计算机网络 多路复用技术
多路复用的基本原理
多路复用的基本原理多路复用是计算机网络中的一种通讯技术,它是指在同一个物理通讯通道(例如一条网络电缆或光纤),在同一时间内,同时传输多个独立的信号,实现多个通讯线路共享一个物理通讯通道的方法。
多路复用使得网络使用率大大提高,提高了网络的可靠性和性能。
本文将从多路复用的基本原理入手,详细阐述多路复用的原理、分类、实现、优缺点以及应用场景。
一、多路复用的原理在计算机网络中,假设有多个用户A、B、C、D,需要同时与网络服务器通信,而服务器只有一条物理链路,如果每个用户都从服务器上获取一条物理链路,那么服务器的物理链路就会被占用。
于是,多路复用技术就有了应用的基础。
多路复用的原理是将多个用户的数据流复用在同一物理通讯线路上,形成一个混合流向目标地址传输。
在服务器端,对来自每个用户的数据进行分类处理,将它们区分开来,并打上标记码,发送到混合流中。
在客户端接收到混合流后,对它进行解复用,将其区分开来,并根据标记码将数据还原到原来的各自的用户数据流。
如下图所示:二、多路复用的分类多路复用根据传输数据的特点和处理方法,可以分为如下两种类型:1、频分多路复用(FDM)频分多路复用是将信号在频域上分成不同的频带,不同频带内的信号被分别转换成数字信号,再将数字信号按不同频率排列,通过调制传输到接收端,接收端采用解调的方法将各个频率上的数据恢复为原数据,实现多路复用。
在频分多路复用中,各个用户占用频带的带宽是相等的,但也有可能因为传输距离和信号衰减等原因导致传输质量的不均衡。
常用于有线电视信号传输。
2、时分多路复用(TDM)时分多路复用是将信号在时间域上分隔开,按不同时间段分配给不同通道,从而实现多路复用。
时分多路复用中,各个用户占用时间段的时间是相等的,但数据量不一定相等,需要在传输过程中进行适当的压缩和解压缩。
常用于数字电话、网路等数据传输。
三、多路复用的实现多路复用的实现需要网络的发送方和接收方都支持多路复用协议。
计算机网络 多路复用技术
计算机网络多路复用技术《计算机网络多路复用技术》在当今数字化的时代,计算机网络已经成为我们生活和工作中不可或缺的一部分。
当我们享受着高速、稳定的网络连接,畅快地浏览网页、观看视频、进行在线游戏时,背后有一项关键技术在默默地发挥着作用,那就是多路复用技术。
想象一下,有一条道路,上面有许多车辆(数据)在行驶,如果没有良好的交通规则和管理方式,道路就会拥堵不堪,交通效率会极其低下。
计算机网络中的数据传输也是如此,如果没有有效的多路复用技术,网络带宽就会被浪费,数据传输的效率和质量也会大打折扣。
多路复用技术,简单来说,就是允许多个数据源共享一个通信信道,从而提高信道的利用率。
这就好比在一条高速公路上,设置了多个车道,让不同类型、不同目的地的车辆能够有序地行驶,充分利用道路资源。
常见的多路复用技术主要有时分多路复用(TDM)、频分多路复用(FDM)和波分多路复用(WDM)。
时分多路复用就像是把时间切成了很多小片段,然后按照一定的顺序分配给不同的数据源。
比如说,有三个数据源 A、B、C,在第一个时间段里,信道传输 A 的数据;第二个时间段传输 B 的数据;第三个时间段传输 C 的数据,然后再循环往复。
这样,在宏观上看起来,好像是这三个数据源同时在使用信道进行数据传输,但实际上是在不同的时间片段里轮流使用。
时分多路复用技术适用于数字信号的传输,它的优点是控制简单,但缺点是如果某个数据源在分配的时间段内没有数据要传输,那么这段时间就会被浪费,信道的利用率可能不高。
频分多路复用则是根据不同的频率来划分信道。
它把信道的带宽划分成多个不同的频段,每个频段分配给一个数据源。
就像广播电台,不同的电台使用不同的频率进行广播,听众可以通过调整收音机的频率来选择收听自己喜欢的电台。
频分多路复用技术适用于模拟信号的传输,它能够充分利用信道的带宽,但缺点是容易受到干扰,而且不同频段之间需要设置保护频带,会造成一定的带宽浪费。
波分多路复用是在光纤通信中常用的技术。
多路复用解释
多路复用(Multiplexing)是指在计算机网络通信中,利用一个物理通道传输多个数据流的技术。
它通过将多个数据流分解成小块,并交替地在通信链路上传输,实现了在一条物理通道上同时传输多个数据流的目的。
多路复用的使用可以提高带宽利用率和传输效率,降低通信成本,并且能够满足多用户同时访问的需求。
在传统的通信方式中,每个数据流都需要独占一个物理通道才能进行传输。
然而,随着网络应用的不断发展,用户对于网络带宽的需求逐渐增加,传统的通信方式已经无法满足多用户同时访问的需求。
此时,多路复用技术应运而生,它可以复用已有的通信资源,将多个数据流同时传输,提高通信效率。
在多路复用的实现过程中,通常使用了两种主要的技术:时分复用(TDM)和分组复用(FDM)。
时分复用是指将时间划分为若干个时隙,每个时隙用于传输不同的数据流。
发送端将要发送的数据流按照一定的顺序放置在不同的时隙里,接收端则按照相同的顺序将相应的时隙中的数据恢复出来。
时分复用的优点是实现简单,对于时延敏感性较低的应用比较适用。
但是,时分复用的缺点是无法随着数据流量的变化灵活调整带宽分配,因此在网络负载较大时容易出现拥塞。
分组复用是指将每个数据流分成小的数据包,然后交替地传输这些数据包。
发送端将不同数据流的数据包按照一定的规则混合在一起发送,接收端则根据数据包的标识将它们恢复出来。
分组复用的优点是带宽分配灵活,能够根据网络负载情况动态调整带宽分配,提高网络的利用率。
但是,分组复用的缺点是在传输过程中会增加一定的延迟,并且对数据包的排序和恢复需要一定的处理时间。
多路复用广泛应用于各种计算机网络中,例如电话网络、数据通信网络等。
在电话网络中,多路复用可以实现多个电话用户共享一条物理线路进行通话,从而减少了线路的占用。
在数据通信网络中,多路复用可以将多个应用程序的数据流同时传输,提高网络的带宽利用率,并且能够满足多用户同时访问的需求。
总而言之,多路复用是一种有效的网络通信技术,通过复用已有的通信资源,可以在一条物理通道上同时传输多个数据流,提高带宽利用率和传输效率,降低通信成本,并且能够满足多用户同时访问的需求。
9、多路复用技术
5.码分多路复用
码分多路复用CDMA(Code Division Multiple Access)码分多路是采用地址码和时间、 频率共同区分信道的方式。CDMA的特征是个每个用户有特定的地址码,而地址码之 间相互具有正交性,因此各用户信息的发射信号在频率、时间和空间上都可能重叠, 从而使用有限的频率资源得到利用。CDMA是在扩频技术上发展起来的无线通信技术, 即将需要传送的具有一定信号带宽的信息数据,从一个带宽远大于信号带宽的高速伪 随机码进行调制,使原数据信号的带宽被扩展,再经载波调制并发送出去。接收端也 使用完全相同的伪随机码,对接受的带宽信号作相关处理,把宽带信号换成原信息数 据的窄带信号即解扩,以实现信息通信。不同的移动台(或手机)可以使用同一个频 率,但是每个移动台(或手机)都被分配带有一个独特的“码序列”,该序列码与所 有别的“序列码”都不相同,因为是靠不同的“码序列”来区分不同的移动台(或手 机),所以各个用户相互之间也没有干扰从而达到了多路复用的目的。
1.多路复用技术的概念
多路复用技术需要用到的设备: 1、多路复用器(Multiplexer) 在发送端根据约定规则把多个低带宽信号复合成一个高带宽信号。 2、多路分配器(Demultiplexer) 根据约定规则再把高带宽信号分解为多个低带宽信号。 这两种设备统称为多路器(MUX)
2.频分多路复用
ATDM就是只有当某一路用户有数据要发送时才把时隙分配给 它;当用户暂停发送数据时,则不给它分配时隙。电路的空闲时隙可 用于其他用户的数据传输。
3.时分多路复用
时分多路复用技术TDM(Time Division Multiplexing)时分多路复用是以信道传输时间作为分割对象,通过为多个 信道分配互不重叠的时间片段的方法来实现多路复用。时分多路复用将用于传输的时间划分为若干个时间片段,每 个用户分得一个时间片。时分多路复用通信,是各路信号在同一信道上占有不同时间片进行通信。由抽样理论可知, 抽样的一个重要作用,是将时间上连续的信号变成时间上的离散信号,其在信道上占用时间的有限性,为多路信号 沿同一信道传输提供条件。具体说就是把时间分成一些均匀的时间片,通过同步(固定分配)或统计(动态分配) 的方式,将各路信号的传输时间配分在不同的时间片,以达到互相分开,互不干扰的目的。至2011年9月,应用最广 泛的时分多路复用是贝尔系统的T1载波。T1载波是将24路音频信道复用在一条通信线路上,每路音频信号在送到多 路复用器之前,要通过一个脉冲编码调制编码器,编码器每秒抽样8000次。24路信号的每一路,轮流将一个字节插 入到帧中,每个字节的长度为8位,其中7位是数据位,1位用于信道控制。每帧由24×8=192位组成,附加1bit作为帧 的开始标志位,所以每帧共有193bit。由于发送一帧需要125ms,一秒钟可以发送8000帧。因此T1载波数据传输速率 为:193bit×8000=1544000bps=1544Kbps=1.544Mbps
多路复用技术
信号复合
¶ Â à · ´ Ó · Ã Æ ÷ ß Ë · Ù Í ¨Ð Å Ï ß Â ·
信号分离
¶ Â à · ´ Ó · Ã Æ ÷
多路复用技术的分类:
◇ 频分多路复用FDMA ◇ 时分多路复用TDMA ◇ 波分多路复用WDMA
◇ 码分多路复用CDMA
1 频分多路复用(FDMA)
定义:是将具有一定带宽的信道分割成若干个有较小频带的子信 道,每个子信道传输一路信号,即供一个用户使用,这就是频分 多路复用。 特点: (1)在一条通信线路上设计有多路通信信道;
¦ ¸ Ê Â
¸Ï â Ë1 IJ µ ¨Æ × âÏ ¸ Ë1 ¨³ ² ¤ ¸Ï â Ë2 IJ µ ¨Æ × âÏ ¸ Ë2 ¨³ ² ¤
²í ¸ ϸ âÏ Ë Ä² µ ¨Æ × ¦ ¸ Ê Â ¨³ ² ¤ âÏ ¸ Ë3 ¦ ¸ Ê Â
¸Ï â Ë3 IJ µ ¨Æ ×
¨³ ² ¤ ¸Ï â Ë4 IJ µ ¨Æ ×
填空题
1、数据交换方式基本上分为三种 电路交换 、报文交 换和分组交换 。 2、分组交换有两种方式:数据报方式和虚电路方式。 3、用电路交换技术完成的数据传输要经历电路建立 阶段 、 数据传输阶段和拆除电路连接阶段 。 4、在计算机的通信子网中,其操作方式有两种,它 们是面向连接的电路交换方式和虚电路方式和无连接 的报文交换方式和数据报交换方式。 5、在数据报服务方式中,网络节点要为每个数据报/ 分组选择路由,在虚电路服务方式中,网络节点只在 连接建立时选择路由。
异步时分复用技术又被称为统计时分复用或智能时分复 用(ITDM)技术,它能动态地按需分配时隙,时间片位 置与信号源没有固定的对应关系
时分多路复用常用于传输数字信号。 但是也不局限于传输数字信号,模拟信号也 可 以同时交叉传输。另外,对于模拟信号, 时分多路复用和频分多路复用结合起来使用 也是可能的。一个传输系统可以频分许多条 通道,每条通道再用时分多路复用来细分。
计算机网络通信技术第03章 调制解调和多路复用技术
调制解调技术
在频带系统中,调制器、解调器是核心,调制解 调技术也是通信学科中的关键技术和重要内容。
在频带系统中还有功率放大器、混频器、馈线系 统、天线等部分,这些部分从原理角度看对信号不会 产生有本质变化,不列在频带系统中。
调制解调技术(2)
数据信号的调制是指利用数据信号来控制一定 形式高频载波的参数,以实现其频率搬移的过程。
高频载波的参数有幅度、频率和相位,因此, 就形成了幅移键控(ASK)、频移键控(FSK) 和相移键控(PSK)三种基本数字调制方式。
幅移键控(ASK)( 1.定义 )
幅移键控(ASK, Amplitude Shift Keying)又称幅度键控,
上,让载波通过;0信号时开关S断开,载波不能通过。这
种通过开关的通断达到载波的有无(实质上是改变载波的
幅度)所形成的信号也叫 OOK(On-off Keying)信号。
3.波形
由定义和实现逻辑都可画出2ASK信 号的波形,如图所示。
第03章 调制解调和多路复用技术
第03章 调制解调和多路复用技术
内容提要:
调制与解调 基带传输 频带传输 PSK、FSK、ASK 多路复用技术
调制和解调
在计算机与打印机之间的近距离数据 传输、在局域网和一些域域网中计算机间 的数据传输等都是基带传输。
基带传输实现简单,但传输距离受限。
④.抽样判决器:带有噪声的数据波形恢复成标准的数据基带信号。
1.理想基带传输系统
理想基带传输系统的传输特性具有理想低通特 性,其传输函数为
理想基带传输系统
多路复用技术完整ppt课件
传输时延与抖动
传输时延
指信号从发送端传输到接收端所需的 时间,通常以毫秒(ms)为单位。传 输时延与信号传播速度、传输距离和 信道带宽等因素有关。
抖动
指信号在传输过程中产生的时间不确 定性,通常以微秒(μs)为单位。抖 动会导致信号在接收端产生时间上的 偏移,影响通信系统的性能。
04
多路复用技术应用实例
看。
数字电视多路复用
数字电视采用时分多路复用技术 ,将音频、视频、数据等多种信 息复用到同一数字信号中进行传 输,提高信号传输效率和节目质
量。
05
多路复用技术性能评估与 优化
性能评估指标及方法
吞吐量
衡量系统处理能力的关 键指标,表示单位时间 内成功传输的数据量。
时延
数据从发送端到接收端 所需的时间,反映系统
多路复用技术完整 ppt课件
演讲人: 日期:
contents
目录
• 多路复用技术概述 • 多路复用技术分类 • 多路复用技术关键参数 • 多路复用技术应用实例 • 多路复用技术性能评估与优化 • 多路复用技术发展趋势与挑战
01
多路复用技术概述
定义与基本原理
定义
多路复用技术是一种将多个信号 组合在一条物理信道上进行传输 的技术,接收端再将复合信号分 离出来。
缺点
设备生产比较复杂,会因滤波器件特 性不够理想和信道内存在非线性而产 生路间干扰。
信道复用率高,允许复用的路数多, 同时它的分频方便。
时分多路复用
原理
将一条物理信道按时间分成若干个时间片轮流地分配给多个信号使用。每一时间片由复用 的一个信号占用,而不像FDM那样,同一时间同时发送多路信号。
优点
传输的是数字信号,差错可控;安全性高。
通信系统中的多路复用技术介绍
通信系统中的多路复用技术介绍多路复用技术指的是在通信系统中,通过将多个信号合并在一个信道中传输,以提高通信信道的利用率和传输效率的一种技术。
它可以将不同用户的信号同时传输在同一个信道中,从而实现多个用户同时进行通信。
下面将详细介绍多路复用技术的原理和步骤。
一、多路复用技术的原理1. 频分多路复用(FDM):将传输信道频带划分为若干个不重叠的子信道,每个子信道用于传输一个用户的信号。
通过控制每个子信道的带宽,可以使不同用户之间的信号不会相互干扰。
2. 时分多路复用(TDM):将传输信道的时间分成若干个时隙,每个时隙用于传输一个用户的信号。
用户的信号在不同的时隙进行传输,通过控制每个用户的传输速率,可以实现多用户同时传输。
3. 统计多路复用(SDM):根据用户的传输需求和信道的使用情况,动态地分配信道资源。
当用户的传输需求较小或者其他用户没有传输时,可以将信道资源分配给其他用户使用。
二、多路复用技术的步骤1. 信号接入:将不同用户产生的信号接入到通信系统中。
用户的信号可以通过不同的方式接入,如数字化后通过信号结构器输入、模拟信号通过模数转换器转换为数字信号后输入等。
2. 信号编码:对每个用户的信号进行编码。
编码可以使得不同用户的信号在传输过程中相互独立,不会相互干扰。
常见的编码方式有频分编码、时分编码等。
3. 多路复用:将各个用户的信号按照多路复用技术的原理进行合并。
例如,对于频分多路复用技术,可以将每个用户的信号经过调制后分配到不同的频带中;对于时分多路复用技术,可以将每个用户的信号按照时间顺序分配到不同的时隙中。
4. 信号传输:将多路复用后的信号通过信道传输。
传输过程中需要保持信号的完整性和准确性,避免信号受到干扰或衰减。
5. 信号分解:在接收端,将传输的信号进行分解,分离出各个用户的信号。
分解可以使用与多路复用技术相对应的解复用技术,如频分解复用、时分解复用等。
6. 信号解码:对分离出的每个用户的信号进行解码。
ip复用技术的概念
IP复用技术概念解释1. 概念定义IP复用技术是指通过某种方式将多个网络数据流共享同一个IP地址的技术。
在传统的网络通信中,每个网络数据流都需要独占一个IP地址,而IP复用技术可以将多个数据流通过一定的方式复用到同一个IP地址上,从而提高IP地址的利用效率。
2. 关键概念解释2.1 IP地址IP地址是互联网上用于标识设备(如计算机、服务器等)的唯一标识符。
IP地址由32位或128位的二进制数字组成,用于在网络中进行数据传输和路由选择。
2.2 IP复用IP复用是指将多个数据流通过某种方式共享同一个IP地址的技术。
通过IP复用,多个数据流可以共享同一个IP地址进行通信,从而提高IP地址的利用效率。
2.3 多路复用多路复用是指在一个物理通道上同时传输多个数据流的技术。
在IP复用中,多路复用技术被用于将多个数据流复用到同一个IP地址上进行传输。
2.4 端口端口是计算机网络中用于标识应用程序或服务的数字。
在传输层协议(如TCP和UDP)中,端口与IP地址一起用于标识网络中的特定应用程序或服务。
2.5 网络地址转换(NAT)网络地址转换(NAT)是一种常用的IP复用技术,它将内部网络的私有IP地址转换为公共IP地址,从而实现多个内部主机共享同一个公共IP地址的功能。
2.6 端口地址转换(PAT)端口地址转换(PAT)是网络地址转换(NAT)的一种形式,它通过在转换过程中还要改变端口号,实现多个内部主机共享同一个公共IP地址和端口号的功能。
3. 重要性3.1 节约IP地址资源IP地址是有限的资源,而且IPv4地址空间已经日益紧张。
通过使用IP复用技术,可以将多个数据流共享同一个IP地址,从而节约了IP地址资源,延缓了IPv4地址枯竭的问题。
3.2 提高网络性能通过IP复用技术,可以将多个数据流复用到同一个IP地址上进行传输,减少了IP包的数量,降低了网络传输的负载,提高了网络的性能和吞吐量。
3.3 加强网络安全使用IP复用技术,可以将内部网络的私有IP地址隐藏在公共网络后面,提高了网络的安全性。
多路复用技术_计算机网络技术_
多路复用技术_计算机网络技术_多路复用技术——计算机网络技术的关键支撑在当今数字化的时代,计算机网络已经成为我们生活和工作中不可或缺的一部分。
无论是浏览网页、观看视频、进行在线游戏,还是企业的远程办公和数据传输,都离不开高效稳定的网络支持。
而在计算机网络技术中,多路复用技术扮演着至关重要的角色,它就像是一位高效的调度员,能够充分利用有限的网络资源,实现数据的快速、准确传输。
那么,什么是多路复用技术呢?简单来说,多路复用技术是一种将多个信号或数据流合并到一个单一的通信信道上进行传输,然后在接收端再将它们分离出来的技术。
想象一下,有许多辆车(信号或数据流)都想要通过一条狭窄的道路(通信信道),如果没有合理的调度,必然会导致交通拥堵。
而多路复用技术就是那个聪明的交通警察,它能安排好这些车辆的通行顺序,使得道路资源得到充分利用,交通得以顺畅进行。
多路复用技术主要有以下几种常见的类型:时分多路复用(TDM)、频分多路复用(FDM)、波分多路复用(WDM)和码分多址(CDMA)。
时分多路复用是按照时间片来分配信道资源的。
就好比把一天的时间分成很多个小时段,每个小时段分配给不同的任务。
在 TDM 中,将通信信道的传输时间划分成若干个固定长度的时隙,每个时隙分配给一个信号源。
例如,在一个电话通信系统中,如果有 8 个用户需要通话,那么系统会将每个用户的通话时间分成 8 个等长的时隙,每个用户在自己的时隙内进行通话,轮流使用信道,从而实现多个用户共享同一信道的目的。
频分多路复用则是根据频率来划分信道资源的。
我们可以把它想象成一个广播电台,不同的电台使用不同的频率进行广播,听众可以通过调谐到不同的频率来收听自己喜欢的节目。
在 FDM 中,通信信道的带宽被分成若干个相互不重叠的频段,每个频段分配给一个信号源。
每个信号源使用自己分配到的频段进行传输,从而在同一信道上实现多个信号的同时传输。
波分多路复用是在光纤通信中常用的技术。
计算机网络复习题答案
一、选择题(1)多路复用技术能够提高传输系统利用率;不属于常用的多路复用技术有_(1)_。
A.FDM和TDM B.FDM和AFM C.TDM和WDM D.FDM和WDM(2)实现一条物理信道传输多个数字信号,这是_(2)_。
A.同步TDM B.TDM C.异步TDM D.FDM(3)将一条物理信道分成若干时间片,轮换的给多个信号使用,将物理信道的总频带宽分割成若干个子信道,每个信道传输一路信号,这是_(3)_。
A.同步时分多路复用B.统计时分多路复用C.异步时分多路复用D.频分多路复用(4)在光纤中采用的多路复用技术是_(4)__。
A.TDM B.FDM C.WDM D.CDMA(5)多路复用技术一般不用于_(5)_中。
A.交换结点间通信B.卫星通信C.电话网内通信D.局域网内通信(6)光纤分为单模光纤和多模光纤,这两种光纤的区别是(6)。
A.单模光纤的数据速率比多模光纤低B.多模光纤比单模光纤传输距离更远C.单模光纤比多模光纤的价格更便宜D.多模光纤比单模光纤的纤芯直径粗(7)数据在传输前必须转换为(7)_.A。
.周期信号 B。
电磁信号C。
非周期信号 D。
低频电磁波(8)ASK、PSK、FSK、QAM是(8) 调制的例子.A.数数 B.数模 C.模摸 D.模数(9)FDM和WDM用于组合_(9)_信号.A.模拟B.数字C.模拟或数字D.周期信号(10)(10)涉及到光束构成的信号.A.FDM B.TDM C.WDM D.都不对(11)DMT是一种调制技术,它将(18)技术结合在一起。
A.FDM,TDM B.QDM,QAM C.FDM,QAM D.PSK,FSK(12)传统有线电视网络传输(19)信号。
A.上行B.下行C.上行和下行D.都不对(13)CSMA/CD中的CD的意思是()A。
载波监听 B.先听后发 C.边听边发D。
冲突检测(14)在以太网中采用二进制指数退避算法来降低冲突的概率如果某站点发送数据时发生了3次冲突则它应该()。
多路复用技术
计算机网络通信原理——多路复用技术
1
多路复用的概念
• 多路复用技术是将多个信源的彼此无关的信号,组合在一 多路复用技术是将多个信源的彼此无关的信号, 是将多个信源的彼此无关的信号 条物理信道上进行传送的技术。 条物理信道上进行传送的技术。 • 多路复用的目的是充分利用昂贵的通信线路,尽可能地容 多路复用的目的是充分利用昂贵的通信线路, 纳较多的用户传输较多的信息。 纳较多的用户传输较多的信息。 • 常用的多路复用技术有:频分多路复用( FDM, 常用的多路复用技术有:频分多路复用( FDM, Frequency Division Multiplexing)、时分多路复用 Multiplexing)、 )、时分多路复用 TDM, Multiplexing)、 )、波分多路复用 (TDM,Time Division Multiplexing)、波分多路复用 WDM, Multiplexing) (WDM,Wavelength Division Multiplexing)和码分 多址(CDMA, Access) 多址(CDMA,Code Division Multiple Access)
CH1 CH2 LPF1 LPF2 调制器1 调制器 调制器2 调制器 …… CHn LPFn 调制器n 调制器 BPF1 BPF1 BPF1 相 加 器 信 道 BPFn BPF1 BPF2 解调器1 解调器 解调器2 解调器 …… 解调器n 解调器 LPFn
5
LPF1 LPF2
计算机网络通信原理——多路复用技术
注意
• 频分复用是利用各路信号在频率域不相互重叠来区分的。 若 频分复用是利用各路信号在频率域不相互重叠来区分的。 相邻信号之间产生相互干扰,将会使输出信号产生失真。 相邻信号之间产生相互干扰,将会使输出信号产生失真。 • 为了防止相邻信号之间产生相互干扰,应合理选择载波频率 为了防止相邻信号之间产生相互干扰, f1, f2, …, fn,并使各路已调信号频谱之间留有一定的保护带。 并使各路已调信号频谱之间留有一定的保护带。
多路复用技术解析
3.空分多路复用技术SDM :
空分多路复用(SDM,Space Division Multiplexing)即多对电线或光纤共用1条缆的复用方式。 比如5类线就是4对双绞线共用1条缆,还有市话电缆(几十 对)也是如此。能够实现空分复用的前提条件是光纤或电线 的直径很小,可以将多条光纤或多对电线做在一条缆内, 既节省外护套的材料又便于使用。
4.波分多路复用技术WDM :
Λ1=1535nm
Tx
Λ1=1543nm
Tx
Λ1=1550nm
Tx
Λ1=1557nm
Tx
发送器
多路器
Λ1 Λ2 Λ3 Λ4
Λ1=1535nm
Tx
Λ1=1543nm
Tx
Λ1=1550nm
Tx
Λ1=1557nm
Tx
多路器
接收器
5.码分多路复用技术CDMA :
码分多路复用(code division multiplexing)是频分 多路复用(Frequency Division Multiplexing)与时分 多路复用(Time Division Multiplexing)两种技术的复 合,频分复用是按频域正交来划分信号,时分复用是按时 域正交来划分信号。同样码分多路复用是利用码间的正交 性来划分信号。利用正交编码来实现多路通信的方式称为 码分复用。
2.时分多路复用技术TDM的分类 :
时分多路复用(TDM)又分为:
①同步时分复用(Synchronous Time Division Multiplexing,STDM) 同步时分复用采用固定时间片分配方式,即将传输信 号的时间按特定长度连续地划分成特定的时间段(一个周 期),再将每一时间段划分成等长度的多个时隙,每个时 隙以固定的方式分配给各路数字信号,各路数字信号在每 一时间段都顺序分配到一个时隙。
多路复用技术
时分复用
频率
在 TDM 帧中的位置不变
ABCDABCDABCDABCD …
TDM 帧 TDM 帧 TDM 帧 TDM 帧 TDM 帧
时间
9
时分复用
频率
在 TDM 帧中的 位置不变
ABCDABCDABCDABCD …
TDM 帧 TDM 帧 TDM 帧 TDM 帧 TDM 帧
时间
10
时分复用
频率
共享光纤的光谱
与FDM的唯一区别:在WDM中使用的衍射光栅是无 源的,因此可靠性非常高。
18
计算机网络技术
在 TDM 帧中的 位置不变
ABCDABCDABCDABCD …
TDM 帧 TDM 帧 TDM 帧 TDM 帧 TDM 帧
时间
11
时分复用
频率
在 TDM 帧中的 位置不变
ABCDABCDABCDABCD …
TDM 帧 TDM 帧 TDM 帧 TDM 帧 TDM 帧
应用:
时间
既可用于传输数字信号,也可用于传输模拟信号。
6
由此可见,信道的带宽越大,容纳的电话路数就 会越多。目前,在一根同轴电缆上已实现了上千路电 话信号的传输。多路频分复用系统又称为多路载波系 统。
用途:主要用于传送模拟信号,如有线或无线模
拟通信网 。频带传输也被称为宽带传输。
7
二、时分多路复用TDM (time division multiplexing): 1、基本原理:将一条物理信道,按时间分成若 干个时间片,轮流地给多个信号源使用,每个 时间片由复用的一个信号源占用。
对于数字通信系统主干网的复用都采用时分多路
复用技术。
12
时分复用可能会造成 线路资源的浪费
(完整版)计算机网络技术基础3.3多路复用技术
章节或项目名称多路复用技术/宽带接入技术本次授课类型☑理论□实验□理实一体□实训□实习班级地点周次星期节次授课进度☑符合□超前□滞后□符合□超前□滞后□符合□超前□滞后□符合□超前□滞后教学目标1、了解多路复用技术的种类2、掌握多路复用技术应用场景3、理解宽带接入技术种类及特点教学重点1、多路复用技术种类及特点2、宽带接入技术种类及特点教学难点1、多路复用技术种类及特点2、宽带接入技术种类及特点教学设计教学环节内容要点教学方法与手段时间分配1.知识巩固通过知识抢答,了解学生对已学知识的把握程度,及时给予表扬提问、PPT 10m2.自学内容检查通过设置直观简单问题,了解学生预习情况,及时发现问题,把握教学进度提问、PPT 10m3.教师难点讲解以典型案例为主介绍多路复用技术及其种类等信息提问、PPT、板书50m4.课程知识点学习效果检验讲解内容提炼板书、提问15m5.总结及课后预习按照任务单要求完成数据链路层作用等内容视频、PDF 5m教学效果及改进思路1、知识巩固(1)数据传输技术有哪些?分类方式传输方式按数据位的传输方式串行通信并行通信按数据传输同步方式同步传输异步传输按数据信号调制方式基带传输频带传输按数据发送方式单工通信半双工通信全双工通信(2)数据编码技术?2、自学内容检查(1)多路复用技术有哪些?时分多路复用、码分多路复用、波分、频分(2)宽带接入技术有哪些?xDSL、HFC、WLAN、FTTx+PON等3、学生知识讲解(1)学生讲解多路复用技术的特点及应用学生一:频分多路复用特点及应用场景学生二:时分多路复用技术特点及应用学生三:波分多路复用技术特点及应用场景学生四:码分多路复用技术特点及应用场景(2)教师归纳总结→问题1:频分多路复用特点及应用?(应用:电话)→问题2:时分多路复用特点及应用?(应用:集线器)→问题3:波分多路复用特点及应用?(应用:集线器)→问题4:码分多路复用技术特点及应用?(3)学生讲解宽带接入技术4、教师难点讲解(1)多路复用技术的特点及应用频分多路复用技术:在一个传输介质上使用多个不同频率的模拟载波信号进行多路传输,每一个载波信号形成一个信道的技术。
计算机网络技术数据通信基础多路复用技术
多路复用技术数据通信基础CONTENTS目录1,复用技术原理2,复用技术方法多路复用:多个信息源享一个公信道。
DEMUX 复用器解复用器享信道MUX 信源信宿提高线路利用率适用场合:当信道地传输能力大于每个信源地平均传输需求时。
复用地基本思想:把公享信道用某种方法划分成多个子信道,每个子信道传输一路数据。
四种复用方法频分复用FDM:按频率划分不同地信道,如CATV系统波分复用WDM:按波长划分不同地信道,用于光纤传输码分复用CDM:按地址码划分不同地信道,非常有发展前途时分复用TDM:按时间划分不同地信道,目前应用最广泛频分复用原理:在物理信道地可用带宽超过单个原始信号所需带宽情况下,可将该物理信道地总带宽分割成若干个与传输单个信号带宽相同(或略宽)地子信道,每路信号占用一个频率通道进行传输。
以防相互干扰波分复用原理:也成光地频分复用。
整个波长频带被划分为若干个波长范围,每路信号占用一个波长范围来进行传输。
光载波地间隔为0.2~1.6nm之间。
F2F1F3光谱F 1F 2F 3享光纤地光谱 光纤2光纤3光纤1享光纤λλλ棱柱/衍射光栅一根光纤上复用80-160个光载波信号波分多路复用一般用波长分割复用器与解复用器(也称合波/分波器)分别置于光纤两端,实现不同光波长信号地耦合与分离。
将光纤1,光纤2,光纤3路信号连接到棱柱上,每路信号处于不同地波段,3束光通过棱柱/衍射光栅合成到一根享光纤上,待传输到目地地后,在将它们用同样地方法分离。
码分复用原理:每个用户可在同一时间使用同样地频带进行通信,但使用地是基于码型地分割信道地方法,即每个用户分配一个地址码,各个码型互不重叠,通信各方之间不会相互干扰,抗干扰能力强。
它不仅可以提高通信地语音质量与数据传输地可靠性及减少干扰对通信地影响,还增大了通信系统地容量。
码分多路复用技术主要用于无线通信系统,特别是移动通信系统。
笔记本电脑或个数字助理(PersonalDataAssistant,PDA)及掌上电脑(HandedPersonalputer,HPC)等移动性计算机地联网通信就是使用了这种技术。
计算机网络原理 频分多路复用技术
计算机网络原理 频分多路复用技术
频分多路复用(Frequency Division Multiplexing ,FDM )是一种在信道上同时发送多个模拟信号的方法,它将传输频带划分为若干个子信道(或频带)。
信道中的每一个频带都有它自己的载波信号,而且其载波信号的频率是惟一的。
然后,各个频带的载波信号受到一个信号的调制,就像在FM 中一样。
各个频带的频率之间未使用每个频率范围确保了信号不会彼此干扰。
频分多路复用信号中的各个频带是为分配给它的信息所保留的。
如果没有发送信息,那么频率将保持不用,这些保持不用的频率以及保留未使用的频率范围将降低频分多路复用的效率。
频分多路复用技术是在20世纪30年代由电话公司开发的,用来在一条电线上结合多个语音信号。
它可以用于语音、视频或数年据信号,但是它最常见的应用是无线电广播传输和有线电视。
它还可能用来在长途模拟线路上传输多个语音信号。
因为频分多路复用技术是多路传输的一种较早、效率较低下的形式,所以它在现代数据网络中的使用是有限的。
图1-15为一个频分多路复用模型。
mux/
mux/demux A B C A B
C
图1-15为一个频分多路复用系统。
多路复用技术的作用
多路复用技术的作用多路复用技术(Multiplexing)是一种在计算机网络中用于提高网络传输效率的技术。
它的作用是将多个数据流同时传输在同一条通信线路上,实现同时传输多个数据流的效果,从而提高了数据传输的效率和带宽利用率。
在传统的通信方式中,每个数据流都需要独占一条通信线路才能进行传输。
这样就导致了通信线路资源的浪费,无法充分利用通信线路的带宽。
而多路复用技术的出现,解决了这个问题。
它可以将多个数据流同时传输在同一条通信线路上,充分利用通信线路的带宽,提高了传输效率。
多路复用技术可以应用在各种不同的通信协议中,包括传统的电路交换网络和现代的分组交换网络。
在电路交换网络中,多路复用技术可以将多个电话信号同时传输在同一条电话线路上,提高了通信线路的利用率。
在分组交换网络中,多路复用技术可以将多个数据包同时传输在同一条通信线路上,提高了网络的传输效率。
多路复用技术的实现方式有很多种,常见的有频分多路复用(FDM)、时分多路复用(TDM)和分组多路复用(PDM)等。
频分多路复用是将不同频率的信号分配到不同的通信线路上进行传输,每个信号占用一定的带宽。
时分多路复用是将不同的数据流按照时间片的方式依次发送,每个数据流占用一定的时间片。
分组多路复用是将不同的数据包按照一定的顺序进行打包,并在传输过程中进行标记和解包,实现数据流的复用。
多路复用技术的应用非常广泛。
在互联网中,多路复用技术被广泛应用于传输层的协议中,如传输控制协议(TCP)和用户数据报协议(UDP)。
通过多路复用技术,TCP和UDP可以同时传输多个数据流,提高了网络的传输效率。
在视频会议和实时流媒体等应用中,多路复用技术可以将音频和视频等多种媒体流同时传输在同一条通信线路上,实现多媒体数据的同步传输。
除了提高传输效率和带宽利用率,多路复用技术还具有其他的优点。
它可以降低通信线路的成本,减少通信线路的数量。
同时,多路复用技术还可以提高通信系统的可靠性和稳定性,减少通信故障的发生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机网络 多路复用技术
在计算机网络或数据通信系统中,传输介质的传输能力往往会超过传输单一信号的要求。
为了提高通信线路的利用率,实现在一条通信线路上同时发送多个信号,使得一条通信线路可以由多个数据终端设备同时使用而互不影响,这就是多路复用技术。
常见的多路复用技术主要由两大类:一种是将带宽较大的信道分割成为多个子信道,即频分多路复用技术;另一种是将多个带宽较窄的信道组合成一个频率较大的信道,即时分多路复用技术。
1.频分多路复用技术
频分多路复用技术(Frequency Division Multiplexing ,FDM )是一种在信道上同时发送多个模拟信号的方法。
它将传输频带划分为若干个较窄的频带,每个频带构成一个子信道,每个子信道都有各自的载波信号,而且其载波信号的频率是唯一的。
一个具有一定带宽的通信线路可以划分为若干个频率范围,互相之间没有重叠,且在每个频率范围的中心频率之间保留一段距离。
这样,一条通信线路被划分成多个带宽较小的信道,每个信道能够为一对通信终端提供服务。
频分多路复用技术是在20世纪30年代由电话公司开发的,用来在一条电话线上传输多个语音信号。
它可以用于语音、视频或数据信号,但是最常见的应用是无线电广播传输和有线电视。
例如电话线的带宽达250kHz ,而音频信号的有效范围为300Hz~3400Hz ,4000Hz 的带宽就足够用来传输音频信号。
为了使各信道之间保留一定的距离减少相互干扰,60kHz~108kHz 的带宽可以划分为12条载波电话的信道(此为CCITT 标准),每对电话用户都可以使用其中的一条信道进行通信。
如图3-17所示,为6路频分多路复用的示意图。
D E F
’’’’’’
图3-17 6路频分多路复用示意图
2.时分多路复
用技术
时分多路复用技术(Time Division Multiplexing ,TDM )是一种多路传输数字信号的方法,它已经在现代数据网络中替代了频分多路复用技术。
在通信序列中,时分多路复用技术将为在网络上交换信号的每一个设备分配一段时间或时间片。
在这个时间片中,信道只能传输来自该交换信号设备的数据。
例如,在多台计算机连接在同一条公共传输通道上,多路复用器在通道信道中将会按一定的次序轮流为每台计算机分配一个时间片,当轮到某台计算机时,这台计算机与通信通道接通,进行数据交换。
而其他计算机与通信通道的联系均被切断,待分配时间片用完后,则
提 示
由于频分多路复用技术是多路传输的一种较早、效率较低的形式。
因此,该技术
在现代数据网络中的使用是有限的。
通过时分多路转换开关把通道连接到下一台要连接的计算机上。
在时分多路复用中,时间片是为它们特定的节点保留的,而不管该节点是否有数据要传输,如果一个节点没有要发送的数据,那么它的时间片就保留空白的。
如果网络上的某些节点很少发送数据,那么该技术的效率会比较低。
如图3-18所示,为时分多路复用示意图。
D E F ’’’’’’
图3-18 时分多路复用示意图
在现代的计算机网络中,时分多路复用技术有同步时分多路复用技术和异步时分多路复用技术两种。
●同步时分多路复用(STDM)
同步时分复用采用固定时间片分配方式,即将传输信号的时间按特定长度连续地划分特定时间段,再将每一时间段划分成等长度的多个时间片,每个时间片以固定的方式分配给各通信设备,各通信设备在每一时间段都顺序分配到一个时间片。
通常,与多路复用器相连接的是低速通信设备,多路复用器将低速通信设备传送的低速率数据压缩到对应时间片,使其变为在时间上间断的高速时分数据,以达到多路低速通信设备复用高速链路的目的。
因此与复用器相连的低速通信设备数目及速率受到多路复用器及复用传输速率的限制。
由于在同步时分多路复用方式中,分配给每个设备的时间片是固定的,不管该设备是否有数据发送,数据该设备的时间片都不能被其他设备占用,造成时间片利用率较低。
●异步时分多路复用(ATDM)
异步时分多路复用技术又被称为统计时分复用或智能时分复用。
它允许动态地分配时间片,如果某个设备不发送数据,则其他的设备可以占用该设备的时间片,避免每个时间段中出现空闲时间片。