第五单元 一元一次方程
浙教版数学七年级上册 第五章一元一次方程单元测试 (含答案)
浙教版数学七年级上册第五章一元一次方程一、选择题1.下列方程是一元一次方程的是( )A .y =2x−1B .x−1=0C .x 2=9D .3x−52.下列利用等式的基本性质变形错误的是( )A .若x−2=7,则x =7+2B .若−5x =15,则x =−3C .若13x =9,则x =3D .若2x +1=6,则2x =53.若x =2是关于x 的方程x−a =0的解,则a 的值是( )A .2B .1C .−1D .−24.由x 2−y3=1可以得到用x 表示y 的式子是( )A .y =3x−22B .y =32x−12C .y =3−32xD .y =32x−35.解方程x−13=1−3x +16,去分母后正确的是( )A .2x−1=1−(3x +1)B .2(x−1)=1−(3x +1)C .2(x−1)=6−(3x +1)D .(x−1)=6−3x +16.我国明代珠算家程大位的名著《直指算法统宗》里有一道算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设小和尚有x 人,依题意列方程得( )A .x3+3(100−x )=100B .3x +100−x3=100C .x3−3(100−x )=100D .3x−100−x3=1007.下列方程的变形中,正确的是( )A .方程3x−2=2x +1,移项,得3x−2x =−1+2;B .方程3−x =2−5(x−1),去括号,得3−x =2−5x−1;C .方程23x =32,未知数系数化为1,得x =1;D .方程x−12−x5=1化成5(x−1)−2x =10.8. 将 6 块形状、大小完全相同的小长方形,放入长为 m ,宽为 n 的长方形中,当两块阴影部分A,B 的面积 相等时, 小长方形其较短一边长的值为( )A .m 6B .m 4C .n 6D .n 49.已知|a−1|+(ab−2)2=0,则关于x 的方程xab+x (a +1)(b +1)+x (a +2)(b +2)+⋅⋅⋅+x(a +2021)(b +2021)=2022的解是( )A .2021B .2022C .2023D .202410.我国古代的“九宫图”是由3×3的方格构成的,每个方格均有不同的数,每一行、每一列以及每一条对角线上的三个数之和相等.如图给出了“九宫图”的一部分,请推算x 的值是( )2025x 23A .2020B .−2020C .2019D .−2019二、填空题11.已知4x +2y =3,用含x 的式子表示y = .12.如图,在数轴上,点A,B 表示的数分别为a,b ,且a +b =0,若AB =2,则点A 表示的数为 .13.一张试卷有25道必答题,答对一题得4分,答错一题扣1分,某学生解答了全部试题共得70分,他答对了 道题.14.甲对乙说:“当我岁数是你现在的岁数时,你才4岁.”乙对甲说:“当我的岁数是你现在岁数时,你61岁.”则乙现在为 岁.15.如图,数轴上A ,B 点对应的实数分别是1和3.若点A 关于点B 的对称点为点C (即2AB =BC ),则点C 所对应的实数为 .16.一个四位正整数M ,如果千位数字与十位数字之和的两倍等于百位数字与个位数字之和,则称M 为“共进退数”,并规定F (M )等于M 的前两位数所组成的数字与后两位数所组成的数字之和,G (M )等于M 的前两位数所组成的数字与后两位数所组成的数字之差,如果F (M )=60,那么M 各数位上的数字之和为 ;有一个四位正整数N =1101+1000x +10y +z (0≤x ≤4,0≤y ≤9,0≤z ≤8,且为整数)是一个“共进退数”,且F (N )是一个平方数,G (N )13是一个整数,则满足条件的数N 是 .三、解答题17.解方程:2x +13−6x−16=1.18.当m 为何值时,关于x 的方程x−m 2−1=2x +m3的解是非负数.19.一艘轮船从A 地顺水航行到B 地用了4小时,从B 地逆水航行返回A 地比顺水航行多用了2小时,已知轮船在静水中的速度是25千米/时.(1)求水流的速度和A ,B 两地之间的距离;(2)若在A ,B 两地之间的C 地建立新的码头,使该轮船从A 地顺水航行到C 码头的时间是它从B 地逆水航行到C 码头所用时间的一半,问A ,C 两地相距多少千米?20.关于x 的两个一元一次方程x−1=a ①,3x +1=2a ②,已知方程①的解比方程②的解大1,求a的值.21.我们规定,若关于x 的一元一次方程ax =b 的解为x =b−a ,则称该方程为“差解方程”.例如:2x =4的解为x =2,且2=4−2,则该方程2x =4是差解方程.(1)判断:方程3x =4.5差解方程(填“是”或“不是”)(2)若关于x 的一元一次方程4x =m +3是差解方程,求m 的值.22.甲、乙两人加工机器零件,已知甲、乙两人一天共加工零件35个,甲每天加工零件的个数比乙每天加工零件的个数多5个.(1)问甲、乙两人每天各加工多少个零件?(2)现在工厂需要加工零件600个,先由两人合作一段时间,剩下的全部由乙单独完成,恰好20天完成任务,求两人合作的天数.23. 某条城际铁路线共有A ,B ,C 三个车站,每日上午均有两班次列车从A 站驶往C 站,其中D1001次列车从A 站始发,经停B 站后到达C 站,G1002次列车从A 站始发,直达C 站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表A 站B 站C 站车次发车时刻到站时刻发车时刻到站时刻D10018:009:309:5010:50G10028:25途经B站,不停车10:30请根据表格中的信息,解答下列问题:(1)D1001次列车从A站到B站行驶了 分钟,从B站到C站行驶了 分钟;(2)记D1001次列车的行驶速度为v1,离A站的路程为d1;G1002次列车的行驶速度为v2,离A站的路程为d2.①v1v=▲;2②从上午8:00开始计时,时长记为t分钟(如:上午9:15,则t=75),已知v1=240千米/小时(可换算为4千米/分钟),在G1002次列车的行驶过程中(25≤t≤150),若|d1−d2|=60,求t的值.答案解析部分1.【答案】B2.【答案】C3.【答案】A4.【答案】D5.【答案】C6.【答案】A7.【答案】D8.【答案】A9.【答案】C10.【答案】D11.【答案】32−2x12.【答案】−113.【答案】1914.【答案】2315.【答案】33−216.【答案】15;310517.【答案】x=−3218.【答案】m≤−6519.【答案】(1)解:设水流的速度为x千米/时,A,B两地之间的距离为y千米,则轮船在顺水中的速度为(25+x)千米/时,在逆水中的速度为(25−x)千米/时.由题意,得{4(25+x)=y6(25−x)=y,解得{x=5 y=120.答:水流的速度为5千米/时,A,B两地之间的距离为120千米.(2)解:设A,C两地相距m千米.由题意,得m25+5=12×120−m25−5,解得m=3607.答:A,C两地相距3607千米.20.【答案】a=−121.【答案】(1)是(2)7322.【答案】(1)甲每天加工零件个数为20个,乙每天加工15个(2)两人合作的天数15天23.【答案】(1)90;60(2)解:①5 6;②解法示例:∵v1=4(千米/分钟),v1v2=56,∴v2=4.8(千米/分钟).∵4×90=360,∴A与B站之间的路程为360.∵360÷4.8=75,∴当t=100时,G1002次列车经过B站.由题意可如,当90≤t≤110时,D1001次列车在B站停车.∴G1002次列车经过B站时,D1001次列车正在B站停车.ⅰ.当25≤t<90时,d1>d2,∴|d1−d2|=d1−d2,∴4t−4.8(t−25)=60,t=75(分钟);ⅱ.当90≤t≤100时,d1≥d2,∴|d1−d2|=d1−d2,∴360−4.8(t−25)=60,t=87.5(分钟),不合题意,舍去;ⅲ.当100<t≤110时,d1<d2,∴|d1−d2|=d2−d1,∴4.8(t−25)−360=60,t=112.5(分钟),不合题意,舍去;ⅳ.当110<t≤150时,d1<d2,∴|d1−d2|=d2−d1,∴4.8(t−25)−[360+4(t−110)]=60,t=125(分钟).综上所述,当t=75或125时,|d1−d2|=60.。
第五单元一元一次方程(归纳复习)
移项,合并同类项,得 75= 10t
方程两边都除以10,得
t= 7.5
数学理解
3.儿子今年13岁,父亲今年40岁,是否有哪一年父亲的年龄恰
好是儿子年龄的4倍?为什么?
解:设 x 年后父亲的年龄恰好是儿子年龄的4倍
由题意,得 4(13 + x)= 40 + x
解得
x=–4
答:4 年前父亲的年龄恰好是儿子年龄的4倍,
解一元一次方程的步骤
3
x
–
2
x
1
解方程:
2
2
5
解:
去分母,得
5(3x – 2)+ 20 = 2(x + 1)
去括号,得
15x – 10 + 20 = 2x + 2
移项,合并同类项,得
13x = – 8
系数化为1,得
8
x=–
13
用一元一次方程解决实际问题的一般步骤
审
读题分析题中已知什么,求什么?有哪些事物在什
4x – 60+3x =-4
移项,合并同类项,得 8x = 56
移项,合并同类项,得 7x = 56
方程两边都除以8,得
方程两边都除以7,得
x=7
x=8
1
2
(8) 1−2x = 3x+1
3
7
y−1
y+2
(7)
=2−
2
5
解:去分母,得
解:去分母,得
5(y-1)= 20 – 2(y+2)
7(1-2x)= 6(3x+1)
两次出钱总数之差=两次每人所出钱数之差×人数
2024年人教版七年级上册教学设计 第五章 一元一次方程第五章 一元一次方程
一、单元学习主题本单元是“数与代数”领域“方程与不等式”主题中的“一元一次方程”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段数与代数是数学知识体系的基础之一,是学生认知数量关系、探索数学规律、建立数学模型的基石,可以帮助学生从数量的角度清晰准确地认识、理解和表达现实世界.数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力、感悟用数学的语言表达现实世界的重要载体.方程与不等式的教学应当让学生经历对现实问题中量的分析,借助用字母表达的未知数,建立两个量之间关系的过程,知道方程或不等式是现实问题中含有未知数的等量关系或不等关系的数学表达,引导学生关注既含有已知数,又含有未知数的方程,感悟用字母表示数的意义,体会算术与代数的差异.在教学过程中,要关注数学知识与实际的结合,让学生在实际背景中理解数量关系和变化规律;经历从实际问题中建立数学模型、求解模型、验证反思的过程,形成模型观念;要关注基于代数的逻辑推理,能在比较复杂的情境中,提升学生发现问题、提出问题、分析问题和解决问题的能力,以及有逻辑地表达与交流的能力.2.本单元教学内容分析人教版教材七年级上册第五章“一元一次方程”,本章包括三个小节:5.1方程;5.2解一元一次方程;5.3实际问题与一元一次方程.“方程与不等式”是义务教育阶段数学课程中数与代数领域的一个重要内容,它揭示了数学中最基本的数量关系(相等关系和不等关系),是一类应用广泛的数学工具.从数学学科本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展;从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础;从应用数学的角度看,方程是一个既方便又强大的数学工具,它能够有效地刻画现实世界中的数量关系,将实际问题转化为数学模型加以解决.本单元主要内容包括:一元一次方程及其相关概念、一元一次方程的解法和利用一元一次方程解决实际问题.其中,以方程为工具分析问题、解决问题,即根据问题中的相等关系建立方程模型是本单元的重点之一,同时也是主要难点.分析实际问题中的数量关系并用一元一次方程表示其中的相等关系,是始终贯穿于本单元的主线.对一元一次方程的有关概念和解法的讨论,是在建立和运用方程这种数学模型的大背景之下进行的,它们在本单元前两节中占重要地位.解方程中蕴含的“化归思想”和列方程中蕴含的“数学建模思想”,是本单元中包含的主要数学思想,对于它们的体悟与内化,不仅对学生今后研究问题、解决问题以及终身的发展非常有益,而且也是深入贯彻实施《标准2022》的素养理念的渠道,与提高学生自身的数学素养有非常密切且直接的关系,更是促进学生思考、激发学生思维探究、教会学生学习方法、挖掘学生的学习潜力、有效提高初中数学教学质量和学生学业质量的重要保障.三、单元学情分析本单元内容是人教版教材数学七年级上册第五章一元一次方程,从学生的认知基础上看,学生在前面学段中已经学过有关于简单方程的内容,对方程有了初步的认识,会用方程表示简单情境中的数量关系,会解简单的方程,同时通过对整式的学习,学生能够进行合并同类项,去括号等整式的加减运算,即对方程的认识已经历了入门阶段,又具备了一定的基础.这些基本的、朴素的认识为进一步学习方程奠定了基础.本单元的内容是在前面对方程学习的基础之上的进一步发展,是更系统、更深入、更复杂的讨论,更强调数学思想、数学模型的渗透,结合七年级学生的思维习惯,他们虽然已经具备了一定的学习能力,但仍处于感性认识向理性认识过渡的时期,抽象思维能力还有待提高,因此教学中对问题情境的选取要符合学生的认知水平,在学生的最近发展区创设情境,给他们创造自主学习、合作探究的机会,让学生在主动参与中体验到探索成功的喜悦,在经历数学知识的形成过程中逐步体会、感悟和理解这些数学内容的内涵.四、单元学习目标1.经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型,通过了解一元一次方程及其相关概念,完成从算式数学到方程式数学的进步,从而发展学生的抽象能力,培养学生的模型意识.2.掌握等式的性质,能利用它们探究一元一次方程的解法,进一步夯实学生的理论基础,培养学生的应用意识.3.了解解方程的基本目标,理解并掌握解一元一次方程的一般步骤和解法,培养学生的运算能力,进一步体会解法中蕴含的化归思想.4.能够通过“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的相等关系”来体会数学建模的思想,培养学生的模型观念.5.通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决实际问题的基本过程,感受数学的应用价值,提高学生分析问题、解决问题的能力.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
2024人教版七年级上册数学第五单元《一元一次方程》课件PPT
C.4x=5(x+4)
D.4(x+4)=5x
例3:如图,轩轩将一个正方形纸片剪去一个宽为4 cm的长条后,
再从剩下的长方形纸片上剪去一个宽为5 cm的长条(图中阴影部
分).若分两次剪下的长条面积正好相等,则每一个长条的面积
为多少?为解决这个问题,轩轩设正方形的边长为x cm,根据题
意,可列方程为( ) A
情境导入
同学们,你们知道老师的年龄吗? 我是4月出生的,我年龄的2倍减去2,正好是我出生的那个月总天数 的2倍. 请你们猜猜我的年龄是多少?
年龄是31岁
故事导入
同学们,你们知道丢番图是谁吗? 丢番图是古希腊数学家,人们对他的生平事迹知道的很少, 但流传着一篇墓志铭叙述了他的生平:坟中安葬着丢番图, 多么令人惊讶,它忠实地记录了其所经历的人生旅程. 上帝赐予他的童年占六分之一,又过了十二分之一他两颊长出来胡须,再过七分 之一,点燃了新婚的蜡烛,五年之后喜得贵子,可怜迟到的宁馨儿,享年仅其父 之半便入黄泉,悲伤只有用数字研究去弥补,又过四年,他也走完了人生的旅 途.——出自《希腊诗文选》 你能求出丢番图去世时的年龄吗?
【题型二】根据实际问题列方程
例2:根据下列条件列出方程: (1)一个数x比它的 23大45 :_____x_-__23_x_=__45; (2)一个数x的一半比它的3倍大4:___12_x_-__3_x_=__4_; (3)一个数x比它的平方小24:____x_2-__x_=__2_4__; (4)一个数x的40%与25的差等于30:____4_0_%_x_-__2_5_=_3_0.
6是等式,但不是方程
2x-6=6等
-3y=10等
注:判断一个式 子是不是方程:
知识点2:列方程(难点)
第五单元《一元一次方程》单元测试卷(标准困难)(含答案)
浙教版初中数学七年级上册第五单元《一元一次方程》单元测试卷考试范围:第五单元;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1.在 ①2x+3y−1, ②1+7=15−8+1, ③1−12x=x+1, ④x+2y=3中,方程有( )A. 1个B. 2个C. 3个D. 4个2.已知下列方程:①x−2=1x ;②0.2x=1;③x3=x−3;④x2−4−3x;⑤x=0;⑥x−y=6其中一元一次方程有 ( )A. 2个B. 3个C. 4个D. 5个3.已知(a−3)x|a−2|−5=8是关于x的一元一次方程,则a=( )A. 3或1B. 1C. 3D. 04.设x,y,c是有理数,下列选项正确的是( )A. 若x=y,则x+c=y−cB. 若x=y,则xc=ycC. 若x=y,则xc =ycD. 若x2c=y3c,则2x=3y5.【发展性作业】(对应目标1)设“●”“●”“■”表示三种不同的物体,现用天平称了两次,情况如图所示,则下列天平中,状态不正确的是( )A. B. C. D.6.观察图1,若天平保持平衡,在图2天平的右盘中需放入______个O才能使其平衡.( )A. 5B. 6C. 7D. 87.下列方程变形中,正确的是( )A. 方程3x−2=2x+1,移项,得3x−2x=−1+2B. 方程3−x=2−5(x−1),去括号,得3−x=2−5x−1C. 方程23t=32,系数化为1,得t=1D. 方程x−12=x5,去分母,得5(x−1)=2x8.解方程3(x−1)+x=2(x+12)的步骤如下: ①去括号,得3x−3+x=2x+1; ②移项,得3x+x+2x=1−3; ③合并同类项,得6x=−2; ④系数化为1,得x=−13.经检验,x=−13不是原方程的解,说明解题的步骤有错,那么开始做错的一步是( )A. ①B. ②C. ③D. ④9.若关于x的一元一次方程3x−5m2−x−m3=19的解,比关于x的一元一次方程−2(3x−4m)=1−5(x−m)的解大15,则m=( )A. 2B. 1C. 0D. −110.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )A. 不盈不亏B. 盈利20元C. 亏损10元D. 亏损30元11.一个两位数,个位上的数字是十位上的数字的3倍,且它们的和是l2,则这个两位数是( )A. 26B. 62C. 39D. 9312.甲计划用若干个工作日完成某项工作,从第二个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是( )A. 8B. 7C. 6D. 5第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.已知(m−3)x|m|−2+m−3=0是关于x的一元一次方程,则m=________.14.如果等式ax−3x=2+b不论x取什么值时都成立,则a=,b=.15.小明解方程2x−13=x+a2−3去分母时,方程右边的−3忘记乘6,因而求出的解是x=2,则原方程正确的解是.16.有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是______元.三、解答题(本大题共9小题,共72分。
浙教版数学七年级上册第五单元一元一次方程知识点+例题
知识点一 方程的概念 含有未知数的等式叫方程方程必须具备两个条件 一是等式,二是含有未知数注意:方程中的未知数可以用x 表示,也可以用其他字母表示,方程中的未知数的个数不一定是一个,可以是两个或两个以上。
知识点二 解方程和方程的解1.解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
2解方程是一个过程,方程的解是一个结果。
3检验一个数是不是方程的解,只需要将这个数代入原方程即可。
若方程两边相等,则这个数是方程的解,反之则不是。
例2 x=5方程23)36(3)42(=-++x x 的解吗?解:将x=5代入原方程,两边成立,所以,x=5是原方程的解。
解一元一次方程的一般步骤(重点)解一元一次方程的步骤是:去分母,去括号,移项,合并同类项,系数化为1.这些步骤不是固定不变的,有时可以省略某个步骤,主要是根据方程的特点灵活选用。
解含分数系数的一元一次方程的一般步骤总结如下表:注意(1)解一元一次方程时,应灵活运用一般步骤中的各种做法,采取哪些步骤要看解什么样的方程,有分母则去分母,有括号就去括号(2)解一元一次方程时,不一定是按照上表中自上而下的顺序解方程,有时要根据方程的形式、特点灵活安排求解步骤,熟练后还可以合并或简化某些步骤. 解方程2.04.05.05.15.05.0-x 2.0x+=+ 知识点三 一元一次方程的特点一元一次方程的定义:只有一个未知数,未知数的次数都是1的方程。
特点:1只有一个未知数; 2未知数的次数是1;3可带分母,但分母不能带有未知数。
如421=-x 就不是一元一次方程。
例3下列各式哪些是一元一次方程?①56-1=55;②2x+6=0;③6x=0;④8y-3=12;⑤0532=+-x x ;⑥2x 十5z=23;⑦11-x 22x 1=++例4已知43654=+-n x 是一元一次方程,求n 的值。
【变式2】若关于的方程是一元一次方程,则_______【变式3】若关于的方程()523=+--mx x m m 是一元一次方程,则_______. 【变式4】若关于的方程()5)2()2(22=+++-x m x m m 是一元一次方程,则_______.知识点四 等式的性质等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等。
七年级第五单元一元一次方程的知识点和主要题型汇总.
1、主要知识点和题型汇总01、一元一次方程的概念1、等式:①定义:用 表示 关系的式子叫做等式。
②下列各组中是等式的是( )A 、7-≥xB 、32-=C 、xx x 1322+- D 、b a =-12 2、方程①定义:含有 的等式叫做方程②下列各组中是方程的是( )A 、7-≠xB 、6)3(2-=-⨯C 、x x --)3(22D 、3131=-+x 3、一元一次方程①定义:整理后,只含有 未知数,并且未知数的次数是 的方程,叫做一元一次方程。
②下列各组中是一元一次方程的是( )A 、7=-y xB 、6922-=-xC 、01)3(2=--xD 、321=-x ③下列各组中是一元一次方程的是( )A 、 312=+x B 、06)13(2=--x x C 、y x =--1)3(2 D 、3)(22=+-x x x④已知关于x 的方程1(2)53k k x k --+=是一元一次方程,则k =( )A 、±2B 、 2C 、 -2D 、 ±1⑤已知06)2()4(22=+---x m x m 是关于x 的一元一次方程,则m= 02、方程的解①定义:使方程左右两边的值 的未知数的值叫做方程的解,只含有 未知数的方程的解又称为方程的根。
②若1=x 是方程23=+x ax 的解,则a 的值是( )A 、-1B 、 5C 、1D 、-5③下列方程中根是2-=y 的是( )A 、02=-yB 、842=+yC 、0)2(2=+yD 、022=+y ④以下判断正确的是( )A 、1-=x 是方程312=+x 的解B 、2=y 是方程23121-=-y y 的解 C 、1=t 是方程031=-t 的解 D 、4=x 是方程)1(235x x -=-的解 03、等式的性质①等式的性质等式两边加(或减)同一个数(或式子)结果仍相等。
等式两边乘同一个数,或除以同一个 的数,结果仍相等。
②已知等式ax=ay,下列变形不正确的是( ).A 、x=yB 、ax+1= ay+1C 、ay=axD 、3-ax=3-ay③列说法正确的是( )A 、等式两边都加上一个数或一个整式,所得结果仍是等式;B 、等式两边都乘以一个数,所得结果仍是等式;C 、等式两边都除以同一个数,所以结果仍是等式;D 、一个等式的左、右两边分别与另一个等式的左、右两边分别相加,所得结果仍是等式; ④在等式ab ac =两边都除以a ,可得b c =。
人教版七年级数学上册《第五单元-一元一次方程》单元测试题-附答案
人教版七年级数学上册《第五单元一元一次方程》单元测试题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.一元一次方程2x-1=7的解是()A.x=3B.x=4C.x=5D.x=62.下列变形中,正确的是()A.若5x−6=7,则5x=7−6B.若5x−3=4x+2,则5x−4x=2+3C.若−3x=5,则x=−35D.若x−13+x+12=1,则2(x−1)+3(x−1)=13.把方程2x−14=1−3−x8去分母后,正确的结果是().A.2x−1=1−(3−x)B.2(2x−1)=1−(3−x)C.2(2x−1)=8−(3−x)D.2(2x−1)=8−(3+x)4.若关于x的方程ax-4=a的解是x=-3,则a的值是()A.-2B.2C.-1D.15.要组织一场篮球联赛,每两队之间只赛一场,计划安排15场比赛,如果邀请x个球队参加比赛,根据题意,列出方程为()A.x(x−1)=15B.x(x+1)=15C.x(x−1)2=15D.x(x+1)2=156.我国元代朱世杰所著的《算学启蒙》一书中,有一道题目是“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之.”译文:跑得快的马每日走240里,跑得慢的马每日走150里,慢马先走12天,快马几天可以追上慢马?则下列回答正确的是().A.15天B.16天C.18天D.20天7.如图一个正方形先剪去宽为4的长方形,再剪去宽为5的长方形,且剪下来的两个长方形面积相等,那么原正方形的边长为()A.20B.16C.15D.138.若关于x的方程kx+26=12x−23的解为正整数,则所有符合条件的整数k的和为()A.0B.3C.−2D.−39.如图,这是一个用50个奇数排成的数阵,用三角形的框去框住四个数,并求出这四个数的和.在下列给出的选项中,可能是这四个数的和的是()A.146B.150C.198D.210二、填空题10.如果3x−2与2x+1的值相同;那么x=.11.将方程x+24=2x+36的两边同乘12,可得到3(x+2)=2(2x+3),这种变形叫,其依据是.12.一张桌子由一个桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有10立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?设用x立方米的木材做桌面,可列方程.13.如果x=4是方程ax=a+3的解,那么a的值为 .14.为了搞活经济,商场将一种商品A按标价的9折出售(即优惠10%)仍可得利润10%,若商品标价为33元,那么该商品的进货价为 .15.如图一个简单的数值运算程序,当输入x的值-1时,则输出的答案是5,则k的值是.16.爸爸今年的年龄是儿子年龄的13倍,6年后,儿子年龄是爸爸年龄的14,则今年爸爸岁,儿子岁.17.如图,两人沿着边长为70米的正方形,按A→B→C→D→A…的方向行走.甲从点A以65米/分的速度、乙从点B以72米/分的速度行走,甲、乙两人同时出发,当乙第一次追上甲时,将在正方形的边上.三、解答题18.解方程(1)4x+3=5x−1(2)3−2(x+1)=2(x−3)(3)x−24−2x−36=1(4)x−1−x3=x+26−119.小亮是一名七年级学生,在解方程2x−13−2x+m2=10x+16−1时,由于忽视了去分母后分式的分子要加括号,结果方程变形为4x−2−6x+3m=10x+1−6,从而求得方程错误的解为x=12,你能求出m的值吗?如果能,请求出m的值和方程正确的解.20.在大约1500年前的《孙子算经》中记载了这样一个有趣的问题:今有鸡兔同笼,上有头三十五,下有足九十四.问鸡、兔各多少.21.阅读下面的解题过程:解方程:|3x|=6.解:分两种情况:(1)当3x≥0时,原方程可化为一元一次方程3x=6,解得x=2;(2)当3x<0时,原方程可化为一元一次方程﹣3x=6,解得x=﹣2;综合(1)、(2),方程的解为x=2或x=﹣2.请仿照上面例题的解法,解方程:3|x﹣1|﹣2=10.22.某商品的进价为200元,标价为300元,打折销售后的利润率为5%,问此商品是按几折销售的?23.云南省某工厂制作一批零件,由一名工人做要80h完成,现计划由一部分工人先做2h,然后增加5名工人与他们一起做8h,完成了这项工作.假设这些工人的工作效率相同,应先安排几名工人工作?24.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定对居民生活用电实施“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时的部分a超过150千瓦时,但不超过300千瓦时的部分0.6超过300千瓦时的部分a+0.3实施“阶梯电价”收费以后,该市居民陈先生家积极响应号召节约用电,10月用电100千瓦时,交电费50元.(1)a=.(2)陈先生家11月用电280千瓦时,应交费多少元?(3)若陈先生家12月份与11月的电费相差60元,求陈先生家12月份用电量是多少?25.在一元一次方程中,如果两个方程的解相同,则称这两个方程为同解方程.(1)若关于x的两个方程2x=4与mx=m+1是同解方程,求m的值;(2)已知关于x的方程9x−3=kx+14有整数解,那么满足条件的所有整数k=_______.(3)若关于x的两个方程5x+343(m+1)=mn与2x−mn=−193(m+1)是同解方程,求此时符合要求的正整数m,n的值.参考答案1.【答案】B2.【答案】B3.【答案】C4.【答案】C5.【答案】C6.【答案】D7.【答案】A8.【答案】A9.【答案】D10.【答案】D11.【答案】去分母等式的基本性质(或方程的变形规则)或填:等式的两边都乘以(或都除以)同一个数(除数不能为0)所得结果仍是等式。
2024年冀教版七年级上册第五章 一元一次方程第五章 一元一次方程
一、单元学习主题本单元是“数与代数”领域“方程与不等式”主题中的“一元一次方程”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,在初中阶段学生将进一步学习负数、无理数,以及它们的四则运算,还将学习代数式、方程、不等式、函数等内容.“方程与不等式”揭示了数学中最基本的数量关系(相等关系和不等关系),是一类应用广泛的数学工具.有助于学生形成抽象能力、推理能力和模型观念,发展运算能力.通过经历对现实问题中量的分析,借助用字母表示的未知数,建立两个量之间关系的过程,知道方程是现实问题中含有未知数的等量关系的数学表达,从而体会方程思想,体会算数与代数的差异.一元一次方程是“数与代数”领域的主要内容,它在义务教育阶段的数学课程中占有重要地位,本单元的学习内容主要有四个方面:第一,等式的基本性质;第二,方程的意义,构建一元一次方程的过程与方法;第三,一元一次方程的有关概念及其解法;第四,一元一次方程在解决一些简单的实际问题中的应用.这四个方面是一个连贯的整体.一元一次方程是一类重要的数学模型,它具有典型的示范性和指导性.首先,这一模型化思想,对其他方程模型、不等式模型、函数模型的学习,都起着启迪思维的重要作用;其次,在用它解决实际问题时,对其中数量关系的分析方法和认知途径,也是今后运用其他数学模型解决实际问题的重要基础;第三,一元一次方程的解法是一项数学基本技能,它对方程组、一元一次不等式及一元二次方程的求解,都将产生深远的影响.2.本单元教学内容分析冀教版教材七年级上册第五章“一元一次方程”,本章包括四个小节:5.1等式与方程;5.2一元一次方程;5.3解一元一次方程;5.4一元一次方程的应用.本单元通过对等式的基本性质的探究过程,引出方程的概念,进而对一元一次方程进行探讨.利用等式的基本性质解一元一次方程,并能够运用一元一次方程来解决实际生活中的问题.通过一元一次方程的学习,明确方程是刻画现实世界数量关系的有效模型,对学生进一步学习一元一次不等式和一元二次方程积累一定的经验,建立了学生的模型观念,培养了学生的运算能力.按照先经历、感知,再概括、提升,最后达到理性认识的过程来呈现主要内容.通过代数方法与算术方法的对比,引导学生体会“方程”的意义与作用,突出方程与生活的紧密联系,增强学生的应用意识.通过探究天平平衡现象的游戏,在领悟和感知等式基本性质的过程中,获得一元一次方程的解法.引导学生分析等式的变形依据,强调程序但不过分追求解一元一次方程的技巧.在用一元一次方程解决实际问题的过程中,强化引导学生分析情境中的数量关系,突出符号意识,增强学生的模型观念和运算能力.这样的教学能让学生增强对数学学习的兴趣.感悟数学论证的逻辑,体会数学的严谨性,形成初步的推理能力和重事实、讲道理的科学精神.三、单元学情分析本单元内容是冀教版教材数学七年级上册第五章一元一次方程,学生在前面已学习了代数式和整式,初步积累了用字母表示数的经验.根据学生的最近发展区创设特定情境,学生一直处于用字母表示数量关系的氛围之中,使学生更加主动地去探索等式的基本性质,培养学生良好的数学探究意识.合理应用等式的基本性质,探究解一元一次方程的步骤,解决一元一次方程在现实生活中的广泛应用是学习本单元内容的主要目标.四、单元学习目标1.引导学生经历一元一次方程的建立和运用的过程,使学生能根据具体问题中的数量关系列出方程,感受模型化过程,形成初步的方程思想.2.能通过天平平衡问题探究和掌握等式的基本性质.提高学生的探究能力和推理能力.3.了解方程、一元一次方程、方程的解等概念,会解一元一次方程,体会解方程过程中的“化归”思想,增强运算能力.4.对于一些简单的实际问题,会分析其中的数量关系,列出一元一次方程并求解,能根据实际问题确定其解,使学生经历用数学解决实际问题的过程.培养学生的模型观念、应用意识和创新意识.5.通过一元一次方程模型的建立和应用,帮助学生提高数学抽象模型思想以及分析问题和解决问题的能力,增强数学的应用意识和学习数学的兴趣.续表六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业..。
(完整版)新浙教版七年级上册数学第五章《一元一次方程》知识点及典型例题
新浙教版七年级上册数学第五章《一元一次方程》知识点及典型例题关于一元一次方程概念的拓展教材中的概念:方程两边都是整式,只含有一个未知数,未知数的指数是一次的方程是一元一次方程,那么 x+2=x+3是一元一次方程吗?从概念上来看,是一元一次方程,但稍作变形,就是2=3,是不是觉得很可笑?因此,一元一次方程的概念应该是:方程两边都是整式,只含有一个未知数,未知数的指数是一次,并且能变形为ax=b (a ≠0,a 、b 均为常数)的方程是一元一次方程,也就是说,一元一次方程一定只有一个解。
关于用方程解应用题的秘诀:相关条件设未知数,剩余条件列方程将考点与相应习题联系起来考点一、判断方程是不是一元一次方程及一元一次方程概念的简单应用 1、下列等式中是一元一次方程的是( )A .3x=y-1B .2(1)21x x -=+C .3(x-1)= -2x-3D .3x 2-2=3E .11x x=+ 2、在方程23=-y x ,021=-+x x ,2121=x ,0322=--x x 中一元一次方程的个数为( ) A .1个 B .2个 C .3个 D .4个 3、如果06312=+--a x是一元一次方程,那么=a ,方程的解为 。
(特别注意)考点二、关于在解方程过程中的某些变形问题,只能以选择题的形式出现 1、已知等式523+=b a ,则下列等式中不一定...成立的是( ) (A );253b a =- (B );6213+=+b a (C );523+=bc ac (D ).3532+=b a 2、解方程2631xx =+-,去分母,得( ) (A )133x x --= (B )633x x --= (C )633x x -+= (D )133x x -+=3、下列方程变形中,正确的是( )(A )方程1223+=-x x ,移项,得;2123+-=-x x (B )方程()1523--=-x x ,去括号,得;1523--=-x x (C )方程2332=t ,未知数系数化为1,得;1=t (D )方程110.20.5x x --=化成101010125x x --= 考点三、解一元一次方程(1)x x 3.15.67.05.0-=-; (2)错误!未找到引用源。
第五章一元一次方程整章教案
-特殊解的判断:一元一次方程组可能存在唯一解、无解或无穷多解,学生需要学会判断。
-举例:解方程组x + y = 4和2x + 2y = 8。指导学生分析此方程组为何有无穷多解。
-综合练习中的难点题型:选取典型例题,针对学生易错、难懂的题型进行详细讲解。
1.讨论主题:学生将围绕“一元一次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一元一次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一元一次方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的一元一次方程教学中,我发现学生们对于方程的概念和应用有着不错的接受程度,但在具体的解题方法和应用上,还存在一些问题。特别是在将实际问题转化为方程模型的过程中,部分学生感到困惑,这说明我们在教学中需要更多地联系实际,让学生感受到数学与生活的紧密联系。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元一次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。例如,通过实物分配演示一元一次方程的基本原理。
人教版七年级数学上册 第五章 一元一次方程知识归纳与题型突破(单元复习 8类题型清单)
1第五章一元一次方程知识归纳与题型突破(题型清单)01思维导图02知识速记一、基本概念1、等式的概念:含有等号,表示相等关系的式子2、方程的概念:含有未知数的等式3、一元一次方程的概念:(1)只含有1个未知数;(2)未知数的最高次数为1次;(3)等式两边都是整式.二、等式的性质若b a =,则c b c a +=+、c b c a -=-、bc ac =、cbc a =.特别注意:等式两边须同时乘以或除以一个不为0的数.三、解一元一次方程1、去分母(不漏乘不含分母的项,去分母应加括号)2、去括号(带着符号计算,不要漏乘)3、移项(移项要变号;未知数移到左边,常数移到右边;先后顺序不重要)4、合并同类项5、系数化为1(系数不能为0,若未知数的系数含有字母则需要讨论)四、列方程解应用题的步骤①审:审题,分析题中已知什么,求什么,明确各数量之间关系②设:设未知数(一般求什么,就设什么为x )③找:找出能够表示应用题全部意义的一个相等关系④列:根据这个相等关系列出需要的代数式,进而列出方程⑤解:解所列出的方程,求出未知数的值⑥答:检验所求解是否符合题意,写出答案(包括单位名称)五、一元一次方程的应用(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度).03题型归纳题型一判断是否是一元一次方程例题:(24-25七年级上·全国·单元测试)下列各式:①236x y -=;②2430x x --=;③()2353x x +=-;④310x+=;⑤()3425x x --.其中,一元一次方程有()A .1个B .2个C .3个D .4个巩固训练1.(23-24七年级下·全国·期中)下列各式中,属于一元一次方程的是()A .6518x y -=B .242715x x =+-C .438x x+=D .94x x-=2.(23-24七年级上·全国·单元测试)在方程①231325x +=,②=0,③235x y +=,④3120x+=中,一元一次方程共有()A .1个B .2个C .3个D .4个3.(23-24七年级上·全国·单元测试)①12x x -=;②0.31x ≤;③243x x -=;④512x x =-;⑤6x =;⑥20x y +=.其中一元一次方程的个数是()A .2B .3C .4D .5题型二根据一元一次方程的定义求参数的值例题:(24-25七年级上·黑龙江哈尔滨·阶段练习)已知1320m x --=是关于x 的一元一次方程,则m 的值是.巩固训练1.(23-24七年级上·全国·单元测试)若()1246a a x--+=-是关于x 的一元一次方程,则a =.2.(23-24七年级上·河南漯河·期中)已知关于x 的方程()||233m m x m --+=是一元一次方程,则m 的值为.3.(23-24七年级上·全国·单元测试)若关于x 的方程()21120m mx m x -+--=是一元一次方程,则m 的值为.题型三已知一元一次方程的解求参数的值例题:(23-24七年级下·全国·期中)关于x 的一元一次方程213mx x -=-有解,则m 的值为.巩固训练1.(23-24七年级上·浙江金华·期末)已知3x =是方程26ax a -=-+的解,则a =.2.(23-24七年级下·四川宜宾·期中)整式ax b +的值随着x 的取值的变化而变化,下表是当x 取不同的值时对应的整式的值:x 1-0123ax b+8-4-048则关于x 的方程8ax b +=的解是.3.(23-24七年级上·浙江·期末)若关于x 的方程30ax +=的解为2x =,则方程()130a x -+=的解为.题型四列一元一次方程例题:(23-24六年级下·全国·单元测试)设某数为x ,如果某数的2倍比它的相反数大1,那么列方程是.巩固训练1.(23-24七年级上·福建福州·期末)“x 的5倍与2的和等于x 的13与4的差”,用等式表示为2.(2024·湖南益阳·模拟预测)《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人车各几何?译文为:今有若干人乘车,每3人共乘一车,刚好每车坐满后还剩余2辆车没人坐;若每2人共乘一车,最终剩余9个人无车可乘只能步行,问共有多少人,多少辆车?设共有x 辆车,则可列方程.3.(2023·吉林长春·模拟预测)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空,其大意为:今有若干人住店,若每间住7人,则余下7人无房可住:若每间住9人,则余下一间无人住,设店中共有x 间房,可列方程为.题型五等式的基本性质例题:(23-24七年级上·天津·期中)下列说法错误的是()A .若22x y -=-,则x y =B .若25x x =,则5x =C .若a b =,则66a b -=-D .若2211a bc c =++,则a b =巩固训练1.(23-24七年级下·广西南宁·开学考试)下列是根据等式的性质进行变形,正确的是()A .若x y =,则33x y -=+B .若a b =,则32a b =C .若22x y=,则x y =D .若ax ay =,则x y=2.(23-24七年级上·安徽·单元测试)下列运用等式的性质变形中正确的是()A .如果a b =,则a c b c +=-B .如果23x x =,则3x =C .如果a b =,则22a bc c =D .如果22a b c c =,则a b =3.(22-23七年级上·山东济南·阶段练习)下列变形正确的是()A .4532x x -=+变形得4325x x -=-+B .211332x x -=+变形得4633x x -=+C .3(1)2(3)x x -=+变形得3126x x -=+D .32x =变形得23x =4.(2024·贵州贵阳·一模)用“□”“△”“○”表示三种不同的物体,现用天平称了两次,情况如图所示.设a ,b ,c 均为正数,则能正确表示天平从左到右变化过程的等式变形为()A .如果a c b c +=+,那么a b =B .如果a b =,那么a c b c +=+C .如果22a b =,那么a b=D .如果a b =,那么22a b=题型六解一元一次方程巩固训练题型七解一元一次方程中的错解复原问题巩固训练(2)仿照上例解方程:0.2 0.3x+题型八用一元一次方程解决实际问题例题:(2024上·辽宁大连·七年级统考期末)某车间生产一批螺钉和螺母,由一个人操作机器做需要200h完成.现计划由一部分人先做4h,然后增加5人与他们一起做6h,完成这项工作.假设这些人的工作效率相同.(1)求具体应先安排多少人工作?(2)在增加5人一起工作后,若每人每天使用机器可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母成为一个完整的产品,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?(3)若该车间有10台A型和11台B型机器可以生产这种产品,每台A型机器比B型机器一天多生产1个产品.已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,且每箱装的产品数相同.某天有6台A型机器和m台B型机器同时开工,请问一天生产的产品能否恰好装满29箱.若能,请计算出m的值;若不能,请说明理由.巩固训练1.(2024上·甘肃酒泉·七年级统考期末)合肥庐阳区实验学校七(6)班为迎接学校秋季运动会计划购买30支签字笔,若干本笔记本(笔记本数量超过签字笔数量),用来奖励运动会中表现出色的运动员和志愿者,甲、乙两家文具店的标价都是签字笔8元/支、笔记本2元/本,甲店的优惠方式是签字笔打九折,笔记本打八折;乙店的优惠方式是每买5支签字笔送1本笔记本,签字笔不打折,购买的笔记本打七五折.(1)请用含x的代数式分别表示学校在甲、乙两家店购物所付的费用;(2)如果购买笔记本数量为60本,并且只在一家店购买的话,请通过计算说明,到哪家店购买更合算?(2)小亮家—年缴纳水费1180元,则小亮家这一年用水多少立方米?(3)小红家去年和今年共用水520立方米,共缴纳水费2950元,并且今年的用水量超过去年的用水量,则小红家今年和去年各用水多少立方米?第五章一元一次方程知识归纳与题型突破(题型清单)01思维导图02知识速记一、基本概念1、等式的概念:含有等号,表示相等关系的式子2、方程的概念:含有未知数的等式3、一元一次方程的概念:(1)只含有1个未知数;(2)未知数的最高次数为1次;(3)等式两边都是整式.二、等式的性质若b a =,则c b c a +=+、c b c a -=-、bc ac =、cbc a =.特别注意:等式两边须同时乘以或除以一个不为0的数.三、解一元一次方程1、去分母(不漏乘不含分母的项,去分母应加括号)2、去括号(带着符号计算,不要漏乘)3、移项(移项要变号;未知数移到左边,常数移到右边;先后顺序不重要)4、合并同类项5、系数化为1(系数不能为0,若未知数的系数含有字母则需要讨论)四、列方程解应用题的步骤①审:审题,分析题中已知什么,求什么,明确各数量之间关系②设:设未知数(一般求什么,就设什么为x )③找:找出能够表示应用题全部意义的一个相等关系④列:根据这个相等关系列出需要的代数式,进而列出方程⑤解:解所列出的方程,求出未知数的值⑥答:检验所求解是否符合题意,写出答案(包括单位名称)五、一元一次方程的应用(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度).03题型归纳题型一判断是否是一元一次方程例题:(24-25七年级上·全国·单元测试)下列各式:①236x y -=;②2430x x --=;③()2353x x +=-;④310x+=;⑤()3425x x --.其中,一元一次方程有()A .1个B .2个C .3个D .4个【答案】A【知识点】一元一次方程的定义【分析】本题考查的是一元一次方程的定义,掌握一元一次方程的定义是解题的关键.根据一元一次方程的定义进行判定.【详解】解:①是二元一次方程,不符合题意;②是一元二次方程,不符合题意;③是一元一次方程,符合题意;④是分式方程,不符合题意;⑤是代数式,不是方程,不符合题意.故选:A .巩固训练1.(23-24七年级下·全国·期中)下列各式中,属于一元一次方程的是()A .6518x y -=B .242715x x =+-C .438x x+=D .94x x-=2.(23-24七年级上·全国·单元测试)在方程①231325x +=,②=0,③235x y +=,④120x+=中,一元一次方程共有()A .1个B .2个C .3个D .4个【答案】A【知识点】一元一次方程的定义3.(23-24七年级上·全国·单元测试)①2x x -=;②0.31x ≤;③243x x -=;④512x x =-;⑤6x =;⑥20x y +=.其中一元一次方程的个数是()A .2B .3C .4D .5题型二根据一元一次方程的定义求参数的值例题:(24-25七年级上·黑龙江哈尔滨·阶段练习)已知1320m x --=是关于x 的一元一次方程,则m 的值是.【答案】2【知识点】一元一次方程的定义【分析】本题考查了一元一次方程的概念,根据一元一次方程的定义得到11m -=,求出m 即可.【详解】解:根据题意得:11m -=,解得:2m =,故答案为:2.巩固训练1.(23-24七年级上·全国·单元测试)若()1246a a x --+=-是关于x 的一元一次方程,则a =.2.(23-24七年级上·河南漯河·期中)已知关于x 的方程()||233m m x m --+=是一元一次方程,则m 的值为.故答案为:13.(23-24七年级上·全国·单元测试)若关于x 的方程()21120m mx m x -+--=是一元一次方程,则m 的值为.【答案】1或0【知识点】一元一次方程的定义【分析】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.根据一元一次方程的一般形式即可判定有3种情况,分别讨论①当0m ≠且10m -≠时,②当0m =且10m -≠时,③当10m -=时是否满足该方程为一元一次方程即可.【详解】解: 关于x 的方程()21120m mxm x -+--=是一元一次方程,可考虑三种情况,①当0m ≠且10m -≠时,即0m ≠且1m ≠,则211m -=,解得:1m =,此时1m ≠,故排除;②当0m =且10m -≠时,即0m =且1m ≠,∴0m =,符合条件;③当10m -=即1m =时,211m -=,符合条件;综上:m 的值为1或0,故答案为:1或0.题型三已知一元一次方程的解求参数的值例题:(23-24七年级下·全国·期中)关于x 的一元一次方程213mx x -=-有解,则m 的值为.1.(23-24七年级上·浙江金华·期末)已知3x =是方程26ax a -=-+的解,则a =.【答案】2【知识点】方程的解【分析】本题考查了方程解的定义,使方程的左右两边相等的未知数的值,叫做方程的解.将3x =代入原方程,可得出关于a 的一元一次方程,解之即可得出a 的值.【详解】解:将3x =代入原方程得326a a -=-+,解得:2a =,∴a 的值为2.故答案为:2.2.(23-24七年级下·四川宜宾·期中)整式ax b +的值随着x 的取值的变化而变化,下表是当x 取不同的值时对应的整式的值:x 1-0123ax b+8-4-048则关于x 的方程8ax b +=的解是.【答案】3x =【知识点】方程的解【分析】此题考查了方程的解,根据表格中的数据求解即可.【详解】根据题意可得,当3x =时,8ax b +=∴关于x 的方程8ax b +=的解是3x =.故答案为:3x =.3.(23-24七年级上·浙江·期末)若关于x 的方程30ax +=的解为2x =,则方程()130a x -+=的解为.题型四列一元一次方程例题:(23-24六年级下·全国·单元测试)设某数为x ,如果某数的2倍比它的相反数大1,那么列方程是.【答案】21x x =-+【知识点】列方程【分析】本题主要考查了一元一次方程的应用,数x 的2倍为2x ,相反数为x -,据此根据题意列出方程即可.【详解】解:由题意得,21x x =-+,故答案为:21x x =-+.巩固训练1.(23-24七年级上·福建福州·期末)“x 的5倍与2的和等于x 的13与4的差”,用等式表示为2.(2024·湖南益阳·模拟预测)《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人车各几何?译文为:今有若干人乘车,每3人共乘一车,刚好每车坐满后还剩余2辆车没人坐;若每2人共乘一车,最终剩余9个人无车可乘只能步行,问共有多少人,多少辆车?设共有x 辆车,则可列方程.【答案】()3229x x -=+【知识点】古代问题(一元一次方程的应用)【分析】本题考查了由实际问题抽象出一元一次方程.根据人数不变,即可得出关于x 的一元一次方程,此题得解.【详解】解:依题意,得:()3229x x -=+.故答案为:()3229x x -=+.3.(2023·吉林长春·模拟预测)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空,其大意为:今有若干人住店,若每间住7人,则余下7人无房可住:若每间住9人,则余下一间无人住,设店中共有x 间房,可列方程为.【答案】()7791x x +=-【知识点】古代问题(一元一次方程的应用)【分析】本题考查一元一次方程的应用,理清题中的等量关系是解题的关键.由等量关系“一房七客多七客,一房九客一房空”,即可列出一元一次方程即可.【详解】解: 每间住7人,则余下7人无房可住:若每间住9人,则余下一间无人住,∴客人可表示为()77x +个,也可表示为()91x -个,()7791x x ∴+=-,故答案为:()7791x x +=-.题型五等式的基本性质例题:(23-24七年级上·天津·期中)下列说法错误的是()A .若22x y -=-,则x y =B .若25x x =,则5x =C .若a b =,则66a b -=-D .若2211a bc c =++,则a b =【答案】B1.(23-24七年级下·广西南宁·开学考试)下列是根据等式的性质进行变形,正确的是()A .若x y =,则33x y -=+B .若a b =,则32a b =C .若22x y=,则x y =D .若ax ay =,则x y=2.(23-24七年级上·安徽·单元测试)下列运用等式的性质变形中正确的是()A .如果a b =,则a c b c+=-B .如果23x x =,则3x =C .如果a b =,则22a b c c =D .如果22a b c c =,则a b =3.(22-23七年级上·山东济南·阶段练习)下列变形正确的是()A .4532x x -=+变形得4325x x -=-+B .211332x x -=+变形得4633x x -=+C .3(1)2(3)x x -=+变形得3126x x -=+D .32x =变形得23x =4.(2024·贵州贵阳·一模)用“□”“△”“○”表示三种不同的物体,现用天平称了两次,情况如图所示.设a ,b ,c 均为正数,则能正确表示天平从左到右变化过程的等式变形为()A .如果a c b c +=+,那么a b=B .如果a b =,那么a c b c +=+C .如果22a b =,那么a b=D .如果a b =,那么22a b=【答案】A【知识点】等式的性质【分析】本题考查等式的性质,根据天平两端相等即可求得答案.【详解】解:由图形可得如果a c b c +=+,那么a b =,故选:A .题型六解一元一次方程例题1:解方程:(1)25433x x -=-;(2)576132x x -=-+.【答案】(1)35x =(2)415x =【分析】()1方程移项合并,把x 系数化为1,即可求解;()2方程移项合并,把x 系数化为1,即可求解.【详解】(1)移项,得24353x x -+=-,合并同类项,得1023x -=-,系数化为1,得35x =.(2)移项,得756123x x -+=-,合并同类项,得5223x -=-,系数化为1,得415x =.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.例题2:解方程:(1)5(1)2(31)41---=-x x x ;(2)23(1)12(10.5)-+=-+x x .题型七解一元一次方程中的错解复原问题巩固训练(2)仿照上例解方程:0.2 0.3x+【答案】(1)③④①②(2)3x=-题型八用一元一次方程解决实际问题1.(2024上·甘肃酒泉·七年级统考期末)合肥庐阳区实验学校七(6)班为迎接学校秋季运动会计划购买30支签字笔,若干本笔记本(笔记本数量超过签字笔数量),用来奖励运动会中表现出色的运动员和志愿者,甲、乙两家文具店的标价都是签字笔8元/支、笔记本2元/本,甲店的优惠方式是签字笔打九折,笔记本打八折;乙店的优惠方式是每买5支签字笔送1本笔记本,签字笔不打折,购买的笔记本打七五折.答:小红家去年和今年用水分别为245立方米、275立方米.。
七年级上册数学北师大版第五单元复习教学设计 教案
第5单元一元一次方程复习教案一、复习目标二、课时安排2课时三、复习重难点(1)一元一次方程的求解(2)一元一次方程的应用四、教学过程(一)知识梳理1.一元一次方程的概念2.一元一次方程的求解3.一元一次方程的应用—--等体积变化4.一元一次方程在销售中的应用5.一元一次方程在分配中的应用6.一元一次方程在追击问题中的应用(二)题型、方法归纳1. 关于x的方程(a-1)x2+x+a2-4=0是一元一次方程,则方程的解为.2. 已知方程x-2y+3=8,则整式x-2y的值为()A.5B.10C.12D.153. 小明买了80分和2元的邮票共16枚,花了18元8角,若设他买了80分的邮票x枚,则可列方程()A.80x+2(16-x)=188B.80x+2(16-x)=18.8C.0.8x+2(16-x)=18.8D.8x+2(16-x)=1884. 元旦来临,各大商场都设计了促进消费增加利润的促销措施,“物美”商场把一类双肩背的书包按进价提高50%进行标价,然后再打出8折的优惠价,这样商场每卖出一个书包就可盈利8元,这种书包的进价是()A.42元B.40元C.38元D.35元5. 几个小朋友分一堆糖,若每人k颗,还剩14颗,若每人(k+1)颗,最后一个人只分到6颗,计算小朋友人数及k的值分别是()A.17人,k=8B.17人,k=9C.11人,k=10D.11人,k=8(三)典例精讲例1. 已知(a+1)x2-(a-1)x+8=0是关于x的一元一次方程,求代数式60(2x+2a)(x-a)+208的值解:由(a+1)x2-(a-1)x+8=0是关于x的一元一次方程,可得a+1=,解得a=-1,此时方程变化2x+8=0,解得x=-4,把a=-1,x=-4代入代数式得60(2x+2a)(x-a)+208=60×[2×(-4)+2×(-1)][-4-(-1)]+208=60×(-10)×(-3)+208=2008.例2:某商品的售价780元,为了薄利多销,按售价的9折销售再返还30元礼券,此时仍获利20%,此商品的进价是多少元?解:设该商品的进价为x元.根据题意得:780×90%-30-x=20%x.解得:x=560元,即该商品的进价为560元.例3:某明星演唱会组委会公布的门票价格是:一等席600元;二等席400元;三等席250元.某服装公司在促销活动中组织获前三等奖的36名顾客去观看比赛,计划买两种门票10050元,你能设计几种购买价方案供该公司选择?并说明理由.解:①设购买一等席x张,二等席(36-x)张.根据题意得:600x+400(36-x)=10050.解得:x=-21.75(不合题意).②设购买一等席x张,三等席(36-x)张.根据题意得:600x+250(36-x)=10050.解得:x=3.∴可购买一等席3张,二等席位33张.③设购买二等席x张,三等席(36-x)张.根据题意得:400x+250(36-x)=10050.解得:x=7.∴可购买二等席7张,二等席位29张.答;共有2中方案可供选择,方案①可购买一等席3张,二等席位33张;方案②可购买二等席7张,二等席位29张.(四)归纳小结1.一元一次方程的概念方程是含有未知数的等式,只含有一个未知数,未知数的指数为1的方程叫做一元一次方程。
初中数学七年级上册第五章 一元一次方程第五章一元一次方程
第五章一元一次方程1 认识一元一次方程第1课时知识与技能目标:在对实际问题情境的分析过程中感受方程模型的意义.过程与方法目标:1.借助类比、归纳的方式概括一元一次方程的概念,并在概括的过程中体验归纳方法,体会发现概念的喜悦.2.使学生在分析实际问题情境的活动中体会数学与现实生活的密切联系. 情感态度目标:观察、讨论等活动,养成独立思考的习惯与合作交流的意识.重点难点重点:学生在实际问题中分析、找到等量关系,准确列出方程,并总结所列方程的共同特点,归纳出一元一次方程的概念.难点:由特殊的几个方程的共同特点归纳一元一次方程的概念.教学过程一、创设情境内容1:请一位同学阅读章前图中关于“丟番图”的故事.内容2:回答以下3个问题:1.你能找到题中的等量关系并列出方程吗?2.你对方程有什么认识?3.列方程解决实际问题的关键是什么?解:设丟番图的年龄为x岁,则:x+x+x+5+x+4=x.内容3:阅读学习目标:活中等量关系的有效模型.掌握等式的基本性质,能解一元一次方程.能用一元一次方程解决一些简单的实际问题.在探索一元一次方程解法的过程中,感受转化思想.二、探究归纳内容1:让学生阅读本节教材随堂练习之前的内容.结合课本多以问题串的形式呈现内容的特点,粗读并完成书上的填空题.内容2:与学生共同分析完成教材呈现的五个情境.(1)如果设小彬的年龄为x 岁,那么“乘2再减5”就是2x-5,所以得到方程:2x-5=21. (2)小颖种了一株树苗,开始时树苗高为40 cm,栽种后每周树苗长高约5 cm,大约几周后树苗长高到1 m?如果设x 周后树苗长高到1 m,那么可以得到方程:40+5x=100.(3)甲、乙两地相距22 km,张叔叔从甲地出发到乙地,每时比原计划多行走1 km,因此提前12 min 到达乙地,张叔叔原计划每时行走多少千米?设张叔叔原计划每时行走x km,可以得到方程:22x -22x+1=.(4)根据第六次全国人口普查统计数据,截至2023年11月1日0时,全国每10万人中具有大学文化程度的人数为8 930人,与2000年第五次全国人口普查相比增长了147.30%.2000年第五次全国人口普查时每10万人中约有多少人具有大学文化程度?如果设2000年第五次全国人口普查时每10万人中约有x 人具有大学文化程度,那么可以得到方程:(1+147.30%)x=8__930.(5)某长方形操场的面积是5 850 m 2,长和宽之差为25 m,这个操场的长与宽分别是多少米?如果设这个操场的宽为x m,那么长为(x+25)m.可以得到方程x(x+25)=5__850.归纳一元一次方程的定义,了解一元一次方程的解的含义.(1)由上面的问题你得到了哪些方程?其中哪些是你熟悉的方程?与同伴进行交流.共得到五个方程.其中(1)、(2)、(4)都只有一个未知数,在小学学习时常见.(2)方程2x-5=21,40+5x=100,(1+147.30%)x=8 930有什么共同点?它们都只含有一个未知数,且未知数的指数都是1.内容4:判断下列各式是不是一元一次方程,是的打“√”,不是的打“×”.(1)-2+5=3. ( )(2)3x-1=0. ( )(3)y=3. ()(4)x+y=2. ( )(5)2x-5x+1=0. ( )(6)xy-1=0. ( )内容5:方程的解的含义:使方程左、右两边的值相等的未知数的值,叫做方程的解 2. x=2是下列方程的解吗?(1)3x+(10-x)=20.(2)2x2+6=7x.三、交流反思1.本节给出了四个知识点:等式(回顾巩固),方程(给出描述性定义),一元一次方程及一元一次的解(根).2.感觉在解决实际问题时,列方程相比小学算术法,给出的思维方式与途径更具普遍性.3.列方程的核心:实际问题“数学化”,关键是找到等量关系.四、检测反馈内容1:完成教材上的随堂练习1.根据题意,列出方程:(1)在一卷公元前1600年左右遗留下来的古埃及纸草书中,记载着一些数学问题.其中一个问题翻译过来是:“啊哈,它的全部,它的,其和等于19.”你能求出问题中的“它”吗?解:设“它”为x,则:x+x=19.(2)甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分.甲队与乙队一共比赛了10场,甲队保持了不败记录,一共得了22分.甲队胜了多少场?平了多少场?解:设甲队胜了x场,则甲队平了(10-x)场.则:3x+(10-x)=22.内容2:达标练习:1.如果5x m-2=8是一元一次方程,那么m=________.2.下列各式中,是方程的是________(只填序号).①2x=1②5-4=1 ③7m-n+1 ④3(x+y)=43.下列各式中,是一元一次方程的是________(只填序号).①x-3y=1 ②x2+2x+3=0 ③x=7④x2-y=04.a的20%加上100等于x.则可列出方程:________.5.某数的一半减去该数的等于6,若设此数为x,则可列出方程________.6.一桶油连桶的重量为8千克,油用去一半后,连桶重量为4.5千克,桶内有油多少千克?设桶内原有油x千克,则可列出方程________________________.7.李颖的爸爸今年44岁,是小颖年龄的3倍还大2岁,设李颖今年x岁,则可列出方程:________________________.8.3年前,父亲的年龄是儿子年龄的4倍,3年后父亲的年龄是儿子年龄的3倍,求父子今年各是多少岁?设3年前儿子年龄为x岁,则可列出方程:________________________.五、布置作业教学反思1.此阶段的学生有比较强烈的自我发展意识,教师只有进行得当合理的诠释方可得到学生的认可.授课时要设法让学生体会运用方程建模的优越性,使众多实际问题“数学化”的重要数学模型成为学生学习后续知识的自觉选择.2.让学生在简单的背景问题中,一点一滴地体会分析已知量、未知量之间的数量关系,对列方程的帮助,真正做到分解难点、降低难度、突破难点的目的.3.学生的读书仍然停留在表面上的阅读,还须继续坚持和及时引导.从学生的年龄特点和认知特点来看,初中阶段是智力和心理发展的关键阶段。
第五章一元一次方程知识点总结和例题讲解
一元一次方程知识点及题型一、方程的有关概念1.方程: 含有未知数的等式就叫做方程.2.一元一次方程: 只含有一个未知数(元)x, 未知数x的指数都是1(次), 这样的方程叫做一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值, 叫做方程的解.注:.方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程....方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.二、等式的性质三、移项法则: 把等式一边的某项变号后移到另一边, 叫做移项.四、去括号法则五、解方程的一般步骤1.去分母(方程两边同乘各分母的最小公倍数)2.去括号(按去括号法则和分配律)3.移项(把含有未知数的项移到方程一边, 其他项都移到方程的另一边, 移项要变号)4.合并(把方程化成a...(a≠0)形式)5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=).六. 列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数, 列出方程:设出未知数后, 表示出有关的含字母的式子, •然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程, 求出未知数的值.(5)检验, 写答案:检验所求出的未知数的值是否是方程的解, •是否符合实际, 写出答案【基础及提高】一. 选择题1.下列各式中, 是方程的个数为()(1)﹣4A.1个B.2个C.3个D.4个﹣3=﹣7;(2)3x﹣5=2x+1;(3)2x+6;(4)x﹣y=v;(4)a+b>3;(5)a2+a﹣6=0.A.如果ac=bc, 那么a=b B.如果, 那么a=b2. 下列说法正确的是()C.如果a=b, 那么D.如果, 那么x=﹣2y 3. 若关A.x=0B.x=3C.x=﹣3D.x=22﹣m+3=0是一元一次方程, 则这个方程的解是()4. 方程(m+1)x|m|+1=0是关于x 的一元一次方程, 则m()A.m=±1B.m=1C.m=﹣1D.m≠﹣15. 若关于x的方程nxn﹣1+n﹣4=0是一元一A.x=﹣1B.x=1C.x=﹣4D.x=4程的解是()A.1B.9C.0D.4 6. 已知x=3是关于x的方程x+m=2x﹣1的解,则(m+1)2的值是()7. 已知A.4B.3C.2D.1 x=﹣6是方程2x﹣6=ax的解, 则代数式的值是()8. 设A.B.C.D.﹣P=2x﹣1,Q=4﹣3x,则5P﹣6Q=7时,x的值应为()9. 服装A.总体上是赚了B.总体上是赔了店同时销售两种商品, 销售价都是100元,结果一种赔了20%, 另一种赚了20%, 那么在这次销售中,该服装店()C.总体上不赔不赚D.没法判断是赚了还是赔了10. 如图是一个长方形试管架, 在a cm长的木条上钻了4个圆孔, 每个孔的直径为2cm, 则x等于()A.cm B.cm C. cm D. cmA.k≠3B.k=﹣2C.k=﹣4D.k=211. 关于x的方程(k﹣3)x﹣1=0的解是x=﹣1, 那么k的值是()12. 江苏卫视《一站到底》栏目中, 有一期的题目如图, 两个天平都保持平衡, 则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.513. 已知A.1B.1或3C.3D.2或3方程2x+k=5的解为正整数, 则k所能取的正整数值为()A.B.3C.8D.9 14. 小芳同学解关于x的一元一次方程﹣时,发现有个数模糊看不清楚,聪明的小芳翻看了书后的答案, 知道3. 于是她很快补上了这个数. 她补的这个数是()A.B.C.D.15. 若代数式3x﹣7和6x+13互为相反数, 则x的值为()A.2个B.3个C.4个D.5个16. 按下面的程序计算, 若开始输入的值x为结果为656, 则满足条件的x的不同值最多有()二. 填空题17.一件衣服先按成本提高50%标价, 再以8折(标价的80%)出售, 结果获利28元. 若设这件衣服的成本是x元, 根据题意, 可得到的方程是_________ .18.图1是边长为30cm的正方形纸板, 裁掉阴影部分后将其折叠成如图2所示的长方体盒子, 已知该长方体的宽是高的2倍, 则它的体积是_________ cm3.19.已知及的值相等时, x= _________ .20.若x=﹣1是关于x方程ax+b=1的根, 则代数式(a﹣b)2011的值是_________ .21.某人用24000元买进甲、乙两种股票, 在甲股票升值15%, 乙股票下跌10%时卖出, 共获利1350元, 则此人买甲股票的钱比买乙股票的钱多_________ 元.22如果要由等式m﹙a+1﹚=x﹙a+1﹚得到m=x, 需要满足的条件是_________ .23. 关于x的方程(a﹣1)x2+x+a2﹣4=0是一元一次方程, 则方程的解为_________ .24. 关于x的方程(m+2)x=6解为自然数, 当m为整数时, 则m的值为_________ .25.已知m+n=2008(m﹣n), 则= _________ .三计算题解方程: (1)3(x﹣1)﹣2(2x+1)=12;(2)(3). (4)﹣=.(5). (6)(7). (8)﹣=3.(9)(10)四. 解答题1.若x=2是方程ax-1=3的解, 求a的值2. 方程x+2=5及方程ax-3=9的解相等求a的值3. m为何值时, 关于m的方程的解是的解的2倍?4. 已知, 是方程的解, 求代数式的值.5. 一家商店将某种服装按进价提高40%后标价, 又以8折优惠卖出, 结果每件仍获利15元, 这种服装每件的进价是多少?6. 一批货物, 甲把原价降低10元卖出, 用售价的10%做积累, 乙把原价降低20元, 用售价的20%做积累, 若两种积累一样多, 则这批货物的原售价是多少?7. 某商店开张, 为了吸引顾客, 所有商品一律按八折优惠出售, 已知某种皮鞋进价60元一双, 八折出售后商家获利润率为40%, 问这种皮鞋标价是多少元?优惠价是多少元?8. 某蔬菜公司收购到某种蔬菜140吨, 准备加工上市销售. 该公司的加工能力是: 每天可以精加工6吨或粗加工16吨, 现计划用15天完成加工任务, 该公司应安排几天精加工, 几天粗加工?9.今年“六•一”儿童节, 张红用8.8元钱购买了甲、乙两种礼物, 甲礼物每件1.2元, 乙礼物每件0.8元, 其中甲礼物比乙礼物少1件, 问甲、乙两种礼物各买了多少件?10.小明和小东两人练习跑步, 都从甲地出发跑到乙地, 小明每分钟跑250米, 小东每分钟跑200米, 小明让小东先出发3分钟之后再出发, 结果两人同时到达乙地, 求甲、乙两地之间的路程是多少米?11. 某船从A地顺流而下到达B地, 然后逆流返回, 到达A.B两地之间的C地, 一共航行了7小时, 已知此船在静水中的速度为8千米/时, 水流速度为2千米/时。
七年级上册第五单元一元一次方程去括号刷题
七年级上册第五单元:一元一次方程去括号刷题一元一次方程是初中数学中的重要概念,也是学生们需要掌握的基础知识之一。
本文将围绕七年级上册第五单元的一元一次方程去括号这一主题展开讨论,通过刷题的方式帮助同学们更好地理解和掌握这一知识点。
一、一元一次方程的基本概念1.1 一元一次方程的定义一元一次方程,顾名思义,即含有一个未知数,并且未知数的最高次数为一的方程。
一元一次方程的一般形式为:ax + b = c,其中a、b、c为已知数,x为未知数。
1.2 一元一次方程的解对于一元一次方程ax + b = c,如果存在一个实数x,使得代入方程后等式成立,即ax + b = c,那么这个实数x就是这个方程的解。
二、去括号的一元一次方程2.1 去括号的基本原理在解一元一次方程时,经常会遇到括号的情况,而去括号就是解决这个问题的关键。
去括号的基本原理是根据分配律,将括号内的数分别与括号外的数相乘,然后合并同类项,将括号去掉。
2.2 去括号的步骤(1)去括号时要注意符号的变化,正负号要根据具体情况进行合并;(2)去括号后,得到的新的方程要根据变量的系数进行化简,得到最简形式。
三、一元一次方程去括号刷题3.1 题目一已知方程3(x+2) = 15,求方程的解。
解析:首先按照去括号的原理展开方程,得到3x + 6 = 15,然后根据一元一次方程的解的定义,解方程得x = 3。
3.2 题目二小明学习数学,他的数学成绩是他语文成绩的2倍加上30分,如果他的语文成绩是x,用一元一次方程表示小明的数学成绩。
解析:根据题目中的条件,可以列出方程2x + 30 = 数学成绩,进一步得到形式化的一元一次方程。
通过以上刷题练习,同学们可以更好地掌握一元一次方程去括号的方法和步骤,提高数学解题能力。
四、总结一元一次方程是数学学习中的重要概念,而去括号是解一元一次方程时常见的操作。
通过刷题的方式,同学们可以更加深入地理解和掌握一元一次方程去括号的方法,为今后的学习打下良好的基础。
精选初一年级上册数学知识点归纳:一元一次方程(第五单元)
精选初一年级上册数学知识点归纳:一元一次方
程〔第五单元〕
学习是一个循序渐进的过程,也是一个不断积累不断创新的过程。
下面小编为大家整理了精选初一年级上册数学知识点归纳:一元一次方程(第五单元),欢迎大家参考阅读! 在一个方程中,假设只含有一个未知数,且未知数的最高次
数是1的整式方程叫做一元一次方程.(linear equation in one)
一般形式:ax+b=0(a、b为常数,a≠0).一元一次方程只有一个解.
一元一次方程的最终结果(方程的解)是x=a的形式
一元一次方程的“等式的性质1〞和“等式的性质2〞
1.等式两边同时加或减一个一样数,等式两边相等.(假设
a=b,那么a±c=b±c.)
2.等式两边同时乘或除以一个一样数(0除外),或一个整式,等式两边相等.(假设a=b,那么ac=bc.假设a=b,c≠0,那么
a/c=b/c.)
解法是通过移项将未知数移到一边,再把常数移到一边(等
式根本性质1,注意符号!),然后两边同时除以未知数系数(化系数为1,等式根本性质2),即可得到未知数的值.
以上就是查字典数学网为大家整理的精选初一年级上册数
学知识点归纳:一元一次方程(第五单元),怎么样,大家还满意吗?希望对大家的学习有所帮助,同时也祝大家学习进步,考试顺利!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五单元 一元一次方程
一、选择题:(每题3分,共30分)
1.下面的等式中,是一元一次方程的为( )
A .3x +2y =0
B .3+m =10
C .2+x 1=x
D .a 2=16 2.下列结论中,正确的是( )
A .由5÷x =13,可得x =13÷5
B .由5 x =3 x +7,可得5 x +3 x =7
C .由9 x =-4,可得x =-4
9 D .由5 x =8-2x ,可得5 x +2 x =8 3.下列方程中,解为x =2的方程是( )
A .3x =x +3
B .-x +3=0
C .2x =6
D .5x -2=8
4.解方程时,去分母得( )
A .4(x +1)=x -3(5x -1)
B .x +1=12x -(5x -1)
C .3(x +1)=12x -4(5x -1)
D .3(x +1)=x -4(5x -1)
5.若3
1(y +1)与3-2y 互为相反数,则y 等于( ) A .-2 B .2 C .78 D .-7
8 6.关于y 的方程3y +5=0与3y +3k =1的解完全相同,则k 的值为( )
A .-2
B .4
3 C .2 D .-3
4 7.父亲现年32岁,儿子现年5岁,x 年前,父亲的年龄是儿子年龄的10倍,则x 应满足的方程是( )
A .32-x =5-x
B .32-x =10(5-x)
C .32-x =5×10
D .32+x =5×10
8.小华在某月的月历中圈出几个数,算出这三个数的和是36,那么这个数阵的形式可能是
( )
A .
B .
C .
D .
9.某商品的售价比原售价降低了15%,现售价是34元,那么原来的售价是( )
A .28元
B .32元
C .36元
D .40元
10.用72cm 长的铁丝做一个长方形的教具,要使宽为15cm,那么长是( )
A .28.5cm
B .42cm
C .21cm
D .33.5cm
一、 二、填空题:(每题3分,共27分)
11.设某数为x ,若它的3倍比这个数本身大2,则可列出方程___________.
12.将方程3x -7=-5x +3变形为3x +5x =3+7,这个变形过程叫做______.
13.当y =______时,代数式与4
1y +5的值相等.
14.若与3
1互为倒数,则x =______. 15.三个连续奇数的和是75,则这三个数分别是___________.
16.一件商品的成本是200元,提高30%后标价,然后打九折销售,则这件商品的利润为______元.
17.若x =-3是关于x 的方程3x -a =2x +5的解,则a 的值为______.
18.单项式-3a x +1b 4与9a 2x -1b 4是同类项,则x =______.
19.一只轮船在A 、B 两码头间航行,从A 到B 顺流需4小时,已知A 、B 间的路程是80千米,水流速度是2千米/时,则从B 返回A 用______小时.
三、解答题:(共43分)
20.(每个3分,共9分)
解方程:5x +2=7x -8 5(x +8)-5=6(2x -7)
21.(3分)一个数的6
5与4的和等于最大的一位数,求这个数.
22.(5分)把500元钱按照3年定期存教育储蓄,如果到期可以得到本息和共540.5元,那么这3年定期教育储蓄的年利率是多少?
23.(5分)初一.2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生?共摘了多少个苹果?
24.(5分)一队学生去校外进行军事野营训练,他们以6千米/时的速度行进,在他们走了一段时间后,学校要将一个紧急通知传给队长,通讯员从学校出发,以10千米/时的速度按原路追上去,用了15分钟追上了学生队伍,问通讯员出发前,学生走了多少时间?
25.(5分)某商店将某种品牌的DVD按进价提高35%,然后打出“八折酬宾,外送50元出租车费”的广告,结果每台DVD仍可获利166元,那么每台DVD的进价是多少元?
26.(11分)下图的数阵是由77个
偶数排成:
(1)图中平行四边形框内的4个
数有什么关系?
(2)在数阵图中任意作一类似(1)中的平行四边形框,设其中一个数为x,那么其他3个数怎样表示?
(3)小红说4个数的和是415,你能求出这4个数吗?
(4)小明说4个数的和是420,存在这样的4个数吗?若存在,请求出这4个数.。