的定律和他自己的引力理论,成功预测了行星运动的轨迹以及行星与太阳的相互作用。
这一成就使得人们对行星运动的规律有了更深入的理解,并进一步推动了天文学的发展。
2. 揭示了物体运动的规律牛顿的万有引力理论不仅适用于天体运动,还适用于物体在地球上的运动。
根据牛顿的第二定律和万有引力理论,人们可以计算出物体在重力作用下的运动速度,这为工程学和机械学的发展提供了基础。
例如,设计建造桥梁和飞机等工程项目时,人们可以利用这些理论来计算负荷、强度和稳定性等问题。
3. 促进了科学方法的发展万有引力理论作为自然科学的重要组成部分,为科学方法的发展做出了贡献。
牛顿的理论是基于大量的实验观察和数学推导得出的,并通过实验验证取得了成功。
这种基于观察和实验的科学方法为后来的科学研究提供了范例和指导,成为了现代科学方法的基石。
三、万有引力理论的影响1. 深化了人们对宇宙的认知万有引力理论的提出,揭示了地球和天体之间的相互作用,使人们对宇宙的结构和运动规律有了更清晰的认识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.了解万有引力理论的重要成就,掌握计算天体质量和密度的基本思路。 2.掌握运用万有引力定律和圆周运动知识分析天体运动问题的基本思 路。 3.掌握天体的线速度、角速度、周期及向心加速度与轨道半径的关系。 4.掌握双星系统的运动特点及其问题的分析方法。
01课前自主学习
02课堂探究评价
3.双星的两个结论
(1)双星的运动半径与质量成反比,即 。
(2)双星的质量之和:m1+m2= 。
01课前自主学习
02课堂探究评价
03课后课时作业
例 4 两个靠得很近的天体,离其他天体非常遥远,它们均以其连线上 某一点 O 为圆心做匀速圆周运动,两者的距离保持不变,科学家把这样的两 个天体称为“双星”,如图所示。已知双星的质量分别为 m1 和 m2,它们之 间的距离为 L,求双星的运行轨道半径 r1 和 r2 及运行周期 T。
A.甲的运行周期一定比乙的长 B.甲距地面的高度一定比乙的高 C.甲的向心力一定比乙的小 D.甲的向心加速度一定比乙的大
01课前自主学习
02课堂探究评价
03课后课时作业
[规范解答] 甲的速率大,由 GMr2m=mvr2,得 v=
GM,由此可知, r
甲碎片的轨道半径小,距地面的高度小,故 B 错误;由 GMr2m=m4Tπ22r,得 T
01课前自主学习
02课堂探究评价
03课后课时作业
[变式训练1] 若地球绕太阳公转周期及公转轨道半径分别为 T 和 R,月
球绕地球公转周期和公转轨道半径分别为 t 和 r,则太阳质量与地球质量之比
为( )
R3t2
R3T2
R3t2
R2T3
A.r3T2 B. r3t2 C.r2T3 D. r2t3
答案 A
A.ρ=23πgG0d B.ρ=g30πTd2 C.ρ=G3Tπ2 D.ρ=6πMd3
01课前自主学习
02课堂探究评价
03课后课时作业
[规范解答]
由 ρ=MV ,V=43πd23,得 ρ=6πMd3,D 正确;由 GMdm2 =mg0, 2
ρ=MV ,V=43πd23,联立解得 ρ=23πgG0d,A 正确;根据近地卫星的周期与中心
天体密度的关系 ρ=G3Tπ2可知,C 正确。
[完美答案] ACD
01课前自主学习
02课堂探究评价
03课后课时作业
答案
三、天体运动中各物理量与轨道半径的关系
☆ 以上结论可总结为:“一定四定(即:r定了,v、ω、T、a都定了),越远越慢”。
01课前自主学习
02课堂探究评价
03课后课时作业
例 3 俄罗斯的“宇宙-2251”卫星和美国的“铱-33”卫星在西伯利 亚上空约 805 km 处发生碰撞,这是历史上首次发生的完整在轨卫星碰撞事 件。碰撞过程中产生的大量碎片可能会影响太空环境。假定有甲、乙两块碎 片绕地球运动的轨道都是圆,甲的运行速率比乙的大,则下列说法中正确的 是( )
03课后课时作业
一、计算天体的质量和密度
01课前自主学习
02课堂探究评价
03课后课时作业
☆ 利用环绕法只能求中心 天体质量,而不能求环绕中 心天体运行的卫星(或行星) 的质量。
☆ GM=gR2,该公式通常
被称为“黄金代换式”,即 当GM不知道时,可以用gR2 来代换GM。
二、其他成就 1.发现未知天体 (1)海王星的发现:英国剑桥大学的学生亚当斯和法国年轻的天文学家勒维 耶根据天王星的观测资料,各自独立地利用万有引力定律计算出天王星外“ 新”行星的轨道。1846年9月23日,德国的伽勒在勒维耶预言的位置附近发现 了这颗行星——海王星。
01课前自主学习
02课堂探究评价
03课后课时作业
[规范解答] 由双星系统的特点可知 r1+r2=L, 对 m1:GmL1m2 2=m1ω2r1;对 m2:GmL1m2 2=m2ω2r2。 联立解得 r1=mL1+m2m2,r2=mL1+m1m2 再由 GmL1m2 2=m14Tπ22r1 及 r1=mL1+m2m2,
=
4π2r3,可知甲的运行周期小,故 GM
A
错误;由于未知两碎片的质量,无
法判断向心力的大小,故 C 错误;由GMr2m=ma,得 a=GrM2 ,可知甲的向心
加速度比乙的大,故 D 正确。
[完美答案] D
01课前自主学习
02课堂探究评价
03课后课时作业
答案
四、双星问题
1.如图所示,两个离得比较近的天体,在彼此间的引力作
用下绕两者连线上的某一点做圆周运动,这样的两颗星体组成
的系统称为双星系统。
2.双星系统的特点
(1)两颗星体各自所需的向心力由=m1ω2r1=m2ω2r2。
(2)两颗星体的运动周期及角速度都相同,即T1=T2,ω1=ω2
。
(3)两颗星体的轨道半径与它们之间距离的关系为:r1+r2=L 。
(2)其他天体的发现:近100年来,人们在海王星的轨道之外又发现了冥王星 、阋神星等几个较大的天体。
2.预言哈雷彗星回归 英国天文学家哈雷预言哈雷彗星回归的周期为76年。海王星的发现和哈雷 彗星的“按时回归”确立了万有引力定律的地位。 3.牛顿还用月球和太阳的万有引力解释了潮汐现象,用万有引力定律和其 他力学定律,推测地球呈赤道处略为隆起的扁平形状。万有引力定律还可以 用于分析地球表面重力加速度微小差异的原因,以及指导重力探矿。
01课前自主学习
02课堂探究评价
03课后课时作业
答案
解得周期 T=
G(m4π1+2L3m2)。
[完美答案] r1=mL1+m2m2 r2=mL1+m1m2
T=
4π2L3 G(m1+m2)
01课前自主学习
02课堂探究评价
03课后课时作业
答案
判一判 (1)天王星是依据万有引力定律计算的轨道而发现的。( × ) (2)海王星的发现确立了万有引力定律的地位。( √ ) (3)牛顿根据万有引力定律计算出了海王星的轨道。( × )
解析
由
GMr2m=
4π2 m T2 r
得
M∝Tr32,则MM太 地=RT23·rt23=rR33Tt22,A
正确。
01课前自主学习
02课堂探究评价
03课后课时作业
答案
解析
例 2 (多选)2011 年 7 月在摩洛哥坠落的陨石被证实来自火星,某同学 想根据平时收集的部分火星资料(如图所示)计算出火星的密度,再与这颗陨 石的密度进行比较。下列计算火星密度的式子,正确的是(引力常量 G 已知, 忽略火星自转的影响)( )