直流电机正反转电路控制图..

合集下载

L298N控制直流电机正反转

L298N控制直流电机正反转

L298N控制直流电机正反转一、概述在现代工业自动化和机械设备中,直流电机因其控制简单、响应迅速等特点而被广泛应用。

直流电机的控制并非一件简单的事情,特别是要实现其正反转功能,就需要一种可靠的电机驱动器。

L298N是一款常用的电机驱动器模块,它基于H桥驱动电路,可以有效地控制直流电机的正反转,并且具备过载保护和使能控制功能,使得电机控制更为安全、可靠。

L298N模块内部集成了两个H桥驱动电路,可以同时驱动两个直流电机,且每个电机的驱动电流可达2A,使得它适用于驱动大多数中小型的直流电机。

L298N模块的控制逻辑简单明了,只需通过控制其输入逻辑电平,即可实现电机的正反转、停止等功能。

掌握L298N 模块的使用方法,对于熟悉和掌握直流电机的控制具有重要的意义。

在接下来的内容中,我们将详细介绍L298N模块的工作原理、控制逻辑、驱动电路连接方法以及在实际应用中的使用技巧,以帮助读者更好地理解和应用L298N模块,实现直流电机的正反转控制。

1. 简述直流电机在工业和生活中的重要性直流电机,作为一种重要的电能转换和传动设备,在工业和生活中发挥着至关重要的作用。

它们广泛应用于各种机械设备中,成为驱动各种工业设备和家用电器运行的核心动力源。

在工业领域,直流电机的重要性无可替代。

它们被广泛应用于各种生产线上的机械设备,如机床、泵、风机、压缩机、传送带等。

这些设备需要稳定、可靠的动力源来驱动,而直流电机正好满足这些需求。

它们具有高效、稳定、易于控制等优点,能够实现精确的速度和位置控制,从而提高生产效率和产品质量。

直流电机还在交通运输领域发挥着重要作用。

例如,电动汽车、电动火车、无人机等新型交通工具都采用了直流电机作为动力源。

这些交通工具需要高效、环保的动力系统来驱动,而直流电机正是满足这些需求的理想选择。

在生活中,直流电机也无处不在。

它们被广泛应用于各种家用电器中,如电扇、吸尘器、洗衣机、冰箱、空调等。

这些家电需要稳定、可靠的动力源来运行,而直流电机正是这些家电的核心动力源。

直流无刷电机驱动器BLDC图形图像

直流无刷电机驱动器BLDC图形图像

3 BLDC 概述BLDC系列无刷直流电机及驱动器是由常州合泰电机电器有限公司最新推出 针对于小功率电机拖动领域的高科技产品。

随着电子技术的高速发展 电子产品的工艺和性能也不断更新和提高 本产品采用超大规模的硬件集成电路 具有高度的抗干扰性及快速的响应性 从控制性能上与传统直流电机相比又具有免维护、长寿命、恒力矩等优势。

本品适合驱动峰值电流在15A以下、电源电压在50V 以内的任何一款低压三相无刷直流电机 广泛应用于针织设备、医疗设备、食品机械、电动工具、园林机械等一系列电气自动化控制领域。

特点● SPWM纯正弦波脉宽调制技术 电流、速度双闭环 低速力矩大 运转平稳。

高速力矩输出平稳 最高转速达8000 rpm/min。

最大1 75调速比 与4对级无刷直流电机配套时 最低转速可达60rpm/min。

电机级数越多 调速比越宽。

灵活的霍尔磁极位置设定 60°/300°/120°/240°电角度可选 适配不同规格电机。

提供两种调速方式 面板电位器给定、模拟量输入端子给定 方便用户使用。

启停、快速制动、正反转切换输入信号光电隔离。

测速输出、报警输出信号光电隔离 OC门输出。

过流、过压、堵转、电机失控报警。

性能指标电气性能环境温度Tj25??C时输入电源24 50V直流电源供电 容量 根据电机功率选择。

输出电流额定15A 瞬时最大45A≤3s。

驱动方式SPWM正弦波驱动输出。

绝缘电阻常温常压下 500MΩ。

绝缘强度常温常压下500V/分钟。

重量约300克。

环境要求冷却方式自然冷却。

使用场合避免粉尘、油雾及腐蚀性气体。

使用温度0??C 50??C。

环境湿度80RH 不凝露 不结霜。

震动最大不超过5.7m/s2。

保存20??C 125??C 避免灰尘 最好使用原包装盒。

订货号017N01 无无刷刷直直流流电电机机驱驱动动器器SSPPWWMM恒恒流流控控制制 运运行行平平稳稳 扭扭矩矩恒恒定定合合泰泰电电机机BBLLDDCC--55001155AA 功能及使用 3 电源接口DC、DC- 直流24 50DC 通常采用线性电源见附录 线性电源原理图供电 用户须注意整流滤波后电源纹波电压 不可超过50VDC 以免损坏驱动器 线性电源的额定输出电流应大于驱动器输出电流的60。

并励直流电动机的基本控制线路

并励直流电动机的基本控制线路

KT
KM3
并励直流电机正反转控制线路
QF L+ L-
反转启动:
合上QF 励磁绕组得电 励磁 线圈KA得电, 动合触头闭合 KT线圈得电, 延时闭合瞬时 断开触头断开
KM1 KM2
M
KA SB3
SB1 KM1 KM2
R
I<
KM3
KM2
SB2 KM1
KM1 KM2
KM1
KM1
KM2
KT KM2
KA
KM1
R
I<
KM3
KM2
SB2 KM1
KM1 KM2
KM1
KM1
KM2
KT KM2
KA
KM1
KM2
KT
KM3
并励直流电机正反转控制线路
QF L+ L-
KT经过整定 时间 KT动断触头 延时闭合, KM3线圈得 电 KM3触头闭 合 切除电阻 电动机全速 运行
KM1 KM2
M
KA SB3
SB1 KM1 KM2
KM1 KM2
QF L+
L
KM3
KM6
KM7
KA RB
R1
SB3
KM3
R2 SB1
KM1
KV KM1
KM1触头 动作
电动机串 联全部电 阻启动
KM2
KM1
M
KV
KM1 KM2
I<
SB2 KM5 KM4 KM2 KM1
KM2 KM2 KM3 KM1 KM4 KM2 KM5
KM1 KM2
QF L+
L
KM1
KM1 KA1
M
KA2
KM1

电机正反转控制电路图

电机正反转控制电路图

CREATE TOGETHER
DOCS
谢谢观看
THANK YOU FOR WATCHING
• 原理:通过接触器的吸合与断开来改变电机的电源极性 • 优点:电路简单,成本低,适用于大功率电机 • 缺点:控制方式较为简单,无法实现复杂的控制功能
案例二:微型计算机控制的电机正反转电路
• 原理:通过微型计算机发出的控制信号来改变电机的电源极性 • 优点:控制功能强大,可以实现复杂的控制算法,适用于高精度、高 速度的控制系统 • 缺点:成本较高,对计算机性能有一定要求
• 元器件选型:选择正品元器件,保证 电路的性能和可靠性 • 电路设计:电路结构简洁明了,易于 调试和维护 • 安全防护:采取适当的安全保护措施, 防止电气事故的发生
04
电机正反转控制电路图的仿真与调试
电机正反转控制电路 图的仿真软件选择与 设置
• 仿真软件选择:常用的电机正反转控制电路仿真软件有 MATL AB/Simulink、LabVIEW等
电机正反转控制电路图中的元器件选择与参数计算
元器件选择:
• 电源电路:选择合适的电源变压器、整流器等元件 • 控制电路:选择合适的继电器、接触器、微控制器等元件 • 电机电路:选择合适的电机、电刷、换向器等元件
参数计算:
• 电源电路:根据电路结构和元器件参数计算电源电压和电流 • 控制电路:根据控制方式和元器件参数计算控制信号的电压和频率 • 电机电路:根据电机类型和性能要求计算电机的电压、电流、转速等参数
电机正反转控制电路图的拓展功能与技术创新
拓展功能:
• 多电机控制:实现多个电机的正反转控制,提高系统的复杂度和性能 • 遥控控制:通过无线遥控实现电机的正反转控制,提高操作便利性 • 传感器融合:结合传感器技术实现电机的自适应控制和智能控制

第七节-直流电动机的控制电路

第七节-直流电动机的控制电路

闭合反转接触器KM2旳主触点,直流
电源反接到电枢两端。因为电枢电
流旳方向发生了变化,转矩也因之
反向,电动机因惯性仍按原方向旋
转,转矩与转向相反而成为制动转
矩,使电动机处于制动状态。
图4-28
他励直流电动机反接制动原理图
直流电动机旳制动控制电路
(2)串励电动机旳反接制动
串励电动机旳反接制动工作原理如图4-29所示,对于串励直流电动机, 因为励磁电流就是它旳电枢电流,在采用电枢反接旳措施来实现反接制 动时,必须注意,经过电枢绕组旳电流和励磁绕组中旳励磁电流不能同 步反向。假如直接将电源极性反接,则因为电枢电流和励磁电流同步反 向,由它们建立旳电磁转矩T旳方向却不变化,不能实现反接制动。所以, 一般只将电枢反接。
第七节 直流电动机旳控制电路
【教学要点】 并励直流电动机旳起动和正、反转控制原理
【教学难点】 他励和串励直流电动机旳起动原理
第七节 直流电动机旳控制电路
直流电动机突出旳优点是有很大旳起动转距和 能在很大旳范围内平滑地调速。直流电动机旳控制 涉及直流电动机旳起动、正反转、调速及制动旳控 制。 按励磁方式可分为他励、并励、串励和复励四 种。并励及他励直流电动机旳性能及控制电路相近, 它们多用在机床等设备中;在牵引设备中,则以串 励直流电动机应用较多。
直流电动机旳正、反转控制电路
1. 变化电枢绕组中旳电流方向
这种措施常用于并励和他励直流电动机 中。因为并励和他励直流电动机励磁绕组旳电 感量大,若要使励磁电流变化方向,一方面, 将励磁绕组从电源上断开时,会产生较大旳自 感电动势,很轻易把励磁绕组旳绝缘层击穿; 另一方面,变化励磁电流方向时,因为中间有 一段时间励磁电流为零,轻易出现“飞车”现 象,使电动机旳转速超出允许旳程度,为此, 一般还需要用接触器在变化励磁电流方向旳同 步切断电枢回路电流。因为以上这些原因,所 以一般情况下,并励和他励直流电动机多采用

直流电动机的控制线路

直流电动机的控制线路
z4z4直流电动机直流电动机直流电动机的基本工作原理直流电动机的基本工作原理直流电动机是依据通电导体在磁场中将受到力的作用而运动的原理制直流电动机是依据通电导体在磁场中将受到力的作用而运动的原理制给两个电刷加上直流电源如上图所示则有直流电流从给两个电刷加上直流电源如上图所示则有直流电流从电刷电刷a流入经过线圈流入经过线圈abcdabcd从电刷从电刷流出根据电磁流出根据电磁力定律载流导体力定律载流导体abab和和cdcd收到电磁力的作用其方向可收到电磁力的作用其方向可由左手定则判定两段导体受到的力形成了一个转矩使由左手定则判定两段导体受到的力形成了一个转矩使得转子逆时针转动
KI2
KT2
R
I<
-
KT2 R1
KT1
KM2
KI2 KT1 KA KM1 KM2 KM3
( (
+
Байду номын сангаас
+
QF1
I> KI1 KM1
QF2
KA KM1
3 位
KA
M
VD KM1 R2 KM3 R
KI1
KI2
KT2
I<
-
R1 KM2
KT2
KT1
KI2 KT1 KA KM1 KM2 KM3
( (
SA
+
+
QF1
( (
+
+
QF1
I> KI1 KM1
QF2
KA KM1
2 位
KA SA
M
VD KM1 R2 KM3
KI1
KI2
KT2
R
I<
-
KT2 R1
KT1

直流无刷电机如何控制正反转

直流无刷电机如何控制正反转

直流无刷电机如何控制正反转直流无刷电机如何控制正反转直流电机具有响应快速、较大的起动转矩、从零转速至额定转速具备可提供额定转矩的性能。

我们知道直流无刷电机在许多场合不但要求电机具有良好的起动和调节特性,而且要求电机能够正反转。

那么如何实现直流无刷电机的正反转?通常采用改变逆变器开关管的逻辑关系,使电枢绕组各相导通顺序变化来实现电机的正反转。

为了使电机正反转均能产生最大平均电磁转矩以保证对称运行,必须设计转子位置传感器与转子主磁极和定子各相绕组的相互位置关系,以及正确的逻辑关系。

正/反转控制(DIR)通过控制端子“DIR”与端子“COM”的通、断可以控制电机的运转方向。

端子“DIR”内部以电阻上拉到+12,可以配合无源触点开关使用,也可以配合集电极开路的PLC等控制单元;当“DIR”与端子“COM”不接通时电机顺时针方向运行(面对电机轴),反之则逆时针方向运转;为避免直流无刷驱动器的损坏,在改变电机转向时应先使电机停止运动后再操作改变转向,避免在电机运行时进行运转方向控制。

转速信号输出(SPEED)直流无刷驱动器通过端子SPEED~COM为用户提供与电机转速成比例的脉冲信号。

每转脉冲数=6×电机极对数,SPEED频率(Hz)=每转脉冲数×转速(转/分)÷60。

例:4对极电机,每转24个脉冲,当电机转速为500转/分时,端子SPEED的输出频率为200Hz。

直流无刷电机foc控制技术解决方案从能耗角度来看,消费类电子产品和工业设备从传统的AC 马达过渡到体积更小、更为高效的BLDC 电机具有重大意义,但设计BLDC 控制算法的复杂性阻止了工程师们实现这种过渡的积极性。

从手机中的小型振动马达到家用洗衣机和空调中使用的更复杂的马达,马达已成为消费领域中的日常装置。

马达同样也是工业领域中的一个重要组成部分,在很多应用中广泛运用,如驱动风扇、泵等各种机械设备。

这些马达的能量消耗是非常巨大的:研究表明,仅在中国,马达所消耗的能源占工业总能耗的60% 至70%,其中风扇和泵所消耗的能源占中国整体功耗的近四分之一。

用一个继电器控制直流电机正反转

用一个继电器控制直流电机正反转

S4
到现场电机
接线图
阀门关闭时
仪表(+) 1 2 3 4 常闭点 5 6 7 8 常开点
阀门打开时
仪表(-) 1
2
3
567
4 仪表(+) 8
9 10 11 12 0V
+24V
公共点 9
10 11 12 +24V
1234
仪表(-)
5678 0V
9 10 11 12
序言
曾经遇到过这样的一个开关阀控制电路,即:使用一个具有4个常开和 4个常闭点的继电器控制一个直流电机的正反转,进而控制阀门的开和关。
刚开始看着继电器的接线,觉得有点复杂,了解其工作原理之后,倒 觉得没什么,画出电路原理图也就一目了然。
话说回来,这样的设计觉得很新颖,似乎也可以节约成本,但有个问 题又不容忽视,那就是总有一种状态下电机一直处于一直得电状态(即: 转到位卡住之后电机还处于得电状态,电机又不能转)。
控制原理图
24VΒιβλιοθήκη S0说明: ①QS开关闭合。 ②当DCS给开的信号时,S0 闭合,继电器得电,S2、 S4断开,S1、S3闭合,送 正向24V使阀门打开; ③当DCS给关的信号时,S0 断开,继电器失电,S1、 S3断开,S2、S4闭合,送 反向24V使阀门关闭。
+24V
0V
FU QS
S1
S2
S3

正反转的控制电路原理图

正反转的控制电路原理图

正反转的控制电路原理图
抱歉,由于只能提供文字回答,无法显示原理图。

以下是一种常见的正反转控制电路的文字描述:
该电路使用两个动作按钮和两个继电器来实现正反转功能。

两个动作按钮分别命名为"正转"和"反转"。

两个继电器分别被称为"正继电器"和"反继电器"。

当按下"正转"按钮时,正继电器吸合,连接主电路中正转的电
源线。

此时,电机开始正转。

当按下"反转"按钮时,正继电器断开,反继电器吸合,连接主
电路中反转的电源线。

此时,电机开始反转。

当两个按钮都未被按下时,两个继电器都处于断开状态,整个电路断开,电机停止运转。

请注意,在正继电器和反继电器之间必须使用适当的控制电路,以确保它们不会同时吸合,造成电流短路。

这可以通过使用适当的延时、锁定或互斥电路来实现。

以上是一个简单的正反转控制电路的文字描述,具体实施方案可能因电路设计和需求而有所不同。

直流电动机常见控制线路

直流电动机常见控制线路
1.改变电枢绕组中的电流方向 这种方法常用于并励和他励直流电动机中。因为并励和他励直流电动机励磁绕组的电流量大,若 要使励磁电流改变方向,一方面,在将励磁绕组从电源上断开时,会产生较大的自感电动势,很容易 把励磁绕组的绝缘击穿;另一方面,在改变励磁电流方向是,由于中间有一段时间励磁电流为零,容 易出现“飞车”现象,使电动机的转速超过允许的速度,为此,通常还需要接触器在改变励磁电流方向 的同时切断电枢回路电流。由于以上这些原因,所以一般情况下,并励和他励直流电动机多采用改变 中枢绕组中电流的方向来改变电动机的旋转方向。
按下启动按钮SB1,接触器KM1线圈通电吸合并自锁,电动机在串 入全部启动电阻情况下降压起动。同时,由于接触器KM1的常闭触点断 开,使时间继电器KT1和KT2线圈断电。经一段延时候,其中KT1的常 闭延时闭合触点首先闭合,接触器KM2线圈通电,其常开触点闭合,将 启动电阻R1短接,电动机继续加速。然后,KT2常闭延时闭合触点延时 闭合,接触器KM3通电吸合,将电阻R2短接,电动机启动完毕,投入正 常运行。
设备控制技术
直流电动机常见控制线路
直流电动机按励磁方式分为他励、并励、串励和复励四种。并励及 他励直流电动机的性能及控制线路相近,他们多用在机床等设备中。在 牵引设备中,则以串励支流电动机应用较多。
直流电动机的控制包括直流电动机的起动、正反转、调速及制动的 控制。
1-1直流电动机的起动控制线路
直流电动机在起动最初的一瞬间,因为电动机的转速等于零,则反 电动势为零,所以电源电压全部施加在电枢绕组的电阻及线路电阻上。 通常这些电阻都是极小的,所以这时流过电枢电流很大,启动电流可达 额定电流的10~20倍。这样大的起动电流将导致电动机转向器和电枢绕 组的损坏,同时大电流产生转矩和加速度对机械传动部件也将产生强烈 的冲击。因此,如外加的是恒定电压,则必须在电枢回路中篡改如附加 电阻来起动,以限制起动电流。

[全]用PLC控制直流电动机的正反转

[全]用PLC控制直流电动机的正反转

用PLC控制直流电动机的正反转任务要求1、有两台直流电机,经中间继电器KA接在PLC的输出继电器Y0~Y3上,要求被控制的两台直流电机在按下启动按钮SB1,M1正转5S停止,M2正转5S停止M1反转5S停止M2反转5S后循环。

2、各小组发挥团队合作精神,共同设计出PLC的I/O分配表,并设计出PLC 程序,下载到PLC内,验证程序功能,调整、优化程序。

一、理论知识1、直流电机如何由正向运行转换为反向运行?你可以这样试试:①按照上一任务所学知识,控制直流电机的单向连续运行,应有停止按钮。

编好程序下载到PLC中,并按图接好线。

②按下启动按钮,电机运行,观察电机的运行方向:是顺时转动还是逆时转动?③按下停止按钮,电机停转后;把直流电动机的A、B两个接线端的接插线对调④再启动电机,观察电机的转动方向。

结论:把通入直流电机电源的正负极对调,即可实现直流电机反转。

2、在设计PLC程序之前,需要对PLC的外围资源有充分的了解(包括有哪些控制按钮?直流电机在哪?分别用什么符号表示?直流电机的工作电源等等)形成一定的编程思路,然后设计出PLC的I/O分配表(或称地址表),分配表的基本信息应该包含有输入端和输出端,以及各端口的作用说明。

图1在实际应用中是这样控制直流电机正反转的:图2仔细研究主电路,KA1与KA2能不能同时闭合?为什么?在编程时又如何解决KA1与KA2同时的触头同时闭合呢?下图3-2-4的这段程序是不够完善的:当X1与X2同时闭合时,Y0与Y1同时输出,即KA1与KA2线圈会同时得电,触头同时闭合,主电路形成短路。

如何解决Y0与Y1不能同时输出?用两个继电器来实现对直流电机的正反转控制,KA1闭合正转,KA2闭合反转,主电路如图3-2-3示:图3图4技能拓展一、知识扩展——积算定时器的应用1)1ms积算定时器(T246~T249)共4点,是对1ms时钟脉冲进行累积计数,定时的时间范围为0.001~32.767s。

串励直流电动机的基本控制电路PPT课件

串励直流电动机的基本控制电路PPT课件
KT2
KV
KM KM1 KM2 KM3 KM4 KM5
I> KA
QF L+ L-
KM
KM1
KM2
M
KV AC 前1

后1
KM1 KM2
KM1 KM2
KA1
KA1
KA2
电动机正转:
KA2
AC手柄置前 位
KT2
置,KM,KM1 线圈得电动作, 电动机串联电 阻起动
R2
R1 KT1
RB
KM5 KM4 KM3
KM2 R1
KT2
KT1 KT2
KT1 KM1
KM2 KM3
2.自动启动控制线路
QF L+
L
KM1
M
合上电源开关QF
KM1
SB2 SB1
KM1
KM3 R2
KM2 R1
KT2
KT1 KT2
KT1 KM1
KM2 KM3
2.自动启动控制线路
QF L+
L
KM1
M
按下SB1 KM1线圈得电
SB2
KM1 SB1
KV
KM KM1 KM2 KM3 KM4 KM5
I> KA
KM1
KM3 R2
KM2 R1
KT2
KT1 KT2
KT1 KM1
KM2 KM3
2.自动启动控制线路
QF L+
L
KM1
M
KT1经过整定时间 KT1动断触头延时闭合
KM1
SB2 SB1
KM1
KM3 R2
KM2 R1
KT2
KT1 KT2
KT1 KM1
KM2 KM3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档