纳米氧化锌的制备、表面改性及应用
纳米氧化锌的制备、表面改性及应用
纳米氧化锌的制备、表面改性及应用【摘要】纳米氧化锌是一种具有广泛应用前景的材料,其在光电器件、生物医药和环境保护领域均有重要应用。
本文将首先介绍纳米氧化锌的制备方法和表面改性技术,然后探讨其在光电器件中的应用和在生物医药领域中的潜力,最后讨论其在环境保护中的作用。
通过对这些方面的探讨,可以更好地了解纳米氧化锌在不同领域的应用和价值,同时也展望了其未来在科学研究和工程应用中的发展方向和趋势。
纳米氧化锌的研究不仅可以促进材料科学的发展,还有望为解决当下社会面临的环境和健康问题提供新的解决方案。
【关键词】纳米氧化锌、制备、表面改性、应用、光电器件、生物医药、环境保护、应用前景、研究展望1. 引言1.1 纳米氧化锌的研究背景纳米氧化锌是一种重要的纳米材料,在过去几十年里受到了广泛的研究。
纳米氧化锌具有较大的比表面积、优异的光学、电学性能和良好的化学稳定性,因此被广泛应用于各个领域。
纳米氧化锌的研究背景主要包括以下几个方面:纳米氧化锌的独特性能和结构使其成为一种优异的光电材料,能够广泛应用于光电器件、传感器等领域;纳米氧化锌具有良好的生物相容性和生物活性,在生物医药领域具有很高的应用价值;纳米氧化锌还具有良好的光催化性能和抗菌性能,在环境保护领域也具有广阔的应用前景。
对纳米氧化锌的研究具有重要的意义,能够推动材料科学和应用领域的发展。
1.2 纳米氧化锌的研究意义纳米氧化锌具有优异的光电性能,具有较高的光吸收率和导电性,使其在光电器件领域有着广泛的应用前景。
利用纳米氧化锌可以制备高效的太阳能电池、光电探测器等器件,提高器件的性能和稳定性。
纳米氧化锌具有良好的生物相容性和生物活性,被广泛应用于生物医药领域。
纳米氧化锌可以作为药物载体,具有控释和靶向释放的功能,可以用于治疗肿瘤、炎症等疾病,也可以用于生物成像和诊断。
纳米氧化锌还具有良好的催化活性和光催化性能,被广泛应用于环境保护领域。
纳米氧化锌可以用于水处理、空气净化等领域,去除有害物质和污染物,净化环境,保护生态。
纳米氧化锌的制备、表征和光催化性能分析
液) 的紫外 一 见吸 收光谱 图 , 5为纳 米 Z ( 存 在 下经 太 阳 可 图 n) 光2 h光 催化 降解 后 的甲基橙 溶液 紫外一 可见 吸收 光谱 图 。
2 4 光 致发 光 ( L) . P 光谱
为 了探 讨 纳米 Z O粒 子光 催化 的动 , n 分别 测量 了纳 米 氧化 锌 ( 、 N) 商品 Z (( 的激 发 光 谱 。图 6是 N 的 光敛 发 n )c) 光 ( I 谱 , 中 3个 主峰分 别 是 紫色 发光 峰 ( 9 . 6 m) 较 P ) 图 33 5n 、 强 的蓝 色可 见发光 峰 ( 4 . 5 m, 4 5 5 n 该主 峰 有一 个伴 峰 ) 一 个 、 次 强的绿 色 发光峰 ( 6 . 4 m, 主 峰两侧 有多 个伴 峰 ) 4 75 n 该 。前 两个 峰 属于带 边 自由激 子发 光 , 一个 峰 可能 为 束缚 激 子 发 第 -
W ANG il n Ju i g a
( Re l g f n h n Unv r i Ii nCol eo e Ya s a iest y,Qih a g a 6 0 4 n u n d o0 6 0 )
Ab ta t sr c Na o Z O y t e ie y t em e h d o n f r p e i i t n i i h p fs h r F smi ro e , n n s n h s d b h t o fu i m r c p t i s n s a e o p e e O i l n s z o a o a
关 键 词 纳米材料 氧化锌 制备技术 光催化剂 催化特性 中 图分 类号 : 4 . 063 3 文献标识码 : A
Pr pa a i n a e r to nd Cha a t r z t0 f Na o ZnO nd I s Ana y i r c e ia i n o n a t lss o o o c t l tc Pr pe te fPh t ’ a a y i o r i s
纳米氧化锌表面包覆改性及其表征
仪 、 态沉降 实验 等 分 析 手 段 考 察 了改 性 前 后 纳 米 氧 静 化锌 在 水体 系 中的分散 稳 定 性 。结 果 表 明 , Z 0 表 在 n
面形 成 的 包覆 物 是 以非 晶 态 形 式 存 在 的 , 过 表 面 包 通 覆 So 并 i 2 Al 改 性后 明显提 高 了氧 化 锌 的表 i 2 口SO / 。 O。 面羟基含 量 , 有效 改 变 了氧 化锌 的等 电点 , 著提 高 了 显
( 质量 分数 )用 硫 酸铝 调节 浆 液 的 p , H一7 陈化 4 , , h 水
洗至无 硫 酸根 离子 , 滤 ,0 ℃干燥 , 到硅 铝二 元 包 过 10 得
覆 的纳米 Z O。 n 2 2 样 品分 析与 表征 .
关键 词 : 纳 米 Z 0; n 表面 改性 ; 覆 ; 散稳 定性 包 分 中图分 类号 : TQ1 3 4 2 . 文献 标识 码 : A
纳米氧 化锌在 水 中的 分散 稳 定性 。
备 工艺 如 下 , 上 述硅 包膜 的工艺 完成 包 硅膜 后 , 持 按 维 体系温 度 为 7 ℃ , H一8 5 加 入 硫 酸 铝 和 稀 氢 氧 化 O p ., 钠 , 酸铝 的化 学 计 量 控 制 在 Al / n 硫 z Z O=2 ~5 O。
结 构的表 征 以及分 散稳 定性 的研 究 则 较 少 。本 文采 用 液 相沉 积 法 制 备 了 表 面 硅 包 膜 和 硅 铝 共 包 膜 纳 米 Z O, n 并利 用 X D、 M 、 G- C对 其 表 面 结 构进 行 R TE T DS
Zt ea电位 , 并利 用静 态 沉 淀法 分 析 比较 表 面 改性 前 后
定性 。
2 实 验
纳米氧化锌表面包覆改性及其表征
纳米氧化锌表面包覆改性及其表征摘要纳米氧化锌(nZnO)是一种具有优异的光学性能的纳米材料,可以用于多种应用。
本文介绍了纳米氧化锌表面包覆改性的原理和方法,并介绍了包覆改性后的表征方法。
结果表明,纳米氧化锌表面包覆改性可以改变表面性质,增强其稳定性,提高其光学性能。
关键词:纳米氧化锌;表面包覆改性;表征1、纳米氧化锌纳米氧化锌(nZnO)是一种具有优异的光学性能的纳米材料,可以用于多种应用。
纳米氧化锌具有良好的热稳定性,可在室温下稳定存在,具有良好的耐腐蚀性,可以在高温、酸性和碱性环境中稳定存在,还具有良好的电学性能,可以用于高效光电器件。
2、纳米氧化锌表面包覆改性纳米氧化锌表面包覆改性是指在纳米氧化锌表面覆盖一层包覆材料,以改善其表面性质,增强其稳定性,提高其光学性能。
常用的包覆材料有聚氨酯(PU)、聚乙烯(PE)、聚乙烯醇(PVA)等,其中聚氨酯是最常用的包覆材料。
聚氨酯的表面包覆改性方法主要有两种:一种是通过溶剂涂覆的方法,即将聚氨酯溶于溶剂中,然后将溶解的聚氨酯涂覆在纳米氧化锌表面上;另一种是通过气相涂覆的方法,即将聚氨酯溶于有机溶剂中,然后将溶解的聚氨酯溶剂挥发,将聚氨酯涂覆在纳米氧化锌表面上。
3、表征表征是指通过测试和分析来检测改性后的纳米氧化锌的性能。
常用的表征方法有X射线衍射(XRD)、热重分析(TGA)、扫描电镜(SEM)、透射电子显微镜(TEM)、拉曼光谱(Raman)等。
X射线衍射是用来表征改性后的纳米氧化锌的晶体结构,可以测量改性后的纳米氧化锌的晶粒大小和晶体结构,以及晶体结构的变化。
热重分析(TGA)可以测量改性后的纳米氧化锌的热稳定性,可以测量改性后的纳米氧化锌的热解温度和热重变化率。
扫描电镜(SEM)可以用来表征改性后的纳米氧化锌的表面形貌,可以测量改性后的纳米氧化锌的表面粗糙度和表面形貌。
透射电子显微镜(TEM)可以用来表征改性后的纳米氧化锌的尺寸和形貌,可以测量改性后的纳米氧化锌的粒径和形貌。
纳米氧化锌介绍与应用
纳米氧化锌介绍与应用纳米氧化锌(ZnO)粒径介于1-100 nm之间,是一种面向21世纪的新型高功能精细无机产品,表现出许多特殊的性质,如非迁移性、荧光性、压电性、吸收和散射紫外线能力等,利用其在光、电、磁、敏感等方面的奇妙性能,可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。
概述中文名:纳米氧化锌英文名:Zinc oxide,nanometer 别名:纳米锌白;Zinc White nanometer CAS RN.:1314-13-2 分子式:ZnO 分子量:81.37形态纳米氧化锌是一种多功能性的新型无机材料,其颗粒大小约在1~100纳米。
由于晶粒的细微化,其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点。
近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使其在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。
纳米氧化锌在纺织领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。
由于纳米氧化锌一系列的优异性和十分诱人的应用前景,因此研发纳米氧化锌已成为许多科技人员关注的焦点。
纳米氧化锌金属氧化物粉末如氧化锌、二氧化钛、二氧化硅、三氧化二铝及氧化镁等,将这些粉末制成纳米级时,由于微粒之尺寸与光波相当或更小时,由于尺寸效应导致使导带及价带的间隔增加,故光吸收显著增强。
各种粉末对光线的遮蔽及反射效率有不同的差异。
以氧化锌及二氧化钛比较时,波长小于350纳米(UVB)时,两者遮蔽效率相近,但是在350~400nm(UVA)时,氧化锌的遮蔽效率明显高于二氧化钛。
同时氧化锌(n=1.9)的折射率小于二氧化钛(n=2.6),对光的漫反射率较低,使得纤维透明度较高且利于纺织品染整。
纳米氧化锌还可用来制造远红外线反射纤维的材料,俗称远红外陶瓷粉。
纳米ZnO材料的合成及其光催化应用
纳米ZnO材料的合成及其光催化应用郎集会;吴思;王勇;王瑛琦;刘畅;李秀艳;杨景海【摘要】纳米氧化锌(ZnO)作为一种半导体金属氧化物功能材料,它的诸多特性如荧光性、光催化活性、紫外激光发射、紫外线吸收、光电及压电性等被人们陆续发现并广泛应用于荧光体、高效催化剂、紫外线遮蔽材料、气体传感器、图像记录材料及压电材料等多个领域.ZnO由于其绿色、环保和高效等优点,近年来在环境污染控制方面受到人们的广泛关注.通过合成技术和条件控制纳米ZnO材料的粒径、表面态和形貌等参数可以提高光催化材料的光催化活性和量子产率.本文综述了本课题组对纳米ZnO材料的合成技术及其在光催化领域的应用研究,主要探讨了影响纳米ZnO材料光催化性能的相关参数.【期刊名称】《吉林师范大学学报(自然科学版)》【年(卷),期】2018(039)001【总页数】7页(P30-36)【关键词】纳米氧化锌;合成方法;光催化活性;应用【作者】郎集会;吴思;王勇;王瑛琦;刘畅;李秀艳;杨景海【作者单位】吉林师范大学物理学院,吉林四平136000;吉林师范大学物理学院,吉林四平136000;吉林师范大学物理学院,吉林四平136000;吉林师范大学物理学院,吉林四平136000;吉林师范大学物理学院,吉林四平136000;吉林师范大学物理学院,吉林四平136000;吉林师范大学物理学院,吉林四平136000【正文语种】中文【中图分类】O614.2;O643.30 引言近年来,半导体金属氧化物由于其绿色、环保、高效等优点,在环境污染控制方面得到了广泛关注,可以说是目前重要的光催化剂之一[1-3].随着纳米科技的高速发展,人们对材料的性质有了更深入的认识,为纳米光催化技术的应用提供了极好的机遇.控制纳米材料的粒径、表面态、形貌等技术手段日趋成熟,通过材料设计,提高光催化材料的光催化活性和量子产率成为可能[4-5].而纳米半导体金属氧化物,如TiO2、ZnO纳米材料,促进了光催化学科与纳米半导体材料学科的交叉融合,使纳米半导体金属氧化物这类光催化材料的制备及其光催化性能研究成为近年来科学领域关注的热点[6-11].氧化锌(ZnO)是一种宽带隙半导体金属氧化物功能材料,具有直接带隙、高电子迁移率等诸多优点.最近研究结果表明,与TiO2相比,ZnO在处理废水中某些难降解的有机污染物时具有更好的光催化效果[12-17].Juan Xie等[18]采用水热法合成了ZnO花状和片状结构,并对不同形貌的ZnO材料进行光催化降解甲基橙研究.研究表明,在紫外灯的照射下,由于两种材料带隙的不同导致片状ZnO比花状ZnO具有更优异的光催化活性.Jagriti Gupta等[19]通过软化学法改变OH-离子浓度合成了不同形貌的ZnO纳米材料,在OH-离子浓度较低时合成了直径为8 nm球状纳米颗粒,在OH-离子浓度较高时合成了长度为30~40 nm的ZnO纳米棒.研究结果表明,材料的缺陷对其光催化活性有很大的影响.在紫外灯照射下降解甲基蓝的催化结果表明,由于球状ZnO纳米颗粒具有较多的氧空位,因此其光催化活性最佳.Manoj Pudukudy等[20]采用简单的共沉淀法合成了准球形和胶囊形ZnO纳米材料,研究了反应温度对材料光催化活性的影响.研究结果表明,在低温下准球形ZnO纳米材料形成,而高温下胶囊形ZnO纳米材料形成.在紫外灯下对染料甲基蓝的催化降解表明,退火温度的提高有利于提高材料的光催化降解率.尽管这些ZnO纳米材料具有较高的光催化活性,但是其禁带宽度的限制极大制约了ZnO对太阳光辐射的利用率和实际生活中的广泛应用.此外,ZnO光催化剂中的光生电子-空穴复合率高,导致光量子利用率低,易发生光化学腐蚀等问题,从而降低其光催化效率.因此,有必要采用各种手段提高该类催化剂的光催化活性和化学稳定性.纳米ZnO材料作为一种重要的半导体金属氧化物功能材料具有广泛的应用前景,特别是在环境有机污水处理方面引起人们极大的关注.因此,人们研发了不同的纳米ZnO材料的合成方法,主要方法见图1所示.图1 纳米ZnO材料的合成方法Fig.1 The synthesis method of ZnO nanomaterials基于此,本课题组做了一些相关研究工作,采用了不同的合成方法来制备纳米ZnO材料,如:化学溶液沉积法、水热法、两步化学合成法、化学刻蚀法、模板法等,并对影响材料光催化活性的相关参数进行了研究和分析.1 纳米ZnO材料的水热法合成及其光催化性能研究水热法是利用水热反应得到纳米ZnO材料的一种方法.水热反应是在高温高压条件下进行的一种化学反应[21].依据反应类型的不同,水热反应可分为水热氧化、水热还原、水热沉淀、水热合成、水热水解、水热结晶等.相比较其他制备方法而言,该方法具有很多优点,如:晶粒发育完整、分散性好、纯度高、晶形好且生产成本较低.图2 六方纳米盘状ZnO(A)、“汉堡包”状ZnO(B)的FE-SEM图及其光催化降解曲线(C) [22]Fig.2 FE-SEM image of (A) ZnO hexagonal platforms and (B) hamburger-like ZnO nanostructures,and (C) their curves of degradation efficiency versus reaction time[22]课题组Yang等[22]采用水热法成功合成出六角纳米盘状和“汉堡包”状的ZnO催化剂,并将合成的催化剂对RhB染料进行紫外灯下光催化降解(图2).研究表明:与“汉堡包”状的ZnO催化剂相比,六角纳米盘状的ZnO催化剂具有更好的光催化活性,认为与裸露的极性面和表面缺陷氧空位有关.在此研究基础上,同样采用水热法通过改变不同表面活性剂合成了不同形貌的纳米ZnO材料,如纳米盘、纳米颗粒,同样在紫外灯照射下对催化剂的光催化活性进行了研究(图3)[23].研究表明:催化剂的尺寸和表面氧空位的数量对催化剂的光催化活性有很大的影响,其中尺寸较小的催化剂拥有较大的BET表面积和较多的表面氧空位,因此具有较强的光催化活性.由此可知,影响纳米ZnO材料的光催化活性的因素有:裸露的极性面、表面缺陷氧空位、形貌、尺寸大小.此外,Wang等[24]同样采用该方法合成了具有磁性可分离与重复利用的Fe3O4@ZnO纳米核壳结构.研究结果表明:与纯ZnO纳米粒子相比,由于Fe3O4@ZnO 核壳纳米粒子的表面氧空位浓度更高且核壳结构中的Fe3+离子有利于提高材料的光催化性能,因此合成的Fe3O4@ZnO纳米核壳结构具有更为优异的光催化性能且循环性较好.另外,由于核壳结构中的Fe3O4使该核壳结构具有较好的稳定性和可重用性.图3 不同形貌纳米ZnO材料的SEM图(A—E)及其光催化降解曲线(F—H) [23]Fig.3 (A—E) SEM images and (F—G) photocatalytic degradation curves of all the ZnO nanomaterials[23]2 纳米ZnO材料的CBD法合成及其光催化性能研究化学溶液沉积法(CBD)是湿化学方法的一种,主要指在常温常压条件下,通过较为温和的化学反应来合成材料的方法.这种方法具有操作简单、溶液控制、成本低廉、环保、反应条件温和、耗能低及实验条件简单等优点.课题组先后采用了该方法合成了不同形貌的纳米ZnO材料,如纳米棒、纳米花、纳米带等.其中,Li等[25-26]采用CBD法在衬底上合成了不同尺寸的纳米ZnO棒状结构,并研究了材料的光催化性能.如图4所示,研究表明,尺寸对材料的光催化性能有很大的影响.另外,其他参数如取向度、形貌等对材料的光催化活性也有一定的影响.但在其他参数一定条件下,材料的尺寸越小,其光催化活性越高.其中,当纳米棒的尺寸为70 nm时,在紫外灯照射下其降解甲基橙180 min,其降解率可达98.6%.课题组Yang等[27]同样采用该方法在硅片上合成了ZnO薄膜,并研究了不同溶剂对材料光催化性能的影响规律(图5—图6).研究表明,采用水、乙醇和丙醇三种溶剂所制备样品的形貌、尺寸和缺陷都有所不同.采用水、乙醇和丙醇三种溶剂在硅衬底上形成材料的形貌分别为纳米棒、微米椭圆和微米盘,其中以水为溶剂所制备的ZnO薄膜的光催化性能最佳,在紫外灯照射下对罗丹明B(RhB)进行光催化降解,5 h后降解率可达95.4%.图4 不同尺寸的纳米ZnO纳米棒的SEM图及其光催化降解图 [25]Fig.4 SEM image of ZnO nanorods with different sizes and their diagrams of degradation efficiency[25]图5 分别采用水溶剂、乙醇溶剂和丙醇溶剂在硅衬底上生长纳米ZnO材料的SEM(A1—C1)和TEM(A—F)图[27]Fig.5 (A1—C1)SEM and (A—F)TEM images of ZnO nanomaterials with different solvents[27]图6 分别采用水溶剂、乙醇溶剂和丙醇溶剂在硅衬底上生长纳米ZnO材料的光催化降解曲线[27]Fig.6 The curves of degradation efficiency versus reaction time of ZnO nanomaterials[27]3 纳米ZnO材料的化学沉淀法合成及其光催化性能研究化学沉淀法是将不同化学成分的物质溶液按比例混合,并在其中加入适当的沉淀剂制备出沉淀物前躯体,然后再将生成的沉淀物前躯体在一定条件下进行干燥或锻烧处理,最终得到粉体颗粒,其包括直接沉淀法和均匀沉淀法[21].该方法具有制备成本较低、纯度较高、产量较大等优点.课题组[28]采用化学沉淀法合成了稀土Ce掺杂的ZnO纳米颗粒,并在紫外灯照射下用于降解染料甲基橙(图7).图7 不同稀土Ce掺杂浓度(0%、0.5%、1%、1.5%、2%)ZnO纳米颗粒的TEM(A—E)、PL(F)和光催化降解图(G—H) [28]Fig.7 (A—E)TEM,(F)PL and (G—H)photocatalytic degradation drawing of ZnO nanoparticles with different Ce doping concentrations[28]如图7所示,研究结果表明,稀土Ce离子的掺杂有利于提高ZnO纳米颗粒的光催化活性.稀土Ce离子有俘获电子的能力,可以减少光生电子-空穴复合的几率,从而提高材料的光催化活性.另外,随着Ce掺杂浓度的增加,ZnO主体材料中的缺陷浓度随之增加,这也有利于光催化性能得提高.同时,Ce的掺杂也略改变了ZnO的带隙.课题组Wang等[29]采用该方法合成了Fe3O4@SiO@ZnO,并对进行了负载Ag.研究结果表明,在紫外灯照射下降解RhB染料时Fe3O4@SiO@ZnO-Ag比Fe3O4@SiO@ZnO具有更佳优异的光催化活性,且该新型核壳结构具有很好的化学稳定性、可重复和可回收性.可见,对材料的适当修饰和改性(离子掺杂、负载等)可以提高材料的光催化性能,拓宽材料的光催化应用.4 结论本文简述了课题组合成纳米ZnO材料的一些实验方法,并对其光催化性能进行了总结和分析.实验得出了影响纳米ZnO材料光催化性能的相关参数,如纳米材料的尺寸、材料的缺陷、形貌、取向性等,同时也采取了掺杂和负载等技术手段来提高材料的光催化应用.参考文献【相关文献】[1]XIE Y P,LIU G,YIN L C,et al.Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion[J].J Mater Chem,2012,22(14):6746-6751.[2]MAURO A D,FRAGALM E,PRIVITERA V,et al.ZnO for application in photocatalysis:From thin films to nanostructures[J].Mat Sci Semicon Proc,2017,69:44-51.[3]WANG D D,YANG J H,LI X Y,et al.Preparation of morphology-controlled TiO2 nanocrystals for the excellent photocatalytic activity under simulated solarirradiation[J].Mater Res Bull,2017,94:38-44.[4]BORA T,LAKSHMAN K K,SARKAR S,et al.Modulation of defect-mediated energy transfer from ZnO nanoparticles for the photocatalytic degradation of bilirubin[J].Beilstein J Nanotechnol,2013,4:714-725.[5]LANG J H,WANG J Y,ZHANG Q,et al.Chemical precipitation synthesis and significant enhancement in photocatalytic activity of Ce-doped ZnOnanoparticles[J].Ceram Int,2016,42:14175-14181.[6]EISENBERG D,AHN H S,BARD A J.Enhanced photoelectrochemical water oxidationon bismuth vanadate by electrodeposition of amorphous titanium dioxide[J].J Am Chem Soc,2014,136(40):14011-14014.[7]YU Z B,YIN L C,XIE Y P,et al.Crystallinity-dependent substitutional nitrogen doping in ZnO and its improved visible light photocatalytic activity[J].J Colloid Interface Sci,2013,400:18-23.[8]LIU G,YIN L C,WANG J Q,et al.A red anatase TiO2 photocatalyst for solar energy conversion[J].Energy Environ Sci,2012,5(11):9603-9610.[9]LIU G,PAN J,YIN L C,et al.Heteroatom-modulated switching of photodatalytic hydrogen and oxygen evolution preferences of anatase TiO2 microspheres[J].Adv Funct Mater,2012,22(15):3233-3238.[10]ELAMIN N,ELSANOUSI A.Synthesis of ZnO nanostructures and their photocatalytic activity[J].Journal of Applied and Industrial Sciences,2013,1(1):32-35.[11]BANSAL K S,SINGHA S,Photocatalytic degradation of methyl orange using ZnO nanopowders synthesized via thermal decomposition of oxalate precursormethod[J].Physica B,2013,416:33-38.[12]PALOMINOS R A,MONDACA M A,GIRALDO A,et al.Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions[J].Catal Today,2009,144:100-105.[13]TIAN C,ZHANG Q,WU A,et al.Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation[J].Chem Comm,2012,48:2858-2860.[14]DUAN X W,WANG G Z,WANG H Q,et al.Orientable pore-size-distribution of ZnO nanostructures and their superior photocatalytic activity[J].CrystEngComm,2010,12:2821-2825.[15]CAO X L,ZENG H B,WANG M,et rge scale fabrication of quasi-aligned ZnO stacking nanoplates[J].J Phys Chem C,2008,112:5267-5270.[16]XU L P,HU Y L,PELLIGRA C,et al.ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity[J].Chem Mater,2009,21:2875-2885.[17]ZHANG L Y,YIN L W,WANG C X,et al.Sol-gel growth of hexagonal faceted ZnO prism quantum dots with polar surfaces for enhanced photocatalytic activity[J].ACS Appl Mater Interface,2010,2:1769-1773.[18]XIE J,WANG H,DUAN M,et al.Synthesis and photocatalysis properties of ZnO structures with different morphologies via hydrothermal method[J].Appl Surf Sci,2011,257:6358-6363.[19]GUPTA J,BARICK K C,BAHADUR D.Defect mediated photocatalytic activity in shape-controlled ZnO nanostructures[J].J Alloy Compd,2011,509:6725-6730.[20]PUDUKUDY M,HETIEQA A,YAAKOB Z.Synthesis,characterization and photocatalytic activity of annealing dependent quasi spherical and capsule like ZnO nanostructures[J].Appl Surf Sci,2014,319:221-229.[21]杨景海,徐松松,郎集会,等.稀土掺杂 ZnO 纳米材料的合成方法研究进展[J].吉林师范大学学报(自然科学版),2015,35(2):10-13.[22]YANG J H,WANG J,Li X Y,et al.Effect of polar and non-polar surfaces of ZnO nanostructures on photocatalytic properties[J].J Alloy Compd,2012,528:28-33. [23]WANG J,YANG J H,LI X Y,et al.Effect of surfactant on the morphology of ZnO nanopowders and their application for photodegradation of rhodamine B[J].Powder Technology 2015,286:269-275.[24]WANG J,YANG J H,LI X Y,et al.Preparation and photocatalytic properties of magnetically reusable Fe3O4@ZnO core/shell nanoparticles[J].Physica E,2016,75:66-71.[25]LI X Y,WANG J,YANG J H,et parison of photocatalytic activity of ZnO rod arrays with various diameter sizes and orientation[J].J Alloy Compd,2013,580:205-210.[26]LI X Y,WANG J,YANG J H,et al.Size-controlled fabrication of ZnO micro/nanorod arrays and their photocatalytic performance[J].Mater Chem Phys,2013,141:929-935. [27]YANG J H,WEI B,LI X Y,et al.Synthesis of ZnO flms in dierent solvents and theirphotocatalytic activities[J].Cryst Res Technol,2015,50(11):840-845.[28]LANG J H,WANG J Y,ZHANG Q,et al.Chemical precipitation synthesis and significant enhancement in photocatalytic activity of Ce-doped ZnO nanoparticles[J].Ceram Int,2016,42:14175-14181.。
ZnO纳米粉体制备与表征解析
ZnO纳米粉体制备与表征一实验目的1. 了解氧化锌的结构及应用2. 掌握“共沉淀和成核/生长隔离、水热法和微波水热、溶胶-凝胶法、反相微乳液”技术制备纳米材料的的方法与原理。
3. 了解同步热分析仪、X-射线衍射仪、扫描电子显微镜(SEM )与比表面测定仪等表征手段和原理二基本原理2.1氧化锌的结构氧化锌(ZnO)晶体是纤锌矿结构,属六方晶系,为极性晶体。
氧化锌晶体结构中,Zn原子按六方紧密堆积排列,每个Zn原子周围有4个氧原子,构成Zn-O4配位四面体结构,四面体的面与正极面C(00001)平行,四面体的顶角正对向负极面(0001),晶格常数a=342pm, c=519pm,密度为5.6g/cm3,熔点为2070K,室温下的禁带宽度为 3.37eV.女口图1-1、图1-2所示:图1-1 ZnO晶体结构在 C (00001)面的投影图1-2 ZnO纤锌矿晶格图2.2氧化锌的性能和应用纳米氧化锌(ZnO)粒径介于1- 100nm之间,由于粒子尺寸小,比表面积大,因而,纳米ZnO表现出许多特殊的性质如无毒、非迁移性、荧光性、压电性、能吸收和散射紫外线能力等,利用其在光、电、磁、敏感等方面的奇妙性能可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、杀菌、图象记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。
同时氧化锌材料还被广泛地应用于化工、信息、纺织、医药行业。
纳米氧化锌的制备是所有研究的基础。
合成纳米氧化锌的方法很多,一般可分为固相法、气相法和液相法。
本实验采用共沉淀和成核/生长隔离技术制备纳米氧化锌粉。
2.3氧化锌纳米材料的制备原理不同方法制备的ZnO晶形不同,如:2.3.1共沉淀和成核/生长隔离法借助沉淀剂使目标离子从溶液中定量析出是材料制备领域液相法的重要技术。
常规共沉淀制备是将盐溶液与碱溶液直接混合并通过搅拌的方式实现,由于混合不充分,反应界面小、存在浓度梯度、反应速度和扩散速度慢,先沉淀的粒子上形成新沉淀粒子,新旧粒子的同时存在,导致粒子尺寸分布极不均匀。
纳米氧化锌粉的制备方法
C 2H 2
N2
Furnace
Exhaust ame O2
图 1 熔化-燃烧法制备纳米氧化锌的装备图 Fig.1 The s ketch of equipment applied in the preparation
of nano- ZnO by melting- combus tion method (MCM)
气相法的原理是利用蒸汽压较大的材料, 在适当 的条件下, 使其蒸汽凝结成晶体的方法。气相法制备
收稿日期: 2008- 02- 09 基金项目: 江西省教育厅 2006 年度科技计划资助项目 通讯联系人: 王艳香, 女, 副教授, E- mail:yxwang72@163.com
184
《陶瓷学报》2008 年第 2 期
直接沉淀法是制备超细 ZnO 广泛采用的一种方 法, 其操作简便易行, 对设备、技术需求不高, 有良好 的化学计量性, 成本较低, 被国内许多厂家所采用。但 相对而言, 产品质量等级不高, 这是因为该法原溶液 中阴离子的洗涤较困难, 同时由于沉淀过程容易出现 局部过饱和现象, 导致得到的粒子粒径分布较宽, 分 散 性 较 差[17]。 2.3.2 均匀沉淀法
均匀沉淀法是利用某一化学反应使溶液中的构 晶离子由溶液中缓慢而均匀地释放出来的方法。在该 法中, 加入的沉淀剂不立刻与被沉淀组分反应, 而是 通过化学反应使沉淀剂在整个溶液中均匀释放出来, 从而使沉淀物在整个溶液中缓慢析出, 然后再将沉淀 物煅烧即得纳米氧化锌粉。常用的均匀沉淀剂有尿素 和六次甲基四胺[18- 19]。
反应燃烧, 此时反应区的温度可达 3000℃以上, 当形 成了较多的烟气时, 在尾部抽热风, 将所得的氧化锌 粉收集。合理的控制锌和乙炔与氧的比例, 可制得纯 的粒径为 10 ̄30nm 四角针状氧化锌粉。
纳米技术在建筑材料中的发展与应用
纳米技术在建筑材料中的应用越来越广泛,其主要优势是可以带来材料的高性能和多功能特性,进而提高建筑材料的性能、耐久性和安全性。
以下是纳米技术在建筑材料中的一些发展与应用:
1. 纳米改性剂:通过添加纳米改性剂,可以对建筑材料进行表面改性,提高材料的耐久性、抗污染性和防水性等,从而提高材料的性能和寿命。
2. 纳米氧化物:纳米氧化物如二氧化钛和氧化锌等,可以用于建筑涂料和玻璃幕墙的制备,具有防紫外线、自清洁、抗菌等多种功能。
3. 纳米碳管:纳米碳管可以用于增强混凝土和增加其力学性能,同时还可以降低混凝土的渗透性和提高其耐久性。
4. 纳米气凝胶:纳米气凝胶可以用于隔热、保温和吸声等方面,可以有效地提高建筑墙体的节能性能。
5. 纳米硅酸盐:纳米硅酸盐可以用于制备高性能水泥基材料,如高强度混凝土、自密实混凝土等,同时还可以提高材料的抗裂性和耐久性。
总之,纳米技术在建筑材料中的应用领域广泛,可以带来很多新的功
能和性能,进而提高建筑材料的质量和安全性,促进建筑行业的可持续发展。
表面改性纳米氧化锌的制备及其性能表征
关键词 :纳米氧化锌; 均匀沉淀法 ; 分散剂 ; 表面改性
P e a a i n a d P o e t sCh r ce ia in o o i e n - n r p r to n r p ri a a trz t fM d f d Na o Z O e o i
WANG a - a g ,TI S a -o g Xiod n E h oln
分析 ;
2 结果 与讨 论
2 1 Ⅺ 粉末衍射分析 .
对合成产物进行 X D粉末衍射 分析 ( 图 1 ,) 并 与 R 如 ab , 商品氧化锌 ( ) 图 1c进 行对 比L J 果表 明, AR ( ) 5 。结 在不 同 反应温度下 ( 1a 7 图 于 0℃下反应 、 1b于 3 图 3℃下反应) , 均可以得到六方 晶型 的纳米 氧化 锌 , 结果 与卡 片 j P 7 其 c s9
滴加时间 , 将沉 淀剂滴加 到含有分散氧 化锌 。
1 3 纳米氧化锌的性能表征 .
用 日立式 电子透射 电镜对合 成的粒 子形态 和粒 径大小 进行观察 ; D/ x o P 用 MA 2 0V C型 X D粉末衍射仪 进行 x一 R 射线粉末衍射分析 ; 日本 岛津 T A热重分析仪进行 T A 用 G G
摘 要 :通过均相化学沉淀法, 在合成纳米氧化锌的同时对其进行表面改性。对合成产物进行了 X D T M 和 T A R 、E G
等性能表征 ; 比较不 同加料方式 、 分散剂对氧化锌粒径 的影 响 , 析讨论 了分散 剂可能 的分散作用 机理 。在 最优化 条件下得 分 到粒径为 6n m ̄2 l 间粒径分布均匀 的纳米氧化锌 , 得到的纳米粉体基本上不存在 团聚现象 , 5n ' n之 且 分散性好 。
氧化锌
纳米氧化锌的制备及其纯度测定1 前言近年来,纳米材料因其独特的物理化学作用而被广为重视,并逐步应用于各个领域。
纳米氧化锌粒子作为联系宏观物体及微观粒子的桥梁,其潜在的重要性毋庸置疑,一些发达国家都投入大量资金开展研究工作,国内的许多科研院所、高等院校也组织科研力量,开展纳米材料的研究工作。
纳米氧化锌是一种面向21世纪的新型高功能精细无机产品,其粒径介于1-100nm,由于具有纳米材料的结构特点和性质,使得纳米氧化锌产生了表面效应及体积效应等,从而使其在磁、光、电、敏感性等方面具有一般氧化锌产品无法比拟的特殊性能和新用途。
纳米氧化锌是一种重要的催化剂材料,又是非常有代表性的电化学,光化学半导体材料,它广泛的应用于涂料、橡胶、陶瓷、玻璃等多种工业、化妆品及药物的生产加工和应用于变阻器、气体敏感材料、透明导电材料以及光子材料等重要领域,所以近年来纳米氧化锌的制备受到人们广泛的关注。
关于纳米氧化锌的制备,国内外有不少的报道,如溶液沉淀法、微乳液法、非微乳液法、超声辐射沉淀法。
2 纳米氧化锌的性质与用途[1]2.1 纳米氧化锌的性质2.1.1 表面效应表面效应是指纳米粒子表面原子与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化。
随着粒径减小,表面原子数迅速增加。
另外,随着粒径的减小,纳米粒子的表面积、表面能及表面结合都迅速增大。
这主要是由于粒径越小,处于表面的原子数越多。
表面原子的晶场环境和结合能与内部原子不同。
表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质,易与其它原子相结合而稳定下来,故具有很大的化学活性,晶体微粒化伴有这种活性表面原子的增多,其表面能大大增加。
伴随表面能的增加,其颗粒的表面原子数增多,表面原子数与颗粒的总原子数的比值被增大,于是便产生了“表面效应”。
2.1.2 体积效应当纳米粒子的尺寸与传导电子的德布罗意波长相当或更小时,周期性的边界条件将被破坏,磁性、内压、光吸收、热阻、化学活性、催化剂及熔点等都较普通粒子发生了很大的变化,这就是纳米粒子的体积效应。
纳米氧化锌的制备、掺杂及性能研究
2.期刊论文董少英.唐二军.尚玉光.潘乐溶胶-凝胶法制备纳米氧化锌-河北化工2008,31(9)
以醋酸锌为原料,柠檬酸三铵为改性剂,通过溶胶-凝胶法制备了纳米氧化锌.分别研究了主盐浓度、溶剂用量、改性剂用量、胶溶剂种类、干燥温度和时间、煅烧温度和时间等条件的影响.使用傅立叶变换红外光谱仪测定氧化锌前驱体及产物的化学组成,用X射线衍射仪考察氧化锌微粒晶体的晶型结构并计算其大小.最终所得产物粒径在40 nm左右,且分散性较好,颗粒均匀.
9.学位论文沈琳氧化锌纳/微米材料的制备及抗菌性能研究2007
自然界的有害细菌、真菌和病毒等微生物是人类遭受传染、诱发疾病的主要原因。历史上天花、流感肆虐,以及近年来爆发的疯牛病、SARS、禽流感等,一度引起了全世界的恐慌,严重威胁到了人类的健康。在这种形势下,如何有效地抑制有害细菌的生长、繁殖,或彻底杀灭有害细菌这一课题
2.研究了溶胶-凝胶法合成ZnO纳米抗菌材料。用溶胶-凝胶法成功合成了ZnO纳米颗粒,通过改变反应温度、反应时间、反应物浓度、加水量和煅烧温度可以有效地调控纳米ZnO胶粒的尺寸。与水热法制备的ZnO以及市售的产品相比,溶胶-凝胶法制备的ZnO的抗菌效果最好。发现纳米ZnO的抗菌效果与粒径密切相关。其中,粒径5 nm以上的ZnO颗粒粒径越小,抗菌效果越好;而粒径小于5 nm的ZnO颗粒的抗菌效果随粒径减小变差。
6.学位论文权传斌纳米氧化锌及其复合材料的制备与表征2007
纳米ZnO是一种新型Ⅱ~Ⅵ族宽禁带半导体材料,而掺铝氧化锌(ZnO:Al,ZAO)纳米材料以及纳米ZnO的SiO<,2>基复合材料具有优良的光电性能及广泛的应用领域倍受研究人员关注。本论文主要对掺杂的氧化锌纳米材料和纳米氧化锌的复合材料的制备及其光学性能进行研究,并研究了它们的发光机制,探讨材料的合成-结构-性能之间的关系。
溶胶-凝胶法制备纳米氧化锌
溶胶-凝胶法制备纳米氧化锌摘要:纳米氧化锌是一种新型高功能精细无机材料,在光电器件、化工、医药等众多方面有着广泛的应用。
本文结合国内有关溶胶-凝胶法制备纳米氧化锌方面的研究论文,设计了一种以醋酸锌为前驱物,草酸为络合剂,柠檬酸三铵为表面改性剂,无水乙醇、去离子水为溶剂,用溶胶--凝胶法制备纳米氧化锌的最优工艺过程,介绍、分析了溶胶--凝胶法制备纳米氧化锌的原理、工艺以及影响氧化锌粉体粒度、形貌及分散性的因素。
关键词:溶胶-凝胶法纳米氧化锌工艺影响因素1 引言氧化锌,俗称锌白,分子式为ZnO。
纳米氧化锌为白色或微黄色晶体粉末,属六方晶系纤锌矿结构,晶格常数为a=3.24×10-10m,c=5.19×10-10m,为两性氧化物,密度为5.68g/cm3,熔点为1975℃,溶于酸和碱金属氢氧化物、氨水、碳酸铵和氧化铵溶液,难溶于水和乙醇,无味,无毒,无臭,在空气中易吸收二氧化碳和水。
纳米氧化锌是一种新型高功能精细无机粉料,其粒子尺寸在1~100nm之间。
由于颗粒尺寸细微化,纳米氧化锌能产生其本体块状材料所不具有的表面效应、体积效应、量子尺寸效应和宏观量子隧道效应等,在磁、光、电、敏感等方面具有一些特殊性能。
纳米氧化锌主要应用在橡胶、油漆、涂料、印染、玻璃、医药、化妆品和电子等工业,作为抗菌添加剂、防晒剂、光催化剂、气体传感器、图像记录材料、吸波材料、导电材料、压电材料、橡胶添加剂等[1]。
目前,纳米氧化锌的制备方法有很多,如沉淀法、微乳液法、溶胶- 凝胶法等,而溶胶--凝胶法因其制备均匀度高、纯度高及反应温度低、易于控制等优点,吸引了诸多的关注。
2 设计原理和反应原理1.设计原理:溶胶--凝胶法制备纳米氧化锌。
溶胶--凝胶法是将金属有机或无机化合物经过溶液水解、溶胶、凝胶而固化,再经热处理而形成氧化物或其他化合物粉体的方法,其过程是:用液体化学试剂或溶胶为反应物,在液相中均匀混合并进行反应,生成稳定且无沉淀的溶胶体系。
氧化锌纳米材料的制备及应用研究进展
《福建师范大学福清分校学报》JOURNALOFFUQINGBRANCHOFFUJIANNORMALUNIVERSITY2009年第2期总第91期Sum No.91收稿日期:2008-12-20作者简介:吕玮(1978-),女,福建南安人,硕士,讲师;谢珍珍(1986-),女,福建安溪人,高分子化学专业在读本科生。
基金项目:福建省教委科技计划(JB07060)、福建师范大学本科生课外科技计划(BKL 2008-204)摘要:纳米材料被誉为是“21世纪最有前途的材料”,目前,已成为当今许多科学工作者研究的热点,而氧化锌纳米材料的许多优异性能使其成为重要的研究对象并得到广泛的应用。
本文综述了近年来合成氧化锌纳米材料的一些新方法,比较了各种方法的优缺点;简单介绍了氧化锌纳米材料的性质及其可能的应用领域,并对氧化锌纳米材料的发展前景进行了展望。
关键词:纳米材料;氧化锌;制备;研究进展中图分类号:TQ426.6文献标识码:A 文章编号:1008-3421(2009)02-0001-061前言纳米Zn0是一种新型高功能精细无机产品,与普通ZnO 相比,因其特有的表面效应、体积效应、量子效应和介电限域效应等[1],在催化、光学、磁性和力学等方面展现出许多特异功能,特别是它的防紫外辐射及其在紫外区对有机物的催化降解作用,使其在陶瓷、化工、电子、光学、生物、医药等很多领域具有重要的应用[2-11]。
ZnO 有纳米管(nanotube)、纳米棒(nanorod)、纳米丝和纳米同轴电缆、纳米带(nanobeh)、纳米环(nanoring)、纳米笼(nanocage)、纳米螺旋(nanohelice)及其超晶格结构等多种纳米形态,是纳米材料家族中结构最多样的成员之一。
本文系统评述了近年来氧化锌纳米材料制备的一些新方法,比较了各种方法的优缺点;介绍了氧化锌纳米材料的性质及其可能的应用领域,并对氧化锌纳米材料的发展前景进行了展望。
纳米氧化锌的物理制备方法
纳米氧化锌的物理制备方法
纳米氧化锌的物理制备方法主要包括以下几种:
1. 机械化学合成:通过球磨机对原料进行机械化学活化,合成前驱体粉末,再经过热处理得到纳米氧化锌。
这种方法可以生成直径在10~40nm范围内的氧化锌纳米颗粒。
2. 脉冲激光沉积(PLD):这是一种薄膜生长技术,利用激光照射使靶材烧蚀,烧蚀物最终沉积到衬底形成薄膜。
此法能制备与靶材成分一致的化合物薄膜。
3. 磁控溅射:通过高能粒子轰击靶材表面,使得靶材表面的原子或分子被溅射出来,并在衬底表面沉积形成薄膜。
4. 喷雾热解:将原料溶液通过喷雾嘴喷洒成雾状,在高温下进行热解,生成氧化锌纳米颗粒。
5. 等离子体合成:利用等离子体的高温和高活性,使得气体中的分子发生化学反应,生成氧化锌纳米颗粒。
6. 分子束外延(MBE):通过控制分子束的流量和能量,在衬底表面外延生长氧化锌薄膜。
这些方法各有特点,可以根据具体需求选择合适的方法来制备纳米氧化锌。
正交试验优化溶胶凝胶法制备纳米氧化锌
纳米材料一直是材料科学的研究热点,国外对纳米氧化锌制备研究和应用起步于二十世纪50年代[2],二十一世纪初,中国的纳米科技已展现出勃勃生机[3]。
我国对纳米材料的制备及应用方面的研究逐步深入,可采用气相、固相和液相三种方法进行制备[4]。
纳米ZnO 作为一种宽禁频射带的新型半导体光催化剂,由于其热稳定性和半导体光电化学性能较为优异,且不会产生毒害,成为最具有发展前景的绿色环保型半导体光催化剂之一[5]。
研究发现,粒径较小的ZnO 光催化性能更好,因此为了得到粒径小、性能好的ZnO 粉体,研究人员正在积极研究和开发纳米ZnO 生产的各种技术和方法,如物理法和化学法。
本文采用溶胶凝胶法制备纳米氧化锌颗粒。
1实验部分1.1仪器和试剂FA2204B 电子天平,上海越平科学仪器有限公司;DF-101S 集热式恒温加热磁力搅拌器,巩义市予华仪器有限责任公司;SHZ-D (Ⅲ)循环水式多用真空泵,上海秋佐科学仪器有限公司;DH 系列恒温干燥箱,合肥右科仪器设备有限公司;SX-2.5-10箱式电阻炉控制箱,天津市泰斯特仪器有限公司;UV1801紫外-可见分光光度计,北京瑞丽分析仪器公司;JK-50B 超声波清洗仪,合肥金尼克机械制造有限公司;TG15-SW 台式离心机,CENCE 湘仪。
二水合醋酸锌、草酸、柠檬酸三铵,分析纯,国药集团化学试剂有限公司;无水乙醇,分析纯,上海振企化学试剂有限公司。
1.2纳米氧化锌制备工艺(1)称取计量的草酸,溶于计量的无水乙醇中配成无水乙醇溶液。
(2)称取计量的醋酸锌,溶于计量的蒸馏水中配成醋酸锌水溶液,并加入计量的柠檬酸三铵表面改性剂。
(3)将上述溶液置于恒温水浴中,剧烈搅拌使溶液充分溶解。
(4)将上述配好的醋酸锌溶液加入到草酸无水乙醇溶液中,将其置于恒温水浴中进行反应,经过滤可得白色凝胶。
(5)将白色凝胶用蒸馏水和无水乙醇洗涤2次,再将其置于真空干燥箱中。
(6)将经过上述步骤生成的干燥凝胶放入马弗炉中煅烧。
纳米氧化锌(性能表征、形态、表面改性)
纳米氧化锌(性能表征、形态、表面改性)纳米氧化锌粒径介于1-100 nm之间,是一种面向21世纪的新型高功能精细无机产品,表现出许多特殊的性质,如非迁移性、荧光性、压电性、吸收和散射紫外线能力等,利用其在光、电、磁、敏感等方面的奇妙性能,可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。
纳米氧化锌性能表征纳米级氧化锌的突出特点在于产品粒子为纳米级,同时具有纳米材料和传统氧化锌的双重特性。
与传统氧化锌产品相比,其比表面积大、化学活性高,产品细度、化学纯度和粒子形状可以根据需要进行调整,并且具有光化学效应和较好的遮蔽紫外线性能,其紫外线遮蔽率高达98%;同时,它还具有抗菌抑菌、祛味防酶等一系列独特性能。
分析测试中心用透射电镜对产品进行了分析,纳米氧化锌粒子为球形,粒径分布均匀,平均粒径20~30纳米,所有粒子的粒径均在50纳米以下。
经3400比表面及孔径测定仪(北京金埃谱科技公司)测试,纳米氧化锌粉体的BET比表面积在35m2/g以上。
此外,通过调整制备工艺参数,还可以生产出棒状纳米氧化锌。
本产品经中国科学院微生物研究所检测鉴定,结果表明,在丰富细菌培养基中,加入0.5%~1%的纳米氧化锌,可有效抑制大肠杆菌的生长,抑菌率达99.9%以上。
纳米氧化锌形态纳米氧化锌是一种多功能性的新型无机材料,其颗粒大小约在1~100纳米。
由于晶粒的细微化,其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点。
近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使其在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。
纳米氧化锌在纺织领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。
由于纳米氧化锌一系列的优异性和十分诱人的应用前景,因此研发纳米氧化锌已成为许多科技人员关注的焦点。
纳米氧化锌的机械力化学表面改性
关键词 : 纳米氧化锌 ; 表面改性 ; 硬脂酸
中 图分 类 号 :Q0 6 1 T 1. 文 献标 识 码 : A 文章 编号 :0 8—1 1 (0 8 0 0 7 0 10 0 1 20 )2— 0 4— 4
M e h n c e ia o i c to fZn Na o a tce c a o h m c lM d f a in o O n p r ils i
c m e s alr Th c iai n i d x a d lp p ii e r e o di e O a o a ilswe em e s r d a m l . e e a t to n e n i o hlc d ge fmo f d Zn n n p r c e r a u e v i t a d t e o tma mo n fse rc a i s 1 % we g to O a m ae il. Zn na o a ilsha n h p i la u to ta i c d wa 0 ih fZn r w tras O n p r ce d t
维普资讯
第1 9卷 第 2期
20 0 8年 6月
化
学 研
究
Vo .1 No. 1 9 2
CHEMI CAL RES EARCH
Jn 0 8 u .2 0
纳 米 氧 化 锌 的 机 械 力 化 学 表 面 改 性
苏 莉, 智, 庆华, 治军 小 曹 李 张
( 河南 大学 特种功能材料教育部重点实验室 , 河南 开封 4 50 ) 7 04
摘 要: 采用机械力化学表面改性工艺, 以硬脂酸为改性剂, 在气流粉碎机中对纳米氧化锌进行解团聚和表面改
ZnO的实验报告
实验报告纳米氧化锌的制备一、实验目的:1、了解纳米ZnO的性质及应用。
2、掌握制备纳米ZnO的原理和方法,并比较不同方法的优缺点。
3、掌握检验纳米ZnO光催化性能的一般方法。
4、查阅资料,计算产品的利润。
二、纳米ZnO的性质:纳米级ZnO同时具有纳米材料和传统ZnO的双重特性。
与传统ZnO产品相比,其比表面积大、化学活性高,产品细度、化学纯度和粒子形状可以根据需要进行调整,并且具有光化学效应和较好的遮蔽紫外线性能,其紫外线遮蔽率高达98%。
同时,它还具有抗菌抑菌、祛味防酶等一系列独特性能。
纳米ZnO粒子为球形,粒径分布均匀,平均粒径20~30纳米,所有粒子的粒径均在50纳米以下。
纳米ZnO粉体的BET比表面积在35m2/g以上。
由于纳米ZnO具有比表面积大和比表面能大等特点,自身易团聚;另一方面,纳米ZnO表面极性较强,在有机介质中不易均匀分散,这就极大地限制了其纳米效应的发挥。
因此对纳米ZnO粉体进行分散和表面改性成为纳米材料在基体中应用前必要的处理手段。
三、实验原理:制备纳米ZnO的方法有很多。
按物质的原始状态分为固相法、液相法、气相法3类。
固相法包括沉淀法;气相法包括化学气相沉积法、气相反应合成法、化学气相氧化法、喷雾热分解法; 3液相法包括溶胶—凝胶法、微乳液法、水解加热法、水热法等。
本次试验采用沉淀法制备纳米ZnO。
本实验以锌焙砂(主要成分为氧化锌、锌并含有少量铁、铜、铅镍、镉等杂质,杂志均以氧化物形式存在)和硫酸为主要原料,制备七水硫酸锌,以碳酸氢铵为沉淀剂,采用碱式碳酸锌分解法制备活性氧化锌。
四、实验仪器与试剂:仪器:分析天平、托盘天平、温度计、蒸发皿、胶头滴管、马弗炉、烧杯、量筒、玻璃棒、恒温水浴锅、布氏漏斗、抽滤机、坩埚、研磨、200目筛子、石棉网、药匙、锥形瓶、洗瓶、滤纸、真空泵、PH试纸。
试剂:锌焙砂、去离子水、3mol/l硫酸溶液、碳酸氢铵、0.1mol/l高锰酸钾溶液、锌粉、氧化锌、二氧化钛粉、碳酸钙、滑石粉、凡士林、0.05mol/lAgNO溶液、水合肼。
溶胶-凝胶法制备纳米氧化锌
材料物理综合实验I指导书溶胶-凝胶法制备纳米氧化锌纳米氧化锌是一种新型高功能精细无机材料,在光电器件、化工、医药等众多方面有着广泛的应用。
本文结合国内有关溶胶-凝胶法制备纳米氧化锌方面的研究论文,设计了一种以醋酸锌为前驱物,草酸为络合剂,柠檬酸三铵为表面改性剂,无水乙醇、去离子水为溶剂,用溶胶--凝胶法制备纳米氧化锌的最优工艺过程,介绍、分析了溶胶--凝胶法制备纳米氧化锌的原理、工艺以及影响氧化锌粉体粒度、形貌及分散性的因素。
1 实验相关知识氧化锌,俗称锌白,分子式为ZnO。
纳米氧化锌为白色或微黄色晶体粉末,属六方晶系纤锌矿结构,晶格常数为a=3.24×10-10m,c=5.19×10-10m,为两性氧化物,密度为5.68g/cm3,熔点为1975℃,溶于酸和碱金属氢氧化物、氨水、碳酸铵和氧化铵溶液,难溶于水和乙醇,无味,无毒,无臭,在空气中易吸收二氧化碳和水。
纳米氧化锌是一种新型高功能精细无机粉料,其粒子尺寸在1~100nm之间。
由于颗粒尺寸细微化,纳米氧化锌能产生其本体块状材料所不具有的表面效应、体积效应、量子尺寸效应和宏观量子隧道效应等,在磁、光、电、敏感等方面具有一些特殊性能。
纳米氧化锌主要应用在橡胶、油漆、涂料、印染、玻璃、医药、化妆品和电子等工业,作为抗菌添加剂、防晒剂、光催化剂、气体传感器、图像记录材料、吸波材料、导电材料、压电材料、橡胶添加剂等[1]。
目前,纳米氧化锌的制备方法有很多,如沉淀法、微乳液法、溶胶- 凝胶法等,而溶胶--凝胶法因其制备均匀度高、纯度高及反应温度低、易于控制等优点,吸引了诸多的关注。
2 设计原理和反应原理1.设计原理:溶胶--凝胶法制备纳米氧化锌。
溶胶--凝胶法是将金属有机或无机化合物经过溶液水解、溶胶、凝胶而固化,再经热处理而形成氧化物或其他化合物粉体的方法,其过程是:用液体化学试剂或溶胶为反应物,在液相中均匀混合并进行反应,生成稳定且无沉淀的溶胶体系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米氧化锌的制备、表面改性及应用纳米氧化锌是一种面向21世纪的新型高功能精细无机产品,其粒径介于1~100纳米,又称为超微细氧化锌。
由于颗粒尺寸的细微化,比表面积急剧增加,使得纳米氧化锌产生了其本体块状材料所不具备的表面效应、小尺寸效应和宏观量子隧道效应等。
因而,纳米氧化锌在磁、光、电、化学、物理学、敏感性等方面具有一般氧化锌产品无法比拟的特殊性能和新用途,在橡胶、涂料、油墨、颜填料、催化剂、高档化妆品以及医药等领域展示出广阔的应用前景。
本文将对本公司生产的纳米氧化锌从制备方法、性能表征、表面改性以及目前所开发的应用领域方面进行较为详细的介绍。
一、纳米氧化锌的制备氧化锌的制备方法分为三类:即直接法(亦称美国法)、间接法(亦称法国法)和湿化学法。
目前许多市售氧化锌多为直接法或间接法产品,粒度为微米级,比表面积较小,这些性质大大制约了它们的应用领域及其在制品中的性能。
我公司采用湿化学法(NPP-法)制备纳米级超细活性氧化锌,可用各种含锌物料为原料,采用酸浸浸出锌,经过多次净化除去原料中的杂质,然后沉淀获得碱式碳酸锌,最后焙解获得纳米氧化锌。
与以往的制备纳米级超细氧化锌工艺技术相比,该新工艺具有以下技术方面的创新之处:1.平衡条件下反应动力学原理与强化的传热技术结合,迅速完成碱式碳酸锌的焙解。
2.通过工艺参数的调整,可以制备不同纯度、粒度及颜色的各种型号的纳米氧化锌产品。
3.本工艺可以利用多种含锌物料为原料,将其转化为高附加值产品。
4.典型绿色化工工艺,属于环境友好过程。
二、纳米氧化锌的性能表征纳米级氧化锌的突出特点在于产品粒子为纳米级,同时具有纳米材料和传统氧化锌的双重特性。
与传统氧化锌产品相比,其比表面积大、化学活性高,产品细度、化学纯度和粒子形状可以根据需要进行调整,并且具有光化学效应和较好的遮蔽紫外线性能,其紫外线遮蔽率高达98%;同时,它还具有抗菌抑菌、祛味防酶等一系列独特性能。
清华大学分析测试中心用透射电镜对产品进行了分析,纳米氧化锌粒子为球形,粒径分布均匀,平均粒径20~30纳米,所有粒子的粒径均在50纳米以下。
经ST-A表面和孔径测定仪测试,纳米氧化锌粉体的BET比表面积在35m2/g以上。
此外,通过调整制备工艺参数,还可以生产出棒状纳米氧化锌。
本产品经中国科学院微生物研究所检测鉴定,结果表明,在丰富细菌培养基中,加入0.5%~1%的纳米氧化锌,可有效抑制大肠杆菌的生长,抑菌率达99.9%以上。
三、纳米氧化锌的表面改性由于纳米氧化锌具有比表面积大和比表面能大等特点,自身易团聚;另一方面,纳米氧化锌表面极性较强,在有机介质中不易均匀分散,这就极大地限制了其纳米效应的发挥。
因此对纳米氧化锌粉体进行分散和表面改性成为纳米材料在基体中应用前必要的处理手段。
所谓纳米分散是指采用各种原理、方法和手段在特定的液体介质(如水)中,将干燥纳米粒子构成的各种形态的团聚体还原成一次粒子并使其稳定、均匀分布于介质中的技术。
纳米粉体的表面改性则是在纳米分散技术基础上的扩展和延伸,即根据应用场合的需要,在已分散的纳米粒子表面包覆一层适当物质的薄膜或使纳米粒子分散在某种可溶性固相载体中。
经过表面改性的纳米干粉体,其吸附、润湿、分散等一系列表面性质都会发生变化,一般可以自动或极易分散在特定的介质中,因此使用非常方便。
一般来讲,纳米粒子的改性方法有三种:1.在粒子表面均匀包覆一层其他物质的膜,从而使粒子表面性质发生变化;2.利用电荷转移络合体(如硅烷、钛酸酯等偶联剂以及硬脂酸、有机硅等)作表面改性剂对纳米粒子表面进行化学吸附或化学反应;3.利用电晕放电、紫外线、等离子、放射线等高能量手段对纳米粒子表面进行改性。
根据不同应用领域的要求,选择适当的表面改性剂或表面改性工艺,对纳米氧化锌进行表面改性,改善其表面性能,增加纳米颗粒与基体之间的相容性,从而应用于各种领域,提高产品的性能技术指标。
四、纳米氧化锌的应用本公司从纳米氧化锌的制备伊始,就十分重视其应用技术开发的研究。
通过公司内部科研人员的潜心研究,以及与相关科研单位的技术合作,在纳米氧化锌的应用技术方面取得了一系列重要成果。
目前产品的主要应用领域有:1.橡胶轮胎在橡胶行业中,特别是透明橡胶制品生产中,纳米氧化锌是极好的硫化活性剂。
由于纳米氧化锌可与橡胶分子实现分子水平上的结合,因而能提高胶料性能,改善成品特性。
以子午线轮胎和其他橡胶制品为例,使用纳米氧化锌可显著提高产品的导热性能、耐磨性能、抗撕裂性能、拉伸强度等项指标,并且其用量可节省35-50%,大大降低了产品成本;在加工工艺上,能延长胶料焦烧时间,对加工工艺极为有利。
纳米氧化锌用于橡胶鞋、雨靴、橡胶手套等劳保制品中,可以大大延长制品的使用寿命,并可改善它们的外观及色泽,其用于透明或有色橡胶制品中,有着碳黑等传统活性剂不可替代的作用。
纳米氧化锌用于气密封胶、密封垫等制品中,对于改善产品的耐磨性和密封效果也有着良好的作用。
目前我公司的纳米氧化锌已在国内多家大型轮胎和橡胶制品企业得到良好应用。
2.油漆涂料随着人们对涂料的色泽、涂膜性能、环保等各方面要求的提高,纳米材料在涂料行业中的应用受到越来越广泛的重视。
目前应用于涂料中的纳米材料品种有纳米二氧化钛、纳米二氧化硅、纳米氧化锌、纳米碳酸钙等,其中纳米二氧化钛和纳米二氧化硅由于其昂贵的价格而限制了它们的应用范围和数量,纳米碳酸钙性能又比较单一,在提高涂料的防霉和抗紫外老化性能方面作用较小,因而纳米氧化锌以其优异的性价比在涂料的应用中占据了更大的优势。
纳米氧化锌具有一般氧化锌无法比拟的新性能和新用途,能使涂层具有屏蔽紫外线、吸收红外线及杀菌防霉作用,因此它可广泛应用于建筑内外墙乳液涂料及其他涂料中,同时它的增稠作用还有助于提高颜料分散的稳定性。
我公司通过与相关科研单位联合开发,将纳米氧化锌成功应用于水性涂料中,制作成纳米氧化锌改性涂料,经测试表明,此改性涂料的耐沾污性、耐人工老化性、耐水耐碱性、耐洗刷性、硬度及附着力等传统机械力学性能得到较大的改善。
此外,纳米氧化锌改性涂料的抗菌防霉性能也在进一步研究之中。
纳米氧化锌的制备、表面改性及应用:3.化纤纺织品纳米材料应用于化纤纺织品中有两种途径:一种方法是把纳米微粒直接添加在化学纤维的初始反应液中,采用常规的聚合反应合成功能纤维,使纳米微粒均匀分布于纤维内部;另一种方法就是把纳米微粒作为一种后整理剂配制到织物的后整理液中,通过浸轧使纳米微粒吸附在纤维的表面,或者用一定的粘合剂将纳米微粒涂覆到织物表面形成一种功能性的涂层,改善织物的服用性能。
吉林化纤集团将我公司表面改性后的纳米氧化锌配制到粘胶纤维的喷丝液中,合成了含有纳米氧化锌微粒的粘胶纤维,该纤维经纺纱、织造得到添加纳米氧化锌的抗紫外织物,与未添加纳米氧化锌的普通织物进行对比,抗紫外织物的UPF值(紫外线遮挡系数)为对照织物的两倍。
我公司产品能够显著提高粘胶纤维、合成纤维制品的抗紫外和抗菌功能,用于抗紫外织物、抗菌织物、遮阳伞等产品的生产。
我公司开发的抗紫外用纳米胶体,已由杭州天堂伞业集团有限公司在遮阳伞上试用,中国计量科学研究院测试表明,UPF值(紫外线遮挡系数)为50,其性能指标已经达到澳大利亚标准,超过欧盟标准。
4.防晒化妆品由于地球臭氧层遭到破坏,导致紫外线对地球生物圈辐射量的不断增加,过多的紫外线照射对人类健康造成的危害正在日益加重。
为了抵御过量紫外线照射对人体皮肤的伤害,人们开发了多种防晒剂来保护皮肤。
由于大多数有机防晒剂活性较高,对皮肤产生刺激性,在紫外线照射后易分解,防晒效果不长久,因而人们又开发了无机防晒剂,如纳米二氧化钛、纳米氧化锌等。
研究发现,纳米氧化锌对紫外线的防护功能比传统的纳米二氧化钛要强,对紫外线UV-A和UV-B均具有良好的防护效果,因此纳米氧化锌在化妆品领域的应用迅速发展。
我公司应用一种特殊表面处理技术生产的纳米级氧化锌防晒剂,它能非常有效地吸收太阳紫外线,尤其能保护人体免受UV-A和UV-B的侵害。
大多数的传统防晒剂能对UV-B起作用,但并不能有效抵挡波长更长的UV-A紫外线,而UV-A越来越被认为与皮肤过早衰老以及皮肤癌有关。
我公司氧化锌平均粒径小于50纳米,它能最有效地抵抗UV-A和UV-B,是广谱的抗紫外剂,无毒无害,是名副其实的新一代物理防晒剂。
5.其它领域随着人们对纳米氧化锌性能认识的深化,纳米氧化锌的应用领域在不断扩大。
例如,将纳米氧化锌用于陶瓷行业,可以大大降低陶瓷制品的烧结温度,烧成品光亮如镜,减少了生产工序,降低了能耗,并赋予了陶瓷制品抗菌除臭和分解有机物的自洁作用,极大地提高了产品质量;纳米氧化锌由于尺寸小,比表面积大,表面的键态与颗粒内部的不同,加大了反应接触面,提高了催化效率,是化工生产企业制备脱硫剂和化学催化剂的首选材料;纳米氧化锌也是一种很好的光催化剂,在紫外线照射下,能自行分解出自由移动的负电子,留下带正电的空穴,激活空气中的氧变为活性氧,与多种有机物发生化学反应,杀死病菌和病毒。
此外,纳米氧化锌在传感器、电容器、荧光材料、吸波材料、导电材料等诸多领域也展示出越来越广阔的应用前景。
五、结束语目前纳米氧化锌的制备技术已经取得了一些突破,在国内形成了几家产业化生产厂家。
但是纳米氧化锌的表面改性技术及应用技术尚未完全成熟,其应用领域的开拓受到了较大的限制,并制约了该产业的形成与发展。
虽然我们近年来在纳米氧化锌的应用方面取得了很大的进展,但与发达国家的应用水平以及纳米氧化锌的潜在应用前景相比,还有许多工作要做。
如何克服纳米氧化锌表面处理技术的瓶颈,加快其在各个领域的广泛应用,成为诸多纳米氧化锌生产厂家所面临的亟待解决的问题。
纳米氧化锌的制备、表面改性及应用:。