2020年全国硕士研究生招生考试数学二解析
2020年全国硕士研究生招生考试数学二解析
2020年全国硕士研究生招生考试数学(二)(科目代码:301)考生注意事项1、答题前,考生须在试题册指定位置上填写考生编号和考生姓名;在答题卡指定位置上填写报考单位,考生姓名和考生编号,并涂写考生编号信息点。
2、选择题的答案必须涂写在答题卡相应题号和选项上,非选择题的答案必须书写在答题卡指定位置的边框区域内。
超出答题区域书写的答案无效;在草稿纸、试题册上答案无效。
3、填(书)写必须使用黑色字迹签字笔书写,字迹工整、笔迹清楚;涂写部分必须使用2B 铅笔填涂。
4、考试结束,将答题卡和试题册按规定交回。
以下信息考生必须认真填写)一.选择题(1~8小题,每小题4分,共32分,下列每题给出的四个选项中只有一个选项是符合要求的・)1.当工TO+时,下列无穷小量中最高阶的是B:/ ln(l + √i 3)dt 解析:木题选D 考査的内容主要就是无穷小虽之间的比较,同时也考察了变限积分洛必达相关知识点。
/ (”一1)血Iim ——— ---- 2- ∙0* X (/ (c√'-1)衣)=e r' —]〜云 (/ In (1 + ∖∕P)dt) = In(I ⅛ V Z Z^)〜H / f tf ∆nr ∖ f I / sint 2dt J = Sin(SinZ)2 ・cos 工〜 / ∕∙1 — co<x WO 闯⅛⅛=肥呑若存在故归考试中可宜接求导比较会比较方便 Λ→σ*TLX V Z Sinhd 寸 =[sin(1 — CoSa:)]7 ∙sinx~\;'(⅞^) 'x ^ 故选D 2•函数/(X) =才吾罟务的第二类间断点个数为 4:1 B:2 C :3 解析:本题选C 。
考查的内容就是第••类间断点的定义与极限的运算方法 分母为()的点或者无定义的点有工= Ie = -I ,工=(),工=2 ]⅛(^Z ⅛⅛⅛)=芒卍哩Cm=Oo不存在故为第一类间断点 e 7ττln∣ 1 -H ⑦ ln2 尸5|1 +;Tl 叽(―)=3(1-e -1)-1⅛lnll+Il = OCW 在故*-1 为第二类间断点 ElnI l 卄 1 • χ→o(e r— 1)(X —2) -2:% X l¾(⅛⅛⅛)=⅛k ⅜l¾⅛=∞7fζ存在故*2为第二类间断点UIiln 也土卫=-舟为可去间断点不屈丁•第二类间断点 3.广霁墮血= JQ \/x(l — x) 4 TT 2斤2 Zb T B:T 解折:木题选爪。
2020年全国硕士研究生入学统一考试数学二试题完整版附答案分析及详解
x (0, 0)
xy (0, 0)
(x, y)→( 0,0 )
y→0 x→0
数是
A.4 B.3 C.2 D.1
答案:B
6. 设函数 f (x) 在区间 − 2,2上可导,且 f (x) f (x) 0 ,则()
A f (−2) 1 f (−1)
B f (0) e C f (1) e2 D f (2) e3
3.
1
0
arcsin
x (1−xx)源自dx=π2
A.
4
π2
B.
8
C. π
D. π
4
8
答案: A
解析: 1 arcsin xdx = arcsin2
0 x(1− x)
x
1 0
2 =
4
.
4. f ( x) = x2 ln (1− x), n 3 时, f (n) (0) =
A. − n! n−2
答案: A
+
y(x)dx =
0
解析:由
y + 2y + y = 0
y
(0)
=0,y
(
0)
y))dy
dz
(0, )
=
(
−1)dx − dy
12.斜边长为 2a 等腰直角三角形平板铅直地沉没在水中,且斜边与水面相齐,设重力加速度 为 g,水密度为 ,则该平板一侧所受的水压力为
答案: 1 ega3 3
解析: a g(a − y)[ y − (− y)]dy = 1 ga3
0
3
13.设 y = y ( x) 满足 y + 2y + y = 0 ,且 y (0) =0,y(0) =1,则
2020研究生硕士数学二真题及答案解析
x1 (ex 1)(x 2) 1 e x1
;
1
e x1 ln 1 x ln 2
1
lim
lim e x1 ;
x1 (ex 1)(x 2) 1 e x1
1
e x1 ln 1 x e ln 3
1
lim f (x) lim
lim
x2
x2 (ex 1)(x 2) (e2 1) x2 x 2
故函数的第二类间断点(无穷间断点)有 3 个,故选项(C)正确。
【解析】构造辅助函数 F (x) ,由 F '(x)
,由题
ex
e2x
ex
f (x)
f (0) f (1)
意可知, F '(x) 0 ,从而 F (x) 单调递增.故 F (0) F (1) ,也即
,
ex
e0
e1
f (0)
又有 f (x) 0 ,从而
e .故选(B).
f (1)
(7)设 4 阶矩阵 A aij 不可逆,a12 的代数余子式 A12 0 ,1,2,3,4 为矩阵 A 的列向
x 0, y x0
x0
x0 x
x0 x
xy 0 x y , x 0 x , y 0 y , 从而 x, y 0, 0 时, lim f (x, y) 0 , x, y0,0
③正确。
0, xy 0或y 0
lim f x, y
, 从而 lim lim f ( x, y) 0 ,④正确
(C) x k11 k23 k34 ,其中 k1, k2 , k3 为任意常数
(D) x k12 k23 k34 ,其中 k1, k2 , k3 为任意常数
【答案】(C)
2020年考研数学二真题及解析
2020全国硕士研究生入学统一考试数学二试题详解一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)当0x +→时,下列无穷小量中最高阶是( ) (A )()21xt e dt -⎰(B)(0ln 1xdt +⎰(C )sin 20sin xt dt ⎰(D)1cos 0-⎰【答案】(D )【解析】由于选项都是变限积分,所以导数的无穷小量的阶数比较与函数的比较是相同的。
(A )()()222011x t x e dt e x '-=-~⎰(B )(()(22ln 1ln 1x t dt x x'+=⎰(C )()()sin 2220sin sin sin xt dt x x '=⎰(D )()1cos 22301sin sin(1cos )2xt dt x x x-'=-⎰经比较,选(D )(2)函数11ln 1()(1)(2)x x e xf x e x -+=--的第二类间断点的个数为 ( )(A )1 (B )2 (C )3 (D )4 【答案】(C )【解析】由题设,函数的可能间断点有1,0,1,2x =-,由此11121111ln 1lim ()lim lim ln 1(1)(2)3(1)x x x x x e x ef x x e x e ---→-→-→-+==-+=-∞---; 111000ln 1ln(1)1lim ()lim lim (1)(2)22x x x x x e x e x f x e x x e--→→→++==-=---;1111111111111ln 1ln 2lim ()lim lim 0;(1)(2)1ln 1ln 2lim lim ;(1)(2)1x x x x x x x x x x x exf x e e x e e x e e x e ---++--→→→--→→+===---+==-∞---;112222ln 1ln 31lim ()limlim (1)(2)(1)2x x x x x e x e f x e x e x -→→→+===∞----故函数的第二类间断点(无穷间断点)有3个,故选项(C )正确。
2020年考研(数学二)真题试卷(题后含答案及解析)
2020年考研(数学二)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.当x→0+时,下列无穷小量中最高阶是A.(et2-1)dt.B.ln(1+)dt.C.sin t2dt.D.正确答案:D解析:x→0+时,A ∴(et2-1)dt是x的3阶无穷小.B∴是x的5/2导阶无穷小,C=sin(sin2x)·cos x~x2∴sint2dt是x的3阶无穷小.D∴是x的5阶无穷小.故应选D.2.函数f(x)=的第二类间断点的个数为A.1.B.2.C.3.D.4.正确答案:C解析:间断点为:x=-1,x=0,x=1,x=2因此x=0是f(x)的第一类可去间断点;所以x=1是f(x)的第二类间断点;同理由知x=2也是f(x)的第二类间断点.故应选C.3.dx=A.π2/4.B.π2/8.C.π/4.D.π/8.正确答案:A解析:所以x=0是可去间断点;x=1是无穷间断点.故是广义积分今:t=,则x=t2,dx=2t·dt故选A.4.已知函数f(x)=x2ln(1-x).当n≥3时,f(n)(0)=A.-n!/(n-2).B.n!/(n-2).C.-(n-2)!/n.D.(n-2)!/n.正确答案:A解析:5.关于函数f(x,y)=给出以下结论正确的个数是A.4.B.3.C.2.D.1.正确答案:B解析:6.设函数f(x)在区间[-2,2]上可导,且f’(x)>f(x)>0,则A.f(-2)/f(-1)>1.B.f(0)/f(-1)>e.C.f(1)/f(-1)<e2.D.f(2)/f(-1)=0可知,A11a1+A12a2+A13a3+A14a4=0,因为A12≠0,因此a2可由a1,a3,a4线性表示,故a1,a3,a4线性无关.因为r(A)一r(a1,a2,a3,a4)=3,因此a1,a3,a4为基础解系,故应选C.又因为A*A=|A|E=O,A的每一列a1,a2,a3,a4是A*x=0的解向量.只要找到是A*x=0的3个无关解就构成基础解系.8.设A为3阶矩阵,a1,a2为A的属于特征值为1的线性无关的特征向量,a3为A的属于特征值-1的特征向量,则满足P-1AP=的可逆矩阵P为A.(a1+a3,a2,-a3).B.(a1+a2,a2,-a3).C.(a1+a3,-a3,a2).D.(a1+a2,-a3,a2).正确答案:D解析:因为a1,a2为属于特征值1的线性无关的特征向量,所以a1+a2,a2仍为属于特征值1的线性无关的特征向量,a3为A的属于特征值-1的特征向量,故-a3为A的属于特征值-1的特征向量矩阵,因为特征向量与特征值的排序一一对应,故只需P=(a1+a2,-a3,a2)就有P-1AP=,故应选D.填空题9.=_______正确答案:一√2解析:10.=________正确答案:2/9(2√2-1)解析:11.设z=arctan[xy+sin(x+y)],则dz|(0,π)=_________正确答案:(π-1)dx-dy解析:12.斜边长为2a等腰直角三角形平板铅直地沉没在水中,且斜边与水面相齐,设重力加速度为g,水密度为ρ,则该平板一侧所受的水压力为_________正确答案:(ρga3)/3解析:13.设y=y(x)满足y”+2y’+y=0,且y(0)=0,y’(0)=l,则y(x)dx=_________正确答案:1解析:由条件知,特征方程为:r2+2r+1=0,特征值r1=r2=-1齐次方程通解为:y=(C1+C2x)e-x,由y(0)=0,y’(0)=1得C1=0,C2=1即y(x)=xe-x,从而知:14.行列式=________正确答案:a2(a2-4)解析:解答题解答应写出文字说明、证明过程或演算步骤。
2020全国硕士研究生入学统一考试数学(二)真题及答案解析
kx
x1x
lim
x
1
x
x
1 e
x
lim
x
x
1
1 1
x
x
1
e
令t
1 lim
x t0
1
e 1t t
1
et 1 t t
1 e2
1ln(1t )
et lim
t 0
t
e
1 lim
e t0
1ln(1t )1
et
1
t
1 lim
1ln(1t )1 t
1 lim ln(1 t) t
.
答案: 1 ga3 3
【解析】 F
a
2 g(a y) ydy 2 g
a (ay y2 )dy 2 g(1 a3 1 a3) 1 ga3
0
0
23 3
13.设 y yx满足 y 2y y 0,
且
y0
0
,
y0
1
,则
0
yx
dx
.
答案:1
【解析】 y 2y y 0, 所以特解方程: 2 +2+1=0,(+1)2 =0 1=2 =-1; y通 =(C1 C2x)ex ; y通' ex (C2 C1 C2x) ;又 y(0) 0,y' (0) 1 ;
三、解答题:15~23 小题,共 94 分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答. 题.纸.指定位置上.
15.(本题满分 10 分).
求曲线
y
x1 x
1 xx
x
0 的斜渐近线。
x1 x
【解析】:斜率 k
lim x
2020考研数学二真题 附答案解析
t3t 2 2x10 2x ®0x (1- x )x d x e -1 ln |1+ x |-2x= -e -1 2ln | x +1| x = -e -1 2¥¥òarcsin u · 1 arcsin xx (1- x ) u 2(1- u 2)x ®01- u 2¶f¶x arcsin u d 0 p①(0,0)¶2 f¶x ¶y ¶f¶x②(0,0)①(0,0) = lim-1 不存在.(0,0)y ®0 y xy = 0(0,0)x = 0y = 0¶x ¶y6.设函数 f (x) 在区间[-2, 2] 上可导,且 f ¢(x) >f (x) > 0 ,则( )f (-2)> 1f (-1)f (0) f (-1)f (1) f (-1)f (2) f (-1) >e <e2 <e3答案:B解析:由 f ¢(x) >f (x) > 0知f ¢(x)- 1 > 0f (x)即(ln f (x) -x)¢> 0令F (x) = ln f (x) -x ,则 F (x)在[-2, 2]上单增因-2 <-1 ,所以 F (-2) <F (-1)即ln f (-2) + 2 < ln f (-1) + 1f (-1)>ef (-2)同理, -1 < 0, F (-1) <F (0)即ln f (-1) + 1 < ln f (0)f (0)e7.设四阶矩阵A=(a ij )不可逆,a12 的代数余子式A12 ¹0,a1,a2 ,a3 ,a4 为矩阵A的列向量 组. A* 为 A 的伴随矩阵.则方程组 A* x =0 的通解为( ).A.x=k1a1 +k2a2 +k3a3 ,其中k1 ,k2 ,k3 为任意常数B.x=k1a1 +k2a2 +k3a4 ,其中k1 ,k2 ,k3 为任意常数C.x=k1a1 +k2a3 +k3a4 ,其中k1 ,k2 ,k3 为任意常数.D.x=k1a2 +k2a3 +k3a4 ,其中k1 ,k2 ,k3 为任意常数 答案:C解析:∵A 不可逆11 2 3 3 4è øè ø ∴|A|=0 ∵ A 12¹ 0r ( A *) = 1∴ r ( A ) = 3∴ A * x = 0 的基础解系有 3 个线性无关的解向量.A *A =| A | E = 0∴A 的每一列都是 A *x = 0 的解又∵ A 12¹ 0∴a 1 ,a 3 ,a 4 线性无关∴ A *x = 0 的通解为 x = k a + k a + k a 8. 设 A 为 3 阶矩阵,a 1 ,a 2 为 A 属于特征值 1 的线性无关的特征向量,a 3 为 A 的属于特征 æ 1 0 0 ö 值-1 的特征向量,则满足P -1AP = ç 0 -1 0 ÷的可逆矩阵 P 可为( ).A. (a 1 +a 3 ,a 2 , -a 3 )B. (a 1 +a 2 ,a 2 , -a 3 )C. (a 1 +a 3 , -a 3 , -a 3 )D. (a 1 +a 2 , -a 3 , -a 2 )答案:D解析:A a 1 = a 1 , A a 2 = a 2A a 3 = -a 3ç ÷ ç 0 0 1 ÷æ 1 0 0 ö ! P -1AP = ç 0 -1 0 ÷ç ÷ ç 0 0 1 ÷\ P 的 1,3 两列为 1 的线性无关的特征向量a 1 +a 2 ,a 2 P 的第 2 列为 A 的属于-1 的特征向量a 3.∴∵24 分.请将答案写在答题纸指定位置上.,则 = .t =1tt tyyd 2 ydx 2t 2 +1t 2 +1dy 2dx 2ò)], )],(0,(0, 1 ,则 +¥y (x ) d x 0¶z ¶x ¶z ¶y0 òò= +¥y (x ) d x = - +¥ y ¢(x ) + 2 y ¢(x ) d x= -[ y ¢(x ) + 2 y (x )] +¥= [ y ¢(0) + 2 y (0)] = 1a 0 -1 114.行列式 a 1 -1 =-1 1 a 0解析:1 -1 0 a a 0 -1 1 a 0 -1 1 0 a 1 -1 = 0 a 1 -1 0 a -1 + a2 1 a -1+ a 2 1=0 a 1 -1 = - a 1 - 1 -1 1a 0 0 a a0 0 a aa a 2 - 2 1 = - a 2 -1 = a 4 - 4a 2.0 0 a三、解答题:15~23 小题,共 94 分.请将解答写在答题纸指定位置上.解答写出文字说明、证明过程或演算步骤.15.(本题满分 10 分)x 1+ x求曲线 y = (1+ x )x(x > 0) 的斜渐近线方程.解析: lim y x 1+ xlim= limx ®+¥ xx x xx ®+¥ (1+ x )x x x ®+¥ (1+ x )= ex l n xlim x ®+¥ ex ln(1+ x )= lim e x (ln x -ln(1+ x ))x ®+¥-1 1 a 0 -1 1 a 0 1 -1 0a 00 aaò=x ®+¥=x ®+¥=x ®+¥lim (y x ®+¥= lim æx ®+¥ è= lim x ®+¥= lim x ®+¥= ölim x ®+¥ø= ö x ®+¥÷ ø= lim e t ®0+ = lim e t ®0+ = 1 e -1 t ®0+ y = e -11e-1216.limf (x ) = 1,g ( x ) = 1f ( xt )dt , 求g '( x )x ®0 x续.并证明 g '(x )在x = 0 处连x = lim f (x ) = 0 x ®0ò0 f (u )du = 1 lim f (x ) = 1 0 x 2 2 x ®0 x 2 的极值y C = 0 -1+ 1x 2 +13 çx AC - 当 x = A = 1.AC - >1= -21618. ) ,并求直线 y = 1 ,与函数 f (x ) 所 y = 22+ 2 f æ1 è ) x x …②①´ 2f (x ) = x②V = p × ÷ 3 - p = 3 3 4 = p 2312 2 x 1+ x 2x 2 + y 2x 2 + y 2 xòò Ddxdy òò d(+ 2 2 òò x d 2 x 2 + y 2ò = 3 + 1)ù û20.分)t 2dt .f (x ) = (2 -x )e x 2 ;(1, 2), f (2) = ln 2 ×h e h 2 .F (x ) = f (x )(x - 2) = (x - 2) x e t 2dt 1 (2) = 0, 又F (x )在[1, 2]连续,(1, 2)上可导,(1, 2), 使得F '(x ) = 0e t 2 dt + (x - 2)e x 2 =f (x ) + (x - 2)e x 2x 2 .令 $h Î(1, 2)=f (2) = e=h e h 2 ln 22 21.分)f ¢(x ) > 0(x ³ 0) , f (x ) 的图象过原点 O的切线与 X 轴交于 T ,MP ^ x 轴,曲线 y = f (x ), MP , x 轴围成的面积与D 3:2,求曲线方程.坐标为(x , y ) ,则过 M 的切线方程为Y -令- y y ¢n 2 (2即xê úò0 f (t )d t = 3× × y 22 y整理并求导得令 y ¢ = p 3yy ¢ - 2 y ¢2 = 0y ¢ = d p 代入上式得d y3yp d p- 2 p 2 = 0d y2解得 p = C 1 y 32即 y ¢ = C 1 y 3d y = C d x1y 31 3y 3 = C 1x +C2 13 3 = C 1xy = Cx 3由 y (0) = 0 得C 2 = 0.22.(本题满分 11 分)设 二 次 型 f (x , x , x ) = x 2 + x 2 + x 2+ 2ax x + 2ax x + 2ax x经 可 逆 线 性 变 换 1 2 3 1 2 3 1 2 1 3 2 3æ x1 ö æ y 1 ö ç x ÷ = P ç y ÷ 得 g ( y , y , y ) = y2 + y 2 +4 y 2 + 2 y y .ç 2 ÷ ç 2 ÷ 1 2 3 1 2 3 12ç x ÷ ç y ÷ è 3 ø è 3 ø(1) 求 a 的值; (2) 求可逆矩阵 P. 解析:é1aa ùA = êa 1 a ú ê ú(1) 令 f (x 1, x 2 , x 3 ) 的矩阵 êëa a 1úûf ( y 1, y 2 , y 3 ) 的矩阵 é1 1 0ùB = ê1 1 0úêë0 0 4úû33 32 21 2 1 1 2 1 ëû ê 3 1 2 ê 3 z ï ú ìz 1 = y 1 + y 2 í 2 = 2 y 3 é1 1 0ù ï z 3 = y 2 ê ú 令î 即令P = ê0 0 2ú Z = P Y . 22 êë0 1 0úûf ( y , y , y ) = z 2 + z 2 则 1 2 3 1 2 .故P 1 X = P 2Y X = P -1PY P = P -1P .é 1 ù ê3 ú é1 1 0ù P -1 = ê02 1ú P = ê0 0 2 ú 1 ê3 ú 2 ê ú ê ê0 0 由于 êë ú ê0 1 0ú 1ú úû é1 2 2 ù ê ú 故 P = P -1P = ê0 14 ú ú ê0 1 0 ú ê úêë úû23.(本题满分 11 分)设 A 为 2 阶矩阵, P = (a , A a ) ,其中a 是非零向量且不是 A 的特征向量. (1)证明 P 为可逆矩阵.(2)若 A 2a + A a - 6a = 0 ,求 P -1AP ,并判断 A 是否相似于对角矩阵. 解析:(1)a ¹ 0 且 A a ¹ la . 故a与A a 线性无关. 则 r (a , A a ) = 2则 P 可逆.(2)法一:由已知有 A 2a = - A a + b a即 . 所以于是 AP = A (a , A a ) = ( A a , A 2a ) = ( A a , - A a + 6a )= (a , A a ) æ 0 6 ö,故有P -1 AP = æ 0 6 ö,! P 可逆 ç 1 -1÷ ç 1 -1÷ è ø è ø \可得A 与æ 0 6 ö相似,又 l -6 =(l + 3)"(l - 2)= 0 ç 1 -1÷ -1 l +1è øÞl 1 = -3,l 2 = 2\可得A 的特征值也为-3,2 于是 A 可相似对角化方法二 P -1AP 同方法一由 A 2a + A a - 6a = 0下面是证明 A 可相似对角化( A 2 + A - 6E )a = 0设( A + 3E )( A - 2E )a = 0由a ¹ 0得( A 2 + A - 6E )x = 0有非零解 故| ( A + 3E )( A - 2E ) |= 0得| A + 3E |= 0或| A - 2E |= 0若| ( A + 3E ) |¹ 0则有( A - 2E )a = 0故A a =2a 与题意矛盾故| A + 3E |= 0同理可得| A - 2E |= 0 于是 A 的特征值为l 1 = -3 l 2 = 2.A 有 2 个不同特征值故 A a 相似对角化。
2020考研数学二真题 附答案解析
t3t 2 2x10 2x ®0x (1- x )x d x e -1 ln |1+ x |-2x= -e -1 2ln | x +1| x = -e -1 2¥¥òarcsin u · 1 arcsin xx (1- x ) u 2(1- u 2)x ®01- u 2¶f¶x arcsin u d 0 p①(0,0)¶2 f¶x ¶y ¶f¶x②(0,0)①(0,0) = lim-1 不存在.(0,0)y ®0 y xy = 0(0,0)x = 0y = 0¶x ¶y6.设函数 f (x) 在区间[-2, 2] 上可导,且 f ¢(x) >f (x) > 0 ,则( )f (-2)> 1f (-1)f (0) f (-1)f (1) f (-1)f (2) f (-1) >e <e2 <e3答案:B解析:由 f ¢(x) >f (x) > 0知f ¢(x)- 1 > 0f (x)即(ln f (x) -x)¢> 0令F (x) = ln f (x) -x ,则 F (x)在[-2, 2]上单增因-2 <-1 ,所以 F (-2) <F (-1)即ln f (-2) + 2 < ln f (-1) + 1f (-1)>ef (-2)同理, -1 < 0, F (-1) <F (0)即ln f (-1) + 1 < ln f (0)f (0)e7.设四阶矩阵A=(a ij )不可逆,a12 的代数余子式A12 ¹0,a1,a2 ,a3 ,a4 为矩阵A的列向量 组. A* 为 A 的伴随矩阵.则方程组 A* x =0 的通解为( ).A.x=k1a1 +k2a2 +k3a3 ,其中k1 ,k2 ,k3 为任意常数B.x=k1a1 +k2a2 +k3a4 ,其中k1 ,k2 ,k3 为任意常数C.x=k1a1 +k2a3 +k3a4 ,其中k1 ,k2 ,k3 为任意常数.D.x=k1a2 +k2a3 +k3a4 ,其中k1 ,k2 ,k3 为任意常数 答案:C解析:∵A 不可逆11 2 3 3 4è øè ø ∴|A|=0 ∵ A 12¹ 0r ( A *) = 1∴ r ( A ) = 3∴ A * x = 0 的基础解系有 3 个线性无关的解向量.A *A =| A | E = 0∴A 的每一列都是 A *x = 0 的解又∵ A 12¹ 0∴a 1 ,a 3 ,a 4 线性无关∴ A *x = 0 的通解为 x = k a + k a + k a 8. 设 A 为 3 阶矩阵,a 1 ,a 2 为 A 属于特征值 1 的线性无关的特征向量,a 3 为 A 的属于特征 æ 1 0 0 ö 值-1 的特征向量,则满足P -1AP = ç 0 -1 0 ÷的可逆矩阵 P 可为( ).A. (a 1 +a 3 ,a 2 , -a 3 )B. (a 1 +a 2 ,a 2 , -a 3 )C. (a 1 +a 3 , -a 3 , -a 3 )D. (a 1 +a 2 , -a 3 , -a 2 )答案:D解析:A a 1 = a 1 , A a 2 = a 2A a 3 = -a 3ç ÷ ç 0 0 1 ÷æ 1 0 0 ö ! P -1AP = ç 0 -1 0 ÷ç ÷ ç 0 0 1 ÷\ P 的 1,3 两列为 1 的线性无关的特征向量a 1 +a 2 ,a 2 P 的第 2 列为 A 的属于-1 的特征向量a 3.∴∵24 分.请将答案写在答题纸指定位置上.,则 = .t =1tt tyyd 2 ydx 2t 2 +1t 2 +1dy 2dx 2ò)], )],(0,(0, 1 ,则 +¥y (x ) d x 0¶z ¶x ¶z ¶y0 òò= +¥y (x ) d x = - +¥ y ¢(x ) + 2 y ¢(x ) d x= -[ y ¢(x ) + 2 y (x )] +¥= [ y ¢(0) + 2 y (0)] = 1a 0 -1 114.行列式 a 1 -1 =-1 1 a 0解析:1 -1 0 a a 0 -1 1 a 0 -1 1 0 a 1 -1 = 0 a 1 -1 0 a -1 + a2 1 a -1+ a 2 1=0 a 1 -1 = - a 1 - 1 -1 1a 0 0 a a0 0 a aa a 2 - 2 1 = - a 2 -1 = a 4 - 4a 2.0 0 a三、解答题:15~23 小题,共 94 分.请将解答写在答题纸指定位置上.解答写出文字说明、证明过程或演算步骤.15.(本题满分 10 分)x 1+ x求曲线 y = (1+ x )x(x > 0) 的斜渐近线方程.解析: lim y x 1+ xlim= limx ®+¥ xx x xx ®+¥ (1+ x )x x x ®+¥ (1+ x )= ex l n xlim x ®+¥ ex ln(1+ x )= lim e x (ln x -ln(1+ x ))x ®+¥-1 1 a 0 -1 1 a 0 1 -1 0a 00 aaò=x ®+¥=x ®+¥=x ®+¥lim (y x ®+¥= lim æx ®+¥ è= lim x ®+¥= lim x ®+¥= ölim x ®+¥ø= ö x ®+¥÷ ø= lim e t ®0+ = lim e t ®0+ = 1 e -1 t ®0+ y = e -11e-1216.limf (x ) = 1,g ( x ) = 1f ( xt )dt , 求g '( x )x ®0 x续.并证明 g '(x )在x = 0 处连x = lim f (x ) = 0 x ®0ò0 f (u )du = 1 lim f (x ) = 1 0 x 2 2 x ®0 x 2 的极值y C = 0 -1+ 1x 2 +13 çx AC - 当 x = A = 1.AC - >1= -21618. ) ,并求直线 y = 1 ,与函数 f (x ) 所 y = 22+ 2 f æ1 è ) x x …②①´ 2f (x ) = x②V = p × ÷ 3 - p = 3 3 4 = p 2312 2 x 1+ x 2x 2 + y 2x 2 + y 2 xòò Ddxdy òò d(+ 2 2 òò x d 2 x 2 + y 2ò = 3 + 1)ù û20.分)t 2dt .f (x ) = (2 -x )e x 2 ;(1, 2), f (2) = ln 2 ×h e h 2 .F (x ) = f (x )(x - 2) = (x - 2) x e t 2dt 1 (2) = 0, 又F (x )在[1, 2]连续,(1, 2)上可导,(1, 2), 使得F '(x ) = 0e t 2 dt + (x - 2)e x 2 =f (x ) + (x - 2)e x 2x 2 .令 $h Î(1, 2)=f (2) = e=h e h 2 ln 22 21.分)f ¢(x ) > 0(x ³ 0) , f (x ) 的图象过原点 O的切线与 X 轴交于 T ,MP ^ x 轴,曲线 y = f (x ), MP , x 轴围成的面积与D 3:2,求曲线方程.坐标为(x , y ) ,则过 M 的切线方程为Y -令- y y ¢n 2 (2即xê úò0 f (t )d t = 3× × y 22 y整理并求导得令 y ¢ = p 3yy ¢ - 2 y ¢2 = 0y ¢ = d p 代入上式得d y3yp d p- 2 p 2 = 0d y2解得 p = C 1 y 32即 y ¢ = C 1 y 3d y = C d x1y 31 3y 3 = C 1x +C2 13 3 = C 1xy = Cx 3由 y (0) = 0 得C 2 = 0.22.(本题满分 11 分)设 二 次 型 f (x , x , x ) = x 2 + x 2 + x 2+ 2ax x + 2ax x + 2ax x经 可 逆 线 性 变 换 1 2 3 1 2 3 1 2 1 3 2 3æ x1 ö æ y 1 ö ç x ÷ = P ç y ÷ 得 g ( y , y , y ) = y2 + y 2 +4 y 2 + 2 y y .ç 2 ÷ ç 2 ÷ 1 2 3 1 2 3 12ç x ÷ ç y ÷ è 3 ø è 3 ø(1) 求 a 的值; (2) 求可逆矩阵 P. 解析:é1aa ùA = êa 1 a ú ê ú(1) 令 f (x 1, x 2 , x 3 ) 的矩阵 êëa a 1úûf ( y 1, y 2 , y 3 ) 的矩阵 é1 1 0ùB = ê1 1 0úêë0 0 4úû33 32 21 2 1 1 2 1 ëû ê 3 1 2 ê 3 z ï ú ìz 1 = y 1 + y 2 í 2 = 2 y 3 é1 1 0ù ï z 3 = y 2 ê ú 令î 即令P = ê0 0 2ú Z = P Y . 22 êë0 1 0úûf ( y , y , y ) = z 2 + z 2 则 1 2 3 1 2 .故P 1 X = P 2Y X = P -1PY P = P -1P .é 1 ù ê3 ú é1 1 0ù P -1 = ê02 1ú P = ê0 0 2 ú 1 ê3 ú 2 ê ú ê ê0 0 由于 êë ú ê0 1 0ú 1ú úû é1 2 2 ù ê ú 故 P = P -1P = ê0 14 ú ú ê0 1 0 ú ê úêë úû23.(本题满分 11 分)设 A 为 2 阶矩阵, P = (a , A a ) ,其中a 是非零向量且不是 A 的特征向量. (1)证明 P 为可逆矩阵.(2)若 A 2a + A a - 6a = 0 ,求 P -1AP ,并判断 A 是否相似于对角矩阵. 解析:(1)a ¹ 0 且 A a ¹ la . 故a与A a 线性无关. 则 r (a , A a ) = 2则 P 可逆.(2)法一:由已知有 A 2a = - A a + b a即 . 所以于是 AP = A (a , A a ) = ( A a , A 2a ) = ( A a , - A a + 6a )= (a , A a ) æ 0 6 ö,故有P -1 AP = æ 0 6 ö,! P 可逆 ç 1 -1÷ ç 1 -1÷ è ø è ø \可得A 与æ 0 6 ö相似,又 l -6 =(l + 3)"(l - 2)= 0 ç 1 -1÷ -1 l +1è øÞl 1 = -3,l 2 = 2\可得A 的特征值也为-3,2 于是 A 可相似对角化方法二 P -1AP 同方法一由 A 2a + A a - 6a = 0下面是证明 A 可相似对角化( A 2 + A - 6E )a = 0设( A + 3E )( A - 2E )a = 0由a ¹ 0得( A 2 + A - 6E )x = 0有非零解 故| ( A + 3E )( A - 2E ) |= 0得| A + 3E |= 0或| A - 2E |= 0若| ( A + 3E ) |¹ 0则有( A - 2E )a = 0故A a =2a 与题意矛盾故| A + 3E |= 0同理可得| A - 2E |= 0 于是 A 的特征值为l 1 = -3 l 2 = 2.A 有 2 个不同特征值故 A a 相似对角化。
2020年考研数学二真题及答案解析
2020考研数学二真题及解析完整版来源:文都教育一、选择题:1~8小题,第小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上.1.0x +→,下列无穷小量中最高阶是()A.()20e 1d x t t -⎰B.(30ln d x t t ⎰C.sin 20sin d x t t ⎰D.1cos 30sin d t t -⎰答案:D解析:A.()232001~3x x t x e dt t dt -=⎰⎰B.(35322002ln 1~5x x t dt t x =⎰⎰C.sin 223001sin ~3x x t dt t dt x =⎰⎰D.2311cos 32200sin ~x tdt t dt -⎰⎰25122025x t =52252152102x ⎛⎫== ⎪⎝⎭2.11ln |1|()(1)(2)x x e x f x e x -+=--第二类间断点个数()A.1B.2C.3D.4答案:C 解析:0,2,1,1x x x x ====-为间断点11110000ln |1|ln |1|ln |1|lim ()lim lim lim (1)(2)222x x x x x e x e x e x e f x e x x x ----→→→→+++===-=----0x =为可去间断点1122ln |1|lim ()lim (1)(2)x x x x e x f x e x -→→+==∞--2x =为第二类间断点1111ln |1|lim ()lim 0(1)(2)x x x x e x f x e x ---→→+==--1111ln |1|lim ()lim (1)(2)x x x x e x f x e x ++-→→+==∞--1x =为第二类间断点1111ln |1|lim ()lim (1)(2)x x x x e x f x e x -→-→-+==∞--1x =-为第二类间断点3.10(1)xx x x =-⎰A.2π4B.2π8C.π4D.π8答案:A 解析:10(1)xxx x -⎰令u x =,则原式=1220d (1)u uu u -⎰12020222021sin 2cos d cos 1224uu t u t t t t t πππ=-==⋅=⎰⎰令4.2()ln(1),3f x x x n =-≥时,()(0)n f =A.!2n n --B.!2n n -C.(2)!n n --D.(2)!n n -答案:A 解析:2()02()12(1)22(2)()(1)1(2)222()ln(1),3()[ln(1)]()[ln(1)]()[ln(1)](1)!(1)[ln(1)](1)(2)!(1)[ln(1)](1)(3)!(1)[ln(1)](1)()2;(n n n n n n n n nn n n n f x x x n f x C x x C x x C x x n x x n x x n x x x x x ------=-≥'''=-+-+----=----=----=-'''= ()212()) 2.(1)!(1)(2)!(1)(1)(3)!(1)()22(1)(1)2(1)!(0)2n n n n n n n n n n f x x n x x x x n f n --=----⋅---∴=⋅+⋅⋅⋅---∴=--5.关于函数0(,)00xy xy f x y x y y x ≠⎧⎪==⎨⎪=⎩给出以下结论①(0,0)1fx ∂=∂②2(0,0)1f ∂=∂∂③(,)(0,0)lim (,)0x y f x y →=④00lim lim (,)0y x f x y →→=正确的个数是A.4B.3C.2D.1答案:B解析:①0(0,0)(,0)(0,0)lim x f f x f x x→∂-=∂00lim1x x x→-==②0xy ≠时,f y x∂=∂0y =时,1f x∂=∂0x =时,0f x ∂=∂200(0,0)(0,)(0,0)1lim lim x x y y f y f f x y yy →→''-∂-==∂∂不存在.③(,)(0,0)(,)(0,0)0,lim (,)lim 0x y x y xy f x y xy →→≠==(,)(0,0)(,)(0,0)0,lim(,)lim 0x y x y y f x y x →→===(,)(0,0)(,)(0,0)0,lim(,)lim 0x y x y x f x y y →→===(,)(0,0)lim (,)0x y f x y →∴=④000,lim (,)lim 0x x xy f x y xy →→≠==000,lim (,)lim 0x x y f x y x →→===000,lim (,)lim x x x f x y y y →→===从而00limlim (,)0.y x f x y →→=6.设函数()f x 在区间[2,2]-上可导,且()()0f x f x '>>,则()A.(2)1f ->-B.(0)(1)f e f >-C.2(1)(1)f e f <-D.3(2)(1)f e f <-答案:B解析:由()()0f x f x '>>知()10()f x f x '->即(ln ())0f x x '->令()ln ()F x f x x =-,则()[-2,2]F x 在上单增因21-<-,所以(2)(1)F F -<-即ln (2)2ln (1)1f f -+<-+(1)(2)f e f ->-同理,10,(1)(0)F F -<-<即ln (1)1ln (0)f f -+<(0)(1)f e f >-7.设四阶矩阵()ij A a =不可逆,12a 的代数余子式1212340,,,,A αααα≠为矩阵A 的列向量组.*A 为A 的伴随矩阵.则方程组*A x =0的通解为().A.112233x k k k ααα=++,其中123,,k k k 为任意常数B.112234x k k k ααα=++,其中123,,k k k 为任意常数C.112334x k k k ααα=++,其中123,,k k k 为任意常数.D.122334x k k k ααα=++,其中123,,k k k 为任意常数答案:C解析:∵A 不可逆∴|A|=0∵120A ≠∴()3r A =∴*()1r A =∴*0A x =的基础解系有3个线性无关的解向量.∵*||0A A A E ==∴A 的每一列都是*0A x =的解又∵120A ≠∴134,,ααα线性无关∴*0A x =的通解为112334x k k k ααα=++8.设A 为3阶矩阵,12,αα为A 属于特征值1的线性无关的特征向量,3α为A 的属于特征值-1的特征向量,则满足1100010001P AP -⎛⎫ ⎪=- ⎪ ⎪⎝⎭的可逆矩阵P 可为().A.1323(,,)αααα+-B.1223(,,)αααα+-C.1333(,,)αααα+--D.1232(,,)αααα+--答案:D解析:1122,A A αααα==33A αα=-1100010001P AP -⎛⎫ ⎪=- ⎪ ⎪⎝⎭P ∴的1,3两列为1的线性无关的特征向量122,ααα+P 的第2列为A 的属于-1的特征向量3.α1232(,,)P αααα∴=+-二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.9.设()221ln 1x t y t t ⎧=+⎪⎨=++⎪⎩,则212t d y dx ==_______.解析:2221d 1d 11d d d d 1t y y t t t t x t x t t ⎛⎫+ ⎪+++⎝⎭==+1t=2222d d d 1d d d d d d d d d 1y y t y t t t x t x x tt ⎛⎫ ⎪⎛⎫⎝⎭- ⎪⎝⎭===+231t t +=-2212t dy dx ==-10.11301y dy x dx +=⎰⎰_____.解析:11301y dy x dx +⎰⎰22130013001320111x x dx x dy x dx dy x x dx =+=+=+⎰⎰⎰⎰⎰11332013320321(1)(1)312(1)332219x d x x =++=⋅+⎛⎫=- ⎪⎝⎭⎰11.设arctan[sin()]z xy x y =++,则(0,)|dz π=______.解析:d d d z z z x y x x∂∂=+∂∂2(0,π)1[cos()],π11[sin()]z z y x y x xy x y x∂∂=++=-∂+++∂2(0,π)1[cos()],11[sin()]z z x x y y xy x y y∂∂=++=-∂+++∂∴(0,π)(π1)d d z x y x ∂=--∂12.斜边长为2a 等腰直角三角形平板铅直地沉没在水中,且斜边与水面相齐,设重力加速度为g ,水密度为ρ,则该平板一侧所受的水压力为______解析:建立直角坐标系,如图所示0202303=2()d 2d 122313aaaF gx a x x g ax x x a g x x ga ρρρρ⋅-=-⎛⎫=- ⎪⎝⎭=⎰⎰13.设()y y x =满足20y y y '''++=,且(0)0,(0)1y y '==,则0()d y x x +∞=⎰_____解析:特征方程2210λλ++=121λλ∴==-12()()xy x C C x e -=+000()d ()2()d [()2()][(0)2(0)]1y x x y x y x xy x y x y y +∞+∞+∞'''=-+'=-+'=+=⎰⎰14.行列式011011110110aaa a --=--________解析:22242011011011011110110110*********11111000021214.00a a a a a a aa a a a a a a a aa a aa a a aa a a----=----+-+-==----=--=-三、解答题:15~23小题,共94分.请将解答写在答题纸指定位置上.解答写出文字说明、证明过程或演算步骤.15.(本题满分10分)求曲线1(0)(1)x x x y x x +=>+的斜渐近线方程.解析:1lim lim (1)xx x x y x x x x+→+∞→+∞=+lim (1)xxx x x →+∞=+ln ln(1)e lim e x xx x x +→+∞=(ln ln(1))lim e x x x x -+→+∞=11ln lim e x x x +-⋅+→+∞=1ln 11lim e x x x ⎛⎫- ⎪+⎝⎭→+∞=111lim e e x x x ⎛⎫⋅- ⎪-+⎝⎭→+∞==1lim (e )x y x -→+∞-11lim e (1)x x x x x x +-→+∞⎛⎫=- ⎪+⎝⎭1lim e (1)x x x x x x -→+∞⎛⎫=- ⎪+⎝⎭ln 11lim e e x x x x x -+→+∞⎛⎫=⋅- ⎪⎝⎭ln 111lim e e 1x x x x x +-+→+∞⎛⎫=- ⎪⎝⎭1lim e ln 11x x x x x -→+∞⎛⎫=⋅+ ⎪+⎝⎭1011ln 111lim e t t t t t+-→⋅++=1201ln 1lim e t t t t +-→++=1120ln(1)1lim e e 2t t t t +--→-+==∴曲线的斜渐近线方程为111e e 2y x --=+16.(本题满分10分)已知函数()f x 连续且100()lim 1,()(),'()x f x g x f xt dt g x x →==⎰求并证明'()0g x x =在处连续.解析:因为0()lim 1x f x x →=0(0)lim ()0x f f x →∴==所以10(0)(0)0g f dt ==⎰因为1001()()()x g x f xt dt xt u f u du x ==⎰⎰当0x ≠时,02()()()xxf x f u dug x x -'=⎰当0x =时,02000()()(0)1()1(0)limlim lim 022x x x x f u du g x g f x g x x x →→→-'====-⎰02(),0()1,02xf u du x xg x x ⎧⎪≠⎪'∴=⎨⎪=⎪⎩⎰又因为2000()lim ()lim ()x x x xf x g x f u du x →→'=-⎰020()()11lim 122x x f u du f x x x →⎡⎤⎢⎥=-=-=⎢⎥⎢⎥⎣⎦⎰()0g x x '∴=在处连续17.(本题满分10分)求二元函数33(,)8f x y x y xy =+-的极值解析:求一阶导可得22324f x y xf y x y∂=-∂∂=-∂令100601012f x x x f y y y ∂⎧⎧==⎪⎪=⎧∂⎪⎪⎨⎨⎨∂=⎩⎪⎪==⎪∂⎪⎩⎩可得求二阶导可得2222226148f f f x y x x y y ∂∂∂==-=∂∂∂当0,00. 1.0x y A B C -====-=时.20AC B -<故不是极值.当11612x y ==时1. 1. 4.A B C ==-=2110.10,612AC B A ⎛⎫->=> ⎪⎝⎭故且极小值极小值33111111,8661261212216f ⎛⎫⎛⎫⎛⎫=+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭18.已知222122()()1x x f x x f x x ++=+,求()f x ,并求直线12y =,32y =与函数()f x 所围图形绕x 轴旋转一周而成的旋转体的体积。
2020年全国硕士研究生入学统一考试数学二答案及解析
2020年全国硕士研究生招生考试 数学(二)试题参考答案及解析一、选择题1-8题,每小题4分,共32分。
下列每题给出的4个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上。
1. 当0x +®时,下列无穷小量中最高阶的是 ( ). (A )2(1)-⎰xt e dt (B)0ln(1+⎰x dt (C )sin 20sin ⎰xt dt (D)1cos 0-⎰【答案】(D )【解析】22320(e 1)11lim lim ,33++→→--==⎰xt x x x dte x x可知2301(e 1),0;3+-→⎰:x t dt x x5022ln(12limlim ,52++→→==⎰xx x dtxx可知5202ln(1,0;5+→⎰:xdt x xsin 22032000sin sin(sin x)cosx cos 1limlim lim ,333+++→→→⋅===⎰xx x x t dtx x x可知sin 2301sin ,0;3x t dt x x +→⎰:1cos 0500limlim lim x x x x +++-→→→===⎰可知1cos 50,0,-+→⎰:xx x对比可知1cos 0-⎰的阶数最高,故选(D ).2....第二类间断点的个数为( ) (A )1 (B )2 (C )3 (D )4 【答案】(C )【解析】()f x 可能的间断点有1,0,1,2x x x x =-===,由于1lim ln |1|x x ?+=-?,111lim0(1)(2)x x x ee x -?¹--,可知-1lim ()x f x ®=?,则1x =-为()f x 的第二类(无穷)间断点;111lim ()lim(2)2x x x e x f x x x e-==--,又由于()f x 在0x =处无定义,可知0x =为()f x 的第一类(可去)间断点;1111ln(1)lim ,lim 0(1)(2)x x x x x e e x ++-+=+ス--,则1lim ()x f x +®=?,则1x =为()f x 的第二类(无穷)间断点;11221ln(1)lim,lim021x x xx e x x e -+=ス--,则2lim ()x f x ®=?,则2x =为()f x 的第二类(无穷)间断点.综上所述,()f x 的第二类间断点有3个,故选(C ).3.1=ò( ).(A )24p (B )28p (C )4p (D )8p【答案】(A )【解析】11002=2112002(arcsin (arcsin 4p ===ò,故选(A ).4.设2()()ln(1),...,(0)n f x x x f =-=( ).(A )!2n n --(B )!2n n -(C )(2)!n n --(D )(2)!n n -【答案】(A ).【解析】由ln(1)x -的麦克劳林公式可知242232()()()22n n n n x x x x f x x x o x x o x n n ++骣骣鼢珑鼢=----+=-++++珑鼢鼢珑桫桫L Ln x 的系数为12n --,则()!(0)2n n f n =--,故选(A ).5.关于函数...给出以下结论①(0,0)1fx ¶=¶①2(0,0)1f x y ¶=抖①(,)(0,0)lim (,)0x y f x y ®=①00limlim (,)0y x f x y =正确的个数是( )(A )4 (B )3 (C )2 (D )1 【答案】(B )【解析】(,0)f x x =可知(0,0)1fx ¶=¶,故①正确.不论0,0xy x?还是0y =时,都有(,)(0,0)lim (,)0x y f x y ®=,故①正确.lim (,)0x f x y ®=,进而00limlim (,)0yxf x y =,可知①正确,当0y =时,00(,0)(,0)(,0)lim lim 1x x x f x x f x x x xf x x x D 瓺?+D -+D -¢===D D当0,0y x 构时,00(,)(,)()(,)lim lim x x x f x x y f x y x x y xyf x y yx x D 瓺?+D -+D -¢===D D当0,0y x?时,00(,)(0,)(0,)lim limx x x f x y f y x y yf y x x D 瓺?D -D ?¢==D D 不存在,则(0,)(0,0)(0,0)limx x xy y f y f f y®ⅱ-ⅱ=不存在,故①错误,故正确的有3个,选(B )6.设函数()f x 在区间[2,2]-上可导,。
2020考研数学二解析
D
x
∫ (20)设函数 f (x) = x et2 dx 1 (I)证:存在 ξ ∈ (1,2) ,f (ξ ) = (2 − ξ )eξ2 ; (II)证:存在η ∈ (1,2) ,f (2) = ln 2 ⋅ηeη2 .
2020 数学(二)真题 第 8 页 共 11 页
(21)设函数 f (x) 可导,且 f ′(x) > 0 ,曲线 y = f (x)(x 0) 经过坐标原点 O ,其 上任意一点 M 处的切线与 x 轴交于 T ,又 MP⊥x 轴于点 P ,已知由曲线 y = f (x) 直线 MP 以及 x 轴所围图形的面积与 ∆MTP 的面积之比恒为 3:2 , 求满足上述条件的曲线的方程.
∫ ∫ 【解析】A.
x (et2
0
−1) dt
x t 2 dt = x3 ;
0
3∫ B.xln( Nhomakorabea +
0
t3
)
dt
t
3 2
dt
= 2 x 52 ; 5
∫ ∫ C.
sin x sin t 2
0
dt
x t 2 dt = 1 x3 ;
0
3
D.
1−cos x
∫0
∫ sin3 t dt
1 x2 3
2 t2
+
y22
+
4 y32
+ 2 y1 y2
.
x3 y3
(I)求 a 的值;
(II)求可逆矩阵 P .
2020 数学(二)真题 第 10 页 共 11 页
(23)设 A 为二阶矩阵,P = (α ,Aα) ,其中 α 是非零向量且不是 A 的特征向量: (I)证明 P 为可逆矩阵; (II)若 A2α + Aα − 6α = 0 ,求 P −1AP ,并判断 A 是否相似于对角矩阵.
2020年全国研究生考试数学(二)真题+答案详解
(1- x)n
(1- x)n -1
2
(1- x)n -2
\ f (n) (0) = - n! . n-2
ìxy
5.关于函数
f
(x,
y)
=
ï í
x
ï î
y
xy ¹ 0 y = 0 给出以下结论 x=0
¶f
①
=1
¶x (0,0)
¶2 f
②
=1
¶x¶y
(0,0)
③ lim f ( x, y) = 0
( x, y )®(0,0)
ò = 1
1
1 (x3 + 1) 2 d (x3 + 1)
30
=
1
×
2
(x3
+ 1)
3 2
1
33 0
=
2
æ ç
3
22
ö - 1÷
9è ø
11.
|(0,p)= .
设 z = arctan[xy + sin(x + y)] ,则 dz
解析:
dz = ¶z dx + ¶z dy
¶x ¶x
¶z =
1
[ y + cos(x + y)], ¶z = π- 1
a 0 -1 1
14.行列式 0
a
1 -1 =
-1 1 a 0
1 -1 0 a
解析:
a 0 -1 1 a 0 -1 1
0 a 1 -1 0 a 1 -1 =
-1 1 a 0 -1 1 a 0
1 -1 0 a 0 0 a a
0 a -1 + a 2 1
a -1+ a 2 1
2020年全国硕士研究生招生考试(数学二)--答案解析
2020年全国硕士研究生招生考试(数学二)参考答案及解析1.D解析:A 选项可知2220((1))'1~xt x e dt e x -=-⎰;B 选项32(ln(1)'ln(1~xdt x =⎰; C 选项sin 2220(sin )'sin cos ~xt dt x x x =⎰;D 选项1-cos 40()'sin ~=⎰. 2.C解析:11ln(1)()(1)(2)x xe xf x e x -+=--,则可疑点为1x =,1x =-,0x =,2x =, 1lim ()x f x +→=-∞,1lim ()x f x +→-=-∞,2lim ()x f x →=∞,+100lim()lim ()2x x e f x f x --→→==-, 故选C3.A解析:220arcsin =4x π=⎰. 4.A解析:2()ln(1)f x x x =- 5.B6.B由题意得()1()f x f x '>,从而0011()d 1d ()f x x x f x --'>⎰⎰,即(0)ln 1(1)f f >-,故(0)e (1)f f >-. 7.C解析:由于A 是不可逆的,所以()4r <A ,又由于120≠A ,所以()3r ≥A ,故()3r =A ,所以*()1r =A ,所以*=A x 0的基础解系中有3个向量,又因为120≠A ,所以1α,3α,4α线性无关,所以解为123134k k k +=+αααx ,故选C . 8.D解析:由于1α,2α是A 的属于1的特征向量,3α是A 的属于1-的特征向量,故3α-也是A 的属于1-的特征向量,12+αα是A 的属于1的特征向量,故选D .9.解析:1dydx t=,22d ydx=221td ydx=⇒=12解析:()21113/2300011122xdy dx x==+=⎰⎰⎰11.(1)dx dyπ--解析:2(cos())(cos())1[sin()]y x y dx x x y dydzxy x y+++++=+++(0,)(1)dz dx dyππ⇒=--12.313ega解析31()[()]3ag a y y y dy gaρρ---=⎰13.1解析由()()200=00=1y y yy y'''++='⎧⎨⎩,得()xy x xe-=所以+()d1y x x∞=⎰14.242aa-011011110110aaaa----00011=00110a aaa aa--411100=0(1)11100a aa a a aa a a+-⨯+---241011+00=0(1)11100a aa a a aa a a+-⨯+---24=4a a-+.15.解:()11lim lim lim lim1111xxx xx x x xy x xkx x exx→+∞→+∞→+∞→+∞⎛⎫=====⎪+⎝⎭+⎛⎫+⎪⎝⎭()()1ln11222111 lim lim lim1lim ln1111111111lim ln1lim22xxxxxx x x xx xx xb y kx x x e x xe e e xxx xe x x e x e+++→+∞→+∞→+∞→+∞→+∞→+∞⎡⎤⎡⎤⎛⎫=-=-=-=+⎢⎥⎢⎥ ⎪+⎝⎭+⎢⎥⎣⎦⎣⎦⎡⎤⎛⎫=-+=⋅=⎪⎢⎥⎝⎭⎣⎦16.解:当0x ≠时,令u xt =,则()()()11xg x f xt dt f u du x ==⎰⎰;当0x =时,()()00g f =,再由()0lim1x f x x→=及函数连续得()()00lim 0x f f x →==,从而()00g =.从而当0x ≠时,()()()'02xxf x f t dtg x x-=⎰.又()()()()()'201lim limlim 0022xx x x f t dt g x g f x g x xx →→→-====-⎰,从而得()()()02',01,02x xf x f t dtx x g x x ⎧-⎪≠⎪=⎨⎪=⎪⎩⎰.又()()()()()()''002200011lim limlim 1022xxx x x xf x f t dt f t dt f x g x g x x x →→→⎡⎤-⎢⎥==-=-==⎢⎥⎢⎥⎣⎦⎰⎰,从而()'g x 在0x =处连续.16. 解:对函数关于,x y 分别求导,令并两偏导数同时为零,得'2'230240x x f x y f y x ⎧=-=⎪⎨=-=⎪⎩,解得00x y =⎧⎨=⎩或16112x y ⎧=⎪⎪⎨⎪=⎪⎩.又''''''6,1,48xx xy yy f x f f y ==-=,在()0,0处,210AC B -=-<,从而函数在此处不取极值;在11,612⎛⎫ ⎪⎝⎭处,230,10AC B A -=>=>,从而函数在此处取极小值,且111,612216f ⎛⎫=- ⎪⎝⎭.综上函数的极值为111,612216f ⎛⎫=- ⎪⎝⎭.18解:由任意x 均有()2212f x x f x ⎛⎫+= ⎪⎝⎭,则22121112f f x x x +⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭两式消去1f x ⎛⎫ ⎪⎝⎭,可解得()f x =,从而可得x =可得所求()22233112266222sin 1cos 26V xydy tdt t dt πππππππππ====-=⎰⎰⎰⎰19解:d Dx y 2sec 40sec 2sec 40sec 340d d cos d sec d 3sec d 2rr r r r rπθθπθθπθθθθθθ===⎰⎰⎰⎰⎰其中,34040244034403440340sec d sec dtan sec tan sec (sec 1)d sec d sec d sec d ln sec tan sec d 1)11)2πππππππππθθθθθθθθθθθθθθθθθθθ==--=+=++=+=⎰⎰⎰⎰⎰⎰⎰3d 1)4Dx y =20(1)证:令2()()(2)e x F x f x x =--,则221(1)e<0,(2)e 0t F F dt =-=>⎰.由零点定理,(1,2)ξ∃∈使()0F ξ= 即2()(2)e f ξξξ=-.(2)令()ln g x x =,由柯西中值定理,(1,2)η∃∈使(2)(1)()(2)(1)()f f fg g g ηη'-='-即2(2)e 1ln 2f ηη=故2(2)ln 2e f ηη=.21. 设点M 的坐标为),(y x ,(0,0>>y x ),则)()(),(),(x y x y TP x y TP PM x y PM '='==,由已知,有23)(||21=⋅⎰x dtx y TP PM ,化简得0)123(22='-+''y y y ,为可降阶微分方程代入初始解0)0(=y ,得所求曲线方程为21Cx y =(C 为任意大于零的常数).22.(1)设1=11a a a a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A 110=110004⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦B 因为T=B P AP 所以()=()r r B A 由于()=2r B 所以()=2r A故2=(2+1)(1)0a a A -= 解得1(1)2a a =-=舍去 (2)22321231233(,,)()()224x x f x x x x x x =--+- 22123123316(,,)()()43g y y y y y y =++令3211223322=22x x x y y x x y x y ⎧--+⎪⎪⎨-⎪⎪=⎩,则1201001P 轾犏-犏犏犏=犏犏犏-犏臌. 23.(1)由于(,)P αA α=,0α¹,且αA αl ¹ 则α与A α不成比例,且0α¹,故P 可逆. (2)2(,)(,)(,6)AP A αA αA αA αA αA αα===-+即0611AP P 轾犏=犏-臌故10611P AP -轾犏=犏-臌所以0611A B 轾犏=犏-臌: 6==(3)(2)11B E l l l l l--+---故12l =,23l =-,故B 可以有两个不同的特征值,可以相似对角化,因此A可以相似对角化.。
2020年全国硕士研究生入学统一考试(高等数学二)真题及答案解析
x = −1: lim f (x) = ∞ ,则 x = −1 为第二类间断点; x→−1
1
1
x=
0 : lim x→0
f (x) =
lim
x→0
e1− (ex
x ln(1+ x) −1)(x − 2)
=
lim e1−x ⋅ x x→0 x(x − 2)
=
−1 2e
,则 x = 0 为可 = ∞ ,则 x = 1 为第二类间断点; x→1+
1
2 arcsin
xd arcsin
x
0 x(1− x)
0 1− ( x)2
0
=
(arcsin
x= )2 |10
(= π )2 2
π2 4
故应选(A)
(4)已知函数= f (x) x2 ln(1− x) ,当 n ≥ 3 时, f (n) (0) = ( )
(A) − n! n−2
【答案】A 【解析】
(D)
sin3 tdt= , m
3= , n
2 ,则 n(m +1) =5
0
2
故应选(D)
1
(2)函数
f
(x)
=
e x−1 ln |1+ x | (ex −1)(x − 2)
的第二类间断点的个数为(
)
(A)1
(B)2
(C)3
(D)4
【答案】C
【解析】由 f (x) 的表达式可知, f (x) 共有四个间断点,分别为
(B) n! n−2
(C) − (n − 2)! n
(D) (n − 2)! n
由 ln(1+ x) =x − x2 + x3 − + (−1)n−1 xn + ο (xn ) 2 3 n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年全国硕士研究生招生考试
数学(二)
(科目代码:301)
考生注意事项
1、答题前,考生须在试题册指定位置上填写考生编号和考生姓名;在答题卡指定位置上填写报考单位,考生姓名和考生编号,并涂写考生编号信息点。
2、选择题的答案必须涂写在答题卡相应题号和选项上,非选择题的答案必须书写在答题卡指定位置的边框区域内。
超出答题区域书写的答案无效;在草稿纸、试题册上答案无效。
3、填(书)写必须使用黑色字迹签字笔书写,字迹工整、笔迹清楚;涂写部分必须使用2B铅笔填涂。
4、考试结束,将答题卡和试题册按规定交回。