信息论与编码-概述-思维导图
(完整版)信息论与编码概念总结
第一章1.通信系统的基本模型:2.信息论研究内容:信源熵,信道容量,信息率失真函数,信源编码,信道编码,密码体制的安全性测度等等第二章1.自信息量:一个随机事件发生某一结果所带的信息量。
2.平均互信息量:两个离散随机事件集合X 和Y ,若其任意两件的互信息量为 I (Xi;Yj ),则其联合概率加权的统计平均值,称为两集合的平均互信息量,用I (X;Y )表示3.熵功率:与一个连续信源具有相同熵的高斯信源的平均功率定义为熵功率。
如果熵功率等于信源平均功率,表示信源没有剩余;熵功率和信源的平均功率相差越大,说明信源的剩余越大。
所以信源平均功率和熵功率之差称为连续信源的剩余度。
信源熵的相对率(信源效率):实际熵与最大熵的比值信源冗余度:0H H ∞=ηηζ-=1意义:针对最大熵而言,无用信息在其中所占的比例。
3.极限熵:平均符号熵的N 取极限值,即原始信源不断发符号,符号间的统计关系延伸到无穷。
4.5.离散信源和连续信源的最大熵定理。
离散无记忆信源,等概率分布时熵最大。
连续信源,峰值功率受限时,均匀分布的熵最大。
平均功率受限时,高斯分布的熵最大。
均值受限时,指数分布的熵最大6.限平均功率的连续信源的最大熵功率:称为平均符号熵。
定义:即无记忆有记忆N X H H X H N X H X NH X H X H X H N N N N N N )()()()()()()(=≤∴≤≤若一个连续信源输出信号的平均功率被限定为p ,则其输出信号幅度的概率密度分布是高斯分布时,信源有最大的熵,其值为1log 22ep π.对于N 维连续平稳信源来说,若其输出的N 维随机序列的协方差矩阵C 被限定,则N 维随机矢量为正态分布时信源的熵最大,也就是N 维高斯信源的熵最大,其值为1log ||log 222N C e π+ 7.离散信源的无失真定长编码定理:离散信源无失真编码的基本原理原理图说明: (1) 信源发出的消息:是多符号离散信源消息,长度为L,可以用L 次扩展信源表示为: X L =(X 1X 2……X L )其中,每一位X i 都取自同一个原始信源符号集合(n 种符号): X={x 1,x 2,…x n } 则最多可以对应n L 条消息。
信息论与编码原理第7章信道编码的基本概念PPT课件
二进制:每个码元的信息含量为 1 比特,二进制的波特率与比特 率在数值上是相等的。
M进制:每一个码元的信息含量为 log2M。如果码元传输速率为 rs
波特,相应的比特率 rb 为:rb = rs log2M (bit/s)
05.08.2020
Department of Electronics and Information, NCUT Song Peng
▼ 在电报传送时,允许的比特差错率约为 10-4~10-5; ▼ 计算机数据传输,一般要求比特差错率小于 10-8~10-9; ▼ 遥控指令和武器系统指令中,要求误比特率更小。
05.08.2020
Department of Electronics and Information, NCUT Song Peng
第8页
7.1 信道编码在数字通信系统中的地位和作用
(2) 通信系统的主要技术指标
差错率:差错率是衡量传输质量的重要指标之一,有几种不同的定义 码元差错率:指在传输的码元总数中发生差错的码元数所占的比例 (平均值),简称误码率。 比特差错率(比特误码率):指在传输的比特总数中发生差错的比 特数所占的比例(平均值)。在二进制传输系统中,码元差错率就是 比特差错率。 码组差错率:指在传输的码组总数中发生差错的码组数所占的比例 (平均值)。 根据不同的应用场合对差错率有不同的要求。
信息论与编码原理
(第七章)
──────────────
信道编码的基本概念
05.08.2020
Department of Electronics and Information, NCUT So点击此处输入相关文本内容 点击此处输入相关文本内容
概况二
点击此处输入相关文本内容 点击此处输入相关文本内容
信息论与编码第三版 第3章
(2)增强通信的可靠性: 综上所述,提高抗干扰能力往往是以降低信息传输效率为代价
信息论与编码
信源编码的概念:对信源的原始符号按一定的数学规则进行变换的一种
代码。
信源编码包括两个功能:
(1)将信源符号变换成适合信道传输的符号; {b1, b2,…, bD}是适合 编码输出码字cm = cm1 cm2 … {a1, a2, …, (2)压缩信源冗余度,提高传输效率。 ak}为信 信道传输的D个符号, cmn, c mk∈{b1, b2,…, bD}, 源符号集,序列中 用作信源编码器的 k = 1, 2 , …, n ,n表示码字 每一个符号uml都取 信源编码模型: 编码符号。 长度,简称码长。 自信源符号集。
1 1 1 n 2 2 2 3 4 4 2.75 (码元/符号) 4 8 16
RD
H X n
2.75 1 (比特/码元时间) 2.75
信息论与编码
§3.2 等长码及等长编码定理
一.等长编码定理
考虑对一简单信源S进行等长编码,信源符号集有K个符号,码符号集 含D个符号,码字长度记为n。对信源作等长无差错编码,要得到惟一可译 码,必须满足下式:
扩展信源
信源编码器
信道符号(码符号)集{b1,b2,...bD}
信源符号集{a1,a2,...ak}
原码的N次扩展码是将信源作N次扩展得到的新信源符号序列u(N) =u1 …uN = (u11 u12 … u1L) … (uN1 uN2 … uNL),对应码符号序列c(N) =c1 …cN = (c11 c12 … c1n) … (cN1 cN2 … cNn) ,记集合C (N) = {c1(N), c2(N), …},C (N) 即原码C的N次扩展码。
《信息论与编码全部》课件
信息论与编码全部PPT课件
汇报人:PPT
目录
CONTENTS
01 添加目录标题 03 信息度量与熵
02 信息论与编码的基 本概念
04 信源编码
05 信道编码
06 加密与解密技术
07 信息安全与认证技 术
添加章节标题
信息论与编码的基本概 念
信息论的发展历程
1948年,香农提出信 息论,奠定了信息论
提高安全性
优点:安全性 高,速度快,
易于实现
应用:广泛应 用于电子商务、 网络通信等领
域
发展趋势:随 着技术的发展, 混合加密技术 将更加成熟和
完善
信息安全与认证技术
数字签名技术
数字签名:一种用于验证信息来源和完整性的技术 数字签名算法:RSA、DSA、ECDSA等 数字证书:用于存储数字签名和公钥的文件 数字签名的应用:电子邮件、电子商务、网络银行等
汇报人:PPT
熵越小,表示信息量越小,不确 定性越小
熵是概率分布的函数,与概率分 布有关
信源编码
定义:无损信源编码是指在编码过 程中不丢失任何信息,保持原始信 息的完整性。
无损信源编码
应用:无损信源编码广泛应用于音 频、视频、图像等媒体数据的压缩 和传输。
添加标题
添加标题
添加标题
添加标题
特点:无损信源编码可以保证解码 后的信息与原始信息完全一致,但 编码和解码过程通常比较复杂。
古典密码学:公元前400年,古希腊人使用替换密码 近代密码学:19世纪,维吉尼亚密码和Playfair密码出现 现代密码学:20世纪,公钥密码体制和数字签名技术出现 当代密码学:21世纪,量子密码学和后量子密码学成为研究热点
信息论与编码第一章绪论
形成和发展
1. 信息论研究的主要问题(续2)
4)无失真信源编码,所需要的最少码符号数是多少?
香农第一定理: 如果编码后的信源序列的
编码信息率不小于信源的熵,那么一定存
在一种无失真信源编码方法;否则,不存
在这样的一种无失真信源编码方法。
第一章:绪论
什么是信息 通信系统模型 研究内容
形成和发展
1. 信息论研究的主要问题(续3)
形成和发展
3. 信息的狭义概念(香农信息) (续6)
香农信息的优点:
➢ 有明确的数学表达式,定量化
➢ 与人们直观理解的信息含义一致
➢ 不考虑收信者主观感受的不同,认为同一消息对
任何收信者,所得信息量相同。
第一章:绪论
什么是信息 通信系统模型 研究内容
形成和发展
3. 信息的狭义概念(香农信息) (续7)
3)信道
狭义信道
广义信道
形成和发展
第一章:绪论
什么是信息 通信系统模型 研究内容
1. 通信系统模型(续10)
研究内容:
信道的统计特性
➢
无噪声信道、有噪声信道
➢
离散信道、连续信道、波形信道
➢
有记忆信道和无记忆信道
➢
恒参信道(平稳信道)和随参信道(非平稳信道)
➢
单用户信道和多用户信道
信道传输信息的最高速率
(Carson,1922)、电视(1925-1927)、调频广播
提高可靠性: (可靠传输)
➢ 信道编码
第一章:绪论
一、什么是信息
二、通信系统模型
1. 信息论研究的主要问题
三、信息论的研究内容
信息论与编码第一章信息论基础新
都是交流和通信的一方要告诉另一方的消 息。日常生活中人们常称之为“信息”。
如何理解信息和消息呢?
2020/3/31
5
信息与消息的区别与联系
以文字、语声、图象等载体把客观物质运 动和主观思维活动的状态表达出来就成为 消息,
消息是表达信息的工具
从通信的观点出发,构成消息的各种物理 现象具有两个条件:
生物如不能从外部感知信息,就不可能适当地调 整自己的状态,改善与外部世界的关系来适应这 种变化,不能避免被淘汰的厄运。
从外界摄取信息和利用信息的能力是一切生物得 以生存的必要条件,生物越高级,摄取和利用信 息的本领越高超。
2020/3/31
10
小结
信息与人类的关系密切
作为通信的消息,我们通过书信、电话、电报、电视、音 乐等与之接触,与人交往。
第一章 绪论
2020/3/31
1
提纲
信息的概念 信息论的研究思路、目的和内容 概率回顾
2020/3/31
2
1.1 信息的概念
世人谈及信息,远非今日起。 据《新辞海》考证,一千多年前唐代诗人李中《暮春怀故人》中
有“梦断美人沉信息,日空长路倚楼台”的诗句,这恐怕是最早关于 信息的文字记载。
人们与信息打交道的历史与自身一样悠久,人类从诞生起, 一直与信息打交道。
2020/3/31
7
(2)“信息”是作为运算的内容而明确起 来
在此意义下,“信息”是进行运算和处理 所需要的条件、内容和结果,并常常表现 为数字、数据、图表和曲线等形式。例如:
➢ 价目表反映商品价值信息; ➢ 车速表反映行驶速度信息, ➢ 万用表, ➢ 示波器等。
2020/3/31
第6章信息论与编码课件
增大E(R)的途径
25
6.2.1 纠错编码的基本思路
增大信道容量C
扩展带宽 加大功率 降低噪声
减小码率R
Q、N不变而减小K Q、K不变而增大N N、K不变而减小Q
增大码长N
26
6.2.2 最优译码与最大似然译码
译码器的任务是从受损的信息序列中尽 可能正确地恢复出原信息。 译码算法的已知条件是:
实际接收到的码字序列{r}, r=(r1,r2,…,rN) 发端所采用的编码算法和该算法产生的码 集XN, 满足 c i = ( c i1 , c i 2 , L , c iN ) ∈ X N 信道模型及信道参数。
则称集合V是数域F上的n维矢量空间,或称n维线性空间, n维矢量又称n重(n-tuples)。
9
矢量空间中矢量的关系
对于域F上的若干矢量 V 1 , V 2 , L , V i 及 V k 线性组合:
V k = a1V1 + a 2V 2 + L a iVi , ( a i ∈ F )
线性相关:
a1V1 + a 2V 2 + L a iVi = 0, ( a i ∈ F且不全为零)
从功能角度:检错码 、纠错码 对信息序列的处理方法:分组码、卷积码 码元与原始信息位的关系:线性码、非线 性码 差错类型:纠随机差错码、纠突发差错 码、介于中间的纠随机/突发差错码。 构码理论:代数码、几何码、算术码、组 合码等
7
差错控制系统分类
前向纠错(FEC):发端信息经纠错编码 后传送,收端通过纠错译码自动纠正传递 过程中的差错 反馈重发(ARQ):收端通过检测接收码 是否符合编码规律来判断,如判定码组有 错,则通过反向信道通知发端重发该码 混合纠错(HEC):前向纠错和反馈重发 的结合,发端发送的码兼有检错和纠错两 种能力
信息论与编码
信息论与编码第⼀章1、信息,信号,消息的区别信息:是事物运动状态或存在⽅式的不确定性的描述消息是信息的载体,信号是消息的运载⼯具。
2、1948年以“通信的数学理论”(A mathematical theory of communication )为题公开发表,标志着信息论的正式诞⽣。
信息论创始⼈:C.E.Shannon(⾹农)第⼆章1、⾃信息量:⼀个随机事件发⽣某⼀结果后所带来的信息量称为⾃信息量,简称⾃信息。
单位:⽐特(2为底)、奈特、笛特(哈特)2、⾃信息量的性质(1)是⾮负值(2) =1时, =0, =1说明该事件是必然事件。
(3) =0时, = , =0说明该事件是不可能事件。
(4)是的单调递减函数。
3、信源熵:各离散消息⾃信息量的数学期望,即信源的平均信息量。
)(log )(])(1[log )]([)( 212i ni i i i a p a p a p E a I E X H ∑=-===单位:⽐特/符号。
(底数不同,单位不同)信源的信息熵;⾹农熵;⽆条件熵;熵函数;熵。
4、信源熵与信息量的⽐较(书14页例2.2.2)()log () 2.1.3 i i I a p a =-()5、信源熵的意义(含义):(1)信源熵H(X)表⽰信源输出后,离散消息所提供的平均信息量。
(2)信源熵H(X)表⽰信源输出前,信源的平均不确定度。
(3)信源熵H(X)反映了变量X 的随机性。
6、条件熵:(书15页例2.2.3) 7、联合熵:8、信源熵,条件熵,联合熵三者之间的关系:H(XY)= H(X)+H(Y/X) H(XY)= H(Y)+H(X/Y)条件熵⼩于⽆条件熵,H(Y/X)≤H(Y)。
当且仅当y 和x 相互独⽴p(y/x)=p(y),H(Y/X)=H(Y)。
两个条件下的条件熵⼩于⼀个条件下的条件熵H(Z/X,Y)≤H(Z/Y)。
当且仅当p(z/x,y)=p(z/y)时取等号。
联合熵⼩于信源熵之和, H(YX)≤H(Y)+H(X)当两个集合相互独⽴时得联合熵的最⼤值 H(XY)max =H(X)+H(Y) 9、信息熵的基本性质:(1)⾮负性;(2)确定性;(3)对称性;(4)扩展性(5)可加性 ( H(XY) = H(X)+ H(Y) X 和Y 独⽴ H (XY )=H (X )+ H (Y/X )H (XY )=H (Y )+ H (X/Y ) )(6)(重点)极值性(最⼤离散熵定理):信源中包含n 个不同离散消息时,信源熵H(X)有当且仅当X 中各个消息出现的概率全相等时,上式取等号。
信息论与编码教学课件(全)
目录
• 课程介绍与背景 • 信息论基础 • 编码理论基础 • 信道编码技术 • 数据压缩技术 • 多媒体信息编码技术 • 课程总结与展望
01
课程介绍与背景
Chapter
信息论与编码概述
信息论的基本概念
01
信息、信息量、信息熵等
编码的基本概念
02
信源编码、信道编码、加密编码等
02
极化码(Polar Codes)
一种新型信道编码方式,通过信道极化现象实现高效可靠的信息传输。
03
深度学习在信道编码中的应用
利用深度学习技术优化传统信道编码算法,提高编码性能和效率。
05
数据压缩技术
Chapter
数据压缩概述与分类
数据压缩定义
通过去除冗余信息或使用更高效的编码方式,减小数据表示所需存储空间的过 程。
线性分组码原理:线性分组码是一 种将信息序列划分为等长的组,然 后对每组信息进行线性变换得到相 应监督位的编码方式。
具有严谨的代数结构,易于分析和 设计;
具有一定的检错和纠错能力,适用 于各种通信和存储系统。
循环码原理及特点
循环码原理:循环码是一种特殊的线 性分组码,其任意两个码字循环移位
后仍为该码的码字。
03
编码理论基础
Chapter
编码的基本概念与分类
编码的基本概念
编码是将信息从一种形式或格式转换为另一种形式的过程,以 满足传输、存储或处理的需要。
编码的分类
根据编码的目的和原理,可分为信源编码、信道编码、加密编 码等。
线性分组码原理及特点
线性分组码特点
监督位与信息位之间呈线性关系, 编码和解码电路简单;
信息论与编码(伴随式译码) (1)概述
1 G 0
0 1
0 0
1 0
1 1
1 1
0 1
0 0 1 1 1 0 1
1.试由该矩阵指出(n,k)码的信息位k=?和监督元位数 r=?及码长n=? 2.求对应的校验矩阵H。
3.若接收到一个7位码 ,R1 (0 1 0 0 1 1 0)它是否码字?若不是,
判断所发的码字。
4.问其伴随式有多少个?写出该分组码对应一半伴随式数目的译码表。 5.该(n,k)码的许用码集中包含多少个码字?用列表的方式写出这些码
1 1
1 1
0 1
0 0 1 1 1 0 1
1.试由该矩阵指出(n,k)码的信息位k=?和监督元位数 r=?及码长n=? 2.求对应的校验矩阵H。
3.若接收到一个7位码 ,R1 (0 1 0 0 1 1 0)它是否码字?若不是,
判断所发的码字。
解:1. 信息位k=3,监督元位数 r=n-k=4,码长n=7。
信息论与编码
2022年3月23日
曹雪虹 张宗橙 编
北京邮电大学出版社
北京工商大学信息工程学院 信息论与编码
1
本次课主要内容
5.4.3 线性分组码的生成矩阵、校验矩阵、伴 随式译码
举例说明信道编译码在实际应用中的实现方法
第五章内容总结
www.sysmk120.co m /dx / /dx/150527/4630604.ht ml /dx/150526/4630038.ht ml /dx/150509/4621414.ht ml /dx/150526/4630001.ht ml /dx/150526/4629997.ht ml /dx/150517/4624817.ht ml /dx/150517/4624816.ht ml /dx/150513/4623087.ht ml /dx/150513/4623086.ht ml /dx/150525/4629500.ht ml /dx/150525/4629498.ht ml /dx/150525/4629496.ht ml /dx/150525/4629488.ht ml /dx/150515/4624389.ht ml /dx/150515/4624384.ht ml /dx/150515/4624378.ht ml /dx/150523/4628925.ht ml /dx/150523/4628922.ht ml /dx/150519/4625738.ht ml /dx/150517/4624823.ht ml
信息论与编码第一章绪论
编码的效率与性能
编码效率
编码效率是指编码过程中信息传输速率与原始信息传输速率的比 值,反映了编码过程对信息传输的影响程度。
错误概率
错误概率是指在传输或存储过程中,解码后的信息与原始信息不 一致的概率。
抗干扰能力
抗干扰能力是指编码后的信息在传输过程中抵抗各种干扰的能力, 包括噪声、失真等。
03
信息论与编码的应用领域
信息论与编码第一章绪论
• 信息论的基本概念 • 编码理论的基本概念 • 信息论与编码的应用领域 • 信息论与编码的发展历程 • 信息论与编码的交叉学科
01
信息论的基本概念
信息量的定义与性质
信息量的定义
信息量是衡量信息多少的量,通常用熵来表示。熵是系统不确定性的量度,表示 随机变量不确定性的程度。
04
信息论与编码的发展历程
信息论的起源与发展
19世纪
1928年
随着电报和电话的发明,信息传递开始快 速发展,人们开始意识到信息的传递需要 遵循一定的规律和原则。
美国数学家哈特利提出信息度量方法,为 信息论的诞生奠定了基础。
1948年
1950年代
美国数学家香农发表论文《通信的数学理 论》,标志着信息论的诞生。
信息量的性质
信息量具有非负性、可加性、可数性和传递性等性质。非负性是指信息量总是非 负的;可加性是指多个信息源的信息量可以相加;可数性是指信息量可以量化; 传递性是指信息量可以传递,从一个信息源传到另一个信息源。
信息的度量
信息的度量方法
信息的度量方法有多种,包括自信息、互信息、条件互信息、相对熵等。自信息是指随机变量取某个值的概率; 互信息是指两个随机变量之间的相关性;条件互信息是指在某个条件下的互信息;相对熵也称为KL散度,是两个 概率分布之间的差异度量。
信息论与编码 第1章 ppt
3、广义信息论
电子科技大学
无论是香农信息论还是一般信息论,都
未讨论涉及认识主体主观因素的语义信
息和语用信息,要研究信息的内在含义
和效用价值,就必然会渗透到如心理学、
生物学、神经生理学、语言学、经济学、
社会学等有关领域。
1977年,美国经济学家波拉特就曾发表 “信息经济”一文,用信息论的概念研
《辞海》对信息的解释中也明确提出: 信息、物质和能量被称为系统的三大要 素。
2020/8/1
电子科技大学
以信息为研究对象的信息科学的出现和 发展,使原来以物质、能量两者为中心 的技术科学体系转变为以物质、能量和 信息三者为中心的技术科学体系。 因此,与物质和能量的度量一样,信息 的度量也成为现代技术科学体系的基础。
电子科技大学
1、信息科学的概念
一般认为,信息科学是研究信息的度量、 获取、传递、存储、处理和施用的技术
科学。
进一步,可以从信息科学的研究对象和 研究内容两个方面来理解信息科学的概
念。
2020/8/1
①信息科学以信息为研究对象
电子科技大学
维纳曾指出:信息既不是物质,也不是 能量,信息就是信息。
维纳揭示了信息具有与物质、能量不同 的属性。
究经济现象和社会现象。
2020/8/1
电子科技大学
何为广义信息论,至今并无定论。 目前比较公认的说法为,广义信息论是 从客观和主观两个方面全面研究信息的 度量、获取、传递、存储、处理和施用 的技术科学。 在这个意义上,人们更愿意将广义信息 论称为信息科学。
2020/8/1
三、信息科学及其研究内容
Discrete Source at the Fidelity Criterion) 中,
信息论与编码
mk
p p
y y
xm xk
式中0 , 1,因为 , 都是任意数,可取 1
,则有
1
pe x k
p y x k
1 1
p y x m
1 1
(5-8)
Υ
mk
3. 随机编码错误概率上界
Gallager限仅给出发送码矢xk时的错误概率上界,还要对全 部码矢求平均,下面对上述的随机编码集合求平均。
出错概率为p,故序列差错概率为p,误比特率 (3)总差错概率(误比特率):
p2
1 3
p
。
pe
p1
p2
1 4
1 3
p
【例5.4】 奇偶校验码 在信息序列后面加上一位校验位,使 之模2和等于1,这样的编码称为奇校验码;若使模2和等于0, 这样的编码就称为偶校验码,即每个码矢中1的个数固定为奇 数或偶数。
x3
0.4 ,信道转移概
0.5 0.3 0.2
率矩阵 P 0.1
0.3
0.7 0.3
0.2 0.4
,信道输出符号Y
=
{y1,
y2,
y3},按最
大后验概率准则译码。
(1)根据p (xy) = p (y︱x) q(x) 算出全概率,用矩阵表示
0.25 0.15 0.10
p(xy) 0.01 0.07 0.02
1
1
记 ln q(x) p( y x)1 E0 (, q) , 0 1
y x
则式(5-16)可写成
pe < exp {-n [-R + E0 (, q ) ]}
(5-17)
对式(5-17)右边求极小值,即对指数-R + E0 (, q )求极大
信息论与编码课件第一章优秀课件
历史回顾: 信息传输方式的变迁
在人类的历史长河中,信息传输和传播手段经 历了五次变革:
第一次变革:语言的产生 第二次变革:文字的产生 第三次变革:印刷术的发明 第四次变革:电报、电话的发明 第五次变革:计算机技术与通信技术相结合,促进
了网络的发展。
历史回顾: 信息传输方式的变迁
我国上古时期的“结 绳记事”法,史书上 有很多记载。 汉朝郑玄的《周易注》 中记载:“古者无文 字,结绳为约,事大, 大结其绳,事小,小 结其绳。”
①包含许多原来不知道的新内容信息量大 ②包含许多原来已知道的旧内容信息量小
广义的信息概念
物质、能量和信息是构成客观世界三大要素,信息 是物质和能量在空间和时间中分布的不均匀程度。 信息不是物质,信息是事物的表征,是对物质存在 状态和运动形式的一般描述。 信息存在于任何事物之中,有物质的地方就有信息, 信息充满物质世界。 信息本身看不见、摸不着,它必须依附于一定的物 质形式(如文字、声波、电磁波等)。这种运载信 息的物质称为信息的载体,一切物质都有可能成为 信息的载体。
学时数: 讲课 32学时 实验 8学时(10,14周周五9-12节?,计算中心)
上课时间和地点: 第1-4,6-16周一3、4节,1-四阶 第8周二1、2节,3-五阶
考试时间: 第17周左右
考试成绩计算: 作业+实验 :30% ; 期末考试:开卷 70% ;
答疑时间: 每周三第5、6节课(13:30-15:30)
对学习者的要求
三个重要环节
课前预习 课上认真听讲 课后认真复习消化、做作业
经常进行阶段复习
掌握知识的窍诀:反复思维实践
其他约定
不得迟到、早退、缺课,有事请假 上课时请关闭手机(或调至振动) 作业不得用纸片信纸之类,必须使用作业本 迟交的作业及纸片做的作业恕不修改,只作记
信息论与编码第1章概论
数据融合
信息论中的数据融合算法可以用于物 联网中的多源数据融合,提高数据处 理效率和准确性。
THANKS
感谢观看
信息论的起源与发展
01
02
03
04
19世纪
随着电报和电话的发明,信息 传递开始受到关注。
20世纪40年代
香农提出信息论,为信息传递 和编码提供了理论基础。
20世纪60年代
随着计算机技术的兴起,信息 论在数据压缩、传输和存储方
面得到广泛应用。
21世纪
信息论在物联网、大数据、人 工智能等领域发挥重要作用。
熵
熵是衡量随机变量不确定性的度量,可以用来衡量信息的平均量。对于离散随机变量,熵 是所有可能事件概率的加权对数值。对于连续随机变量,熵是概率密度函数的积分值的对 数值。
冗余
冗余是指信息中多余的部分,即不包含新信息的部分。编码的目标是减少冗余,提高信息 的有效性和传输效率。
编码的分类
01
信源编码
信源编码是对原始信息进行压缩和编码的过程,以减少信息的冗余和提
编码实践验证信息论理论
编码实践为信息论提供了实验验证的机会,帮助完善和发展信息论的理论体系。
编码推动信息论的应用
编码技术的发展推动了信息论在实际应用领域的发展,使得信息论在通信、数据存储等领域得到广泛 应用。
信息论与编码的应用领域
通信系统
数据存储
信息论和编码在通信系统中发挥着重要作 用,如数字电视、卫星通信、移动通信等 。
信息论与编码第1章概论
• 信息论的基本概念 • 编码理论的基本概念 • 信息论与编码的关系 • 信息论与编码的发展历程 • 信息论与编码的应用案例
01
信息论的基本概念
12953_精品课课件信息论与编码(全套讲义)
2024/1/28
10
03
信道编码
2024/1/28
11
信道编码概述
01
信道编码的基本概念
为了提高信息传输的可靠性,在信源编码的基础上增加一些监督码元,
这些多余的码元与信息码元之间以某种确定的规则相互关联(约束)。
02
信道编码的目的
对传输的信息码元进行检错和纠错,提高信息传输的可靠性。
2024/1/28
编码的基本原则
有效性、可靠性、安全性、经 济性。
8
编码的分类与原理
2024/1/28
分类
根据编码对象的不同,可分为信源编码、信道编码和加密 编码等。
原理
不同的编码方式采用不同的编码原理和算法,如信源编码 中的哈夫曼编码、信道编码中的卷积码和LDPC码等。
编码与调制的关系
编码是数字通信中的关键技术之一,与调制技术密切相关 。编码后的信号需要通过调制技术转换为适合在信道中传 输的信号。
2024/1/28
信宿
接收并处理信息的实体或系统, 如人、计算机等。
译码器
将信道中传输的信号还原成原始 信息。
6
02
编码理论
2024/1/28
7
编码的基本概念
编码定义
将信息从一种形式或格式转换 为另一种形式的过程。
2024/1/28
编码的目的
提高信息传输效率,增强信息 抗干扰能力,实现信息的可靠 传输。
共同应对挑战
在信息传输和存储领域,信息论 和编码技术将共同应对诸如信道 噪声、数据压缩等挑战。
创新应用领域
通过信息论与编码的交叉融合, 将产生更多创新性的应用,如无 损压缩、加密通信等。
2024/1/28