江苏高考应用题含解析

合集下载

江苏省高考数学填空解答题专项拔高训练 实际应用问题 答案

江苏省高考数学填空解答题专项拔高训练 实际应用问题 答案

专题14 实际应用问题考情分析年份2013 2014 2015 2016 2017 2018 2019题号18 18 17 17 18 17 18真题再现1.(2019·江苏卷)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥是圆O的直径规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA,规划要求:线段PB、QA 上的所有点到点O的距离均不小于圆O的半径已知点A、B到直线l的距离分别为AC和、D为垂足,测得单位:百米.若道路PB与桥AB垂直,求道路PB的长;在规划要求下,P和Q中能否有一个点选在D处?并说明理由;在规划要求下,若道路PB和QA的长度均为单位:百米,求当d最小时,P、Q两点间的距离.【答案】解:设BD与圆O交于M,连接AM,AB为圆O的直径,可得,即有,以C为坐标原点,l为x轴,建立直角坐标系,则设点,则,即,解得,所以;当时,QA上的所有点到原点O的距离不小于圆的半径,设此时,则,即,解得,由,在此范围内,不能满足PB,QA上所有点到O的距离不小于圆的半径,所以P,Q中不能有点选在D点;设,则,,则,当d最小时,.2.(2018·江苏卷)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧为此圆弧的中点和线段MN构成已知圆O的半径为40米,点P到MN的距离为50米现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求A,B均在线段MN上,C,D均在圆弧上设OC与MN所成的角为.用分别表示矩形ABCD和的面积,并确定的取值范围;若大棚I内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:求当为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】解:,,当B、N重合时,最小,此时;当C、P重合时,最大,此时,的取值范围是;设年总产值为y,甲种蔬菜单位面积年产值为4t,乙种蔬菜单位面积年产值为3t,则,其中;设,则;令,解得,此时;当时,单调递增;当时,单调递减;时,取得最大值,即总产值y最大.答:,,;时总产值y最大.3.(2017·江苏卷)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为,容器Ⅱ的两底面对角线EG,的长分别为14cm和分别在容器Ⅰ和容器Ⅱ中注入水,水深均为现有一根玻璃棒l,其长度为容器厚度、玻璃棒粗细均忽略不计将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱上,求l没入水中部分的长度;将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱上,求l没入水中部分的长度.【答案】解:设玻璃棒在上的点为M,玻璃棒与水面的交点为N,在平面ACM中,过N作,交AC于点P,为正四棱柱,平面ABCD,又平面ABCD,,,且,解得,∽,,得.玻璃棒l没入水中部分的长度为16cm.设玻璃棒在上的点为M,玻璃棒与水面的交点为N,在平面中,过点N作,交EG于点P,过点E作,交于点Q,为正四棱台,,,为等腰梯形,画出平面的平面图,,,由勾股定理得:,,根据正弦定理得:,,.玻璃棒l没入水中部分的长度为20cm.核心要点解决应用题的首要环节是将实际问题转化为数学问题,然后解决数学问题,最终来解决实际问题。

赏析一道高考应用题

赏析一道高考应用题
度为 1 5 试 问 d为多少 时 , 一 最 大. 2 m, a
1 背 景 分 析
,) o.
( ) B一旦 1 由A
,D一 B
tan
)A Z B+B z D

“ 奇奥莫 塔努斯 的极 大值 问题” 数 学家 J 雷 : ・ 米勒 (o a n sMtlr J h n e ie)于 1 7 年 向埃 尔富特教 l 41
( )由 题 设 知 d — AB, tn 2 得 a a一 _ 由 AB H

呈现最长 ? 即在什 么 部位 , ( 可见 角 为最 大 ? ”后 )
来 , 他 的 诞 生 地 法 兰 克 王 国 歌 尼 斯 堡 把 该 问 题 在

AD B 面 一 ~n 得 t 一 d , D t H h t p, a a 所
21 0 0年 第 6期 中学 数 学教 学 5 5
赏析 一道 高考 应 用 题
江 苏省 盱 眙 中学 周 志 国 ( 邮编 :1 7 0 2 10 )
2 1 年 江苏高考 ( 00 理科) 1 题 , 第 7 是一道 以解 析几何为背景 的应用题 , 该题设计 新颖 , 融三 角 函 数、 解析 几何 、 立体几 何 、 等式知 识 于一体 , 源 不 来 于生活 , 以较好 地考查 学生 的应 用能力 , 可 并综 合 应 用所学 的知 识解 决 问题 的能力 , 同时 也有 很 大 的教学研 究价值. 现将此题抄 录如下 :
某 兴 趣 小 组 要 测
2 试 题 原 型 追 踪
本题来 源 于 平 时各 类 复 习 资料 上 常 见 的这 样问题 (9 6年全 国 高考题 ) 18 :
在 平 面 直 角 坐 标 系 中 , 知 A( , )B( , 已 0 n 、 O 6( )口> b> O , 在 轴 正 半 轴 上 找 一 点 C, )试 使

2022年江苏省高考数学真题及参考答案

2022年江苏省高考数学真题及参考答案

2022年江苏省高考数学真题及参考答案一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{}4<x x M =,{}13N ≥=x x ,则N M ⋂=()A.{}20<x x ≤ B.⎭⎬⎫⎩⎨⎧≤231<x xC.{}163<x x ≤ D.⎭⎬⎫⎩⎨⎧≤1631<x x2.已知()11=-z i ,则=+z z()A.2- B.1- C.1 D.23.在ABC ∆中,点D 在边AB 上,DA BD 2=.记m A C=,n D C=,则=B C()A.nm23- B.nm32+- C.nm23+ D.nm32+4.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为140.0km ²;水位为海拔157.5m 时,相应水面的面积为180.0km ².将该水库在这两个水位间的形状看做一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为()65.27≈()A.39100.1m⨯ B.39102.1m⨯ C.39104.1m⨯ D.39106.1m⨯5.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.61 B.31 C.21 D.326.记函数()()04sin >ωπωb x x f +⎪⎭⎫ ⎝⎛+=的最小正周期为T .若ππ223<<T ,且()x f y =的图象关于点⎪⎭⎫ ⎝⎛223,π中心对称,则=⎪⎭⎫ ⎝⎛2πf ()A.1B.23 C.25 D.37.设1.01.0ea =,91=b ,9.0ln -=c ,则()A.c b a << B.a b c << C.b a c << D.bc a <<8.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为π36,且333≤≤l ,则该正四棱锥体积的取值范围是()A.⎥⎦⎤⎢⎣⎡48118, B.⎥⎦⎤⎢⎣⎡481427, C.⎥⎦⎤⎢⎣⎡364427, D.[]27,18二、选择题:本题共4小题,每小题5分,共20分。

普通高等学校招生全国统一考试(江苏卷)数学答案解析(正式版)(解析版)

 普通高等学校招生全国统一考试(江苏卷)数学答案解析(正式版)(解析版)

一、填空题:本大题共14个小题,每小题5分,共70分.1.已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A Y 中元素的个数为_______. 【答案】5 【解析】试题分析:{123}{245}{12345}5A B ==U U ,,,,,,,,,个元素 考点:集合运算2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________. 【答案】6考点:平均数3.设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______. 5 【解析】试题分析:22|||34|5||5||5zi z z =+=⇒=⇒= 考点:复数的模4.根据如图所示的伪代码,可知输出的结果S 为________.【答案】7 【解析】试题分析:第一次循环:3,4S I ==;第二次循环:5,7S I ==;第三次循环:7,10S I ==;结束循环,输出7.S =考点:循环结构流程图5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.【答案】5.6考点:古典概型概率6.已知向量a =)1,2(,b=)2,1(-,若m a +n b =)8,9(-(R n m ∈,),n m -的值为______. 【答案】3- 【解析】试题分析:由题意得:29,282,5, 3.m n m n m n m n +=-=-⇒==-=- 考点:向量相等 7.不等式224x x-<的解集为________.S ←1 I ←1While I <10 S ←S +2 I ←I +3 End While Print S(第4题图)【答案】(1,2).- 【解析】试题分析:由题意得:2212x x x -<⇒-<<,解集为(1,2).- 考点:解指数不等式与一元二次不等式 8.已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 【答案】3 【解析】试题分析:12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++- 考点:两角差正切公式9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个。

普通高等学校招生国统一考试数学试题江苏卷,解析 试题

普通高等学校招生国统一考试数学试题江苏卷,解析 试题

卜人入州八九几市潮王学校2021年普通高等招生全国统一考试数学试题〔卷,解析〕参考公式:〔1〕样本数据12,,,n x x x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑〔2〕直柱体的侧面积S ch =,其中c 为底面周长,h 是高 〔3〕柱体的体积公式VSh =,其中S 为底面面积,h 是高一、填空题:本大题一一共14小题,每一小题5分,一共70分。

请把答案填写上在答题卡相应位置上........。

1、集合{1,1,2,4},{1,0,2},A B =-=-那么_______,=⋂B A答案:{}1-,22、函数)12(log )(5+=x x f 的单调增区间是__________ 答案:+∞1(-)23、设复数i 满足i z i 23)1(+-=+〔i 是虚数单位〕,那么z 的实部是_________ 答案:14、根据如下列图的伪代码,当输入b a ,分别为2,3时,最后输出的m 的值是________答案:35、从1,2,3,4这四个数中一次随机取两个数,那么其中一个数是另一个的两倍的概率是______ 答案:136、某教师从星期一到星期五收到信件数分别是10,6,8,5,6,那么该组数据的方差___2=s解析:可以先把这组数都减去6再求方差,1657、,2)4tan(=+πx 那么xx2tan tan 的值是__________解析:22tan()11tan tan 1tan 44tan tan(),2tan 443tan 229tan()141tan x x x x x x x x x xππππ+-+-===++(-)===-8、在平面直角坐标系xOy 中,过坐标原点的一条直线与函数xx f 2)(=的图象交于P 、Q 两点,那么线段PQ 长的最小值是________解析:4,设交点为2(,)x x ,2(,)x x--,那么224(2)()4PQ x x =+≥9、函数ϕϕ,,(),sin()(w A wx A x f +=是常数,)0,0>>w A 的局部图象如下列图,那么____)0(=f解析:由图可知:72,,2,41234T A πππω==-==22,33k k πϕπϕπ⨯+==-10、→→21,e e 是夹角为π32的两个单位向量,,,22121→→→→→→+=-=e e k b e e a假设0=⋅→→b a 解析:由0=⋅→→b a 得:k=211、实数0≠a,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,假设)1()1(a f a f +=-,那么a 的值是________ 解析:30,2212,2a a a a a a >-+=---=-,30,1222,4a a a a a a <-+-=++=- 12、在平面直角坐标系xOy 中,点P 是函数)0()(>=x e x f x 的图象上的动点,该图象在P 处的切线l 交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,那么t 的最大值是_____________ 解析:设00(,),x P x e那么00000:(),(0,(1))x x x l y e e x x M x e -=-∴-,过点P 作l 的垂线000000(),(0,)x x x x y e e x x N e x e ---=--+,00000000011[(1)]()22x x x x x x t x e e x e e x e e --=-++=+-00'01()(1)2x x t e e x -=+-,所以,t 在(0,1)上单调增,在(1,)+∞单调减,max 11()2t e e=+。

江苏物理2022高考真题

江苏物理2022高考真题

江苏物理2022高考真题2022年江苏省物理高考题一、选择题1. 下列物体中,滑动摩擦力是行驶摩擦力的情景是(D)A.行驶摩擦力=0,物体匀速运动B.行驶摩擦力>0,物体加速运动C.行驶摩擦力>0,物体匀速运动D.行驶摩擦力<0,物体加速运动解析:选项D中,物体向右方加速移动,施加在物体上的摩擦力方向与物体运动方向相反,所以滑动摩擦力为行驶摩擦力的情况。

2. 如图所示,两个质量均为m的物体由两根粗绳绑在一起,一根绳从斜面底端穿过固定在水平面上的定滑轮,并与包围定滑轮并与包围定滑轮上的等半径的细绳悬挂,一根挂球的物体,另一根挂在裁球上,彼此间无摩擦。

将球体沿斜面向下迅速推一段距离,然后释放,此时m1、m2底端与地面之间的摩擦一依然是静摩擦力作用。

试问物体在什么条件下m1可匀速下滑?A.斜面和水平面理想光滑,定滑轮质量可忽略B.定滑轮和绳子均理想无质量,定滑轮可转动C.两根绳和滑轮无质量D.斜面和水平面均可理想无摩擦力,定滑轮够忽略解析:选项A,因斜面和水平面都理想光滑,摩擦力为0,m1才能匀速下滑。

3. 如图所示,将三根绳件拼成一个等腰直角三角形木的第一次和第二次拼接方式的刚度$q_1$、$q_2$,三根绳上端与支点用螺丝栓固定,两束绳的有效长度分别为l1、l2。

此时假设绳的单纯张力不变,绳的质量可忽略,绳是不一样的。

A.仅第一次拼接方式B.仅第二次拼接方式C.两种拼接方式办法联系D.两种拼接办法联系是正确的解析:选项C,第一次和第二次拼接办法中,绳长都一样,绳材厚度均一样,两根绳的刚度分别为$q_1$和$q_2$。

4. 假定在太空没有空气,一个质量为10kg的质点用一根绳悬挂在木架上,绳作用在质点上的力T(当$g=10m/s^2$时),若以位置的牵引把该绳拉直,拉的速度为0.1m/s求绳上拉的力T?A.10NB.5NC.20ND.100N解析:选项A。

设拉力为T’,即$T’+mg=ma$,代入$m=10kg$,$g=10m/s^2$消掉未知数组得$T’=100N-10m/s^2*10kg$。

高考数学试卷(含答案解析)

高考数学试卷(含答案解析)

江苏省高考数学试卷一.填空题1.(5分)已知集合A={1, 2}, B={a, a2+3}.若A∩B={1}, 则实数a的值为.2.(5分)已知复数z=(1+i)(1+2i), 其中i是虚数单位, 则z的模是.3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品, 产量分别为200, 400, 300, 100件.为检验产品的质量, 现用分层抽样的方法从以上所有的产品中抽取60件进行检验, 则应从丙种型号的产品中抽取件.4.(5分)如图是一个算法流程图:若输入x的值为, 则输出y的值是.5.(5分)若tan(α﹣)=.则tanα=.6.(5分)如图, 在圆柱O1O2内有一个球O, 该球与圆柱的上、下底面及母线均相切, 记圆柱O1O2的体积为V1, 球O的体积为V2, 则的值是.7.(5分)记函数f(x)=定义域为D.在区间[﹣4, 5]上随机取一个数x, 则x∈D的概率是.8.(5分)在平面直角坐标系xOy中, 双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P, Q, 其焦点是F1, F2, 则四边形F1PF2Q的面积是.9.(5分)等比数列{a n}的各项均为实数, 其前n项为S n, 已知S3=, S6=, 则a8=.10.(5分)某公司一年购买某种货物600吨, 每次购买x吨, 运费为6万元/次, 一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小, 则x的值是.11.(5分)已知函数f(x)=x3﹣2x+e x﹣, 其中e是自然对数的底数.若f (a﹣1)+f(2a2)≤0.则实数a的取值范围是.12.(5分)如图, 在同一个平面内, 向量, , 的模分别为1, 1, , 与的夹角为α, 且tanα=7, 与的夹角为45°.若=m+n(m, n ∈R), 则m+n=.13.(5分)在平面直角坐标系xOy中, A(﹣12, 0), B(0, 6), 点P在圆O:x2+y2=50上.若≤20, 则点P的横坐标的取值范围是.14.(5分)设f(x)是定义在R上且周期为1的函数, 在区间[0, 1)上, f (x)=, 其中集合D={x|x=, n∈N*}, 则方程f(x)﹣lgx=0的解的个数是.二.解答题15.(14分)如图, 在三棱锥A﹣BCD中, AB⊥AD, BC⊥BD, 平面ABD⊥平面BCD, 点E、F(E与A、D不重合)分别在棱AD, BD上, 且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.16.(14分)已知向量=(cosx, sinx), =(3, ﹣), x∈[0, π].(1)若∥, 求x的值;(2)记f(x)=, 求f(x)的最大值和最小值以及对应的x的值.17.(14分)如图, 在平面直角坐标系xOy中, 椭圆E:=1(a>b>0)的左、右焦点分别为F1, F2, 离心率为, 两准线之间的距离为8.点P在椭圆E上, 且位于第一象限, 过点F1作直线PF1的垂线l1, 过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1, l2的交点Q在椭圆E上, 求点P的坐标.18.(16分)如图, 水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm, 容器Ⅰ的底面对角线AC的长为10cm, 容器Ⅱ的两底面对角线EG, E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水, 水深均为12cm.现有一根玻璃棒l, 其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中, l的一端置于点A处, 另一端置于侧棱CC1上, 求l 没入水中部分的长度;(2)将l 放在容器Ⅱ中, l 的一端置于点E 处, 另一端置于侧棱GG 1上, 求l 没入水中部分的长度.19.(16分)对于给定的正整数k, 若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立, 则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”, 又是“P (3)数列”, 证明:{a n }是等差数列.20.(16分)已知函数f(x)=x3+ax2+bx+1(a>0, b∈R)有极值, 且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式, 并写出定义域;(2)证明:b2>3a;(3)若f(x), f′(x)这两个函数的所有极值之和不小于﹣, 求a的取值范围.二.非选择题, 附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.如图, AB为半圆O的直径, 直线PC切半圆O于点C, AP⊥PC, P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.[选修4-2:矩阵与变换]22.已知矩阵A=, B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2, 求C2的方程.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中, 已知直线l的参数方程为(t为参数), 曲线C的参数方程为(s为参数).设P为曲线C上的动点, 求点P到直线l的距离的最小值.[选修4-5:不等式选讲]24.已知a, b, c, d为实数, 且a2+b2=4, c2+d2=16, 证明ac+bd≤8.【必做题】25.如图, 在平行六面体ABCD﹣A1B1C1D1中, AA1⊥平面ABCD, 且AB=AD=2, AA1=, ∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.26.已知一个口袋有m个白球, n个黑球(m, n∈N*, n≥2), 这些球除颜色外全部相同.现将口袋中的球随机的逐个取出, 并放入如图所示的编号为1, 2, 3, …, m+n的抽屉内, 其中第k次取出的球放入编号为k的抽屉(k=1, 2, 3, …, m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数, E(X)是X的数学期望, 证明E(X)<.江苏省高考数学试卷参考答案与试题解析一.填空题1.(5分)(2020•江苏)已知集合A={1, 2}, B={a, a2+3}.若A∩B={1}, 则实数a的值为1.【分析】利用交集定义直接求解.【解答】解:∵集合A={1, 2}, B={a, a2+3}.A∩B={1},∴a=1或a2+3=1,解得a=1.故答案为:1.【点评】本题考查实数值的求法, 是基础题, 解题时要认真审题, 注意交集定义及性质的合理运用.2.(5分)(2020•江苏)已知复数z=(1+i)(1+2i), 其中i是虚数单位, 则z 的模是.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i,∴|z|==.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式, 考查了推理能力与计算能力, 属于基础题.3.(5分)(2020•江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品, 产量分别为200, 400, 300, 100件.为检验产品的质量, 现用分层抽样的方法从以上所有的产品中抽取60件进行检验, 则应从丙种型号的产品中抽取18件.【分析】由题意先求出抽样比例即为, 再由此比例计算出应从丙种型号的产品中抽取的数目.【解答】解:产品总数为200+400+300+100=1000件, 而抽取60辆进行检验, 抽样比例为=,则应从丙种型号的产品中抽取300×=18件,故答案为:18【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致, 按照一定的比例, 即样本容量和总体容量的比值, 在各层中进行抽取.4.(5分)(2020•江苏)如图是一个算法流程图:若输入x的值为, 则输出y 的值是﹣2.【分析】直接模拟程序即得结论.【解答】解:初始值x=, 不满足x≥1,所以y=2+log2=2﹣=﹣2,故答案为:﹣2.【点评】本题考查程序框图, 模拟程序是解决此类问题的常用方法, 注意解题方法的积累, 属于基础题.5.(5分)(2020•江苏)若tan(α﹣)=.则tanα=.【分析】直接根据两角差的正切公式计算即可【解答】解:∵tan(α﹣)===∴6tanα﹣6=tanα+1,解得tanα=,故答案为:.【点评】本题考查了两角差的正切公式, 属于基础题6.(5分)(2020•江苏)如图, 在圆柱O1O2内有一个球O, 该球与圆柱的上、下底面及母线均相切, 记圆柱O1O2的体积为V1, 球O的体积为V2, 则的值是.【分析】设出球的半径, 求出圆柱的体积以及球的体积即可得到结果.【解答】解:设球的半径为R, 则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则==.故答案为:.【点评】本题考查球的体积以及圆柱的体积的求法, 考查空间想象能力以及计算能力.7.(5分)(2020•江苏)记函数f(x)=定义域为D.在区间[﹣4, 5]上随机取一个数x, 则x∈D的概率是.【分析】求出函数的定义域, 结合几何概型的概率公式进行计算即可.【解答】解:由6+x﹣x2≥0得x2﹣x﹣6≤0, 得﹣2≤x≤3,则D=[﹣2, 3],则在区间[﹣4, 5]上随机取一个数x, 则x∈D的概率P==,故答案为:【点评】本题主要考查几何概型的概率公式的计算, 结合函数的定义域求出D, 以及利用几何概型的概率公式是解决本题的关键.8.(5分)(2020•江苏)在平面直角坐标系xOy中, 双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P, Q, 其焦点是F1, F2, 则四边形F1PF2Q的面积是.【分析】求出双曲线的准线方程和渐近线方程, 得到P, Q坐标, 求出焦点坐标, 然后求解四边形的面积.【解答】解:双曲线﹣y2=1的右准线:x=, 双曲线渐近线方程为:y=x, 所以P(, ), Q(, ﹣), F1(﹣2, 0).F2(2, 0).则四边形F1PF2Q的面积是:=2.故答案为:2.【点评】本题考查双曲线的简单性质的应用, 考查计算能力.9.(5分)(2020•江苏)等比数列{a n}的各项均为实数, 其前n项为S n, 已知S3=, S6=, 则a8=32.【分析】设等比数列{a n}的公比为q≠1, S3=, S6=, 可得=,=, 联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=, S6=, ∴=, =,解得a1=, q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式, 考查了推理能力与计算能力, 属于中档题.10.(5分)(2020•江苏)某公司一年购买某种货物600吨, 每次购买x吨, 运费为6万元/次, 一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小, 则x的值是30.【分析】由题意可得:一年的总运费与总存储费用之和=+4x, 利用基本不等式的性质即可得出.【解答】解:由题意可得:一年的总运费与总存储费用之和=+4x≥4×2×=240(万元).当且仅当x=30时取等号.故答案为:30.【点评】本题考查了基本不等式的性质及其应用, 考查了推理能力与计算能力, 属于基础题.11.(5分)(2020•江苏)已知函数f(x)=x3﹣2x+e x﹣, 其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是[﹣1, ] .【分析】求出f(x)的导数, 由基本不等式和二次函数的性质, 可得f(x)在R上递增;再由奇偶性的定义, 可得f(x)为奇函数, 原不等式即为2a2≤1﹣a, 运用二次不等式的解法即可得到所求范围.【解答】解:函数f(x)=x3﹣2x+e x﹣的导数为:f′(x)=3x2﹣2+e x+≥﹣2+2=0,可得f(x)在R上递增;又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣e x+x3﹣2x+e x﹣=0,可得f(x)为奇函数,则f(a﹣1)+f(2a2)≤0,即有f(2a2)≤﹣f(a﹣1)=f(1﹣a),即有2a2≤1﹣a,解得﹣1≤a≤,故答案为:[﹣1, ].【点评】本题考查函数的单调性和奇偶性的判断和应用, 注意运用导数和定义法, 考查转化思想的运用和二次不等式的解法, 考查运算能力, 属于中档题.12.(5分)(2020•江苏)如图, 在同一个平面内, 向量, , 的模分别为1, 1, , 与的夹角为α, 且tanα=7, 与的夹角为45°.若=m+n(m, n∈R), 则m+n=3.【分析】如图所示, 建立直角坐标系.A(1, 0).由与的夹角为α, 且tanα=7.可得cosα=, sinα=.C.可得cos(α+45°)=.sin (α+45°)=.B.利用=m+n(m, n∈R), 即可得出.【解答】解:如图所示, 建立直角坐标系.A(1, 0).由与的夹角为α, 且tanα=7.∴cosα=, sinα=.∴C.cos(α+45°)=(cosα﹣sinα)=.sin(α+45°)=(sinα+cosα)=.∴B.∵=m+n(m, n∈R),∴=m﹣n, =0+n,解得n=, m=.则m+n=3.故答案为:3.【点评】本题考查了向量坐标运算性质、和差公式, 考查了推理能力与计算能力, 属于中档题.13.(5分)(2020•江苏)在平面直角坐标系xOy中, A(﹣12, 0), B(0, 6), 点P在圆O:x2+y2=50上.若≤20, 则点P的横坐标的取值范围是[﹣5, 1] .【分析】根据题意, 设P(x0, y0), 由数量积的坐标计算公式化简变形可得2x0+y0+5≤0, 分析可得其表示表示直线2x+y+5≤0以及直线下方的区域, 联立直线与圆的方程可得交点的横坐标, 结合图形分析可得答案.【解答】解:根据题意, 设P(x0, y0), 则有x02+y02=50,=(﹣12﹣x0, ﹣y0)•(﹣x0, 6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0﹣6y0+30≤0,即2x0﹣y0+5≤0, 表示直线2x+y+5≤0以及直线下方的区域,联立, 解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5, 1],故答案为:[﹣5, 1].【点评】本题考查数量积的运算以及直线与圆的位置关系, 关键是利用数量积化简变形得到关于x0、y0的关系式.14.(5分)(2020•江苏)设f(x)是定义在R上且周期为1的函数, 在区间[0, 1)上, f(x)=, 其中集合D={x|x=, n∈N*}, 则方程f(x)﹣lgx=0的解的个数是8.【分析】由已知中f(x)是定义在R上且周期为1的函数, 在区间[0, 1)上, f (x)=, 其中集合D={x|x=, n∈N*}, 分析f(x)的图象与y=lgx 图象交点的个数, 进而可得答案.【解答】解:∵在区间[0, 1)上, f(x)=,第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1, 2)上, f(x)=, 此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2, 3)上, f(x)的图象与y=lgx有且只有一个交点;区间[3, 4)上, f(x)的图象与y=lgx有且只有一个交点;区间[4, 5)上, f(x)的图象与y=lgx有且只有一个交点;区间[5, 6)上, f(x)的图象与y=lgx有且只有一个交点;区间[6, 7)上, f(x)的图象与y=lgx有且只有一个交点;区间[7, 8)上, f(x)的图象与y=lgx有且只有一个交点;区间[8, 9)上, f(x)的图象与y=lgx有且只有一个交点;在区间[9, +∞)上, f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点;即方程f(x)﹣lgx=0的解的个数是8,故答案为:8【点评】本题考查的知识点是根的存在性及根的个数判断, 函数的图象和性质, 转化思想, 难度中档.二.解答题15.(14分)(2020•江苏)如图, 在三棱锥A﹣BCD中, AB⊥AD, BC⊥BD, 平面ABD⊥平面BCD, 点E、F(E与A、D不重合)分别在棱AD, BD上, 且EF ⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【分析】(1)利用AB∥EF及线面平行判定定理可得结论;(2)通过取线段CD上点G, 连结FG、EG使得FG∥BC, 则EG∥AC, 利用线面垂直的性质定理可知FG⊥AD, 结合线面垂直的判定定理可知AD⊥平面EFG, 从而可得结论.【解答】证明:(1)因为AB⊥AD, EF⊥AD, 且A、B、E、F四点共面,所以AB∥EF,又因为EF⊊平面ABC, AB⊆平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G, 连结FG、EG使得FG∥BC, 则EG∥AC,因为BC⊥BD, 所以FG∥BC,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD, 所以FG⊥AD,又因为AD⊥EF, 且EF∩FG=F,所以AD⊥平面EFG, 所以AD⊥EG,故AD⊥AC.【点评】本题考查线面平行及线线垂直的判定, 考查空间想象能力, 考查转化思想, 涉及线面平行判定定理, 线面垂直的性质及判定定理, 注意解题方法的积累, 属于中档题.16.(14分)(2020•江苏)已知向量=(cosx, sinx), =(3, ﹣), x∈[0, π].(1)若∥, 求x的值;(2)记f(x)=, 求f(x)的最大值和最小值以及对应的x的值.【分析】(1)根据向量的平行即可得到tanx=﹣, 问题得以解决,(2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出【解答】解:(1)∵=(cosx, sinx), =(3, ﹣), ∥,∴﹣cosx=3sinx,∴tanx=﹣,∵x∈[0, π],∴x=,(2)f(x)==3cosx﹣sinx=2(cosx﹣sinx)=2cos(x+),∵x∈[0, π],∴x+∈[, ],∴﹣1≤cos(x+)≤,当x=0时, f(x)有最大值, 最大值3,当x=时, f(x)有最小值, 最大值﹣2.【点评】本题考查了向量的平行和向量的数量积以及三角函数的化简和三角函数的性质, 属于基础题17.(14分)(2020•江苏)如图, 在平面直角坐标系xOy中, 椭圆E:=1(a>b>0)的左、右焦点分别为F1, F2, 离心率为, 两准线之间的距离为8.点P在椭圆E上, 且位于第一象限, 过点F1作直线PF1的垂线l1, 过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1, l2的交点Q在椭圆E上, 求点P的坐标.【分析】(1)由椭圆的离心率公式求得a=2c, 由椭圆的准线方程x=±, 则2×=8, 即可求得a和c的值, 则b2=a2﹣c2=3, 即可求得椭圆方程;(2)设P点坐标, 分别求得直线PF2的斜率及直线PF1的斜率, 则即可求得l2及l1的斜率及方程, 联立求得Q点坐标, 由Q在椭圆方程, 求得y02=x02﹣1, 联立即可求得P点坐标;方法二:设P(m, n), 当m≠1时, =, =, 求得直线l1及l1的方程, 联立求得Q点坐标, 根据对称性可得=±n2, 联立椭圆方程, 即可求得P点坐标.【解答】解:(1)由题意可知:椭圆的离心率e==, 则a=2c, ①椭圆的准线方程x=±, 由2×=8, ②由①②解得:a=2, c=1,则b2=a2﹣c2=3,∴椭圆的标准方程:;(2)方法一:设P(x0, y0), 则直线PF2的斜率=,则直线l2的斜率k2=﹣, 直线l2的方程y=﹣(x﹣1),直线PF1的斜率=,则直线l2的斜率k2=﹣, 直线l2的方程y=﹣(x+1),联立, 解得:, 则Q(﹣x0, ),由P, Q在椭圆上, P, Q的横坐标互为相反数, 纵坐标应相等, 则y0=, ∴y02=x02﹣1,则, 解得:, 则,又P在第一象限, 所以P的坐标为:P(, ).方法二:设P(m, n), 由P在第一象限, 则m>0, n>0,当m=1时, 不存在, 解得:Q与F1重合, 不满足题意,当m≠1时, =, =,由l1⊥PF1, l2⊥PF2, 则=﹣, =﹣,直线l1的方程y=﹣(x+1), ①直线l2的方程y=﹣(x﹣1), ②联立解得:x=﹣m, 则Q(﹣m, ),由Q在椭圆方程, 由对称性可得:=±n2,即m2﹣n2=1, 或m2+n2=1,由P(m, n), 在椭圆方程, , 解得:, 或,无解,又P在第一象限, 所以P的坐标为:P(, ).【点评】本题考查椭圆的标准方程, 直线与椭圆的位置关系, 考查直线的斜率公式, 考查数形结合思想, 考查计算能力, 属于中档题.18.(16分)(2020•江苏)如图, 水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm, 容器Ⅰ的底面对角线AC的长为10cm, 容器Ⅱ的两底面对角线EG, E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水, 水深均为12cm.现有一根玻璃棒l, 其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中, l的一端置于点A处, 另一端置于侧棱CC1上, 求l 没入水中部分的长度;(2)将l放在容器Ⅱ中, l的一端置于点E处, 另一端置于侧棱GG1上, 求l 没入水中部分的长度.【分析】(1)设玻璃棒在CC1上的点为M, 玻璃棒与水面的交点为N, 过N作NP∥MC, 交AC于点P, 推导出CC1⊥平面ABCD, CC1⊥AC, NP⊥AC, 求出MC=30cm, 推导出△ANP∽△AMC, 由此能出玻璃棒l没入水中部分的长度.(2)设玻璃棒在GG1上的点为M, 玻璃棒与水面的交点为N, 过点N作NP⊥EG, 交EG于点P, 过点E作EQ⊥E1G1, 交E1G1于点Q, 推导出EE1G1G为等腰梯形, 求出E1Q=24cm, E1E=40cm, 由正弦定理求出sin∠GEM=, 由此能求出玻璃棒l没入水中部分的长度.【解答】解:(1)设玻璃棒在CC1上的点为M, 玻璃棒与水面的交点为N,在平面ACM中, 过N作NP∥MC, 交AC于点P,∵ABCD﹣A1B1C1D1为正四棱柱, ∴CC1⊥平面ABCD,又∵AC⊂平面ABCD, ∴CC1⊥AC, ∴NP⊥AC,∴NP=12cm, 且AM2=AC2+MC2, 解得MC=30cm,∵NP∥MC, ∴△ANP∽△AMC,∴=, , 得AN=16cm.∴玻璃棒l没入水中部分的长度为16cm.(2)设玻璃棒在GG1上的点为M, 玻璃棒与水面的交点为N,在平面E1EGG1中, 过点N作NP⊥EG, 交EG于点P,过点E作EQ⊥E1G1, 交E1G1于点Q,∵EFGH﹣E1F1G1H1为正四棱台, ∴EE1=GG1, EG∥E1G1,EG≠E1G1,∴EE1G1G为等腰梯形, 画出平面E1EGG1的平面图,∵E1G1=62cm, EG=14cm, EQ=32cm, NP=12cm,∴E1Q=24cm,由勾股定理得:E1E=40cm,∴sin∠EE1G1=, sin∠EGM=sin∠EE1G1=, cos,根据正弦定理得:=, ∴sin, cos,∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠EMG=, ∴EN===20cm.∴玻璃棒l没入水中部分的长度为20cm.【点评】本题考查玻璃棒l 没入水中部分的长度的求法, 考查空间中线线、线面、面面间的位置关系等基础知识, 考查推理论证能力、运算求解能力、空间想象能力, 考查数形结合思想、化归与转化思想, 是中档题.19.(16分)(2020•江苏)对于给定的正整数k, 若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立, 则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”, 又是“P (3)数列”, 证明:{a n }是等差数列.【分析】(1)由题意可知根据等差数列的性质, a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n , 根据“P (k )数列”的定义, 可得数列{a n }是“P (3)数列”;(2)由“P (k )数列”的定义, 则a n ﹣2+a n ﹣1+a n +1+a n +2=4a n , a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n , 变形整理即可求得2a n =a n ﹣1+a n +1, 即可证明数列{a n }是等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1, 公差为d, 则a n =a 1+(n ﹣1)d,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1),=2a n+2a n+2a n,=2×3a n,∴等差数列{a n}是“P(3)数列”;(2)证明:由数列{a n}是“P(2)数列”则a n﹣2+a n﹣1+a n+1+a n+2=4a n, ①数列{a n}是“P(3)数列”a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n, ②+a n﹣2+a n+a n+1=4a n﹣1, ③由①可知:a n﹣3a n﹣1+a n+a n+2+a n+3=4a n+1, ④由②﹣(③+④):﹣2a n=6a n﹣4a n﹣1﹣4a n+1,整理得:2a n=a n﹣1+a n+1,∴数列{a n}是等差数列.【点评】本题考查等差数列的性质, 考查数列的新定义的性质, 考查数列的运算, 考查转化思想, 属于中档题.20.(16分)(2020•江苏)已知函数f(x)=x3+ax2+bx+1(a>0, b∈R)有极值, 且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式, 并写出定义域;(2)证明:b2>3a;(3)若f(x), f′(x)这两个函数的所有极值之和不小于﹣, 求a的取值范围.【分析】(1)通过对f(x)=x3+ax2+bx+1求导可知g(x)=f′(x)=3x2+2ax+b, 进而再求导可知g′(x)=6x+2a, 通过令g′(x)=0进而可知f′(x)的极小值点为x=﹣, 从而f(﹣)=0, 整理可知b=+(a>0), 结合f(x)=x3+ax2+bx+1(a>0, b∈R)有极值可知f′(x)=0有两个不等的实根, 进而可知a>3.(2)通过(1)构造函数h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27), 结合a>3可知h(a)>0, 从而可得结论;(3)通过(1)可知f′(x)的极小值为f′(﹣)=b﹣, 利用韦达定理及完全平方关系可知y=f(x)的两个极值之和为﹣+2, 进而问题转化为解不等式b﹣+﹣+2=﹣≥﹣, 因式分解即得结论.【解答】(1)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b, g′(x)=6x+2a,令g′(x)=0, 解得x=﹣.由于当x>﹣时g′(x)>0, g(x)=f′(x)单调递增;当x<﹣时g′(x)<0, g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0, 即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0, b∈R)有极值,所以f′(x)=3x2+2ax+b=0有两个不等的实根,所以4a2﹣12b>0, 即a2﹣+>0, 解得a>3,所以b=+(a>3).(2)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3, 所以h(a)>0, 即b2>3a;(3)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1, x2是y=f(x)的两个极值点, 则x1+x2=, x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x), f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3, 所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0, 解得a≤6,所以a的取值范围是(3, 6].【点评】本题考查利用导数研究函数的单调性、极值, 考查运算求解能力, 考查转化思想, 注意解题方法的积累, 属于难题.二.非选择题, 附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.(2020•江苏)如图, AB为半圆O的直径, 直线PC切半圆O于点C, AP ⊥PC, P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.【分析】(1)利用弦切角定理可得:∠ACP=∠ABC.利用圆的性质可得∠ACB=90°.再利用三角形内角和定理即可证明.(2)由(1)可得:△APC∽△ACB, 即可证明.【解答】证明:(1)∵直线PC切半圆O于点C, ∴∠ACP=∠ABC.∵AB为半圆O的直径, ∴∠ACB=90°.∵AP⊥PC, ∴∠APC=90°.∴∠PAC=90°﹣∠ACP, ∠CAB=90°﹣∠ABC,∴∠PAC=∠CAB.(2)由(1)可得:△APC∽△ACB,∴=.∴AC2 =AP•AB.【点评】本题考查了弦切角定理、圆的性质、三角形内角和定理、三角形相似的判定与性质定理, 考查了推理能力与计算能力, 属于中档题.[选修4-2:矩阵与变换]22.(2020•江苏)已知矩阵A=, B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2, 求C2的方程.【分析】(1)按矩阵乘法规律计算;(2)求出变换前后的坐标变换规律, 代入曲线C1的方程化简即可.【解答】解:(1)AB==,(2)设点P(x, y)为曲线C1的任意一点,点P在矩阵AB的变换下得到点P′(x0, y0),则=, 即x0=2y, y0=x,∴x=y0, y=,∴, 即x02+y02=8,∴曲线C2的方程为x2+y2=8.【点评】本题考查了矩阵乘法与矩阵变换, 属于中档题.[选修4-4:坐标系与参数方程]23.(2020•江苏)在平面直角坐标系xOy中, 已知直线l的参数方程为(t为参数), 曲线C的参数方程为(s为参数).设P为曲线C上的动点, 求点P到直线l的距离的最小值.【分析】求出直线l的直角坐标方程, 代入距离公式化简得出距离d关于参数s 的函数, 从而得出最短距离.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d==,∴当s=时, d取得最小值=.【点评】本题考查了参数方程的应用, 属于基础题.[选修4-5:不等式选讲]24.(2020•江苏)已知a, b, c, d为实数, 且a2+b2=4, c2+d2=16, 证明ac+bd ≤8.【分析】a2+b2=4, c2+d2=16, 令a=2cosα, b=2sinα, c=4cosβ, d=4sinβ.代入ac+bd化简, 利用三角函数的单调性即可证明.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2), 即可得出.【解答】证明:∵a2+b2=4, c2+d2=16,令a=2cosα, b=2sinα, c=4cosβ, d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α﹣β)≤8.当且仅当cos(α﹣β)=1时取等号.因此ac+bd≤8.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2)=4×16=64, 当且仅当时取等号.∴﹣8≤ac+bd≤8.【点评】本题考查了对和差公式、三角函数的单调性、不等式的性质, 考查了推理能力与计算能力, 属于中档题.【必做题】26.(2020•江苏)已知一个口袋有m个白球, n个黑球(m, n∈N*, n≥2), 这些球除颜色外全部相同.现将口袋中的球随机的逐个取出, 并放入如图所示的编号为1, 2, 3, …, m+n的抽屉内, 其中第k次取出的球放入编号为k的抽屉(k=1, 2, 3, …, m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数, E(X)是X的数学期望, 证明E(X)<.【分析】(1)设事件A i表示编号为i的抽屉里放的是黑球, 则p=p(A2)=P(A2|A1)P(A1)+P(A2|)P(), 由此能求出编号为2的抽屉内放的是黑球的概率.(2)X的所有可能取值为, …, , P(x=)=, k=n, n+1, n+2, …, n+m, 从而E(X)=()=, 由此能证明E (X)<.【解答】解:(1)设事件A i表示编号为i的抽屉里放的是黑球,则p=p(A2)=P(A2|A1)P(A1)+P(A2|)P()===.证明:(2)∵X的所有可能取值为, …, ,P(x=)=, k=n, n+1, n+2, …, n+m,∴E(X)=()==<==•()==,∴E(X)<.【点评】本题考查概率的求法, 考查离散型随机变量的分布列、数学期望等基础知识, 考查推理论证能力、运算求解能力、空间想象能力, 考查数形结合思想、化归与转化思想, 是中档题.25.(2020•江苏)如图, 在平行六面体ABCD﹣A1B1C1D1中, AA1⊥平面ABCD, 且AB=AD=2, AA1=, ∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.【分析】在平面ABCD内, 过A作Ax⊥AD, 由AA1⊥平面ABCD, 可得AA1⊥Ax, AA1⊥AD, 以A为坐标原点, 分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.结合已知求出A, B, C, D, A1, C1的坐标, 进一步求出, , , 的坐标.(1)直接利用两法向量所成角的余弦值可得异面直线A1B与AC1所成角的余弦值;(2)求出平面BA1D与平面A1AD的一个法向量, 再由两法向量所成角的余弦值求得二面角B﹣A1D﹣A的余弦值, 进一步得到正弦值.【解答】解:在平面ABCD内, 过A作Ax⊥AD,∵AA1⊥平面ABCD, AD、Ax⊂平面ABCD,∴AA1⊥Ax, AA1⊥AD,以A为坐标原点, 分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.∵AB=AD=2, AA1=, ∠BAD=120°,∴A(0, 0, 0), B(), C(, 1, 0),D(0, 2, 0),A1(0, 0, ), C1().=(), =(), , .(1)∵cos<>==.∴异面直线A1B与AC1所成角的余弦值为;(2)设平面BA1D的一个法向量为,由, 得, 取x=, 得;取平面A1AD的一个法向量为.∴cos<>==.∴二面角B﹣A1D﹣A的正弦值为, 则二面角B﹣A1D﹣A的正弦值为.【点评】本题考查异面直线所成的角与二面角, 训练了利用空间向量求空间角, 是中档题.。

2021年普通高等学校招生全国统一考试数学试题(江苏卷,解析版)

2021年普通高等学校招生全国统一考试数学试题(江苏卷,解析版)

2021年普通高等学校招生全国统一考试(江苏卷)数学I一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡相应位置上1.已知集合{}=1,2A ,{}2,3B a a =+ ,若A B ={1}则实数a 的值为________.【答案】1【解析】1a =或者231a +=(取不到1),所以1a =.【点评】今年的第一题属基础题,但难度较之前有提高,考察学生利用集合运算求参数的能力.2.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________. 【答案】10【解析】13z i =-+,()221310z =-+=.【点评】第二题考察复数计算和模的计算,难度属于基础题,与往年难度基本持平. 3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件. 【答案】18【解析】总产量为1000件,所以应从丙种型号的产品中抽取30060181000⨯=件. 【点评】本题考察分层抽样,难度基础. 4.右图是一个算法流程图,若输入x 的值为116,则输出的y 的值是 . 【答案】2- 【解析】经判断1116<,()2212log 2log 24216y x =+=+=+-=-. 【点评】本题考查判断型的流程图和对数计算,属于基础题. 5.若tan 1-=46πα⎛⎫⎪⎝⎭,则tan α= . 【答案】75 【解析】tan 11tan 41tan 6πααα-⎛⎫-== ⎪+⎝⎭,解得7tan 5α=.【点评】本题考察恒等变换,属于基础题.6.如图,在圆柱O 1 O 2 内有一个球O ,该球与圆柱的上、下面及母线均相切。

记圆柱O 1 O 2 的体积为V 1 ,球O 的体积为V 2 ,则12V V 的值是 . 【答案】32【解析】设球的半径为r ,圆柱的体积23122V r r r ππ==,球的体积3243r V π=,所以1232V V =.【点评】本题考察圆柱内接球的体积计算,属于基础题.7.记函数2()6f x x x =+- 的定义域为D.在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是 . 【答案】59【解析】函数定义域D 为260x x +-≥,解得23x -≤≤,区间长度为5,区间[]4,5-长度为9,在区间[-4,5]上随机取一个数x , x ∈D 的概率为59P =. 【点评】本题考察几何概型,难度中等.8.在平面直角坐标系xoy 中 ,双曲线2213x y -= 的右准线与它的两条渐近线分别交于点P,Q ,其焦点是F 1 , F 2 ,则四边形F 1 P F 2 Q 的面积是 . 【答案】23【解析】四边形F 1 P F 2 Q 中,PQ ⊥12F F ,渐近线方程为33y x =±,右准线为232a x c ==,当32x =时,32y =±,所以3PQ =,1224F F c ==,四边形F 1 P F 2 Q 的面积为134232S =⨯⨯=.【点评】本题考察双曲线的准线和渐近线方程,以及对角线互相垂直的四边形的面积的计算,学生可能在面积时易出错.9.等比数列{}n a 的各项均为实数,其前n 项的和为Sn ,已知36763,44S S ==, 则8a = . 【答案】32【解析】因为()3456123a a a a a a q ++=++,所以36338S S q S -==,所以2q =,那么3111172474S a a a a =++==,114a =,778112324a a q ==⨯=. 【点评】本题考察等比数列的基本计算,难度中等,学生要善于发现相邻的三项之间的比值为3q ,是简化计算的关键.10.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储之和最小,则x 的值是 【答案】 30【解析】设费用为y600436006442436004y x x x x ⨯=⨯+=+≥⨯ 当4360044x x ⨯=时等号成立,解得x =30.【点评】本题考查基本不等式取等条件,较为简单. 11.已知函数()312+x xf x x x e e =--,其中e 是自然数对数的底数,若()()2120f a f a -+≤,则实数a 的取值范围是 。

2024年江苏省高考数学试卷(新高考Ⅰ)含答案解析

2024年江苏省高考数学试卷(新高考Ⅰ)含答案解析

绝密★启用前2024年江苏省高考数学试卷(新高考Ⅰ)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I 卷(选择题)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合A ={x|−5<x 3<5},B ={−3,−1,0,2,3},则A ∩B =( ) A. {−1,0} B. {2,3} C. {−3,−1,0} D. {−1,0,2}2.若z z−1=1+i ,则z =( )A. −1−iB. −1+iC. 1−iD. 1+i3.已知向量a ⃗=(0,1),b ⃗⃗=(2,x),若b ⃗⃗⊥(b ⃗⃗−4a ⃗⃗),则x =( ) A. −2B. −1C. 1D. 24.已知cos(α+β)=m ,tanαtanβ=2,则cos(α−β)=( ) A. −3mB. −m3C. m3D. 3m5.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为√ 3,则圆锥的体积为( ) A. 2√ 3πB. 3√ 3πC. 6√ 3πD. 9√ 3π6.已知函数为f(x)={−x 2−2ax −a,x <0,e x +ln(x +1),x ≥0在R 上单调递增,则a 取值的范围是( )A. (−∞,0]B. [−1,0]C. [−1,1]D. [0,+∞)7.当x ∈[0,2π]时,曲线y =sinx 与y =2sin(3x −π6)的交点个数为( ) A. 3B. 4C. 6D. 88.已知函数为f(x)的定义域为R ,f(x)>f(x −1)+f(x −2),且当x <3时,f(x)=x ,则下列结论中一定正确的是( ) A. f(10)>100B. f(20)>1000C. f(10)<1000D. f(20)<10000二、多选题:本题共3小题,共18分。

2020年江苏高考数学解析版原卷版试题

2020年江苏高考数学解析版原卷版试题

2020年江苏高考数学试题解析1.已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =_____. 【答案】{}0,2【解析】∵{}1,0,1,2A =-,{}0,2,3B = ∴{}0,2A B =故答案为:{}0,2.2.已知i 是虚数单位,则复数(1i)(2i)z=+-的实部是_____. 【答案】3【解析】∵复数()()12z i i =+-∴2223z i i i i =-+-=+∴复数的实部为3.故答案为:3.3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是_____.【答案】2根据平均数的公式进行求解即可.【解析】∵数据4,2,3,5,6a a -的平均数为4∴4235620a a ++-++=,即2a=. 故答案为:2.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____. 【答案】19【解析】根据题意可得基本事件数总为6636⨯=个.点数和为5的基本事件有()1,4,()4,1,()2,3,()3,2共4个.∴出现向上的点数和为5的概率为41369P==. 故答案为:19. 5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是_____.【答案】3-根据指数函数的性质,判断出1y x =+,由此求得x 的值.【解析】由于20x>,所以12y x =+=-,解得3x =-.故答案为:3- 6.在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为5,则该双曲线的离心率是____.【答案】32根据渐近线方程求得a ,由此求得c ,进而求得双曲线的离心率.【解析】双曲线22215x y a -=,故5b =.由于双曲线的一条渐近线方程为52y x =,即52b a a =⇒=,所以22453c a b =++=,所以双曲线的离心率为32c a =. 故答案为:327.已知y =f (x )是奇函数,当x ≥0时,()23 f x x = ,则f (-8)的值是____. 【答案】4-先求(8)f ,再根据奇函数求(8)f -【解析】23(8)84f ==,因为()f x 为奇函数,所以(8)(8)4f f -=-=- 故答案为:4-8.已知2sin()4πα+ =23,则sin 2α的值是____. 【答案】13直接按照两角和正弦公式展开,再平方即得结果.【解析】22221sin ()(cos sin )(1sin 2)4222παααα+=+=+ 121(1sin 2)sin 2233αα∴+=∴= 故答案为:139.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是____cm.【答案】1232π先求正六棱柱体积,再求圆柱体积,相减得结果.【解析】正六棱柱体积为23622=1234⨯⨯⨯ 圆柱体积为21()222ππ⋅=所求几何体体积为2π 故答案为:2π10.将函数y =πsin(2)43x﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____. 【答案】524x π=- 先根据图象变换得解析式,再求对称轴方程,最后确定结果. 【解析】3sin[2()]3sin(2)6412y x x πππ=-+=- 72()()122242k x k k Z x k Z πππππ-=+∈∴=+∈ 当1k =-时524x π=- 故答案为:524x π=- 11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是_______.【答案】4结合等差数列和等比数列前n 项和公式的特点,分别求得{}{},n n a b 的公差和公比,由此求得d q +. 【解析】设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,根据题意1q ≠.等差数列{}n a 的前n 项和公式为()2111222n n n d d P na d n a n -⎛⎫=+=+- ⎪⎝⎭, 等比数列{}n b 的前n 项和公式为()1111111n n n b q b b Q q q q q-==-+---, 依题意n n n S P Q =+,即22111212211n n b b d d n n n a n q q q ⎛⎫-+-=+--+ ⎪--⎝⎭,通过对比系数可知111212211d d a q b q ⎧=⎪⎪⎪-=-⎪⎨⎪=⎪⎪=-⎪-⎩⇒112021d a q b =⎧⎪=⎪⎨=⎪⎪=⎩,故4d q +=.故答案为:412.已知22451(,)x y y x y R +=∈,则22x y +的最小值是_______.【答案】45根据题设条件可得42215y x y -=,可得4222222114+555y y x y y y y-+=+=,利用基本不等式即可求解. 【解析】∵22451x y y += ∴0y ≠且42215y x y -= ∴422222222114144+2555555y y y x y y y y y -+=+=≥⋅=,当且仅当221455y y =,即2231,102x y ==时取等号.∴22x y +的最小值为45. 故答案为:45. 13.在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是________.【答案】185根据题设条件可设()0PA PD λλ=>,结合32PA mPB m PC ⎛⎫=+-⎪⎝⎭与,,B D C 三点共线,可求得λ,再根据勾股定理求出BC ,然后根据余弦定理即可求解.【解析】∵,,A D P 三点共线,∴可设()0PA PD λλ=>, ∵32PA mPB m PC ⎛⎫=+- ⎪⎝⎭, ∴32PD mPB m PC λ⎛⎫=+- ⎪⎝⎭,即32m m PD PB PC λλ⎛⎫- ⎪⎝⎭=+, 若0m ≠且32m ≠,则,,B D C 三点共线, ∴321m m λλ⎛⎫- ⎪⎝⎭+=,即32λ=, ∵9AP =,∴3AD =, ∵4AB =,3AC =,90BAC ∠=︒,∴5BC =,设CD x =,CDA θ∠=,则5BD x =-,BDA πθ∠=-.∴根据余弦定理可得222cos 26AD CD AC x AD CD θ+-==⋅,()()()222257cos 265x AD BD AB AD BD x πθ--+--==⋅-, ∵()cos cos 0θπθ+-=,∴()()2570665x x x --+=-,解得185x =, ∴CD 的长度为185. 当0m =时, 32PA PC =,,C D 重合,此时CD 的长度为0, 当32m =时,32PA PB =,,B D 重合,此时12PA =,不合题意,舍去. 故答案为:0或185. 14.在平面直角坐标系xOy 中,已知0)P ,A ,B 是圆C :221()362x y +-=上的两个动点,满足PA PB =,则△PAB 面积的最大值是__________.【答案】105 根据条件得PC AB ⊥,再用圆心到直线距离表示三角形PAB 面积,最后利用导数求最大值. 【解析】PA PB PC AB =∴⊥设圆心C 到直线AB 距离为d ,则231||=236,||144AB d PC -=+= 所以2221236(1)(36)(1)2PAB Sd d d d ≤⋅-+=-+ 令222(36)(1)(06)2(1)(236)04y d d d y d d d d '=-+≤<∴=+--+=∴=(负值舍去)当04d≤<时,0y '>;当46d ≤<时,0y '≤,因此当4d =时,y 取最大值,即PAB S 取最大值为105,故答案为:105 15.在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.【答案】(1)证明详见解析;(2)证明详见解析.(1)通过证明1//EF AB ,来证得//EF 平面11AB C . (2)通过证明AB ⊥平面1AB C ,来证得平面1AB C ⊥平面1ABB .【解析】(1)由于,E F 分别是1,AC B C 的中点,所以1//EF AB .由于EF ⊂/平面11AB C ,1AB ⊂平面11AB C ,所以//EF 平面11AB C .(2)由于1B C⊥平面ABC ,AB 平面ABC ,所以1B C AB ⊥. 由于1,AB AC AC B C C ⊥⋂=,所以AB ⊥平面1AB C , 由于AB 平面1ABB ,所以平面1AB C ⊥平面1ABB .16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值. 【答案】(1)5sin 5C =;(2)2tan 11DAC ∠=. (1)利用余弦定理求得b ,利用正弦定理求得sin C .(2)根据cos ADC ∠的值,求得sin ADC ∠的值,由(1)求得cos C 的值,从而求得sin ,cos DAC DAC ∠∠的值,进而求得tan DAC ∠的值.【解析】(1)由余弦定理得22222cos 922325b a c ac B =+-=+-⨯=,所以5b =由正弦定理得sin 5sin sin sin 5c b c B C C B b =⇒==. (2)由于4cos 5ADC ∠=-,,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以23sin 1cos 5ADC ADC ∠=-∠=. 由于,2ADC ππ⎛⎫∠∈⎪⎝⎭,所以0,2C π⎛⎫∈ ⎪⎝⎭,所以225cos 1sin 5C C =-= 所以()sin sin DAC DAC π∠=-∠()sin ADC C =∠+∠sin cos cos sin ADC C ADC C =∠⋅+∠⋅3254525555525⎛⎫=⨯+-⨯= ⎪⎝⎭. 由于0,2DAC π⎛⎫∠∈ ⎪⎝⎭,所以2115cos 1sin 25DAC DAC ∠=-∠=. 所以sin 2tan cos 11DAC DAC DAC ∠∠==∠.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上、桥AB 与MN 平行,OO '为铅垂线(O '在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO '的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO '的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO '的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO '的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0).问O E '为多少米时,桥墩CD 与EF 的总造价最低?【答案】(1)120米(2)20O E '=米(1)根据A,B 高度一致列方程求得结果;(2)根据题意列总造价的函数关系式,利用导数求最值,即得结果.【解析】(1)由题意得2311||40640||8040800O A O A ''=-⨯+⨯∴= ||||||8040120AB O A O B ''∴=+=+=米(2)设总造价为()f x 万元,21||8016040O O '=⨯=,设||O E x '=, 32131()(1606)[160(80)],(040)800240f x k x x k x x =+-+--<< 3221336()(160),()()0208008080080f x k x x f x k x x x '∴=+-∴=-=∴=(0舍去) 当020x <<时,()0f x '<;当2040x <<时,()0f x '>,因此当20x时,()f x 取最小值, 答:当20O E'=米时,桥墩CD 与EF 的总造价最低. 18.在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.【答案】(1)6;(2)-4;(3)()2,0M或212,77⎛⎫-- ⎪⎝⎭.(1)根据椭圆定义可得124AF AF +=,从而可求出12AF F △的周长;(2)设()0,0P x ,根据点A 在椭圆E 上,且在第一象限,212AF F F ⊥,求出31,2A ⎛⎫⎪⎝⎭,根据准线方程得Q 点坐标,再根据向量坐标公式,结合二次函数性质即可出最小值; (3)设出设()11,Mx y ,点M 到直线AB 的距离为d ,由点O 到直线AB 的距离与213S S =,可推出95d =,根据点到直线的距离公式,以及()11,M x y 满足椭圆方程,解方程组即可求得坐标. 【解析】(1)∵椭圆E 的方程为22143x y +=∴()11,0F -,()21,0F由椭圆定义可得:124AF AF +=.∴12AF F △的周长为426+= (2)设()0,0P x ,根据题意可得01x ≠.∵点A 在椭圆E 上,且在第一象限,212AF F F ⊥∴31,2A ⎛⎫⎪⎝⎭∵准线方程为4x =∴()4,QQy∴()()()()200000,04,4244Q OP QP x x y x x x ⋅=⋅--=-=--≥-,当且仅当02x =时取等号.∴OP QP ⋅的最小值为4-. (3)设()11,Mx y ,点M 到直线AB 的距离为d .∵31,2A ⎛⎫⎪⎝⎭,()11,0F - ∴直线1AF 的方程为()314y x =+ ∵点O 到直线AB 的距离为35,213S S =∴2113133252S S AB AB d ==⨯⨯⨯=⋅∴95d =∴113439x y -+=①∵2211143x y +=② ∴联立①②解得1120x y =⎧⎨=⎩,1127127x y ⎧=-⎪⎪⎨⎪=-⎪⎩.∴()2,0M或212,77⎛⎫-- ⎪⎝⎭. 19.已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式; (2)若21ln ,()()()(0) x x g k x h kx k D f x x x =-+==-=+∞,,,,求k 的取值范围; (3)若()422242() 2() (48 () 4 3 02 f x x x g x x h x t t x t t t =-=-=--+<,,,[] , D m n =⊆⎡⎣,求证:n m -≤【答案】(1)()2h x x =;(2)[]0,3k ∈;(3)证明详见解析 (1)求得()f x 与()g x 的公共点,并求得过该点的公切线方程,由此求得()h x 的表达式.(2)先由()()0hx g x -≥,求得k 的一个取值范围,再由()()0f x h x -≥,求得k 的另一个取值范围,从而求得k 的取值范围. (3)先由()()f x h x ≥,求得t的取值范围,由方程()()0gx h x -=的两个根,求得n m -的表达式,利用导数证得不等式成立. 【解析】(1)由题设有2222x x kx b x x -+≤+≤+对任意的x ∈R 恒成立.令0x=,则00b ≤≤,所以0b =.因此22kx x x ≤+即()220x k x +-≥对任意的x ∈R 恒成立,所以()220k ∆=-≤,因此2k =.故()2hx x =.(2)令()()()()()1ln 0F x h x g x k x x x =-=-->,()01F =.又()1x F x k x-'=⋅. 若k0<,则()F x 在0,1上递增,在1,上递减,则()()10Fx F ≤=,即()()0h x g x -≤,不符合题意.当0k =时,()()()()()0,F x h x g x h x g x =-==,符合题意. 当0k >时, ()F x 在0,1上递减,在1,上递增,则()()10Fx F ≥=,即()()0hx g x -≥,符合题意.综上所述,0k ≥.由()()()21f x h x x x kx k -=-+--()()2110x k x k =-+++≥当102k x +=<,即1k <-时,()211y x k x k =-+++在0,为增函数,因为()()0010f h k -=+<,故存在()00,x ∈+∞,使()()0f x h x -<,不符合题意.当102k x+==,即1k =-时,()()20f x h x x -=≥,符合题意.当102k x +=>,即1k >-时,则需()()21410k k ∆=+-+≤,解得13k -<≤. 综上所述,k 的取值范围是[]0,3k ∈.(3)因为()423422243248xx t t x t t x -≥--+≥-对任意[,][x m n ∈⊂恒成立,()423422432x x t t x t t -≥--+对任意[,][x m n ∈⊂恒成立,等价于()222()2320x t xtx t -++-≥对任意[,][x m n ∈⊂恒成立.故222320x tx t ++-≥对任意[,][x m n ∈⊂恒成立令22()232M x x tx t =++-,当201t <<,2880,11t t ∆=-+>-<-<,此时1n m t -≤<,当212t ≤≤,2880t ∆=-+≤,但()234248432xt t x t t -≥--+对任意的[,][x m n ∈⊂恒成立.等价于()()()2322443420xt t x t t --++-≤对任意的[,][x m n ∈⊂恒成立.()()()2322443420x t t x t t --++-=的两根为12,x x ,则4231212328,4t t x x t t x x --+=-⋅=,所以12=n m x x --==.令[]2,1,2tλλ=∈,则n m -=构造函数()[]()325381,2P λλλλλ=-++∈,()()()23103331P λλλλλ'=-+=--,所以[]1,2λ∈时,()0P λ'<,()P λ递减,()()max 17P P λ==.所以()max n m -=n m -≤.20.已知数列{}*()∈n a n N 的首项a 1=1,前n 项和为S n.设λ与k 是常数,若对一切正整数n ,均有11111kkkn n n S S a λ++-=成立,则称此数列为“λ–k ”数列.(1)若等差数列{}n a 是“λ–1”数列,求λ的值;(2)若数列{}n a 2-”数列,且a n >0,求数列{}n a 的通项公式;(3)对于给定的λ,是否存在三个不同的数列{}n a 为“λ–3”数列,且a n≥0?若存在,求λ的取值范围;若不存在,说明理由, 【答案】(1)1(2)21,134,2nn n a n -=⎧=⎨⋅≥⎩ (3)01λ<<(1)根据定义得+11n n n S S a λ+-=,再根据和项与通项关系化简得11n n a a λ++=,最后根据数列不为零数列得结果;(2)根据定义得111222+1+1)n nn n S S S S -=-,根据平方差公式化简得+1=4n n S S ,求得n S ,即得n a ;(3)根据定义得111333+11n n n SS a λ+-=,利用立方差公式化简得两个方程,再根据方程解的个数确定参数满足的条件,解得结果 【解析】(1)+111111101n n n n n n S S a a a a a λλλ++++-=∴==∴≡∴=/(2)11221100n n n n n a S S S S ++>∴>∴->111222+1+1)n nn n S S S S -=-1111112222222+1+1+11()()()3n n n n n n S S S S S S ∴-=-+1111111222222+1+1+1+11()=2=443n n nn n n n n n n S S S S S S S S S -∴-=+∴∴∴= 111S a ==,14n n S -=1224434,2n n n n a n ---∴=-=⋅≥21,134,2n n n a n -=⎧∴=⎨⋅≥⎩(3)假设存在三个不同的数列{}n a 为"3"λ-数列.111113333333+11+1+1()()n n n n n n n S S a S S S S λλ+-=∴-=- 1133+1n nS S ∴=或11221123333333+1+1+1()()n n n n n n SS S S S S λ-=+++1n n S S ∴=或22113333333+1+1(1)(1)(2)0n n n n SS S S λλλ-+-++=∵对于给定的λ,存在三个不同的数列{}n a 为"3"λ-数列,且0n a ≥1,10,2n n a n =⎧∴=⎨≥⎩或()22113333333+1+1(1)(1)(2)01n n n n S S S S λλλλ-+-++=≠有两个不等的正根.()22113333333+1+1(1)(1)(2)01n n n n S S SS λλλλ-+-++=≠可转化为()2133333+1+12133(1)(2)(1)01n n nnS S S S λλλλ-++-+=≠,不妨设()1310n n S x x S +⎛⎫=> ⎪⎝⎭,则()3233(1)(2)(1)01x x λλλλ-+++-=≠有两个不等正根,设()()3233(1)(2)(1)01f x x x λλλλ=-+++-=≠.① 当1λ<时,32323(2)4(1)004λλλ∆=+-->⇒<<,即01λ<<,此时()3010f λ=-<,33(2)02(1)x λλ+=->-对,满足题意.② 当1λ>时,32323(2)4(1)004λλλ∆=+-->⇒<<,即1λ<<()3010f λ=->,33(2)02(1)x λλ+=-<-对,此情况有两个不等负根,不满足题意舍去. 综上,01λ<<21.平面上点(2,1)A -在矩阵11ab ⎡⎤=⎢⎥-⎣⎦M 对应的变换作用下得到点(3,4)B -.(1)求实数a ,b 的值;(2)求矩阵M 的逆矩阵1M -.【答案】(1)22a b =⎧⎨=⎩;(2)121 5512 55M -⎡⎤-⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦.(1)根据变换写出具体的矩阵关系式,然后进行矩阵的计算可得出实数,a b 的值; (2)设出逆矩阵,由定义得到方程,即可求解.【解析】(1)∵平面上点()2,1A -在矩阵 11 a M b ⎡⎤=⎢⎥-⎣⎦对应的变换作用下得到点()3,4B -∴ 1 2 31 14a b ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦∴21324a b -=⎧⎨--=-⎩,解得22a b =⎧⎨=⎩(2)设1 m n M c d -⎡⎤=⎢⎥⎣⎦,则12 2 1 0=2 20 1m c n d MM m c n d -++⎡⎤⎡⎤=⎢⎥⎢⎥-+-+⎣⎦⎣⎦∴21202021m c n d m c n d +=⎧⎪+=⎪⎨-+=⎪⎪-+=⎩,解得25151525m n c d ⎧=⎪⎪⎪=-⎪⎨⎪=⎪⎪⎪=⎩∴121 5512 55M -⎡⎤-⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦【迁移】本题考查矩阵变换的应用,考查逆矩阵的求法,解题时要认真审题,属于基础题. 22.在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,)6B ρ在圆:4sinC ρθ=上(其中0ρ≥,02θπ≤<).(1)求1ρ,2ρ的值(2)求出直线l 与圆C 的公共点的极坐标. 【答案】(1)1242ρρ==,(2))4π(1)将A,B 点坐标代入即得结果;(2)联立直线与圆极坐标方程,解得结果. 【解析】(1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,11cos2,43πρρ=∴=,因为点B为直线6πθ=上,故其直角坐标方程为y x =, 又4sin ρθ=对应的圆的直角坐标方程为:2240x y y +-=,由2240y x x y y ⎧=⎪⎨⎪+-=⎩解得00xy ==⎧⎨⎩或1x y ⎧=⎪⎨=⎪⎩对应的点为())0,0,,故对应的极径为20ρ=或22ρ=.(2)cos 2,4sin ,4sin cos 2,sin 21ρθρθθθθ==∴=∴=,5[0,2),,44ππθπθ∈∴=,当4πθ=时ρ=当54πθ=时0ρ=-<,舍;即所求交点坐标为当),4π【迁移】本题考查极坐标方程及其交点,考查基本分析求解能力,属基础题. 23.设x ∈R ,解不等式2|1|||4x x ++≤.【答案】22,3⎡⎤-⎢⎥⎣⎦根据绝对值定义化为三个方程组,解得结果【解析】1224x x x <-⎧⎨---≤⎩或10224x x x -≤≤⎧⎨+-≤⎩或0224x x x >⎧⎨++≤⎩21x ∴-≤<-或10x -≤≤或203x <≤所以解集为22,3⎡⎤-⎢⎥⎣⎦【迁移】本题考查分类讨论解含绝对值不等式,考查基本分析求解能力,属基础题. 24.在三棱锥A —BCD 中,已知CB =CD =5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值; (2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值. 【答案】(1)15(2)239(1)建立空间直角坐标系,利用向量数量积求直线向量夹角,即得结果;(2)先求两个平面法向量,根据向量数量积求法向量夹角,最后根据二面角与向量夹角关系得结果.解析】(1)连,CO BC CD BO OD CO BD ==∴⊥以,,OB OC OA 为,,x y z 轴建立空间直角坐标系,则(0,0,2),(1,0,0),(0,2,0),(1,0,0)(0,1,1) A B C D E-∴(1,0,2),(1,1,1)cos,AB DE AB DE∴=-=∴<>==从而直线AB与DE(2)设平面DEC一个法向量为1(,,),n x y z=1120(1,2,0),x yn DCDCx y zn DE⎧+=⋅=⎧⎪=∴⎨⎨++=⋅=⎪⎩⎩令112,1(2,1,1)y x z n=∴=-=∴=-设平面DEF一个法向量为2111(,,),n x y z=112211171171(,,0),424420x yn DFDF DB BF DB BCn DE x y z⎧⎧+=⋅=⎪⎪=+=+=∴⎨⎨⋅=⎪⎩⎪++=⎩令111272,5(2,7,5)y xz n=-∴==∴=-12cos,n n∴<>==因此sin13θ==25.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n次这样的操作,记甲口袋中黑球个数为X n,恰有2个黑球的概率为p n,恰有1个黑球的概率为q n.(1)求p1·q1和p2·q2;(2)求2p n+q n与2p n-1+q n-1的递推关系式和X n的数学期望E(X n)(用n表示) .【答案】(1)112212716,,332727p q p q====;;(2)()111222+33n n n np q p q--+=+(1)直接根据操作,根据古典概型概率公式可得结果;(2)根据操作,依次求n n p q ,,即得递推关系,构造等比数列求得2n n p q +,最后根据数学期望公式求结果.【解析】(1)11131232,333333p q ⨯⨯====⨯⨯, 211131211227++3333333927p p q ⨯⨯=⨯⨯=⨯⨯=⨯⨯, 211231122222516+0+3333333927q p q ⨯⨯+⨯=⨯⨯+=⨯⨯=⨯⨯ (2)1111131212++333339n n n n n p p q p q ----⨯⨯=⨯⨯=⨯⨯,111112*********+(1)+33333393n n n n n n q p q p q q -----⨯⨯+⨯⨯=⨯⨯+--⨯=-⨯⨯⨯,因此112122+333n n n n p q p q --+=+,从而11111212(2+),21(2+1)333n n n n n n n n p q p q p q p q ----+=+∴+-=-,即1111121(2+1),2133n n n n n n p q p q p q -+-=-∴+=+.又n X 的分布列为故1()213n n n nE X p q =+=+.2020江苏卷高考数学试题及答案1.已知集合{1,0,1,2},{0,2,3}A B =-=,则A B = .2.已知i 是虚数单位,则复数(1i)(2i)z=+-的实部是 .3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是 .4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是 .5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是 .6.在平面直角坐标系xOy 中,若双曲线222105()x y a a -=>的一条渐近线方程为5y x =,则该双曲线的离心率是 .7.已知y =f (x )是奇函数,当x ≥0时,()23 f x x =,则()8f -的值是 .8.已知2sin ()4απ+=23,则sin 2α的值是 .9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是 cm.10.将函数πsin(32)4y x=﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是 .11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是 .12.已知22451(,)x y y x y +=∈R ,则22x y +的最小值是 .13.在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是 .14.在平面直角坐标系xOy 中,已知3(0)P ,,A ,B 是圆C :221()362x y +-=上的两个动点,满足PA PB =,则△PAB 面积的最大值是 .15.(本小题满分14分)在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点. (1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.16.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.17.(本小题满分14分)某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO '为铅垂线(O '在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO '的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO '的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO '的距离为40米. (1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO '的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点)..桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0),问O E '为多少米时,桥墩CD 与EF 的总造价最低?18.(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.19.(本小题满分16分)已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式; (2)若21ln ,()()()(0) x x g k x h kx k D f x x x =-+==-=+∞,,,,求k 的取值范围; (3)若()422342() 2() (48 () 4 3 02 2f x x x g x x h x t t x t t t =-=-=--+<≤,,,[] , 2,2D m n =⊆-⎡⎣,求证:7n m -≤20.(本小题满分16分)已知数列{}()n a n ∈*N 的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有11111kk k n nn S S a λ++-=成立,则称此数列为“λ~k ”数列. (1)若等差数列{}n a 是“λ~1”数列,求λ的值; (2)若数列{}n a 3”数列,且0n a >,求数列{}n a 的通项公式; (3)对于给定的λ,是否存在三个不同的数列{}n a 为“λ~3”数列,且0n a ≥?若存在,求λ的取值范围;若不存在,说明理由. 1.{0,2}2.33.24.195.3-6.327.4-8.139.1232π- 10.524x π=-11.412.4513.185或014.10515证明:因为,E F 分别是1,AC B C 的中点,所以1EF AB ∥. 又/EF ⊂平面11AB C ,1AB ⊂平面11AB C , 所以EF ∥平面11AB C .(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC , 所以1B C AB ⊥.又AB AC ⊥,1B C ⊂平面11AB C ,AC ⊂平面1AB C ,1,B CAC C =所以AB ⊥平面1AB C . 又因为AB ⊂平面1ABB ,所以平面1AB C ⊥平面1ABB .16.解:(1)在ABC △中,因为3,45a c B ==︒,由余弦定理2222cos b a c ac B =+-,得292235b =+-⨯︒=,所以b =在ABC △中,由正弦定理sin sin b cB C=,,所以sin C (2)在ADC △中,因为4cos 5ADC ∠=-,所以ADC ∠为钝角, 而180ADC C CAD ∠+∠+∠=︒,所以C ∠为锐角.故cos C 则sin 1tan cos 2C C C ==. 因为4cos 5ADC ∠=-,所以3sin 5ADC ∠=,sin 3tan cos 4ADC ADC ADC ∠∠==-∠. 从而31tan()242tan tan(180)tan()===311tan tan 111()42ADC C ADC ADC C ADC C ADC C -+∠+∠∠=︒-∠-∠=-∠+∠---∠⨯∠--⨯. 17.解:(1)设1111,,,AA BB CD EF 都与MN 垂直,1111,,,A B D F 是相应垂足. 由条件知,当40O'B =时,31140640160,800BB =-⨯+⨯= 则1160AA =. 由21160,40O'A =得80.O'A =所以8040120AB O'A O'B =+=+=(米).(2)以O 为原点,OO'为y 轴建立平面直角坐标系xOy (如图所示). 设2(,),(0,40),F x y x ∈则3216,800y x x =-+3211601606800EF y x x =-=+-. 因为80,CE =所以80O'C x =-. 设1(80,),D x y -则211(80),40y x =- 所以22111160160(80)4.4040CD y x x x =-=--=-+ 记桥墩CD 和EF 的总造价为()f x ,则3232131()=(1606)(4)80024013(160)(040).80080f x k x x k x x k x x x +-+-+=-+<<2333()=(160)(20)80040800k f x k x x x x '-+=-, 令()=0f x ', 得20.x =所以当20x =时,()f x 取得最小值. 答:(1)桥AB 的长度为120米;(2)当O'E 为20米时,桥墩CD 和EF 的总造价最低. 18解:(1)椭圆22:143x y E +=的长轴长为2a ,短轴长为2b ,焦距为2c ,则2224,3,1a b c ===.所以12AF F △的周长为226a c +=. (2)椭圆E 的右准线为4x =. 设(,0),(4,)P x Q y ,则(,0),(4,)OP x QP x y ==--,2(4)(2)44,OP QP x x x ⋅=-=--≥-在2x =时取等号.所以OP QP ⋅的最小值为4-.(3)因为椭圆22:143x y E +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥,则123(1,0),(1,0),(1,)2F F A -. 所以直线:3430.AB x y -+=设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍. 由此得|343||30403|355x y -+⨯-⨯+=⨯, 则34120x y -+=或3460x y --=.由2234120,143x y x y -+=⎧⎪⎨+=⎪⎩得2724320x x ++=,此方程无解; 由223460,143x y x y --=⎧⎪⎨+=⎪⎩得271240x x --=,所以2x =或27x =-. 代入直线:3460l x y --=,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212(,)77--. 19.解:(1)由条件()()()f x h x g x ≥≥,得222 2x x kx b x x +≥+≥-+, 取0x =,得00b ≥≥,所以0b =.由22x x kx +≥,得22 ()0x k x +-≥,此式对一切(,)x ∈-∞+∞恒成立,所以22 0()k -≤,则2k =,此时222x x x ≥-+恒成立, 所以()2h x x =.(2) 1 ln ,()()()()0,h g x k x x x x -=--∈+∞. 令() 1ln u x x x =--,则1()1,u'x x=-令()=0u'x ,得1x =.所以min () 0(1)u x u ==.则1ln x x -≥恒成立, 所以当且仅当0k ≥时,()()f x g x ≥恒成立.另一方面,()()f x h x ≥恒成立,即21x x kx k -+≥-恒成立, 也即2()1 1 +0x k x k -++≥恒成立. 因为0k ≥,对称轴为102kx +=>, 所以2141)0(()k k +-+≤,解得13k -≤≤.因此,k 的取值范围是0 3.k ≤≤ (3)①当1t ≤≤由()()g x h x ≤,得2342484()32x t t x t t -≤--+,整理得4223328()0.()4t t x t t x ----+≤*令3242=()(328),t t t t ∆---- 则642=538t t t ∆-++.记64253()18(t t t t t ϕ-++=≤≤则53222062(31)(3())06t t t t t t 't ϕ-+=--<=恒成立,所以()t ϕ在[1,上是减函数,则()(1)t ϕϕϕ≤≤,即2()7t ϕ≤≤. 所以不等式()*有解,设解为12x x x ≤≤,因此21n m x x -≤-=②当01t <<时,432()()11 34241f h t t t t ---=+---.设432= 342(41)t t t t v t +---,322()=1212444(1)(31),v't t t t t t +--=+-令()0v t '=,得t =.当(0t ∈时,()0v t '<,()v t 是减函数;当1)t ∈时,()0v t '>,()v t 是增函数. (0)1v =-,(1)0v =,则当01t <<时,()0v t <.(或证:2()(1)(31)(1)0v t t t t =++-<.) 则(1)(1)0f h ---<,因此1()m n -∉,.因为m n ⊆[][,,所以1n m -≤<③当0t <时,因为()f x ,()g x 均为偶函数,因此n m -综上所述,n m -≤20.解:(1)因为等差数列{}n a 是“λ~1”数列,则11n n n S S a λ++-=,即11n n a a λ++=, 也即1(1)0n a λ+-=,此式对一切正整数n 均成立.若1λ≠,则10n a +=恒成立,故320a a -=,而211a a -=-, 这与{}n a 是等差数列矛盾.所以1λ=.(此时,任意首项为1的等差数列都是“1~1”数列) (2)因为数列*{}()n a n ∈N”数列,. 因为0n a >,所以10n n S S +>>1=.n b,则1n b -221(1)(1)(1)3n n n b b b -=->. 解得2n b =2,也即14n n S S +=, 所以数列{}n S 是公比为4的等比数列.因为111S a ==,所以14n n S -=.则21(1),34(2).n n n a n -=⎧=⎨⨯≥⎩ (3)设各项非负的数列*{}()n a n ∈N 为“~3λ”数列, 则11133311n n n S S a λ++-=-=因为0n a ≥,而11a =,所以10n n S S +≥>1=-n c,则1 1)n n c c -=≥,即333(1)(1)( 1)n n n c c c λ-=-≥.(*) ①若0λ≤或=1λ,则(*)只有一解为=1n c ,即符合条件的数列{}n a 只有一个. (此数列为1,0,0,0,…)②若1λ>,则(*)化为3232(1)(1)01n nnc c c λλ+-++=-,因为1n c ≥,所以3232101n n c c λλ+++>-,则(*)只有一解为=1n c ,即符合条件的数列{}n a 只有一个.(此数列为1,0,0,0,…)③若01λ<<,则3232101nnc c λλ+++=-的两根分别在(0,1)与(1,+∞)内,则方程(*)有两个大于或等于1的解:其中一个为1,另一个大于1(记此解为t ).所以1n n S S +=或31n n S t S +=.由于数列{}n S 从任何一项求其后一项均有两种不同结果,所以这样的数列{}n S 有无数多个,则对应的{}n a 有无数多个.综上所述,能存在三个各项非负的数列{}n a 为“~3λ”数列,λ的取值范围是01λ<<.数学Ⅱ(附加题)21.A .[选修4-2:矩阵与变换](本小题满分10分)平面上点(2,1)A -在矩阵11a b ⎡⎤=⎢⎥-⎣⎦M 对应的变换作用下得到点(3,4)B -.(1)求实数a ,b 的值; (2)求矩阵M 的逆矩阵1-M .B .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,)6B ρ在圆:4sinC ρθ=上(其中0ρ≥,02θ≤<π).(1)求1ρ,2ρ的值;(2)求出直线l 与圆C 的公共点的极坐标. C .[选修4-5:不等式选讲](本小题满分10分)设x ∈R ,解不等式2|1|||4x x ++<.22.(本小题满分10分)在三棱锥A —BCD 中,已知CB =CD =5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值; (2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值.23.(本小题满分10分)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n . (1)求p 1,q 1和p 2,q 2;(2)求2p n +q n 与2p n-1+q n-1的递推关系式和X n 的数学期望E (X n )(用n 表示) .数学Ⅱ(附加题)参考答案21.【选做题】A .[选修4-2:矩阵与变换]本小题主要考查矩阵的运算、逆矩阵等基础知识,考查运算求解能力.满分10分.解:(1)因为123=114a b ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦ ,所以213,24,a b -=⎧⎨--=-⎩解得2a b ==,所以2112⎡⎤=⎢⎥-⎣⎦M .(2)因为2112⎡⎤=⎢⎥-⎣⎦ M ,det 221150=⨯-⨯-=≠()()M ,所以M 可逆, 从而121551255-⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ - M. B .[选修4-4:坐标系与参数方程]解:(1)由1cos 23ρπ=,得14ρ=;24sin 26ρπ==,又(0,0)(即(0,6π))也在圆C 上,因此22ρ=或0.(2)由cos 2,4sin ,ρθρθ=⎧⎨=⎩得4sin cos 2θθ=,所以sin 21θ=.因为0ρ≥,0 2θ≤<π,所以4θπ=,ρ所以公共点的极坐标为)4π. C .[选修4-5:不等式选讲]解:当x >0时,原不等式可化为224x x ++<,解得203x <<; 当10x -≤≤时,原不等式可化为224x x +-<,解得10x -≤≤; 当1x <-时,原不等式可化为224x x ---<,解得 2 1x -<<-. 综上,原不等式的解集为2|2}3{x x -<<. 22.解:(1)连结OC ,因为CB =CD ,O 为BD 中点,所以CO ⊥B D . 又AO ⊥平面BCD ,所以AO ⊥OB ,AO ⊥O C .以{}OBOC OA ,,为基底,建立空间直角坐标系O –xyz . 因为BD =2,CB CD =,AO =2,所以B (1,0,0),D (–1,0,0),C (0,2,0),A (0,0,2). 因为E 为AC 的中点,所以E (0,1,1).则AB =(1,0,–2),DE =(1,1,1),所以||||||||5cos AB DE AB DE AB DE =⋅⋅=<>,.因此,直线AB 与DE . (2)因为点F 在BC 上,14BF BC =,BC =(–1,2,0). 所以111(,,0)442BF BC ==-. 又20,0DB =(,), 故71(,,0)42DF DB BF =+=.设1111()x y z =,,n 为平面DEF 的一个法向量,则1100,DE DF ⎧⎪⎨⎪⎩⋅=⋅=,n n 即111110710,42x y z x y +⎧+=⎪+=⎪⎨⎩, 取12x =,得1–7y =,15z =,所以1(275)n =-,,. 设2222()x y z =,,n 为平面DEC 的一个法向量,又DC =(1,2,0),则2200,DE DC ⎧⎪⎨⎪⎩⋅=⋅=,n n 即22222020,x y z x y ++=+=⎧⎨⎩,取22x =,得2–1y =,2–1z =,所以2(211)n =--,,. 故2112|||||||co |s θ⋅===⋅n n n n .所以s n i θ==23.解:(1)113111133C C 1C C 3p =⋅=,113211133C C 2C C 3q =⋅=,11113121211111*********C C C C 1270(1)C C C C 3927p p q p q p q =⋅⋅+⋅⋅+⋅--=+=,1111111133222112211111111111133333333C C C C C C C C ()(1)C C C C C C C C q p q p q =⋅⋅+⋅+⋅⋅+⋅⋅--11216=9327q -+=.(2)当2n ≥时,1111312111111111113333C C C C 120(1)C C C C 39n n n n n n n p p q p q p q ------=⋅⋅+⋅⋅+⋅--=+,①111111113322211211111111111133333333C C C C C C C C ()(1)C C C C C C C C n n n n n q p q p q ----=⋅⋅+⋅+⋅⋅+⋅⋅--112=93n q --+,②2⨯+①②,得()1111124121222399333n n n n n n n p q p q q p q -----+=+-+=++. 从而1112(211)3n n n n p q p q ---+-+=,又111312p q -+=, 所以11112()1()3331n n n n p q -+++==,*n ∈N .③ 由②,有1313()595n n q q --=--,又135115q -=,所以1113()1595n n q -=-+,*n ∈N . 由③,有13111()210111()()33925nn n n n p q =+=-+-+[],*n ∈N . 故311111()()109235n n n n p q --=--+,*n ∈N . n X 的概率分布则*1()0(1)121(),3n n n n n n E X p q q p n =⨯--+⨯+⨯=+∈N .。

江苏高考数学真题及答案

江苏高考数学真题及答案

江苏高考数学真题及答案
每年的高考数学试题都备受关注,尤其是江苏地区的高考数学试题
更是备受瞩目。

通过研究江苏高考数学真题及答案,考生可以更好地
了解考试内容和考点,为备战高考做好充分准备。

下面我们就一起来
看看江苏高考数学真题及答案。

首先,我们来看一道选择题:
1.设函数y=2x^3 -3x^2 +6x+1, 则y的单调递增区间是()。

A. ( -∞, 0)
B. ( -∞, -1)
C. ( -1,∞)
D. (0,+∞)
答案:C
接下来是一道解答题:
2.若集合A = {1, x, 2, y},集合B = {1, 2, 3, 4},且8个元素只取一
次,试问x和y可能的取值。

解:由于8个元素只取一次,且集合A中只有1个大于2的数,故
集合A中只能取1和2,又集合B中有1和2,所以$x=2$,同理,由
于集合A中只有1个大于1的数,故$y=3$。

最后一道综合题:
3.已知二次函数$y=ax^2+bx+c$的对称轴为x=2,且y轴截距为3,求
a,b,c的值。

解:由于对称轴为x=2,可得二次项的系数a = 1,由于y轴截距为3,代入得到c = 3,再由a = 1,结合对称轴为x=2,可得b = -4。

以上就是江苏高考数学真题及答案的部分内容,希望考生们能够认真学习、备考,取得优异的成绩。

祝各位考生考试顺利!。

(word完整版)江苏语文高考试卷含和解析,文档

(word完整版)江苏语文高考试卷含和解析,文档

2021 年江苏语文高考试卷一、语言文字运用〔15 分〕1.在下面一段话的空缺处依次填入词语,最合适的一组是〔 3 分〕中国古代的儒家经典,莫不是古圣人深思熟虑、的结晶。

若是把经典不过看作一场的说教,那你永远进不了圣学大门。

必得躬亲实践,才能的确圣人的心得,这样我们的修为才能日有所进。

A .特立独行谆谆教诲顿悟B.特立独行耳擩目染领悟C.以身作则谆谆教诲领悟D.以身作则耳擩目染顿悟2.在下面一段文字横线处填入语句,连结最合适的一项为哪一项〔3 分〕“理性经济人〞,把利己看作人的天性,只追求个人利益的最大化,这是西方经济学的根本假设之一。

,。

,,,,更倾向于暂时获取产品或效劳,或与他人分享产品或效劳。

使用但不占有,是分享经济最简洁的表述。

①反而更多地采用一种合作分享的思想方式②不再侧重购置、拥有产品或效劳③但在分享经济这一催化剂的作用下④人们不再把全部权看作获取产品的最正确方式⑤在新兴的互联网平台上⑥这个利己主义的假设发生了变化A .③⑥⑤①④②B.③⑥⑤④②①C.⑤⑥③①④② D .⑤⑥③④②①3.以下诗句与所描述的古代体育活动,对应全部正确的一项为哪一项〔3 分〕①乐手无踪洞箫吹,精灵盘丝任翻飞。

②雾縠云绡妙剪裁,好风相送上瑶台。

③浪设机关何所益,仅存边角未为雄。

④来疑神女从云下,去似姮娥到月边。

A .①下围棋②荡秋千③抖空竹④放风筝B.①抖空竹②荡秋千③下围棋④放风筝C.①下围棋②放风筝③抖空竹④荡秋千D.①抖空竹②放风筝③下围棋④荡秋千4.对下面一段文字主要意思的提炼,最正确的一项为哪一项〔 3 分〕偏见能够说是思想的放假。

它是没有思想的人的家常日用,是有思想的人的星期天娱乐。

假设我们不能够怀挟偏见,随时随地必定得客观公正、正经严肃,那就像造屋只有客厅,没有卧室,又恰似在浴室里照镜子还得做出摄像机前的姿态。

A.没有思想的人经常更简单产生偏见。

B.即使有思想的人也经常会怀挟偏见。

C.人无法做到随时随地保持客观公正。

2022年江苏省高考数学试卷(新高考I)(含答案)

2022年江苏省高考数学试卷(新高考I)(含答案)

2022年江苏省高考数学试卷(新高考I)(含答案)一、选择题(每小题5分,共60分)1. 若函数f(x) = x² 4x + 3的图像开口向上,则f(x)的对称轴为( )A. x = 2B. x = 2C. x = 1D. x = 12. 已知等差数列{an}的前n项和为Sn,若S4 = 20,则a3的值为( )A. 5B. 6C. 7D. 83. 若点A(2, 3)关于直线y = x的对称点为B,则点B的坐标为( )A. (2, 3)B. (3, 2)C. (3, 2)D. (2, 3)4. 已知函数f(x) = log₂(x 1),则f(2)的值为( )A. 0B. 1C. 2D. 35. 若三角形ABC的边长分别为a, b, c,且满足a² + b² = c²,则三角形ABC是( )A. 等腰三角形B. 等边三角形C. 直角三角形D. 钝角三角形6. 已知复数z = 2 + 3i,则|z|的值为( )A. 1B. 2C. 3D. 47. 若函数f(x) = ax² + bx + c在x = 1时取得最小值,则a的值为( )A. 正数B. 负数C. 零D. 无法确定8. 已知集合A = {x | x > 2},B = {x | x < 5},则A∩B表示( )A. x > 2 且 x < 5B. x > 2 或 x < 5C. x ≤ 2 且x ≥ 5D. x ≤ 2 或x ≥ 59. 若直线y = mx + b与x轴的交点为(1, 0),则m的值为( )A. 1B. 1C. 0D. 无法确定10. 已知等比数列{an}的首项为1,公比为2,则a5的值为( )A. 16B. 8C. 4D. 2二、填空题(每空5分,共20分)1. 若函数f(x) = x³ 3x² + 2x 1的图像在x = 1时取得极值,则f(1)的值为______。

历年高考数学真题汇编专题16 以基本不等式为背景的应用题(解析版)

历年高考数学真题汇编专题16  以基本不等式为背景的应用题(解析版)

历年高考数学真题汇编专题16 以基本不等式为背景的应用题1、【2017年高考江苏卷】某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是___________.【答案】30【解析】总费用为600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.2、【2010年高考江苏卷】某兴趣小组要测量电视塔AE 的高度H (单位:m).示意图如图所示,垂直放置的标杆BC 的高度h =4 m ,仰角∠ABE =α,∠ADE =β.(1) 该小组已测得一组α,β的值,tan α=1.24,tan β=1.20,请据此算出H 的值;(2) 该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d (单位:m),使α与β之差较大,可以提高测量精确度.若电视塔的实际高度为125 m ,试问d 为多少时,α-β最大?规范解答 (1) 由AB =H tan α,BD =h tan β,AD =H tan β及AB +BD =AD ,得H tan α+h tan β=Htan β, 解得H =h tan αtan α-tan β=4×1.241.24-1.20=124.因此算出的电视塔的高度H 是124 m. (2) (1) 由题知d =AB ,则tan α=H d.由AB =AD -BD =H tan β-h tan β,得tan β=H -hd,所以tan(α-β)=tan α-tan β1+tan αtan β=()h hH H d d-+,当且仅当d =555时取等号. 又0<α-β<π2,所以当d =555时,tan(α-β)的值最大.因为0<β<α<π2,所以当d =555时,α-β的值最大.3、【2013年高考江苏卷】如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1 km.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1) 求炮的最大射程;(2) 设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2 km ,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.本小题主要考查函数、方程和基本不等式等基础知识,考查数学阅读能力和解决实际问题的能力.满分14分.规范解答 (1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x >0,k >0,故x =20k 1+k 2=20k +1k≤202=10,当且仅当k =1时取等号. 所以炮的最大射程为10km.(2) 因为a >0,所以炮弹可击中目标等价于存在k >0,使3.2=ka -120(1+k 2)a 2成立,即关于k 的方程a 2k 2-20ak +a 2+64=0有正根, 所以判别式Δ=(-20a )2-4a 2(a 2+64)≥0, 解得a ≤6,所以0<a ≤6.所以当a 不超过6km 时,炮弹可击中目标.一、解函数应用问题的步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题的意义.以上过程用框图表示如下:二、在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.运用基本不等式解决应用题一定要注意满足三个条件:一、正;二、定;三、相等。

江苏高考题目江苏高考题目解析(实用

江苏高考题目江苏高考题目解析(实用

江苏高考题目江苏高考题目解析(实用江苏高考题目1根据以下材料中的两种倾向,自选角度,自拟题目,写一篇不少于800字的文章(不要写成诗歌)究竟该让孩子成为怎样的人?看法因人而异。

很多有钱人选择把孩子送到贵族学校,期望孩子成为精英:而有位老板的做法却与之相反,他说:我希望我的孩子成为一个普通人。

写作指导作文立意、展开都应兼顾“材料的两种倾向”,可以有侧重。

预想角度如下,供参考:愿望与现实、精英与草根、“成龙”与成人、不必跟“风”、做一个快乐的普通人适合的才是最好的、应着眼于孩子是否幸福、给孩子自由选择的空间、不让孩子的意愿缺席请尊重孩子的需求、孩子的成长应顺天致性、别让孩子太沉重。

评分:基准分:48分。

符合以下一项即为五类:(1)脱离题意。

(2)全文不足400字。

补充:五类上(17—20),符合下列一项者:1、脱离题意,内容单薄空洞但完整成文的。

2、全文不足要求的一半字数的。

文理不通、不知所云,有文章之形,而无文章之实的。

未写题目扣2分。

错别字满3个扣1分,至多扣3分。

标点错误多,酌情扣1—2分;书写乱、文面不整洁,酌情扣1—2分。

江苏高考题目2今年江苏高考作文抛出了“有话无话”、“话长话短”及“个性和创新”等元素;事实上,对于每年的作文题,倒是人人有话可说,有话要说的。

下面是小编收集的江苏高考作文题目解析,欢迎大家参考!根据以下材料,选取角度,自拟题目,写一篇不少于800字的文章:文体不限,诗歌除外。

俗话说:有话则长,无话则短。

有人却说:有话则短,无话则长——别人已说的我不必再说,别人无话可说处我也许有话要说。

有时这是个性的彰显,有时则是创新意识的闪现。

话短话长中的个性和创新名师点评2016年江苏高考作文本报讯(记者小方)昨天中午11点半,理科生结束了语文考试,2016年江苏高考作文题也就揭晓了——“根据以下材料,选取角度,自拟题目,写一篇不少于800字的文章:文体不限,诗歌除外。

俗话说:有话则长,无话则短。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年-2008年江苏高考应用题(共10题)说明:应用题考在17题或18题,是解答题的第三、四两题之一,是中档题,是学生取得优分必须要突破的题型,必须重视。

做错的认真订正,并在可能的情况下多练。

1.某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ. (1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.2.如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC 的长为107cm,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm. 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm. 现有一根玻璃棒l ,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度; (2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.3. 现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1PO 的四倍.(1)若16,PO 2,AB m m ==则仓库的容积是多少?(2)若正四棱柱的侧棱长为6m,则当1PO 为多少时,仓库的容积最大?容器Ⅱ容器ⅠGOHF EDCBAO 1H 1G 1F 1E 1D 1C 1B 1A 14. 某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为12l l ,,山区边界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到12l l ,的距离分别为5千米和40千米,点N 到12l l ,的距离分别为20千米和千米,以12l l ,所在的直线分别为x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数2ay x b=+(其中a ,b 为常数)模型. (1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t .①请写出公路l 长度的函数解析式()f t ,并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度.5.如图:为保护河上古桥,规划建一座新桥,同时设立一个圆形保护区,规划要求,新桥与河岸垂直;保护区的边界为圆心在线段上并与相切的圆,且古桥两端和到该圆上任一点的距离均不少于80,经测量,点位于点正北方向60处,点位于点正东方向170处,(为河岸),。

(1)求新桥的长;(2)当多长时,圆形保护区的面积最大?6.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径。

一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为min /50m .在甲出发min 2后,乙从A 乘缆车到B ,在B 处停留min 1后,再从匀速步行到C.假设缆车匀速直线运动的速度为OA BC BC AB M OA BC O A m A O m C O m OC 4tan 3BCO ∠=BCOMmin /130m ,山路AC 长为m 1260,经测量,1312cos =A ,53cos =C . (1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短? (3)为使两位游客在C 处互相等待的时间不超过3分钟, 乙步行的速度应控制在什么范围内?7. 如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.8、请你设计一个包装盒,如图所示,ABCD 是边长为60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E 、F 在AB 上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm(1)若广告商要求包装盒侧面积S (cm 2)最大,试问x 应取何值?(2)若广告商要求包装盒容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值。

xxEF ABDCCBADMNx (千米)y (千米)O9、某兴趣小组测量电视塔AE 的高度H(单位:m ),如示意图,垂直放置的标杆BC 的高度h=4m ,仰角∠ABE=,∠ADE=。

(1)该小组已经测得一组、的值,tan =,tan =,请据此算出H 的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d (单位:m ),使与之差较大,可以提高测量精确度。

若电视塔的实际高度为125m ,试问d 为多少时,-最大?10.某地有三家工厂,分别位于矩形ABCD 的顶点A,B 及CD 的中点P 处,已知AB=20km,CB =10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A,B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO,BO,OP ,设排污管道的总长为y km . (Ⅰ)按下列要求写出函数关系式:①设∠BAO=θ(rad),将y 表示成θ的函数关系式; ②设OP x =(km) ,将y 表示成x x 的函数关系式.(Ⅱ)请你选用(Ⅰ)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短.解析如下:1.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.αβαβαβαβαβCBP OAD17.【答案】(1);(2)当时,能使甲、乙两种蔬菜的年总产值最大.【解析】(1)连结并延长交于,则,所以. 过作于,则,所以, 故,,则矩形的面积为,的面积为.过作,分别交圆弧和的延长线于和,则. 令,则,. 当时,才能作出满足条件的矩形,所以的取值范围是.(2)因为甲、乙两种蔬菜的单位面积年产值之比为,设甲的单位面积的年产值为,乙的单位面积的年产值为, 则年总产值为,.设,,则.令,得,当时,,所以为增函数; 当时,,所以为减函数,1,41⎡⎫⎪⎢⎣⎭π6θ=PO MN H PH MN ⊥10OH =O OE BC ⊥E OE MN ∥COE θ∠=40cos OE θ=40sin EC θ=ABCD ()()240cos 40sin 108004sin cos cos θθθθθ⨯+=+CDP △()()1240cos 4040sin 1600cos sin cos 2θθθθθ⨯⨯-=-N GN MN ⊥OE G K 10GK KN ==0GOK θ∠=01sin 4θ=0π0,6θ⎛⎫∈ ⎪⎝⎭0π2,θθ⎡⎫∈⎪⎢⎣⎭ABCD sin θ1,41⎡⎫⎪⎢⎣⎭4:34k ()30k k >()()48004sin cos cos 31600cos sin cos k k θθθθθθ⨯++⨯-()8000sin cos cos k θθθ=+0π2,θθ⎡⎫∈⎪⎢⎣⎭() sin cos cos f θθθθ=+0π2,θθ⎡⎫∈⎪⎢⎣⎭()()()()222cos sin sin 2sin sin 12sin 1sin 1f θθθθθθθθ'=--=-+-=--+()=0f θ'π6θ=0π6,θθ⎛⎫∈ ⎪⎝⎭()>0f θ'()f θππ,62θ⎛⎫∈ ⎪⎝⎭()<0f θ'()f θ因此,当时,取到最大值. 2.(本小题满分16分) 如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC 的长为107cm,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm. 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm. 现有一根玻璃棒l ,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计) (1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度; (2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.【答案】(1)16(2)20【解析】解:(1)由正棱柱的定义,1CC ⊥平面ABCD ,所以平面11A ACC ⊥平面ABCD ,1CC AC ⊥.记玻璃棒的另一端落在1CC 上点M 处.( 如果将“没入水中部分冶理解为“水面以上部分冶,则结果为24cm)π6θ=()f θ容器Ⅱ容器ⅠGOHFE DCBA O 1H 1G 1F 1E 1D 1C 1B 1A 1(第18题)(2)如图,O ,O 1是正棱台的两底面中心.由正棱台的定义,OO 1⊥平面 EFGH , 所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG . 同理,平面 E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1. 记玻璃棒的另一端落在GG 1上点N 处. 过G 作GK ⊥E 1G ,K 为垂足, 则GK =OO 1=32. 因为EG = 14,E 1G 1= 62,所以KG 1=6214242-=,从而140GG ===. 设1,,EGG ENG αβ==∠∠则114sin sin()cos 25KGG KGG απ=+==∠∠. 因为2απ<<π,所以3cos 5α=-. 在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=. 因为02βπ<<,所以24cos 25β=. 于是42473sin sin()sin()sin co 3s cos sin ()5252555NEG αβαβαβαβ=π--=+=+=⨯+-⨯=∠. 记EN 与水面的交点为P 2,过 P 2作P 2Q 2⊥EG ,Q 2为垂足,则 P 2Q 2⊥平面 EFGH ,故P 2Q 2=12,从而 EP 2=2220sin P NEGQ =∠.答:玻璃棒l 没入水中部分的长度为20cm.(如果将“没入水中部分冶理解为“水面以上部分冶,则结果为20cm) 3. (本小题满分14分)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1PO 的四倍.(1)若16,PO 2,AB m m ==则仓库的容积是多少?(2)若正四棱柱的侧棱长为6m,则当1PO 为多少时,仓库的容积最大?【答案】(1)312(2)1PO4.(本小题满分14分) 某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为12l l ,,山区边界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到12l l ,的距离分别为5千米和40千米,点N 到12l l ,的距离分别为20千米和千米,以12l l ,所在的直线分别为x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数2ay x b=+(其中a ,b 为常数)模型.(1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t .①请写出公路l 长度的函数解析式()f t ,并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度.【答案】(1)1000,0;a b ==(2)①()f t 定义域为[5,20],②min ()t f t ==千米 (2)①由(1)知,21000y x =(520x ≤≤),则点P 的坐标为21000,t t ⎛⎫⎪⎝⎭, 设在点P 处的切线l 交x ,y 轴分别于A ,B 点,32000y x'=-,5.(满分16分)如图:为保护河上古桥,规划建一座新桥,同时设立一个圆形保护区,规划要求,新桥与河岸垂直;保护区的边界为圆心在线段上并与相切的圆,且古桥两端和到该圆上任一点的距离均不少于80,经测量,点位于点正北方向60处,点位于点正东方向170处,(为河岸),。

相关文档
最新文档