上海市高一第一学期数学期末试卷

合集下载

上海市高一上学期期末考试数学试卷含答案

上海市高一上学期期末考试数学试卷含答案

上海市高一年级第一学期数学学科期末考试卷(考试时间:90分钟 满分:150分 )一、填空题(每题4分,共56分)1.若全集R U =,{}{}5|,2|>=>=x x B x x A ,则=B C A U _____________. 2.已知1>a ,则12-+a a 的最小值为__________. 3.幂函数y =f (x )的图像经过点⎪⎭⎫ ⎝⎛2,81,则=)(x f ____________. 4. 函数()xx x f 4-=的零点个数为_________. 5.已知532sin =⎪⎭⎫⎝⎛-απ,则()απ-cos =______________. 6.函数()log (3)1a f x x =+-(0 1)a a >≠且,的图像恒过定点A ,则A 点坐标是 . 7.已知31cos =α,且παπ32<<,则2sin α= _____.8.若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,则使得0)(<x f的x 的取值范围是__________. 9.若关于x 的不等式0342≤++ax ax 的解集为空集,则实数a 的取值范围是______.10.已知(21)41()log 1a a x a x f x xx -+<⎧=⎨≥⎩ 是(,)-∞+∞上的减函数,那 么a 的取值范围 . 11. 若不等式012>-+-k kx x 对()2,1∈x 恒成立,则实数k 的取值范围是_______.12.设非空集合{|}S x m x l =≤≤满足:当x S ∈时,有2x S ∈. 给出如下三个命题:①若1m =,则{1}S =;②若12m =-,则114l ≤≤;③若12l =,则0m ≤;④若1l =题的是__________.13.如图所示,已知函数()2log 4y x =图像上的两点 ,A B 和函数2log y x =上的点C ,线段AC 平行于y 轴,三角形ABC 为正三角形时点B 的坐标为(),p q ,则22qp +的值为14.若点A 、B 同时满足以下两个条件:(1)点A 、B 都在函数()y f x =上;(2)点A 、B 关于原点对称; 则称点对(),A B 是函数()f x 的一个“姐妹点对”.已知函数()()()24020x x f x x xx -≥⎧⎪=⎨-<⎪⎩,则函数()f x 的“姐妹点对”是 . 二、选择题(每题5分,共20分)15.“3log 2<x ”是“1218>⎪⎭⎫⎝⎛-x ”的……………………………………( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既非充分也非必要条件16.若2{|21},{|}M x y x N y y x ==+==-,则集合N M ,两的关系是( ) A .{(1,1)}MN =-B .M N =∅C .M N ⊆D .N M ⊆17.已知()f x 是R 上的偶函数, 当0x >时()f x 为增函数, 若120,0x x <> 且12||||x x <, 则下列不等式成立的是…………………………………( ) A .12()()f x f x ->- B .12()()f x f x -<- C .12()()f x f x ->- D .12()()f x f x -<-18.函数()2()0f x ax bx c a =++≠的图像关于直线2bx a=-对称.据此可以推测,对 任意的非零实数,,,,,a b c m n p ,关于x 的方程[]2()()0m f x nf x p ++=的解集都不可能是………………………………………………………………( ) A .{}1,2 B .{}1,4 C .{}1,2,3,4 D .{}1,4,16,64三、解答题(本大题满分74分,共有5题,解答下列各题必须在答题卷的相应编号规定区域 内写出必要的步骤)19.(本题满分12分,第1小题6分,第2小题6分 ) 记关于x 的不等式01x ax -≤+的解集为P ,不等式11x -≤的解集为Q .(1)若3a =,求出集合P ; (2)若Q P ,求实数a 的取值范围.20.(本题满分14分,共有2个小题,第1小题7分,第2小题7分 )某种产品,当年产量在150吨至250吨之间时,其生产的总成本y (万元)与年产量x (吨)之间的函数关系可以近似地表示为230400010x y x =-+. (1)当该产品的年产量为多少时,每吨的平均成本P 最低,并求每吨最低成本;(2)若每吨平均出厂价为16万元,求年生产多少吨时可获得最大利润,并求出最大年利润Q .21.(本题满分14分,第1小题5分,第2小题9分 )关于x 的方程)lg()3lg()1lg(x a x x -=-+-,其中a 是实数. (1)当2a =时,解上述方程;(2)根据a 的不同取值,讨论上述方程的实数解的个数.22.(本题满分16分,第1小题4分,第2小题5分,第3小题7分) 设函数)10()1()(≠>--=-a a a k a x f xx且是定义域为R 的奇函数.(1)求k 值;(2)若()10f <,试判断函数单调性并求使不等式0)4()(2<-++x f tx x f 恒成立的t 的取值范围; (3)若()312f =,且()x mf aa x g xx 2)(22-+=-在[)1,+∞上的最小值为2-,求m 的值.23.(本题满分18分,第1小题4分,第2小题6分,第3小题8分)已知集合M 是满足下列性质的函数()x f 的全体:在定义域内存在0x ,使得()()()1100f x f x f +=+成立.(1)函数()xx f 1=是否属于集合M ?说明理由; (2)设函数()M x ax f ∈+=1lg 2,求a 的取值范围;(3)设函数xy 2=图像与函数x y -=的图像有交点,证明:函数()M x x f x∈+=22.高一年级数学试卷答案一、填空题(每题4分,共56分)1.若全集R U =,{}{}5|,2|>=>=x x B x x A ,则=B C A U _____________.]5,2( 2.已知1>a ,则12-+a a 的最小值为__________.3.幂函数y =f (x )的图像经过点⎪⎭⎫⎝⎛2,81,则=)(x f ____________.31-x4. 函数()xx x f 4-=的零点个数为_________.2 5.已知532sin =⎪⎭⎫⎝⎛-απ,则()απ-cos =______________.35-6.函数()log (3)1a f x x =+-(0 1)a a >≠且,的图像恒过定点A ,则A 点坐标是_(2 1)--,_.7.已知31cos =α,且παπ32<<,则2sin α= _____.33-8.若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,则使得0)(<x f的x 的取值范围是__________.)2,2(-9.若关于x 的不等式0342≤++ax ax 的解集为空集,则实数a 的取值范围是______. ⎪⎭⎫⎢⎣⎡43,010.已知(21)41()log 1a a x a x f x xx -+<⎧=⎨≥⎩ 是(,)-∞+∞上的减函数,那 么a 的取值范围__11[,)62__. 11. 若不等式012>-+-k kx x 对()2,1∈x 恒成立,则实数k 的取值范围是_______.(2]-∞,12.设非空集合{|}S x m x l =≤≤满足:当x S ∈时,有2x S ∈. 给出如下三个命题:①若1m =,则{1}S =;②若12m =-,则114l ≤≤;③若12l =,则02m ≤≤;④若1l =,则10m -≤≤或1m =.其中正确命题的是__________. ①②③④13..()()()1,3,1,3-- 二、选择题(每题5分,共20分)15.A 16.D 17.B 18.D三、解答题:(本大题满分74分,共有5题,解答下列各题必须在答题卷的相应编号规定区域内写出必要的步骤)19.(本题满分12分,第1小题6分,第2小题6分 ) 解(1)若3a =,由不等式301x x -≤+,即(3)(1)0x x -+≤且1x ≠-,……… 4分 解得集合{|13,}.P x x x R =-<≤∈ ……………………………… 6分 (2)由不等式|1|1x -≤,解得{|02,}.Q x x x R =≤≤∈ …………………8分由不等式01x ax -≤+,得()(1)0x a x -+≤且1x ≠-,…………………9分 当1a >-时,{|1,}P x x a x R =-<≤∈, 又因为Q P ⊆,所以2a ≥;当1a <-时,{|1,}P x a x x R =≤<-∈,Q P 不成立;当1a =-时,P =∅,QP 也不成立.因此,求实数a 的取值范围是[)2,.+∞(可以不讨论直接判断得出)… 12分20.(本题满分14分,共有2个小题,第1小题7分,第2小题7分 ) 解(1)()400030,150,25010x P x x=+-∈………………………………3分3010≥=……………………………………………5分()4000200150,25010x x x=⇒=∈ ……………………………6分 当年产量为200吨时,每吨的平均成本最低为10万元.………7分(2)()216304000,150,25010x Q x x x =-+-∈………………………10分 ()212301290129010x =--+≤ ……………………………12分 ()230150,250x =∈……………………………………………13分 生产230吨时,最大年利润1290Q =万元.…………………14分 21.(本题满分14分,第1小题5分,第2小题9分 )解(1)1030(1)(3)2x x x x x ->⎧⎪->⎨⎪--=-⎩…………………………………………3分x ⇒=2分 (2)原方程可化为1030(1)(3)x x x x a x ->⎧⎪->⎨⎪--=-⎩,……………………………6分即21353x x x a<<⎧⎨-+-=⎩,………………………………………………8分 作出253(13)y x x x =-+-<<及y a =的图像. 当1x =时1y =,当3x =时3y =,当52x =时134y =.由图像知: ① 413>a 或1≤a 时,两曲线无公共点,故原方程无解;………………10分 ② 当131≤<a 或413=a 时,两曲线有一个公共点,故原方程有一个实数解;…12分③ 当4133<<a 时,两曲线有两个公共点,故原方程有两个实数解.…………14分22.(本题满分16分,第1小题4分,第2小题5分,第3小题7分) 解(1)∵()f x 是定义域为R 的奇函数,∴()()001102f k k =⇒--=⇒= ……………………………… 4分 (2)),10()(≠>-=-a a a a x f xx且1(1)0,0,0,1,01f a a a a a<∴-<>≠∴<<又且……………………………5分x y a =在R 上递减,x y a -=在R 上递增,故()f x 在R 上单调递减. …6分不等式化为)4()(2-<+x f tx x f 04)1(,422>+-+->+∴x t x x tx x即恒成立,………………………… 8分016)1(2<--=∆∴t ,解得53<<-t .………………………………… 9分(3)∵()312f =,231=-∴a a ,即,02322=--a a122a a ∴==-或(舍去)………………………………………………………10分 ∴()()22222)(2222+--+=-+=---x x x x x xm a a x mf a ax g .令xxaa x f t --==)(由(1)可知xxaa x f --=)(为增函数∵1x ≥,∴()312t f ≥=……………12分 令h (t )=t 2-2mt +2=(t -m )2+2-m 2 (32t ≥)……………………………13分 若32m ≥,当t =m 时,h (t )min =2-m 2=-2,∴m =2……………… 14分 若32m <,当t =32时,h (t )min =174-3m =-2,解得m =2512>32,舍去…15分 综上可知m =2. ……………………………………………16分23.(本题满分18分,第1小题4分,第2小题6分,第3小题8分) 解(1)若()xx f 1=M ∈,则在定义域内存在0x , 使得01111102000=++⇒+=+x x x x , ∵方程01020=++x x 无解,∴()xx f 1=M ∉.……………………… 4分 ()()()()2222(2)lglg lg lg 2221011211a a a a f x M a x ax a x x x =∈⇒=+⇒-++-=++++………………………………………………………………………………6分 当2=a 时,21-=x ;……………………………………………………7分 当2≠a 时,由0≥∆,得[)(]53,22,530462+⋃-∈⇒≤+-a a a ,……9分∴[]53,53+-∈a . ………………………………………………10分()()()()()00002112000000311212322(1)221x x x x f x f x f x x x x +-⎡⎤+--=++---=+-=+-⎣⎦(),……………………………………………………………………………………13分又∵函数xy 2=图像与函数x y -=的图像有交点,设交点的横坐标为a ,则()01202010=-+⇒=+-x a x a,其中10+=a x ,…………………16分∴()()()1100f x f x f +=+,即()M x x f x∈+=22 .…………………18分。

沪教版高一上期末数学试卷1(附答案及详细解析)

沪教版高一上期末数学试卷1(附答案及详细解析)

沪教版高一(上)期末数学试卷一、填空题1.(3分)弧度数为2的角的终边落在第象限.2.(3分)若幂函数f(x)=xα图象过点,则f(3)=.3.(3分)已知=2,则tanα的值为.4.(3分)=.5.(3分)已知lg2=a,10b=3,则log125=.(用a、b表示)6.(3分)若tanα=;则cos(2α+)=.7.(3分)已知函数f(x)=的值域为R,则实数a的取值范围是.8.(3分)已知θ∈(0,),2sin2θ=1+cos2θ,则tanθ=.9.(3分)已知α∈(﹣,0),sin(π﹣2α)=﹣,则sinα﹣cosα=10.(3分)已知锐角α,β满足sin(2α+β)=3sinβ,则tan(α+β)cotα=.11.(3分)已知α,β∈(0,π),且tan(α﹣β)=,tanβ=﹣,2α﹣β的值为.12.(3分)已知f(x)是定义域为R的单调函数,且对任意实数x,都有f[f(x)+]=,则f (log2sin)=.二、选择题13.(3分)“sinα<0”是“α为第三、四象限角”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件14.(3分)A为三角形ABC的一个内角,若sin A+cos A=,则这个三角形的形状为()A.锐角三角形B.钝角三角形C.等腰直角三角形D.等腰三角形15.(3分)已知函数f(x)=log a(6﹣ax)在x∈[2,3)上为减函数,则a的取值范围是()A.(1,2)B.(1,2]C.(1,3)D.(1,3]16.(3分)设x1,x2分别是f(x)=x﹣a﹣x与g(x)=x log a x﹣1(a>1)的零点,则x1+9x2的取值范围是()A.[8,+∞)B.(10,+∞)C.[6,+∞)D.(8,+∞)三、解答题17.已知α∈(0,),β∈(0,),sinα=,cos(α+β)=﹣.(1)求tan2α的值;(2)求cosβ的值.18.已知函数f(x)=3x﹣a•3﹣x,其中a为实常数;(1)若f(0)=7,解关于x的方程f(x)=5;(2)判断函数f(x)的奇偶性,并说明理由.19.高境镇要修建一个扇形绿化区域,其周长为400m,所在圆的半径为r,扇形的圆心角的弧度数为θ,θ∈(0,2π).(1)求绿化区域面积S关于r的函数关系式,并指数r的取值范围:(2)所在圆的半径为r取何值时,才能使绿化区域的面积S最大,并求出此最大值.20.已知函数y=f(x)的定义域为(1,+∞),对于定义域内的任意实数x,有f(2x)=2f(x)成立,且x∈(1,2]时,f(x)=log2x.(1)当x∈(1,23]时,求函数y=f(x)的最大值;(2)当x∈(1,23.7]时,求函数y=f(x)的最大值;(3)已知f(1200)=f(b)(实数b>1),求实数b的最小值.21.已知函数f(x)=log a(x+).x∈(1,+∞),a>0且a≠1.(1)若a为整数,且f()=2,试确定一个满足条件的a的值;(2)设y=f(x)的反函数为y=f﹣1(x),若f﹣1(n)<(n∈N*),试确定a的取值范围;(3)若a=2,此时y=f(x)的反函数为y=f﹣1(x),令g(x)=,若对一切实数x1,x2,x3,不等式g(x1)+g(x2)>g(x3)恒成立,试确定实数k的取值范围.沪教版高一(上)期末数学试卷参考答案与试题解析一、填空题1.(3分)弧度数为2的角的终边落在第二象限.【解答】解:根据题意,<2<π,则弧度数为2的角的终边落在第二象限,故答案为:二2.(3分)若幂函数f(x)=xα图象过点,则f(3)=.【解答】解:幂函数f(x)=xα图象过点,则2α=,解得α=﹣1,∴f(x)=x﹣1;∴f(3)=3﹣1=.故答案为:.3.(3分)已知=2,则tanα的值为5.【解答】解:∵==2,∴tanα=5.故答案为:5.4.(3分)=﹣.【解答】解:=cos=﹣cos=﹣,故答案为:.5.(3分)已知lg2=a,10b=3,则log125=.(用a、b表示)【解答】解:∵10b=3,∴lg3=b,又lg2=a,∴log125=.故答案为:.6.(3分)若tanα=;则cos(2α+)=﹣..【解答】解:∵tanα=,∴cos(2α+)=﹣sin2α====﹣.故答案为:﹣.7.(3分)已知函数f(x)=的值域为R,则实数a的取值范围是[0,).【解答】解:当x≥1时,f(x)=2x﹣1≥1,当x<1时,f(x)=(1﹣2a)x+3a,∵函数f(x)=的值域为R,∴(1﹣2a)x+3a必须到﹣∞,即满足:,解得0≤a<,故答案为:[0,).8.(3分)已知θ∈(0,),2sin2θ=1+cos2θ,则tanθ=.【解答】解:∵θ∈(0,),∴cosθ>0,∵2sin2θ=1+cos2θ,∴4sinθcosθ=2cos2θ,可得tanθ=.故答案为:.9.(3分)已知α∈(﹣,0),sin(π﹣2α)=﹣,则sinα﹣cosα=﹣【解答】解:∵α∈(﹣,0),sin(π﹣2α)=sin2α=﹣,∴sinα<0,cosα>0,∴sinα﹣cosα=﹣=﹣=﹣=﹣.故答案为:﹣.10.(3分)已知锐角α,β满足sin(2α+β)=3sinβ,则tan(α+β)cotα=2.【解答】解:sin(2α+β)=3sinβ,sin(α+β)cosα+cos(α+β)sinα=3[sin(α+β)cosα﹣cos(α+β)sinα],2sin(α+β)cosα=4cos(α+β)sinα,又α、β为锐角,所以sinα≠0,cos(α+β)≠0,所以tan(α+β)cotα==2.故答案为:2.11.(3分)已知α,β∈(0,π),且tan(α﹣β)=,tanβ=﹣,2α﹣β的值为﹣.【解答】解:由tan(α﹣β)=,tanβ=﹣,∴tanα=tan[(α﹣β)+β]===,由此可得tan(2α﹣β)=tan[(α﹣β)+α]===.又α∈(0,π),且tanα=<1,∴0<α<,又β∈(0,π),tanβ=﹣<0,∴<β<π,因此2α﹣β∈(﹣π,0),可得﹣π<2α﹣β<0,所以2α﹣β=﹣.故答案为:﹣.12.(3分)已知f(x)是定义域为R的单调函数,且对任意实数x,都有f[f(x)+]=,则f (log2sin)=﹣.【解答】解:根据题意,f(x)是定义域为R的单调函数,且对任意实数x都有f[f(x)+]=,则f(x)+为常数,设f(x)+=t,则f(x)=﹣+t,又由f[f(x)+]=,即f(t)=﹣+t=,解可得t=1,则f(x)=﹣+1,∵sin=,则f(log2)=f(﹣1)=﹣+1=﹣;故答案为:﹣.二、选择题13.(3分)“sinα<0”是“α为第三、四象限角”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解答】解:由α为第三、四象限角,可得sinα<0.反之不成立,例如.故选:B.14.(3分)A为三角形ABC的一个内角,若sin A+cos A=,则这个三角形的形状为()A.锐角三角形B.钝角三角形C.等腰直角三角形D.等腰三角形【解答】解:∵sin A+cos A=,∴两边平方得(sin A+cos A)2=,即sin2A+2sin A cos A+cos2A=,∵sin2A+cos2A=1,∴1+2sin A cos A=,解得sin A cos A=(﹣1)=﹣<0,∵A∈(0,π)且sin A cos A<0,∴A∈(,π),可得△ABC是钝角三角形故选:B.15.(3分)已知函数f(x)=log a(6﹣ax)在x∈[2,3)上为减函数,则a的取值范围是()A.(1,2)B.(1,2]C.(1,3)D.(1,3]【解答】解:若函数f(x)=log a(6﹣ax)在x∈[2,3)上为减函数,则解得:a∈(1,2].故选:B.16.(3分)设x1,x2分别是f(x)=x﹣a﹣x与g(x)=x log a x﹣1(a>1)的零点,则x1+9x2的取值范围是()A.[8,+∞)B.(10,+∞)C.[6,+∞)D.(8,+∞)【解答】解:由设x1,x2分别是函数f(x)=x﹣a﹣x和g(x)=x log a x﹣1的零点(其中a>1),可知x1是方程a x=的解;x2是方程=log a x的解;则x1,x2分别为函数y=的图象与函数y=y=a x和函数y=log a x的图象交点的横坐标;设交点分别为A(x1,),B(x2,)由a>1,知0<x1<1;x2>1;又因为y=a x和y=log a x以及y=的图象均关于直线y=x对称,所以两交点一定关于y=x对称,由于点A(x1,),关于直线y=x的对称点坐标为(,x1),所以x1=,有x1x2=1,而x1≠x2则x 1+9x2=x1+x2+8x2≥2+8x2>2+8=10,即x1+9x2∈(10,+∞)故选:B.三、解答题17.已知α∈(0,),β∈(0,),sinα=,cos(α+β)=﹣.(1)求tan2α的值;(2)求cosβ的值.【解答】解:(1)∵α∈(0,),sinα=,∴cosα==,tanα==4,∴tan2α===﹣.(2)∵α∈(0,),β∈(0,),sinα=,cos(α+β)=﹣,∴α+β∈(0,π),sin(α+β)==,∴cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=(﹣)×+×=.18.已知函数f(x)=3x﹣a•3﹣x,其中a为实常数;(1)若f(0)=7,解关于x的方程f(x)=5;(2)判断函数f(x)的奇偶性,并说明理由.【解答】解:(1)由f(0)=7,即1﹣a=7,可得a=﹣6,那么3x+6•3﹣x=5,∴(3x﹣2)(3x﹣3)=0,解得x=1或x=log32.(2)由f(﹣x)=﹣a•3x+3﹣x,当a=﹣1时,可得f(﹣x)=f(x)此时f(x)是偶函数,当a=1时,f(﹣x)=﹣f(x)此时f(x)是奇函数,当a≠±1时,f(x)是非奇非偶函数.19.高境镇要修建一个扇形绿化区域,其周长为400m,所在圆的半径为r,扇形的圆心角的弧度数为θ,θ∈(0,2π).(1)求绿化区域面积S关于r的函数关系式,并指数r的取值范围:(2)所在圆的半径为r取何值时,才能使绿化区域的面积S最大,并求出此最大值.【解答】解:(1)由题意知,扇形的周长为2r+θr=400,所以θ=;又θ∈(0,2π),所以<r<200;所以扇形的面积为S=θr2=•=﹣r2+200r,其中r的取值范围是(,200);(2)S(r)=﹣r2+200r=﹣(r﹣100)2+10000,当r=100时,S(r)取得最大值为10000,即半径为r=100m时,绿化区域的面积S最大,最大值10000m2.20.已知函数y=f(x)的定义域为(1,+∞),对于定义域内的任意实数x,有f(2x)=2f(x)成立,且x∈(1,2]时,f(x)=log2x.(1)当x∈(1,23]时,求函数y=f(x)的最大值;(2)当x∈(1,23.7]时,求函数y=f(x)的最大值;(3)已知f(1200)=f(b)(实数b>1),求实数b的最小值.【解答】解:(1)对任意的x∈(1,+∞),恒有f(2x)=2f(x)成立,所以f(x)=2f();且x∈(1,2]时,f(x)=log2x∈(0,1];所以当x∈(2,4]时,∈(1,2],f(x)=2f()=2log2∈(0,2];当x∈(4,8]时,∈(2,4],f(x)=2f()=4log2∈(0,4];当x∈(8,16]时,∈(4,8],f(x)=2f()=8log2∈(0,8];…;当x∈(2n﹣1,2n]时,∈(2n﹣2,2n﹣1],f(x)=2f()=2n﹣1log2∈(0,2n﹣1];所以x∈(2n﹣1,2n]时,f(x)的最大值是2n﹣1;所以x∈(1,23]时,f(x)=,的最大值为f(23)=4log2=4;(2)当x∈(1,23.7]时,23≤23.7≤24,所以f(x)的最大值为f(23.7)=23×log2=8×(3.7﹣3)=5.6;(3)由f(1200)=f(b)(实数b>1),且1200=210×,210<210×<211,所以f(1200)=210×log2=210×log2,f(b)=f(2×)=2f()=22f()=…=2n﹣1f();当∈(1,2]时,∴f(b)=2n﹣1log2;∵f(1200)=f(b),则210×log2=2n﹣1log2;b=2n﹣1•,1<n<11当n=10时,=()2∈(1,2];b=29×()2;当n=9时,=()4∈(1,2];b=28×()4;当n=8时,=()8∉(1,2];…29×()2>28×()4;∴实数b的最小值为28×()4=256×()4.21.已知函数f(x)=log a(x+).x∈(1,+∞),a>0且a≠1.(1)若a为整数,且f()=2,试确定一个满足条件的a的值;(2)设y=f(x)的反函数为y=f﹣1(x),若f﹣1(n)<(n∈N*),试确定a的取值范围;(3)若a=2,此时y=f(x)的反函数为y=f﹣1(x),令g(x)=,若对一切实数x1,x2,x3,不等式g(x1)+g(x2)>g(x3)恒成立,试确定实数k的取值范围.【解答】解:(1)由f(x)=log a(x+),x>1,a>0且a≠1,可得f()=log a (+)=log a(+)=log a2a=2,即a2=2a,可得整数a=2或4;(2)由y=f(x)=log a(x+),x>1,可得a y=x+,即a y﹣x=,平方可得a2y﹣2xa y+1=0,即有x=,可得f﹣1(x)=(若a>1,x>0;若0<a<1,x<0),f﹣1(n)<(n∈N*),即为<,若0<a<1,则a n+a﹣n单调递减,可得<a<1;可得a的取值范围为(,1)∪(1,4);(3)若a=2,此时y=f(x)的反函数为y=f﹣1(x)=(x>0),g(x)===1+,当k=1时,g(x)=1,符合题意;当k>1时,g(x)在x>0递减,可得g(x)∈(1,1+),对一切实数x1,x2,x3,不等式g(x1)+g(x2)>g(x3)恒成立,可得1+1≥1+,解得1<k≤4;当k<1时,g(x)在x>0递增,可得g(x)∈(1+,1),对一切实数x1,x2,x3,不等式g(x1)+g(x2)>g(x3)恒成立,可得2(1+)≥1,解得﹣≤k<1.综上可得k的范围是[﹣,4].。

上海市2021学年高一数学上学期期末考试试题(含解析)

上海市2021学年高一数学上学期期末考试试题(含解析)

2021-2021学年高一数学上学期期末考试试题(含解析)一、填空题1.已知集合{}2|20A x x x =--=,用列举法可表示为A =_________. 【答案】{}1,2- 【解析】 【分析】解方程220x x --=得1x =-或2x =,用列举法表示,即可. 【详解】方程220x x --=的解为:1x =-或2x =∴{}{}2|201,2A x x x =--==-故答案为:{}1,2-【点睛】本题考查集合的表示方法,属于容易题. 2.函数()lg(2)f x x =-的定义域是____________. 【答案】(2,+∞) 【解析】详解】∵20x ->,∴2x >.3.命题“若1x >,则0x >”的逆否命题是________. 【答案】若0x ≤,则1x ≤ 【解析】 【分析】根据命题“若p ,则q ”的逆否命题为“若q ⌝,则p ⌝”,写出即可. 【详解】命题“若1x >,则0x >”的逆否命题是“若0x ≤,则1x ≤”故答案为:若0x ≤,则1x ≤【点睛】本题考查命题的四种形式,属于容易题.4.若函数()()11()31x f x x x >=-+≤⎪⎩,则()1f f -=⎡⎤⎣⎦________.【答案】3【解析】 【分析】先求解()14f -=,再求()4f ,即可.【详解】当1x ≤时()3f x x =-+,则()()1134f -=--+=. 当1x >时()1f x =,则()()1413f f f -==⎡⎤⎣⎦.故答案为:3【点睛】本题考查分段函数求值,属于较易题.5.已知集合{}{}2,1,2,1,A B a =-=,且B A ⊆,则实数a 的值为_________.【答案】2± 【解析】 【分析】根据题意可知,a A ∈,根据元素的互异性可知1a ≠,求解即可.【详解】若使得B A ⊆成立,则需1a Aa ∈⎧⎨≠⎩,即2a =-或2a =故答案为:2±【点睛】本题考查集合之间的关系,属于容易题.6.已知集合{}2|60A x x px =-+=,若3A ∈,则方程15x p -=的解为__________.【答案】2x = 【解析】 分析】由题意可知,3是方程260x px -+=的根,解得5p =.方程15x p -=等价变形为155x -=,解得,即可. 【详解】3A ∈∴3是方程260x px -+=的根,即23360p -+=,解得5p =.又方程155x p -==11x ∴-=,解得2x =.故答案为:2x =【点睛】本题考查元素与集合的关系以及实数指数幂的运算,属于较易题. 7.函数()2log f x x x =+零点个数为_________. 【答案】1 【解析】 【分析】函数()2log f x x x =+的零点个数,等价于方程()0f x =根的个数,等价于函数2log y x =与y x =-交点的个数,在同一坐标系下,画出函数图象,确定交点个数即可.【详解】由题意可知,在同一坐标系下,画出2log y x =与y x =-的函数图象,如图所示由图可知,函数2log y x =与y x =-有一个交点,则函数()2log f x x x =+有一个零点. 故答案为:1【点睛】本题考查函数的零点个数,属于较易题. 8.设函数()11f x x =-的反函数为()1f x -,则()11f -=_________. 【答案】2 【解析】 【分析】根据原函数与反函数的关系,解方程111x =-,即可. 【详解】令()111f x x ==-解得2x = 函数()11f x x =-的反函数为()1f x -. ∴()112f -=故答案为:2【点睛】本题考查反函数,属于较易题.9.若函数()2f x ax bx c =++是定义域为()23,1a -的偶函数,则a b +=_________.【答案】1 【解析】 【分析】根据函数()f x 为偶函数,则定义域关于原点的对称,且0b =,列方程组得23100a b -+=⎧⎨=⎩,解方程组即可. 【详解】函数()2f x ax bx c =++是定义域为()23,1a -的偶函数∴23100a b -+=⎧⎨=⎩,解得1a =,0b =即1a b += 故答案为:1【点睛】本题考查函数的奇偶性,定义域关于原点对称是解决本题的关键,属于较易题. 10.方程2lg 3lg 20x x -+=的解为_________. 【答案】10或100 【解析】 【分析】令lg t x =,则方程2lg 3lg 20x x -+=变形为2320t t -+=,解得1t =或2t =,即lg 1x =或lg 2x =,解方程即可.【详解】令lg t x =,则方程2lg 3lg 20x x -+=变形为2320t t -+=.解得1t =或2t =,即lg 1x =或lg 2x =, 解得10x =或100x = 故答案为:10或100【点睛】本题考查解对数方程,属于较易题.11.己知函数()221f x x ax a =-++-在区间[]01,上的最大值是2,则实数a =______.【答案】1-或2. 【解析】 【分析】由函数对称轴与区间关系,分类讨论求出最大值且等于2,解关于a 的方程,即可求解. 【详解】函数()22221()1f x x ax a x a a a =-++-=--+-+,对称轴方程为为x a =;当0a ≤时,max ()(0)12,1f x f a a ==-==-;当2max 01,()()12a f x f a a a <<==-+=,即2110,2a a a --==(舍去),或152a (舍去); 当1a ≥时,max ()(1)2f x f a ===, 综上1a =-或2a =. 故答案为:1-或2.【点睛】本题考查二次函数的图像与最值,考查分类讨论思想,属于中档题. 12.已知()f x 为奇函数,且在[)0,+∞上是减函数,若不等式()()12f ax f x -≤-在[]1,2x ∈上都成立,则实数a 的取值范围是___________.【答案】0a ≤ 【解析】 【分析】根据()f x 为奇函数,且在[)0,+∞上是减函数,可知12ax x -≤-,即11a x≤-,令11y x =-,根据函数11y x=-在[]1,2x ∈上单调递增,求解a 的取值范围,即可. 【详解】()f x 为奇函数,且在[)0,+∞上是减函数∴()f x 在R 上是减函数.∴12ax x -≤-,即11a x≤-. 令11y x =-,则11y x=-在[]1,2x ∈上单调递增. 若使得不等式()()12f ax f x -≤-在[]1,2x ∈上都成立. 则需min111101a x ⎛⎫≤-=-= ⎪⎝⎭.故答案为:0a ≤【点睛】本题考查函数的单调性与奇偶性的应用,属于中档题. 二、选择题13.下列四组函数中,表示同一函数的是( )A. ()()21,11x f x g x x x -==+-B. ()()0,1f x x g x ==C. ()(),f x x g x ==D. ()()0,0x x f x x g x x x >⎧==⎨-<⎩【答案】C 【解析】 【分析】根据函数的两要素,定义域与对应法则,判断两个函数是否为同一函数,即可. 【详解】选项A ,()f x 的定义为{}1x x ≠,()g x 的定义为R 不相同,不是同一函数. 选项B ,()f x 的定义为{}0x x ≠,()g x 的定义为R 不相同,不是同一函数. 选项C ,()f x 的定义为R ,()g x 的定义为R 相同,()()f x g x x ==,是同一函数. 选项D ,()f x 的定义为R ,()g x 的定义为{}0x x ≠不相同,不是同一函数. 故选:C【点睛】本题考查函数的两要素,属于较易题. 14.已知集合{}2,1,0,1,2A =--,102x B x x ⎧⎫+=<⎨⎬-⎩⎭,则A B =( )A. {}1,0-B. {}0,1C. {}1,0,1-D. {}0,1,2【答案】B 【解析】 【分析】 解不等式102x x +<-,得12x -<<,即{}12B x x =-<<,与集合A ,求交集,即可. 【详解】{}10122x B x x x x ⎧⎫+=<=-<<⎨⎬-⎩⎭,{}2,1,0,1,2A =--{}0,1A B ∴⋂=故选:B【点睛】本题考查集合的运算,属于容易题.15.设命题甲为“0<x <3”,命题乙为“|x -1|<2“,那么甲是乙的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件【答案】A 【解析】 【分析】化简命题乙,再利用充分必要条件判断出命题甲和乙的关系. 【详解】命题乙为“|x -1|<2, 解得-1<x <3.又命题甲为“0<x <3”, 因为{|03}x x <<{|13}x x -<<那么甲是乙的充分不必要条件. 故选A .【点睛】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.16.下列函数中,值域是()0,∞+的是( )A. 13y x = B. y =C. ||31x y =- D. 2yx【答案】D 【解析】 【分析】先求解四个选项对应函数的定义域,再根据定义域求解值域,即可. 【详解】因为函数13y x =的定义域为R ,值域为R ,不是()0,∞+ 所以选项A 不符合题意.因为函数y =={1x x ≤-或}3x ≥所以值域为[)0,+∞,不是()0,∞+,选项B 不符合题意. 因为函数31x y =-的定义域为R 关于原点对称,3131xxy --==-所以函数31xy =-为偶函数.当0x ≥时3131xx y =-=-,单调递增 当0x <时3131xx y -=-=-,单调递减所以0min 310y =-=即函数31xy =-值域为[)0,+∞,不是()0,∞+,所以选项C 不符合题意.因为函数2y x 的定义域为{}0x x ≠关于原点对称, ()22x x ---=所以函数2yx 为偶函数.当0x >时2210y xx -==>,单调递减 当0x <时2210y x x-==>,单调递减即函数2y x 值域为()0,∞+,所以选项D 符合题意.故选:D【点睛】本题考查求函数的值域,属于中档题. 三、解答题17.已知函数()(),1xf x a a =>在区间[]1,2上的最大值比最小值大2,求实数a 的值.【答案】2 【解析】 【分析】由题意可知,函数()f x 在[]1,2单调递增,则()()212f f -=,解方程,即可. 【详解】函数()(),1xf x a a =>∴函数()f x 在[]1,2单调递增即()()2max 2f x f a ==,()()min 1f x f a ==又函数()(),1xf x a a =>在区间[]1,2上的最大值比最小值大2.∴()()2212f f a a -=-=,解得2a =或1a =-(舍去)综上所述:2a =【点睛】本题考查指数函数的单调性,属于较易题.18.已知函数()f x =.求:(1)函数()f x 的定义域;(2)判断函数()f x 的奇偶性,并加以证明. 【答案】(1)[)(]1,00,1-;(2)偶函数,证明见解析.【解析】 【分析】(1)根据分式分母不为0,开偶次方的根式,被开方式大于或者等于0,列不等式组,求解即可.(2)根据函数奇偶性的定义,证明即可.【详解】(1)若使得函数()f x =有意义则需2010x x ≠⎧⎨-≥⎩解得10x -≤<或01x <≤. 所以函数()f x 的定义域为[)(]1,00,1-.(2)由(1)可知,函数()f x 的定义域为[)(]1,00,1-关于原点对称()()f x f x x-===∴函数()f x 为偶函数.【点睛】本题考查函数的奇偶性,属于较易题.19.甲乙两地的高速公路全长166千米,汽车从甲地进入该高速公路后匀速行驶到乙地,车速[]70,120v ∈(千米/时).已知汽车每小时...的运输成本(以元为单位)由可变部分和固定部分组成:可变部分为20.02v ,固定部分为220元.(1)把全程运输成本y (元)表示为速度v (千米/时)的函数,并指出这个函数的定义域; (2)汽车应以多大速度行驶才能使全程运输成本最小?最小运输成本为多少元?(结果保留整数)【答案】(1)()[]20.0270,120166220,y v vv =+∈;(2)当105v =时,最小运输成本为696元. 【解析】 【分析】(1)由题意可知,汽车的行驶时间为166v(小时),汽车每小时...的运输成本为20020.20v +,从而确定全程运输成本y (元)表示为速度v (千米/时)的函数关系,即可. (2)由(1)可知,()216684110000.0222025y v v v v ⎛⎫=+=+ ⎪⎝⎭,根据对号函数,求解即可. 【详解】(1)因为汽车从甲地进入该高速公路后匀速行驶到乙地,车速[]70,120v ∈(千米/时).所以汽车的行驶时间为166v(小时) 又汽车每小时...的运输成本(以元为单位)由可变部分和固定部分组成:可变部分为20.02v ,固定部分为220元所以汽车每小时...的运输成本为20022.20v +(元) 则全程运输成本()[]20.0270,120166220,y v vv =+∈ (2) 由(1)可知,()216684110000.0222025y v v v v ⎛⎫=+=+ ⎪⎝⎭当v ⎡∈⎣时,函数841100025y v v ⎛⎫=+ ⎪⎝⎭单调递减当v ⎡⎤∈⎣⎦时,函数841100025y v v ⎛⎫=+ ⎪⎝⎭单调递增所以,当105v =≈时,全程运输成本取得最小值即最小运输成本为()2min 1660.02105220696105y =⨯+≈元. 【点睛】本题考查函数的实际应用,属于中档题. 20.已知m 是整数,幂函数()22m m f x x -++=在[)0,+∞上是单调递增函数.(1)求幂函数()f x 的解析式;(2)作出函数()()1g x f x =-的大致图象;(3)写出()g x 的单调区间,并用定义法证明()g x 在区间[)1,+∞上的单调性.【答案】(1)()2f x x =;(2)图象见解析;(3)减区间为(][],1,0,1-∞-;增区间为[][)1,0,1,-+∞,证明见解析.【解析】【分析】(1)根据幂函数()22mm f x x -++=在[)0,+∞上是单调递增函数,可知220m m -++>,解不等式即可.(2)由(1)可知()2f x x =,则()21g x x =-,先画出21y x =-的图象,再将该图象x 轴下方的部分翻折到x 轴上方,即可.(3)根据(2)图象写出单调区间,再根据定义法证明函数单调性,即可.【详解】(1)由题意可知,220m m -++>,即12m -<<因为m 是整数,所以0m =或1m =当0m =时,()2f x x =当1m =时,()2f x x = 综上所述,幂函数()f x 的解析式为()2f x x =. (2) 由(1)可知()2f x x =,则()21g x x =- 函数()g x 的图象,如图所示:(3)由(2)可知,减区间为(][],1,0,1-∞-;增区间为[][)1,0,1,-+∞当[)1,x ∈+∞时,()2211g x x x =-=- 设任意的1x ,[)21x ∈+∞,且120x x ->则()()()()()()2222121212121211g x g x x x x x x x x x -=---=-=-+ 又1x ,[)21x ∈+∞,且120x x ->∴()()120g x g x ->即()g x 在区间[)1,+∞上单调递增.【点睛】本题考查求幂函数的解析式以及画函数图象,单调性的定义法证明.属于中档题.21.已知函数()()()4log 1,0,1a f x x a a =+->≠的反函数()1fx -的图象经过点()5,1P -,函数()2(),21x g x b b R =-∈+为奇函数. (1)求函数()f x 的解析式;(2)求函数()()22xF x g x =+-的零点; (3)设()g x 的反函数为()1gx -,若关于x 的不等式()()1g k x f x -+<在区间()1,0-上恒成立,求正实数k 的取值范围.【答案】(1)()()24log 1f x x =+-;(2)4log 3x =;(3)(]0,4.【解析】【分析】(1)根据原函数与反函数的关系可知,函数()f x 过点()1,5-,代入求解a 值,即可.(2)由题意可知()00g =,解得1b =,从而确定()22121x x F x =-+-+,令()0F x =,即()()21212x x -+=,即43x =,解方程,即可.(3)由题意可知,()()121log ,1,11x g x x x-+=∈--,则不等式()()1g k x f x -+<变形为()2214log 1x k x-<++,令()1,0,1t x t =+∈,则244log 4k t t ⎛⎫<++- ⎪⎝⎭,令244log 4y t t ⎛⎫=++- ⎪⎝⎭,根据函数的单调性,可知244log 44y t t ⎛⎫=++-> ⎪⎝⎭,从而求解正实数k 的取值范围.【详解】(1)由题意,()f x 过点(1,5)-,即()14log 25a f -=+=,解得2a = 所以()()24log 1f x x =+-. (2)()g x 为R 上的奇函数∴()0201021g b b =-=-=+,解得1b =,即()2121x g x =-+ 则()()22x F x g x =+-令()0F x =,即221021x x -+-=+ 则()()()2212121412x x x x -+=-=-=即43x =,解得4log 3x =.(3)由(2)可知()2121x g x =-+ ∴()()121log ,1,11x g x x x-+=∈-- 即()()()12214log 1log 1x k f x g x x x-+<-=+---()()()2222114144log 4log 11x x x x x-+-++=+=+++ 令()1,0,1t x t =+∈,则2224444log 4log 4t t k t t t -+⎛⎫<+=++- ⎪⎝⎭令244log 4y t t ⎛⎫=++- ⎪⎝⎭,()0,1t ∈ 244log 4y t t ⎛⎫=++- ⎪⎝⎭在()0,1t ∈单调递减 ∴22444log 44lo 41g 14y t t ⎛⎫⎛⎫=++->++-= ⎪ ⎪⎝⎭⎝⎭若关于x 的不等式()()1gk x f x -+<在区间()1,0-上恒成立,则4k ≤ 又k 为正实数∴(0,4]k ∈.【点睛】本题考查求函数的解析式,函数的零点,以及恒成立问题求参数取值范围,属于较难的题.。

上海市上海中学2019-2020学年高一数学上学期期末考试试题(含解析)

上海市上海中学2019-2020学年高一数学上学期期末考试试题(含解析)

【详解】因为函数
y
x2
x 2x
5
的定义域为 R

y 1
当 x 0 时,
x 5 2 x,
u
因为
x
5 x

(,
5) 和(
5, ) 上单调递增,在[
5, 0) 和 (0,
5] 上单调递减,
y 1
根据复合函数单调性法则,可知
x
5 x
2
应该在
[
5, 0) 和 (0,
5] 上单调递增,
y x 而函数 x2 2x 5 本身在 x 0 处有意义,且函数图象不间断,
【详解】当 a 1时:函数 y f (x) ax 单调递增,
f 2 a2 2, f (4) a4 4a 2

当 0 a 1时:函数
y
f
(x) ax 单调递减,
f
2 a2
4,
f (4) a4
2
,无解.
综上所述: a 2
故答案为 2
【点睛】本题考查了函数的定义域和值域,分类讨论是一种常用的方法,需要熟练掌握.
意将恒成立问题向最值转化,求含参的函数在给定区间上的最值,属于中档题目.
12.已知函数 f (x) || x 1| | x 3 | 1| ,若 f 4a2 6a f (4a) ,则实数 a 的取值范围
为_______.
3
【答案】
4
13 , 3 4
13
1 2
3 4
,
5.函数 f (x) x2 4x(x 0) 的反函数为_________;
【答案】 2 x 4(x 0)
【解析】
【分析】
x 2 y 4 y 0

上海高一上学期期末数学试题(解析版)

上海高一上学期期末数学试题(解析版)

高一上学期期末数学试题一、填空题1化成有理数指数幂的形式为__________. 0)a >【答案】13a 【分析】根据给定条件,利用分数指数幂的意义求解作答. 【详解】. 0a >114111113333444()()()a a a a a +=⋅===故答案为:13a 2.不等式的解集是___________. |1|2x -<【答案】(1,3)-【分析】根据绝对值的意义直接求解即可. 【详解】, |1|2x -< ,212x ∴-<-<解得,13x -<<所以不等式的解集为. (1,3)-故答案为:(1,3)-3.已知a 、b 是方程的两个根,则______. 23410x x -+=11a b+=【答案】4【分析】直接利用韦达定理代入计算即可.【详解】由韦达定理可得,41,33a b ab +==4113413a b a b ab++===故答案为:4.4.已知扇形的弧所对的圆心角为,且半径为,则该扇形的面积为________. 54︒10cm 2cm 【答案】15π【分析】根据角度制与弧度制的互化,可得圆心角,再由扇形面积公式求解即可. 3π10α=【详解】由题意,根据角度制与弧度制的互化,可得圆心角.则该扇形的面积为3π5410α=︒=. 213π1015π210⨯⨯=2cm 故答案为: 15π5.已知,则角属于第____________象限. sin 0tan θθ<θ【答案】二或三【分析】根据题意,结合三角函数在各个象限的符号,即可得到结果. 【详解】因为,即与的符号相反, sin 0tan θθ<sin θtan θ所以为第二或第三象限, θ故答案为: 二或三6.已知是定义在上的奇函数,当时,,则____. ()y f x =R 0x >()21x f x =-(2)f -=【答案】3-【详解】 由题意得,函数为奇函数,所以.()y f x =()2(2)2(21)3f f -=-=--=-7.已知函数的反函数为,若函数的图像过点,则实数a 的()3x f x a =+1()y f x -=1()y f x -=(3,2)值为__________. 【答案】-6【分析】由的图象过点得函数的图象过点,把点代入1()y f x -=(3,2)()y f x =(2,3)(2,3)()y f x =的解析式求得的值.a 【详解】解:的图象过点,1()y f x -= (3,2)函数的图象过点,∴()y f x =(2,3)又,()3x f x a =+,即.233a ∴+=6a =-故答案为:. 6-8.已知,则____________. cos )ααβ=-=π,0,2αβ⎛⎫∈ ⎪⎝⎭cos(2)αβ-=【分析】根据,得到,求出π,0,2αβ⎛⎫∈ ⎪⎝⎭ππ,22αβ⎛⎫-∈- ⎪⎝⎭sin )ααβ=-=法,结合余弦的和角公式求出答案.【详解】,故,π,0,2αβ⎛⎫∈ ⎪⎝⎭ππ,22αβ⎛⎫-∈- ⎪⎝⎭因为,所以,sin()0αβ-=>π0,2αβ⎛⎫-∈ ⎪⎝⎭所以,sin )ααβ==-==故()()()()2cos cos cos sin sin cos αβααβααβααβ⎡⎤-=+--⎦=--⎣. ==9.在数学解题中,时常会碰到形如“”的式子,它与“两角和的正切公式”的结构类似.若1x yxy+-,则________.sincos855tan 15cos sin 55a b a b πππππ+=-b a =【分析】将已知条件左边分式分子分母同时除以,结合两角和的正切公式,求得的值. cos5a πba【详解】由已知分子分母同时除以得,sincos855tan 15cos sin 55a b a b πππππ+=-cos 5a π. tan85tan 151tan 5ba b a πππ+=-又,所以. tantan853tantan()15531tan tan 35πππππππ+=+=-tan 3b a π=【点睛】本小题主要考查两角和的正切公式,考查齐次方程的计算,属于中档题.10.若函数有2个零点,则实数a 的取值范围是______.()2,1,x x x x af x x x a ⎧-<=⎨-≥⎩【答案】(](]2,01,2- 【分析】画出的图像,分,,,,讨()2,1,x x x x af x x x a ⎧-<=⎨-≥⎩2a ≤-20a -<≤01a <≤12a <≤2a >论观察图像可得答案.【详解】当时,函数零点为1,只有1个零点2a ≤-()2,1,x x x x af x x x a ⎧-<=⎨-≥⎩当时,函数零点为-2,1,有2个零点,符合;20a -<≤()2,1,x x x x af x x x a ⎧-<=⎨-≥⎩当时,函数零点为-2,0,1,有3个零点;01a <≤()2,1,x x x x af x x x a ⎧-<=⎨-≥⎩当时,函数零点为-2,0,有2个零点;12a <≤()2,1,x x x x af x x x a⎧-<=⎨-≥⎩当时,函数零点为-2,0,2,有3个零点;2a >()2,1,x x x x af x x x a ⎧-<=⎨-≥⎩综上:实数a 的取值范围是 (](]2,01,2- 故答案为:.(](]2,01,2- 【点睛】思路点睛:对于分段函数的零点问题,注意根据两段函数的零点合理分类,分类时注意按一定的次序进行.二、单选题11.以下命题正确的是( ) A .终边重合的两个角相等 B .小于 的角都是锐角 90 C .第二象限的角是钝角 D .锐角是第一象限的角【答案】D【分析】根据象限角的定义判断求解即可.【详解】对于A,例如和中边相同,但两个角不相等,故A 错误;30 390对于B,例如,但不是锐角,故B 错误;090< 0 对于C,例如是第二象限角,但不是钝角,故C 错误; 210- 210- 因为锐角为大于小于,所以锐角在第一象限,故D 正确. 0 90 故选:D.12.若函数的一个正零点附近的函数值用二分法计算,其参考数据如下:32()22f x x x x =+-- (1)2f =- (1.5)0.625f = (1.25)0.984f =-(1.375)0.260f =-(1.4375)0.162f =(1.40625)0.054f =-那么方程的一个近似根(精确度0.1)为( ).A .1.2 B .1.4 C .1.3 D .1.5 32220x x x +--=【答案】B【分析】根据二分法求零点的步骤以及精确度可求得结果.【详解】解:因为,所以,所以函数在内有零点,因为(1)0,(1.5)0f f <>(1)(1.5)0f f <(1,1.5),所以不满足精确度;1.510.50.1-=>0.1因为,所以,所以函数在内有零点,因为(1.25)0f <(1.25)(1.5)0f f <(1.25,1.5),所以不满足精确度;1.5 1.250.250.1-=>0.1因为,所以,所以函数在内有零点,因为(1.375)0f <(1.375)(1.5)0f f <(1.375,1.5),所以不满足精确度;1.5 1.3750.1250.1-=>0.1因为,所以,所以函数在内有零点,因为(1.4375)0f >(1.4375)(1.375)0f f <(1.375,1.4375),所以满足精确度;1.4375 1.3750.06250.1-=<0.1所以方程的一个近似根(精确度)是区间内的任意一个值(包32220x x x +--=0.05(1.375,1.4375)括端点值),根据四个选项可知选B . 故选:B13.已知全集及集合,,则的U =R 2128,4aA a a -⎧⎫=≤<∈⎨⎬⎩⎭Z {}23100B b b b b =+->∈R ,A B 元素个数为( ) A .4 B .3C .2D .1【答案】B【分析】可求出集合,,然后进行交集和补集的运算求出,然后即可得出的元素个A B A B A B 数.【详解】解:,2128,4a A a a -⎧⎫=≤<∈⎨⎬⎩⎭Z {}23100B b b b b =+->∈R ,,,,1,2,3,,或,且{|223A a a ∴=--<…}{|14a Z a a ∈=-<…}{0a Z ∈=4}{|5B b b =<-2}b >,U =R ,, ∴{|52}B b b =-……{0,1,2}A B = 的元素个数为:3.∴A B 故选:. B 14.函数,因其图像类似于汉字“囧”,故被称为“囧函数”,下列说法中正确的个数为1()||1f x x =-( )①函数的定义域为; ②; ()f x {}1x x ≠2022((2023))2021f f =-③函数的图像关于直线对称; ④当时,函数的最大值为; ()f x 1x =(1,1)x ∈-()f x 1-⑤方程有四个不同的实根. 2()40f x x -+=A .2 B .3C .4D .5【答案】B【分析】根据分式分母不为零可求得定义域判断①;利用解析式可求得判断()f x ()()2023f f ②;通过判断③;分别在和的情况下得到,判断④;利用()()20f f ≠(]1,0x ∈-[)0,1x ∈()max f x 数形结合判断⑤.【详解】对于①,由得:,的定义域为,①错误;10x -≠1x ≠±()f x \{}1x x ≠±对于②,,,②正确;()120232022f = ()()112022202312022202112022f f f ⎛⎫∴===-⎪⎝⎭-对于③,,,, ()12121f ==- ()10101f ==--()()20f f ∴≠不关于直线对称,③错误;()f x \1x =对于④,当时,,此时; (]1,0x ∈-()1111f x x x ==---+()()01f x f ≤=-当时,,此时; [)0,1x ∈()11f x x =-()()01f x f ≤=-综上所述:当时,,④正确;()1,1x ∈-()max 1f x =-对于⑤,在平面直角坐标系中,作出与的大致图象,()f x 24y x =-由图象可知与有四个不同交点,()f x 24y x =-方程有四个不同的根,⑤正确.∴()240f x x -+=所以正确的个数为3. 故选:B.三、解答题15.已知,求下列各式的值:1tan 2,tan 42παβ⎛⎫+==- ⎪⎝⎭(1);tan α(2). sin()2sin cos 2sin sin cos()αβαβαβαβ+-++【答案】(1)13(2) 1-【分析】(1)两角和的正切展开求解.(2)两角和的正余弦展开合并同类项,再运用两角和的正余的逆运用转化为正切求解.【详解】(1) πtantan π1tan 4tan 2π41tan 1tan tan 4ααααα++⎛⎫+=== ⎪-⎝⎭-⋅1tan 3α∴=(2)()()sin sin cos cos sin ,cos cos cos sin sin αβαβαβαβαβαβ+=⋅+⋅+=⋅-⋅sin()2sin cos 2sin sin cos()2sin sin cos cos sin 2sin cos cos s c s in o sin sin αβαβαβαβαβαβαβαβαβαβ+-∴=++⋅+⋅-⋅⋅-+⋅ ()()()sin cos sin sin cos tan sin sin cos cos cos βααβαββααβαββα-⋅-⋅===-⋅+⋅-又 ()11tan tan 523tan 1111tan tan 61132βαβααβ-----====-+⋅-⎛⎫+⨯- ⎪⎝⎭sin()2sin cos 12sin sin cos()αβαβαβαβ+-∴=-++16.某小微公司每年燃料费约20万元.为了“环评”达标,需要安装一块面积为(单位:平()0x x ≥方米)可用10年的太阳能板,其工本费为(单位:万元),并与燃料供热互补工作,从此,公司2x每年的燃料费为(,k 为常数)万元.记y 为该公司10年的燃料费与安装太阳能板1040kx +0x ≥的费用之和.(1)求k 的值,并写出函数的表达式;()y f x =(2)求y 的最小值,并指出此时所安装的太阳能板的面积x . 【答案】(1),(); 800k =80042xy x =++0x ≥(2)38万元,安装的太阳能板的面积为36平方米.【分析】(1)根据每年的燃料费计算可得k 值,进而写出函数的表达式. ()y f x =(2)利用(1)中函数表达式结合均值不等式即可计算最小值及所对x 值. 【详解】(1)依题意,当时,,解得, 0x =2040k=800k =于是得该公司10年的燃料费与安装太阳能板的费用之和,,800800101040242x xy x x =⋅+=+++0x ≥所以,函数的表达式为,. 800k =()y f x =80042xy x =++0x ≥(2)由(1)知,,, 0x ≥8004223842x y x +=+-≥=+当且仅当,即时取“=”, 800442x x +=+36x =所以y 的最小值是38万元,此时所安装的太阳能板的面积为36平方米. 17.已知函数的表达式为.()y f x =()9233x x f x a =-⋅+(1)若,求函数的值域; 1,[0,1]a x =∈()y f x =(2)当时,求函数的最小值;[1,1]x ∈-()y f x =()h a (3)对于(2)中的函数,是否存在实数,同时满足下列两个条件:(i );(ii )()h a ,m n 3n m >>当的定义域为,其值域为;若存在,求出的值;若不存在,请说明理由. ()h a [,]m n 22,m n ⎡⎤⎣⎦,m n 【答案】(1)[]2,6(2)22821,9331()3,33126,3aa h a a a a a ⎧-<⎪⎪⎪=-≤≤⎨⎪->⎪⎪⎩(3)不存在,理由见解析【分析】(1)由,利用的范围可得的范围,进而可得答案;()2312x y =-+x 3x (2)令,函数可转化为,分、、讨论可得答3x t =()f x ()()223g t t a a =-+-13a <133a ≤≤3a >案;(3)假设满足题意的,存在,函数在上是减函数,求出的定义域、值域,列m n ()h a ()3,+∞()h a 出方程组,求解与已知矛盾,即可得到结论.【详解】(1)当时,由,得,1a =9233x x y =-⨯+()2312x y =-+因为,所以,,[]0,1x ∈[]31,3x∈[]2,6y ∈所以函数的值域为.()y f x =[]2,6(2)令,因为,故,函数可转化为3x t =[]1,1x ∈-1,33t ⎡⎤∈⎢⎥⎣⎦()f x , ()()222233g t t at t a a =-+=-+-①当时,;13a <()1282393ah a g ⎛⎫==- ⎪⎝⎭②当时,;133a ≤≤()()23h a g a a ==-③当时,.3a >()()3126h a g a ==-综上所述,. ()22821,93313,33126,3a a h a a a a a ⎧-<⎪⎪⎪=-≤≤⎨⎪->⎪⎪⎩(3)假设满足题意的,存在,m n 因为,,3n m >>()126h a a =-所以在上是严格减函数,()y h a =()3,+∞所以在上的值域为,()y h a =[],m n ()(),⎡⎤⎣⎦h n h m 又在上的值域为,所以,即, ()y h a =[],m n 22,m n ⎡⎤⎣⎦()()22h n m h m n ⎧=⎪⎨=⎪⎩22126126n m m n ⎧-=⎨-=⎩两式相减,得,()()()226m n m n m n m n -=-=+-因为,所以,3n m >>6m n +=而由,可得,与矛盾.3n m >>6m n +>6m n +=所以,不存在满足条件的实数,.m n 18.已知函数的定义域是使得解析式有意义的x 集合,如果对于定义域内的任意实数x ,函数()f x 值均为正,则称此函数为“正函数”.(1)证明函数是“正函数”; ()()2lg 11f x x =++(2)如果函数不是“正函数”,求正数a 的取值范围. ()11a f x x x =+-+(3)如果函数是“正函数”,求正数a 的取值范围. ()()()222242122x a x a f x x a x a +--+=+--+【答案】(1)证明见解析,(2)(3)(,1]-∞(){}6,13- 【解析】(1)有题知:,即证.()1f x ≥(2)首先讨论当时,显然不是“正函数”. 当时,从反面入手,假设0a ≤()11a f x x x =+-+0a >是“正函数”,求出的范围,再取其补集即可.()f x a (3)根据题意得到:或,解方程和不等式组即可. 22(2)4(42)0(1)8(22)0a a a a ⎧---<⎨---<⎩12242122a a a a --+==--+【详解】(1).2()lg(1)1lg111f x x =++≥+=函数值恒为正数,故函数是“正函数”.2()lg(1)1f x x =++(2)当时,,0a ≤(0)10f a =-<显然不是“正函数”. ()11a f x x x =+-+当时0a >假设为“正函数”.则恒大于零. ()11a f x x x =+-+()f x. ()1221a f x x x =++-≥+所以,即20->1a >所以不是“正函数”时, ()11a f x x x =+-+.01a <≤综上:.1a ≤(3)有题知:若函数是“正函数”, ()22(2)242(1)22x a x a f x x a x a +--+=+--+则或. 22(2)4(42)0(1)8(22)0a a a a ⎧---<⎨---<⎩12242122a a a a --+==--+解得:或.61a -<<3a =【点睛】本题主要考查函数的新定义,同时考查了对所学知识的综合应用,属于难题.。

上海高一上数学期末考试试卷

上海高一上数学期末考试试卷
【解析】
【分析】
根据原函数与反函数的关系,解方程 ,即可.
【详解】
令 解得
函数 的反函数为 .
故答案为:
13.1
【解析】
【分析】
根据函数 为偶函数,则定义域关于原点的对称,且 ,列方程组得 ,解方程组即可.
【详解】
函数 是定义域为 的偶函数
,解得 ,

故答案为:
14.10或100
【解析】
【分析】
令 ,则方程 变形为 ,解得 或 ,即 或 ,解方程即可.
16.
【解析】
【分析】
根据 为奇函数,且在 上是减函数,可知 ,即 ,令 ,根据函数 在 上单调递增,求解 的取值范围,即可.
【详解】
为奇函数,且在 上是减函数
在 上是减函数.
∴ ,即 .
令 ,则 在 上单调递增.
若使得不等式 在 上都成立.
则需 .
故答案为:
17.
【解析】
【分析】
由题意可知,函数 在 单调递增,则 ,解方程,即可.
【详解】
(1)由题意, 过点 ,即 ,解得
所以 .
(2) 为 上的奇函数
∴ ,解得 ,即

令 ,即

即 ,解得 .
(3)由(2)可知

令 ,则
令 ,
在 单调递减

若关于 的不等式 在区间 上恒成立,则
又 为正实数
∴ .
【详解】
函数
函数 在 单调递增
即 ,
又 函数 在区间 上的最大值比最小值大 .
,解得 或 (舍去)
综上所述:
18.(1) ;(2)偶函数,证明见解析.
【解析】

上海高一上学期期末数学试题(解析版)

上海高一上学期期末数学试题(解析版)

一、填空题1.已知集合,,则__________. {1,1,2}A =-{}20B x x x =+=A B = 【答案】{}1-【分析】可求出集合,然后进行交集的运算即可.B 【详解】解:,1,,,,{1A =- 2}{1B =-0}.{1}A B ∴=- 故答案为:.{}1-2.设a 、b 都为正数,且,则的最小值为________. 4a b +=11a b +【答案】1【分析】把变形为:利用已知,结合基本不等式进行求解即可. 11a b +1114()4a b ⨯⋅+【详解】因为a 、b 都为正数,所以有:, 111111114(()((2)(214444b a a b a b a b a b ⨯⋅+=+⋅+=⋅++≥⋅+=当且仅当时取等号,即时取等号,b a a b=2a b ==故答案为:13.函数,则______________. 2()1y f x x ==-1(3)f -=【答案】 53【解析】3在反函数的定义域中,它必在原函数的值域中,因为反函数与原函数的对应关系相反,故由解得值为所求. 231x =-x 【详解】由解得,所以. 231x =-53x =15(3)3f -=故答案为: 534.已知且,若,,则_______________.0a >1a ≠log 2a m =log 3a n =m n a +=【答案】6【解析】利用指数式与对数式的互化,再利用同底数幂相乘即可.【详解】,同理:log 2,2m a m a =∴= 3n a =∴236m n m n a a a +==⨯=故答案为:6【点睛】对数运算技巧:(1)指数式与对数式互化;(2)灵活应用对数的运算性质;(3) 逆用法则、公式;(4) 应用换底公式,化为同底结构.5.已知函数,是偶函数,则的值为______.()()221f x ax b x =+++22,x a a ⎡⎤∈-⎣⎦a b +【答案】1-【分析】根据奇偶定义可建立方程求解即可.【详解】由题意得,所以,所以.2220202b a a a a +=⎧⎪-+=⎨⎪-<⎩1,2a b ==-1a b +=-故答案为:1-6.若幂函数(为整数)的定义域为,则的值为______.22mm y x -++=m R m 【答案】或01【分析】依题意可得,解得的取值范围,再由为整数,求出参数的值.220m m -++>m m 【详解】由题意得,解得,又为整数,所以或.220m m -++>12m -<<m 0m =1故答案为:或017.用“二分法”求方程在区间内的实根,首先取区间中点进行判断,那么下一340x x +-=()1,32x =个取的点是______.x =【答案】1.5## 32【分析】先确定函数单调性,根据二分法求解即可得解.【详解】设函数,易得函数为严格增函数,3()4f x x x =+-因为,,(1)20f =-<(2)60f =>所以下一个有根区间是,(1,2)那么下一个取的点是.1.5x =故答案为:1.58.已知函数的最小值为-2,则实数a =________.22([0,1])y x ax x =+∈【答案】 32-【分析】根据二次函数的对称轴与所给区间的相对位置进行分类讨论求解即可.【详解】,所以该二次函数的对称轴为:,222()2()y f x x ax x a a ==+=+-x a =-当时,即,函数在时单调递减,1a ≤-1a ≤-2()2f x x ax =+[0,1]x ∈因此,显然符合; min 3()(1)1222f x f a a ==+=-⇒=-1a ≤-当时,即时,; 01a <-<10a -<<2min ()2f x a a =-=-⇒=10a -<<当时,即时,函数在时单调递增,0a -≤0a ≥2()2f x x ax =+[0,1]x ∈因此,不符合题意,综上所述:, min ()(0)02f x f ==≠-32a =-故答案为: 32-9.设方程的实根,其中k 为正整数,则所有实根的和为22log 1122x a a --=-+12,,,k x x x ______.【答案】4【分析】画出的图象,由图象的特征可求.2()log 11g x x =--【详解】令,,2()|log ||1|f x x =-22()|log ||1||log ||1|()f x x x f x -=--=-=所以函数图象关于轴对称,2()|log ||1|f x x =-y 令,则的图象关于直线对称,2()log 11g x x =--()(1)g x f x =-1x =因为方程的实根,可以看作函数的图象与直线22log 1122x a a --=-+2()log 11g x x =--的交点横坐标.222y a a =-+由图可知方程有4个实根,且关于直线对称.22log 1122x a a --=-+1x =所以.12344x x x x +++=故答案为:4.10.设函数,,如果对任意的实数,任意的实数,不等()2x f x =2()2g x x x a =-+1[1,2]x ∈2[1,2]x ∈式恒成立,则实数a 的取值范围为________.()()121f x g x -≥【答案】(,1][6,)-∞+∞U【分析】分别求出函数,在上的值域,把问题转化为关于的不等式()2x f x =2()2g x x x a =-+[1,2]a 组,求出解集即可【详解】解:因为在上为增函数,()2x f x =[1,2]所以,min max ()(1)2,()(2)4f x f f x f ====所以在上的值域为,()2x f x =[1,2][2,4]因为的对称轴为直线,2()2g x x x a =-+1x =所以在上为增函数,2()2g x x x a =-+[1,2]所以,min max ()(1)1,()(2)g x g a g x g a ==-==所以在上的值域为,2()2g x x x a =-+[1,2][1]a a -,因为对任意的实数,任意的实数,不等式恒成立,1[1,2]x ∈2[1,2]x ∈()()121f x g x -≥所以,解得, (1)4121a a ⎧--≥⎪⎨-≥⎪⎩4613a a a a ≤≥⎧⎨≤≥⎩或或所以或,1a ≤6a ≥所以实数a 的取值范围为,(,1][6,)-∞+∞U 故答案为:(,1][6,)-∞+∞U 【点睛】此题考查函数在闭区间上的最值问题和不等式恒成立问题,考查了数学转化思想,解题的关键是求出函数,在上的值域,把问题转化为,从而()2x f x =2()2g x x x a =-+[1,2](1)4121a a ⎧--≥⎪⎨-≥⎪⎩可求出实数a 的取值范围,属于中档题二、单选题11.已知x ,y 是实数,则“”是“”的( )x y >33x y >A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】C【分析】由充要条件的定义求解即可【详解】因为 , 2233223()()()24y y x y x y x xy y x y x ⎡⎤⎛⎫-=-++=-++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦若,则, x y >223()024y y x y x ⎡⎤⎛⎫-++>⎢⎥ ⎪⎝⎭⎢⎥⎣⎦若,则,即, 223()024y y x y x ⎡⎤⎛⎫-++>⎢⎥ ⎪⎝⎭⎢⎥⎣⎦0x y ->x y >所以 ,即“”是“”的充要条件,33x y x y >⇔>x y >33x y >故选:C.12.如果,那么( )12log 0.8log 0.80x x <<A .B . 2101x x <<<1201x x <<<C .D .121x x <<211x x <<【答案】C【分析】根据换底公式可得,再利用单调性可以判断C 正0.820.810.8log log 0log 1x x <<=0.8log y x =确.【详解】因为,则,12log 0.8log 0.80x x <<0.820.810.8log log 0log 1x x <<=又因为在上单调递减,0.8log y x =()0,∞+那么,121x x <<故选:C .13.在同一直角坐标系中,二次函数与幂函数图像的关系可能为( ) 2y ax bx =+(0)b a y x x =>A . B . C .D .【答案】A【分析】根据题意,结合二次函数和幂函数的性质依次分析选项,即可得到答案.【详解】对于A ,二次函数开口向上,则,其对称轴,则,即2y ax bx =+0a >b x 02a =->0b a<幂函数为减函数,符合题意;(0)b a y x x =>对于B , 二次函数开口向下,则,其对称轴,则,即幂函数2y ax bx =+a<0b x 02a =->0b a <为减函数,不符合题意;(0)b a y x x =>对于C ,二次函数开口向上,则,其对称轴,则,即幂函数2y ax bx =+0a >12b x a=-=-2b a =为增函数,且其增加的越来越快,不符合题意;(0)b a y x x =>对于D , 二次函数开口向下,则,其对称轴,则,即幂函2y ax bx =+a<0122b x a =->-01b a <<数为增函数,且其增加的越来越慢快,不符合题意;(0)b a y x x =>故选:A 【点睛】关键点点睛:本题考查函数图像的分析,在同一个坐标系中同时考查二次函数和幂函数性质即可得解,考查学生的分析试题能力,数形结合思想,属于基础题.14.若函数与在区间上都是严格减函数,则实数的取值范围为( ) ||y x a =--1a y x =+[1,2]a A .B .C .D . (,0)-∞(1,0)(0,1]-⋃(0,1)(0,1]【答案】D【分析】由一次函数及反比例函数的单调性,结合图像变换即可得到实数的取值范围.a 【详解】函数的图像关于对称,||y x a =--x a =所以当,y 随x 的增大而减小,当,y 随x 的增大而增大.x a >x a <要使函数在区间上都是严格减函数,||y x a =--[1,2]只需; 1a ≤要使在区间上都是严格减函数,只需; 1a y x =+[1,2]0a >故a 的范围为.01a <≤故选:D三、解答题15.求下列不等式的解集:(1) 4351x x +>-(2)2332x x -<-【答案】(1)(1,8)(2)(1,)+∞【分析】(1)根据分式不等式及一元二次不等式的解法求解集.(2)应用公式法求绝对值不等式的解集.【详解】(1),故解集为; ()()4385018011x x x x x x +->⇔<⇔--<--(1,8)(2),|23|32322332x x x x x -<-⇔-+<-<-故解集为.(1,)+∞16.已知函数. ()22(11)1x f x x x =-<<-(1)判断函数的奇偶性,并说明理由;()f x (2)判断函数的单调性并证明.()f x 【答案】(1)是奇函数,理由见解析()f x (2)在上单调递减,证明见解析()f x (1,1)-【分析】(1)根据函数奇偶性定义进行判断证明;(2)根据函数单调性定义进行证明.【详解】(1)是奇函数,理由如下:()f x 函数,则定义域关于原点对称, ()22(11)1x f x x x =-<<-因为,所以是奇函数; ()()221x f x f x x --==--()f x (2)任取,1211x x -<<<则 22121211221222221212222222()()11(1)(1)x x x x x x x x f x f x x x x x --+-=-=---- , 1221211221222212122()2()2(1)()(1)(1)(1)(1)x x x x x x x x x x x x x x -+-+-==----因为,所以, 1211x x -<<<2212211210,0,10,10x x x x x x +>->-<-<所以,所以在上单调递减.12())0(f x f x ->()f x (1,1)-17.将函数(且)的图像向左平移1个单位,再向上平移2个单位,得到log 2a y x =-0a >1a ≠函数的图像.()y f x =(1)求函数的解析式()f x (2)设函数,若对一切恒成立,求实数m 的取值范围;()()()1f x f x F x a ++=()m F x <()1,x ∈-+∞(3)讨论关于x 的方程,在区间上解的个数. ()log ap f x x=()1,-+∞【答案】(1)()log (1)a f x x =+(2)(,0]-∞(3)答案见解析【分析】(1)由图象的平移特点可得所求函数的解析式;(2)求得的解析式,可得对一切恒成立,再由二次函数的性质可得所()F x (1)(2)m x x <++(1,)∈-+∞x 求范围;(3)将方程等价转化为且,根据题意只需讨论在区间()log a p f x x =1(1p x x x +=>-0)x ≠(1)p x x =+上的解的个数,利用图象,数形结合即可求得答案.(1,)-+∞【详解】(1)将函数且的图象向左平移1个单位,log 2(0a y x a =->1)a ≠得到的图象,再向上平移2个单位,得函数的图象; log (1)2a y x =+-()log (1)a f x x =+(2)函数,,()()()()()()()1log 1log 212a a f x f x x x F x a a x x +++++===++1x >-若对一切恒成立,()m F x <(1,)∈-+∞x 则对一切恒成立,(1)(2)m x x <++(1,)∈-+∞x 由在严格单调递增,得,(1)(2)y x x =++(1,)-+∞(1)(2)0y x x =++>所以,即的取值范围是;0m ≤m (,0]-∞(3)关于的方程 x ()log log (1)log aa a p p f x x x x=⇔+=且, 1(1p x x x ⇔+=>-0)x ≠所以只需讨论在区间且x ≠0上的解的个数.(1)p x x =+(1,)-+∞由二次函数且的图象得,(1)(1y x x x =+>-0)x ≠当时,原方程的解有0个; 1(,)4p ∈-∞-当时,原方程的解有1个; 1(0,)4p ⎧⎫∈-+∞⎨⎬⎩⎭当时,原方程的解有2个. 1(,0)4p ∈-18.其公司研发新产品,预估获得25万元到2000万元的投资收益,现在准备拟定一个奖励方案:奖金y (万元)随投资收益x (万元)的增加而增加,奖金不超过75万元,同时奖金不超过投资收益的20%.(1)用数学语言列出公司对函数模型的基本要求;(2)判断函数是否符合公司奖励方案函数模型的要求,并说明理由; ()1050x f x =+(3)已知函数符合公司奖励方案函数模型要求,求实数a 取值范围. ()1252g x a ⎛⎫=≥ ⎪⎝⎭【答案】(1)答案见解析(2)不符合,理由见解析(3) 1,12⎡⎤⎢⎥⎣⎦【分析】(1)根据函数单调性的定义以及最值的定义,结合题意中的不等关系,可得答案; (2)由(1)所得的三个条件,进行检验,可得答案;(3)利用幂函数的单调性,结合题意中的最值以及不等关系,可得不等式组,利用基本不等式,可得答案.【详解】(1)满足的基本要求是:①是定义域上的严格增函数,()f x ()f x [25,2000]②的最大值不超过75,③在上恒成立; ()f x ()5x f x ≤[25,2000](2),不满足要求③,故不符合; ()1050x f x =+()5050115f =>(3)因为,所以函数满足条件①, 12a ≥()gx 由函数满足条件②得,解得()g x 2575≤a ≤由函数满足条件③得,对恒成立, ()gx 255x ≤[25,2000]x ∈即恒成立,2a ≤[25,2000]x ∈时取等号,所以. 2≥=25x =1a ≤综上所述,实数的取值范围是. a 1,12⎡⎤⎢⎥⎣⎦19.已知函数 ()22,0log ,0x x f x x x ⎧≤=⎨>⎩(1)设k 、m 均为实数,当时,的最大值为1,且满足此条件的任意实数x 及m 的(],x m ∈-∞()f x 值,使得关于x 的不等式恒成立,求k 的取值范围;()()22310f x m k m k ≤--+-(2)设t 为实数,若关于x 的方程恰有两个不相等的实数根且,()()2log 0f f x t x --=⎡⎤⎣⎦12,x x 12x x <试将表示为关于t 的函数,并写出此函数的定义域. 1221212log 211++--+-x x x x 【答案】(1)4k ≥(2), 1221212log 2|1||1|x x x x ++--+-1t t=+(]1,3【分析】(1)分离参数,得,再借助基本不等式求解即可; 4(3)83k m m ≥-++-(2)先得出,再对,进行分类讨论. ()()22,1()log log ,1x x f f x x x ≤⎧=⎨>⎩1x >1x ≤【详解】(1)当时,,故.(,]x m ∈-∞max ()f x =102m ≤≤要使得不等式恒成立,2()(2)310f x m k m k ≤--+-需使,2(2)310m k m k --+-1≥即对于任意的都成立. 2(2)3110m k m k --+-≥[0,2]m ∈因为,所以. 133m ≤-≤4(3)83k m m ≥-++-由,得 30m ->403m <-4(3)84843m m -++≤-+=- (当且仅当时取等号)1m =所以;4k ≥(2)由函数,得, ()f x 22,0log ,0x x x x ⎧≤=⎨>⎩()()22,1()log log ,1x x f f x x x ≤⎧=⎨>⎩①若,则方程变为,1x ≤[]2()log ()0f f x t x --=x =2log ()t x -即,则,2x t x =-2x t x =+为递增函数,,则有;2x y x =+1x ≤3t ≤②若,则方程变为1x >[]2()log ()0f f x t x --=,即,且,故,()222log log log ()x t x =-2log x t x =-0t x ->1t >于是分别是方程、的两个根,则,,12,x x 2x t x =-2log x t x =-11x ≤21x <即,121x x ≤<由于函数与的图像关于直线对称,2log y x =2x y =y x =故,12x x t +=, 122122log 2()x x t x x t +=-+=()()1212112|1||1|211x x x x =--+-+-+-1t=故,且, 1221212log 2|1||1|x x x x ++--+-1t t =+13t <≤故此函数的定义域为.(]1,3【点睛】方法点睛:对于非二次不等式恒成立求参问题,一般先分离参数,转化为最值问题,进而可借助函数或基本不等式进行求解;方程解的个数可等价于两个不同函数交点个数,分段函数则需要考虑每一段解析式是否成立.20.对于定义在D 上的函数,设区间是D 的一个子集,若存在,使得函()y f x =[,]m n 0(,)x m n ∈数在区间上是严格减函数,在区间上是严格增函数,则称函数在区()y f x =[]0,m x []0,x n ()y f x =间上具有性质P .[,]m n (1)若函数在区间上具有性质P ,写出实数a 、b 所满足的条件;2y ax bx =+[0,1](2)设c 是常数,若函数在区间上具有性质P ,求实数c 的取值范围.3y x cx =-[1,2]【答案】(1);(2).20a b -<<()3,12c ∈【分析】(1)根据定义判断出为二次函数,然后根据的单调性和单调区间判断出2y ax bx =+()f x 的开口以及对称轴,由此得到满足的条件;2y ax bx =+,a b (2)先分析函数在区间上为严格增函数和严格减函数时的取值,据此分析出3y x cx =-[1,2]c 在区间上先递减再递增时的取值范围,由此求解出的取值范围.3y x cx =-[1,2]c c 【详解】(1)当函数在区间上具有性质P 时,由其图象在R 上是抛物线, 2y ax bx =+[0,1]故此抛物线的开口向上(即),且对称轴是; 0a >(0,1)2b x a=-∈于是,实数a ,b 所满足的条件为:.20a b -<<(2)记.设,是区间上任意给定的两个实数,3()f x x cx =-1x 2x [1,2]总有. ()()()()2212121122f x f x x x x x x x c -=-++-若,当时,总有且,3c ≤12x x <120x x -<22112211130x x x x c ++->++-=故,因此在区间上是严格增函数,不符合题目要求.()()120f x f x -<3y x cx =-[1,2]若,当时,总有且,12c ≥12x x <120x x -<222211222222120x x x x c ++-<+⨯+-=故,因此在区间上是严格减函数,不符合题目要求.()()120f x f x ->3y x cx =-[1,2]若,当且时,总有且, 312c <<12x x <12,x x ⎡∈⎢⎣120x x -<2211220333c c c x x x x c c ++-<++-=故,因此在区间上是严格减函数; ()()120f x f x ->3y x cx =-⎡⎢⎣当且时,总有且, 12x x <12,2x x ⎤∈⎥⎦120x x -<2211220333c c c x x x x c c ++->=++-=故,因此在区间上是严格增函数.()()120f x f x -<3y x cx =-2⎤⎥⎦因此,当时,函数在区间上具有性质P .()3,12c ∈3y x cx =-[1,2]【点睛】关键点点睛:本题属于函数的新定义问题,求解本题第二问的关键在于对于性质的理P 解,通过分析函数不具备性质的情况:严格单调递增、严格单调递减,借此分析出可能具备性质P的情况,然后再进行验证即可. P。

2021-2022学年上海市上海中学高一上学期期末考数学试卷(含详解)

2021-2022学年上海市上海中学高一上学期期末考数学试卷(含详解)

2021-2022年上海中学高一上期末一、填空题1.若函数()f x 满足()112x f x -+=,则()4f =______.2.函数()()2ln 4f x x=-的单调增区间是______.3.已知θ是第四象限角,5cos 13θ=,则2021cos 2πθ⎛⎫-=⎪⎝⎭______.4.函数()()()42log 4log 2f x x x =⋅的最小值为______.5.已知函数()()12f x xx α=≤≤的最大值与最小值之差为12,则α=______.6.已知()f x 是偶函数,且方程()30f x -=有五个解,则这五个解之和为______.7.不等式()()2021202142x x --->-的解为______.8.设()f x 是定义在区间[]22-,上的严格增函数.若()()2212f a f a ->+,则a 的取值范围是______.9.若π0,4θ⎛⎫∈ ⎪⎝⎭,记22cos sin P θθ=-,33cos sin Q θθ=-,44cos sin R θθ=-,则P 、Q 、R 的大小关系为______.10.在函数()125236x x xf x ⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭的图像上,有______个横、纵坐标均为整数的点.11.设()111f x x x x=++-,若存在a ∈R 使得关于x 的方程()()()20f x af x b ++=恰有六个解,则b 的取值范围是______.12.若定义域为(]0,I m =的函数()e xf x =满足:对任意能构成三角形三边长的实数,,a b c I ∈,均有()f a ,()f b ,()f c 也能构成三角形三边长,则m 的最大值为______.(e 2.718281828≈是自然对数的底)二、选择题13.2021- 的始边是x 轴正半轴,则其终边位于第()象限.A.一B.二C.三D.四14.设函数()f x 的定义域为R .则“()f x 在R 上严格递增”是“()()g x f x x =+在R 上严格递增”的()条件A.充分不必要B.必要不充分C .充分必要D.既不充分也不必要15.将函数()()lg 2f x x =的图像向左、向下各平移1个单位长度,得到()g x 的函数图像,则()g x =()A.()lg 211x +- B.1lg 5x +⎛⎫⎪⎝⎭C.()lg 211x -- D.1lg 5x -⎛⎫⎪⎝⎭16.设函数()2xf x x =+,点()11,A x y ,()22,B x y ,()33,C x y 在()f x 的图像上,且32210x x x x -=-≠.对于ABC ,下列说法正确的是()①一定是钝角三角形②可能是直角三角形③不可能是等腰三角形③可能是等腰三角形A.①③B.①④C.②③D.②④三、解答题17.求函数()f x =18.已知0a >,b R ∈,且函数()12xf x b a=+-有奇偶性,求a ,b 的值.19.某厂商计划投资生产甲、乙两种商品,经市场调研发现,如图所示,甲、乙商品的投资x 与利润y (单位:万元)分别满足函数关系11ay k x =与22ay k x =.(1)求1k ,1a 与2k ,2a 的值;(2)该厂商现筹集到资金20万元,如何分配生产甲、乙商品的投资,可使总利润最大?并求出总利润的最大值.21.设函数()1122f x x ax x x ⎛⎫=+-≤≤ ⎪⎝⎭,其中a R ∈.(1)若当1,22x ⎛⎫∈⎪⎝⎭时()f x 取到最小值,求a 的取值范围.(2)设()f x 的最大值为()M a ,最小值为()L a ,求()()()g a M a L a =-的函数解析式,并求()g a 的最小值.23.对于函数()f x ,若实数0x 满足()00f x x =,则称0x 是()f x 的不动点.现设()2f x x a =+.(1)当2a =-时,分别求()f x 与()()f f x 的所有不动点;(2)若()f x 与()()ff x 均恰有两个不动点,求a 的取值范围;(3)若()f x 有两个不动点,()()ff x 有四个不动点,证明:不存在函数()g x 满足()()()f x g g x =.2021-2022年上海中学高一上期末一、填空题1.若函数()f x 满足()112x f x -+=,则()4f =______.【1题答案】【答案】4【解析】【分析】根据题意,令3x =,结合指数幂的运算,即可求解.【详解】由题意,函数()f x 满足()112x f x -+=,令3x =,可得()()3131424f f -+===.故答案为:4.2.函数()()2ln 4f x x =-的单调增区间是______.【2题答案】【答案】(2,0]-【解析】【分析】先求出函数的定义域,再换元,利用复合函数单调性的求法求解【详解】由240x ->,得22x -<<,所以函数的定义域为(2,2)-,令24t x =-,则ln y t =,因为24t x =-在(2,0]-上递增,在[0,2)上递减,而ln y t =在(0,)+∞上为增函数,所以()f x 在(2,0]-上递增,在[0,2)上递减,故答案为:(2,0]-3.已知θ是第四象限角,5cos 13θ=,则2021cos 2πθ⎛⎫-=⎪⎝⎭______.【3题答案】【答案】1213-【解析】【分析】利用同角三角函数的基本关系求出sin θ的值,在利用诱导公式可求得结果.【详解】因为θ是第四象限角,5cos 13θ=,则12sin 13θ==-,所以,202112cos cos sin 2213ππθθθ⎛⎫⎛⎫-=-==-⎪ ⎪⎝⎭⎝⎭.故答案为:1213-.4.函数()()()42log 4log 2f x x x =⋅的最小值为______.【4题答案】【答案】18-##-0.125【解析】【分析】化简函数为()2442(log )3log 1f x x x =++,4log t x R =∈,得到()2231f t t t =++,结合二次函数的性质,即可求解.【详解】由题意,函数()()()4242log 4log 2(log 1)(log 1)f x x x x x =⋅=++24444(log 1)(2log 1)2(log )3log 1x x x x =++=++,令4log t x R =∈,可得()22312312()48f t t t t =++=+-,当34t =-时,()min 31()48f t f =-=-,即函数()f x 的最小值为18-.故答案为:18-.5.已知函数()()12f x x x α=≤≤的最大值与最小值之差为12,则α=______.【5题答案】【答案】23log 2或1-.【解析】【分析】根据幂函数的性质,结合题意,分类讨论,利用单调性列出方程,即可求解.【详解】由题意,函数()()12f x xx α=≤≤,当0α>时,函数()f x 在[]1,2上为单调递增函数,可得1212α-=,解得23log 2α=;当0α=时,显然不成立;当0α<时,函数()f x 在[]1,2上为单调递减函数,可得1122α-=,解得1α=-,综上可得,23log 2α=或1α=-.故答案为:23log 2或1-.6.已知()f x 是偶函数,且方程()30f x -=有五个解,则这五个解之和为______.【6题答案】【答案】15【解析】【分析】根据函数的奇偶性和图象变换,得到函数()3=-y f x 的图象关于3x =对称,进而得出方程其中其中一个解为3x =,另外四个解满足14236x x x x +=+=,即可求解.【详解】由题意,函数()f x 是偶函数,可函数()f x 的图象关于0x =对称,根据函数图象的变换,可得函数()3=-y f x 的图象关于3x =对称,又由方程()30f x -=有五个解,则其中一个解为3x =,不妨设另外四个解分别为1234,,,x x x x 且1234x x x x <<<,则满足2314322x x x x ++==,即14236x x x x +=+=,所以这五个解之和为66315++=.故答案为:15.7.不等式()()2021202142x x --->-的解为______.【7题答案】【答案】()(),23,4∞-⋃【解析】【分析】根据幂函数的性质,分类讨论即可【详解】将不等式()()2021202142x x --->-转化成2021202111(()42x x >--(Ⅰ)1041021142x x x x ⎧>⎪-⎪⎪>⎨-⎪⎪>⎪--⎩,解得34x <<;(Ⅱ)104102xx ⎧>⎪⎪-⎨⎪<⎪-⎩,解得2x <;(Ⅲ)1041021142x x x x ⎧<⎪-⎪⎪<⎨-⎪⎪>⎪--⎩,此时无解;综上,不等式的解集为:(,2)(3,4)-∞故答案为:(,2)(3,4)-∞ 8.设()f x 是定义在区间[]22-,上的严格增函数.若()()2212f a f a ->+,则a 的取值范围是______.【8题答案】【答案】6[,1)2--.【解析】【分析】根据题意,列出不等式组222122212222a a a a ⎧->+⎪-≤-≤⎨⎪-≤+≤⎩,即可求解.【详解】由题意,函数()f x 是定义在区间[]22-,上的严格增函数,因为()()2212f a f a ->+,可得222122212222a a a a ⎧->+⎪-≤-≤⎨⎪-≤+≤⎩,解得12a -≤<-,所以实数a 的取值范围是6[,1)2--.故答案为:[,1)2--.9.若π0,4θ⎛⎫∈ ⎪⎝⎭,记22cos sin P θθ=-,33cos sin Q θθ=-,44cos sin R θθ=-,则P 、Q 、R 的大小关系为______.【9题答案】【答案】P R Q =<【解析】【分析】利用平方差公式和同角三角函数的平方关系可得P 、R 的关系,然后作差,因式分解,结合已知可判断P 、Q 的大小关系.【详解】44222222cos sin (cos sin )(cos sin )cos sin R P θθθθθθθθ=-=+-=-=又2233cos sin (cos sin )P Q θθθθ-=---(cos sin )(cos sin )(cos sin )(1cos sin )θθθθθθθθ=-+--+(cos sin )(cos sin 1cos sin )θθθθθθ=-+--(cos sin )(cos 1)(1sin )θθθθ=---因为π0,4θ⎛⎫∈ ⎪⎝⎭,所以cos sin 0,cos 10,1sin 0θθθθ->-<->所以0P Q -<,即P Q<所以P 、Q 、R 的大小关系为P R Q =<.故答案为:P R Q=<10.在函数()125236x x xf x ⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭的图像上,有______个横、纵坐标均为整数的点.【10题答案】【答案】3【解析】【分析】由题可得函数为减函数,利用赋值法结合条件及函数的性质即得.【详解】因为()125236x x xf x ⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以函数在R 上单调递减,又()0001250=3236f ⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()11112512236f ⎛⎫⎛⎫⎛⎫=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()222125252=23618f ⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()3331253=1236f ⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且当3x >时,()()0,1f x ∈,当0x <时,令,N *x n n =-∈,则()12536151222Z 236251010n n nn n n nn n f n ---⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=++=++=++∉ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,综上,函数()125236xxxf x ⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的图像上,有3个横、纵坐标均为整数的点.故答案为:3.11.设()111f x x x x=++-,若存在a ∈R 使得关于x 的方程()()()20f x af x b ++=恰有六个解,则b 的取值范围是______.【11题答案】【答案】2,)++∞【解析】【分析】作出f (x )的图像,当0x <时,min ()1f x =+,当0x >时,min ()2f x =.令()t f x =,则20t at b ++=,则该关于t的方程有两个解1t、2t,设1t<2t,则11)t∈+,21,)t∈+∞.令2()g t t at b=++,则(2)01)0gg>⎧⎪⎨+<⎪⎩,据此求出a的范围,从而求出b的范围.【详解】当1≥x时,11()11f x x xx x=++-=+,当01x<<时,112()11f x x xx x x=++-=+-,当0x<时,112()11f x x xx x x=--+-=--+,则f(x)图像如图所示:当0x<时,2()11f x xx=--+≥+,当0x>时,min()2f x=.令()t f x=,则20t at b++=,∵关于x的方程()()()20f x af x b++=恰有六个解,∴关于t的方程20t at b++=有两个解1t、2t,设1t<2t,则11)t∈+,21,)t∈+∞,令2()g t t at b=++,则(2)4201)91)0g a bg a b=++>⎧⎪⎨+=++++<⎪⎩,∴42ba-->且a<,要存在a满足条件,则42b--<,解得2b>+.故答案为:2,)++∞.12.若定义域为(]0,I m =的函数()e xf x =满足:对任意能构成三角形三边长的实数,,a b c I ∈,均有()f a ,()f b ,()f c 也能构成三角形三边长,则m 的最大值为______.(e 2.718281828≈是自然对数的底)【12题答案】【答案】ln 4##2ln 2【解析】【分析】不妨设三边的大小关系为:0a b c <≤≤,利用函数的单调性,得出()f a ,()f b ,()f c 的大小关系,作为三角形三边则有任意两边之和大于第三边,再利用基本不等式求出边的范围得出m 的最大值即可.【详解】()e xf x =在(]0,I m =上严格增,所以(()1,e m f x ⎤∈⎦,不妨设0a b c <≤≤,因为对任意能构成三角形三边长的实数,,a b c I ∈,均有()f a ,()f b ,()f c 也能构成三角形三边长,所以e e e ,a b c a b c +>+>,因为e e e a b c +≥=>,所以24e e a b c +>,因为对任意,,a b c I ∈都成立,所以24e e c c ≥,所以e 4c ≤,所以ln 4c ≤,所以ln 4m ≤,所以m 的最大值为ln 4.故答案为:ln 4.二、选择题13.2021- 的始边是x 轴正半轴,则其终边位于第()象限.A.一 B.二C.三D.四【13题答案】【答案】B 【解析】【分析】将2021- 转化为()0,360内的角,即可判断.【详解】20213606139-=-⨯+ ,所以2021- 的终边和139 的终边相同,即落在第二象限.故选:B14.设函数()f x 的定义域为R .则“()f x 在R 上严格递增”是“()()g x f x x =+在R 上严格递增”的()条件A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要【解析】【分析】利用特例法、函数单调性的定义结合充分条件、必要条件的定义判断可得出合适的选项.【详解】若函数()f x 在R 上严格递增,对任意的1x 、2R x ∈且12x x <,()()12f x f x <,由不等式的性质可得()()1122f x x f x x +<+,即()()12g x g x <,所以,()()g x f x x =+在R 上严格递增,所以,“()f x 在R 上严格递增”⇒“()()g x f x x =+在R 上严格递增”;若()()g x f x x =+在R 上严格递增,不妨取()12f x x =-,则函数()()12g x f x x x =+=在R 上严格递增,但函数()12f x x =-在R 上严格递减,所以,“()f x 在R 上严格递增”⇐/“()()g x f x x =+在R 上严格递增”.因此,“()f x 在R 上严格递增”是“()()g x f x x =+在R 上严格递增”的充分不必要条件.故选:A.15.将函数()()lg 2f x x =的图像向左、向下各平移1个单位长度,得到()g x 的函数图像,则()g x =()A.()lg 211x +-B.1lg 5x +⎛⎫⎪⎝⎭C.()lg 211x -- D.1lg 5x -⎛⎫⎪⎝⎭【15题答案】【答案】B 【解析】【分析】根据函数的图象变换的原则,结合对数的运算性质,准确运算,即可求解.【详解】由题意,将函数()()lg 2f x x =的图像向左、向下各平移1个单位长度,可得()221lg[2(1)]1lg(22)1lg lg 105x x g x x x ++=+-=+-==.故选:B.16.设函数()2xf x x =+,点()11,A x y ,()22,B x y ,()33,C x y 在()f x 的图像上,且32210x x x x -=-≠.对于ABC ,下列说法正确的是()①一定是钝角三角形②可能是直角三角形③不可能是等腰三角形③可能是等腰三角形A.①③B.①④C.②③D.②④【解析】【分析】结合0BA BC ⋅<uu r uu u r,得到90ABC ∠> ,所以ABC 一定为钝角三角形,可判定①正确,②错误;根据两点间的距离公式和函数的变化率的不同,得到AB BC <,可判定③正确,④不正确.【详解】由题意,函数()2xf x x =+为单调递增函数,因为点()11,A x y ,()22,B x y ,()33,C x y 在()f x 的图像上,且32210x x x x -=-≠,不妨设123x x x <<,可得12123232(,),(,)BA x x y y BC x x y y =--=--,则12321232()()()()BA BC x x x x y y y y ⋅=--+--,因为123x x x <<,可得1232()()0x x x x --<,31221222313222(()()[())][2()]()2x x x x x x x x y y y y -+----+-=又由因为12220x x -<,120x x -<,32220x x ->,320x x ->,所以31221232[())][())22(22(]0xxxxx x x x -+-+-<-,所以12321232()()()()0BA BC x x x x y y y y ⋅=--+--<所以90ABC ∠> ,所以ABC 一定为钝角三角形,所以①正确,②错误;由两点间的距离公式,可得AB BC ==根据指数函数和一次函数的变化率,可得点A 到B 的变化率小于点B 到C 点的变化率不相同,所以AB BC <,所以ABC 不可能为等腰三角形,所以③正确,④不正确.故选:A.三、解答题17.求函数()f x =【17题答案】【答案】定义域为(1,)+∞,值域为[1,)+∞,递减区间为(1,2],递增区间为[2,)+∞.【解析】【分析】由函数的解析式有意义列出不等式,可求得其定义域,由2331(1)111x x x x x -+=-+---,结合基本不等式,可求得函数的值域,令()1(1)11g x x x =-+--,根据对勾函数的性质和复合函数的单调性的判定方法,可求得函数的单调区间.【详解】由题意,函数()f x =23301x x x -+≥-且10x -≠,因为方程223333(024x x x -+=-+>,所以10x ->,解得1x >,所以函数()f x 的定义域为(1,)+∞又由2233(1)(1)11(1)1111x x x x x x x x -+---+==-+----,因为10x ->,所以1(1)1111x x -+-≥=-,当且仅当111x x -=-时,即2x =时,等号成立,所以23311x x x -+≥-,所以函数()f x 的值域为[1,)+∞,令()1(1)11g x x x =-+--,根据对勾函数的性质,可得函数()g x 在区间(1,2]上单调递减,在[2,)+∞上单调递增,结合复合函数的单调性的判定方法,可得()f x 在(1,2]上单调递减,在[2,)+∞上单调递增.18.已知0a >,b R ∈,且函数()12x f x b a=+-有奇偶性,求a ,b 的值.【18题答案】【答案】()f x 为奇函数,11,2a b ==,【解析】【分析】由函数奇偶性的定义列方程求解即可【详解】若()f x 为奇函数,则()()0(R)f x f x x -+=∈,所以11022x x b b a a-+++=--恒成立,即212122x x x b a a+=--⋅-,所以22222212[2(1)2]x x x x a b a a a -⋅+=--⋅++⋅-恒成立,所以21222(1)ab a b a =⎧⎨-=-+⎩,解得112a b =⎧⎪⎨=⎪⎩,所以当()f x 为奇函数时,11,2a b ==,若()f x 为偶函数,则()()(R)f x f x x -=∈,所以1122x x b b a a-+=+--恒成立,得22x x -=,得0x =,不合题意,所以()f x 不可能是偶函数,综上,()f x 为奇函数,11,2a b ==,19.某厂商计划投资生产甲、乙两种商品,经市场调研发现,如图所示,甲、乙商品的投资x 与利润y (单位:万元)分别满足函数关系11ay k x =与22ay k x =.(1)求1k ,1a 与2k ,2a 的值;(2)该厂商现筹集到资金20万元,如何分配生产甲、乙商品的投资,可使总利润最大?并求出总利润的最大值.【19题答案】【答案】(1)1 1.5k =,11a =,23k =,212a =(2)分配生产乙商品的投资为1万元,甲商品的投资为19万元,此时总利润的最大值为31.5万元.【解析】【分析】(1)代入点的坐标,求出1k ,1a 与2k ,2a 的值;(2)在第一问的基础上,表达出总利润的关系式,利用配方求出最大值.【小问1详解】将()()1,1.5,3,4.5代入11ay k x =中,111 1.53 4.5a k k =⎧⎨⋅=⎩,解得:111.51k a =⎧⎨=⎩,将()()4,6,9,9代入22ay k x =中,22224699a a k k ⎧⋅=⎨⋅=⎩,解得:22312k a =⎧⎪⎨=⎪⎩,所以1 1.5k =,11a =,23k =,212a =.【小问2详解】设分配生产乙商品的投资为m (0≤m ≤20)万元、甲商品的投资为()20m -万元,此时的总利润为w ,则())12231.5203131.52w m m =-+⋅=-+,因为0≤m ≤20,1=,即1m =时,w 取得最大值,即分配生产乙商品的投资为1万元,甲商品的投资为19万元,此时总利润的最大值为31.5万元.21.设函数()1122f x x ax x x ⎛⎫=+-≤≤ ⎪⎝⎭,其中a R ∈.(1)若当1,22x ⎛⎫∈⎪⎝⎭时()f x 取到最小值,求a 的取值范围.(2)设()f x 的最大值为()M a ,最小值为()L a ,求()()()g a M a L a =-的函数解析式,并求()g a 的最小值.【21题答案】【答案】(1)3(3,)4-(2)()()()33,[,)2452(3,0]2513(3,)2243,(,3]2a a g a a x g a g a a x a a ∞∞⎧∈+⎪⎪⎪=--∈-⎪=⎨⎪=--∈-⎪⎪⎪-∈--⎩,最小值为12.【解析】【分析】(1)求得函数的导数()22(1)1a x f x x--'=,令()2(1)1h x a x =--,要使得函数()f x 在1(,2)2x ∈取到最小值,则函数()f x 必须先减后增,列出方程组,即可求解;(2)由(1)知()2(1)1h x a x =--,若10a -≤时,得到函数()f x 在1[,2]2上单调递减,得到()32g a a =;若10a ->时,令()0h x =,求得x =12≤2≥,122<<三种情况讨论,求得函数的解析式,利用一次函数、换元法和二次函数的性质,即可求解.【小问1详解】解:由函数()11(1)f x x ax a x x x =+-=-+,可得()2221(1)1(1)a x f x a x x--'=--=,令()2(1)1h x a x =--,要使得函数()f x 在1(,2)2x ∈取到最小值,则函数()f x 必须先减后增,则满足()()11()11024(2)4110h a h a ⎧=--<⎪⎨⎪=-->⎩,解得334a -<<,即实数a 的取值范围为3(3,)4-.【小问2详解】解:由(1)知()22(1)1a x f x x--'=,设()2(1)1h x a x =--,若10a -≤时,即1a ≥时,()0h x <,即()0f x '<,函数()f x 在1[,2]2上单调递减,所以1515()(),(2)2222()2M a f a f a L a ==-==-,可得()()()32g a M a L a a =-=;若10a ->时,即1a <时,令()0h x =,即2(1)10a x --=,解得x =x =12≤时,即3a ≤-时,()0h x >在1[,2]2x ∈恒成立,即()0f x '>,可得函数()f x 在1[,2]2上单调递增,所以5151(2)2,()()22(2)2f a L a f a M a ==-==-,可得()()()32g a M a L a a =-=-;2≥时,即314a ≤<时,()0h x <在1[,2]2x ∈恒成立,即()0f x '<,可得函数()f x 在1[,2]2上单调递减,所以1515()(,(2)2222()2M a f a f a L a ==-==-,可得()()()32g a M a L a a =-=;③当122<<时,即334a -<<时,当1[2x ∈时,()0h x <,即()0f x '<,()f x 单调递减;当2]x ∈时,()0h x >,即()0f x '>,()f x 单调递增,所以当x =()f x取得最小值,即()L a =,又由1515(),(2)22222f a f a =-=-,可得13((2)22f f a -=,(i )当30a -<≤时,1()(2)02f f -<,即1((2)2f f <,所以5()(2)22M a f a ==-,此时()()()522g a M a L a a --==-;(ii )当304a <<时,1()(2)02f f ->,即1((2)2f f >,所以151()()222M a f a ==-,此时()()()5122g a M a a L a --==-,综上可得,函数()g a 的解析式为()()()33,[,)2452(3,0]2513(3,)2243,(,3]2a a g a a x g a g a a x a a ∞∞⎧∈+⎪⎪⎪=--∈-⎪=⎨⎪=--∈-⎪⎪⎪-∈--⎩,当3a ≤-时,()9(3)2g a g ≥-=;当34a ≥时,()39(48g a g ≥=;当30a -<≤时,令[1,2)t =,则21a t =-,可得()21222t t t ϕ-+=,根据二次函数的性质,可得当1t =时,函数()t ϕ取得最小值,最小值为()112ϕ=;当304a <<时,令1(,1)2t =,则21a t =-,可得()21222t t t ϕ-+=,则()()112t ϕϕ>=,综上可得,函数()g a 的最小值为12.23.对于函数()f x ,若实数0x 满足()00f x x =,则称0x 是()f x 的不动点.现设()2f x x a =+.(1)当2a =-时,分别求()f x 与()()f f x 的所有不动点;(2)若()f x 与()()ff x 均恰有两个不动点,求a 的取值范围;(3)若()f x 有两个不动点,()()f f x 有四个不动点,证明:不存在函数()g x 满足()()()f x g g x =.【23题答案】【答案】(1)123415152,1,22x x x x --+==-==(2)31,44⎡⎫-⎪⎢⎣⎭(3)见详解.【解析】【小问1详解】因为2a =-,所以()f x x =即220x x --=,所以122,1x x ==-,所以()f x 的不动点为122,1x x ==-;解(())f f x x =,22242(())(2)(2)242f f x f x x x x x =-=--=-+=,所以42420x x x --+=,因为()f x x =是(())f f x x =的解,所以上述四次方程必有因式22x x --,利用长除法或者双十字相乘法因式分解得22(2)(1)0x x x x --+-=,所以123,4152,1,2x x x -±==-=,所以(())f f x 的不动点为123,4152,1,2x x x -±==-=;【小问2详解】由2()f x x a x =+=得20x x a -+=,由222422(())()()2f f x f x a x a a x ax a a x =+=++=+++=、得42220x ax x a a +-++=,因为()f x x =是(())f f x x =的解,所以上述四次方程必有因式2x x a -+,利用长除法或者双十字相乘法因式分解得22()(1)0x x a x x a -++++=,因为()f x 与(())f f x 均恰有两个不动点,所以①12140,144340a a a ∆=->∆=--=--<或②1140a ∆=->且20x x a -+=和210x x a +++=有同根,由①得3144a -<<,②中两方程相减得210x +=,所以12x =-,故34a =-,综上,a 的取值范围是31,44⎡⎫-⎪⎢⎣⎭;【小问3详解】(3)设()f x 的不动点为,a b ,(())f f x 的不动点为a b c d ,,,,所以(),(),(),()f a a f b b f c c f d d ==≠≠,设()(())h x f f x =,则()(())h c f f c c ==,所以(())((())()h f c f f f c f c ==,所以()f c 是()(())h x f f x =的不动点,同理,()f d 也是()(())h x f f x =的不动点,只能(),()f c d f d c ==,假设存在()(())f x g g x =,则()()g a a g b b =⎧⎨=⎩或()()g a bg b a =⎧⎨=⎩,因为()y f x =过点(,),(,)c d d c ,所以(),()g c c g d d ≠≠,否则()(())()f c g g c g c c ===矛盾,且(),()g c d g d c ≠≠,否则()(())()f c g g c g d d ===,所以一定存在(),(),(),()g c t g t d g d s g s c ====,,S t 与cd 均不同,所以((())g g g t t =,所以(())f f t t =,所以(())f f x 有另外不动点,矛盾,故不存在函数()g x 满足()(())f x g g x =.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一上的综合练习
复兴高级中学 朱良
一、填空题
1、已知a 、b R ∈,且{}2,
,1,,0b a a a b a ⎧⎫
=+⎨⎬⎩

,则a b +=______________ 2、已知集合{}
2
4120A x x x =--≤,401x B x
x ⎧-⎫
=≤⎨⎬-⎩⎭
,则A B ⋂=______________
3、设全集U R =,已知集合{
}
3(1)x
A y y x ==<,{}
12B x x =<<,()U
A B ⋂=____
__________ 4、函数213
()22
f x x x =
-+的定义域和值域都是[1,]a ,则a 的取值为______________ 5、函数2
()22f x x ax =++在[3,3]x ∈-上是单调函数,则实数a 的取值范围是_________ 6、函数9
1
y x x =+
+,当[8,10]x ∈时的最小值是______________ 7、已知0x >,0y >,228x y xy ++=,则2x y +的最小值是______________
8、已知函数21()1
x f x ⎧+=⎨⎩ 00x x ≥<,则满足不等式2
(1)(2)f x f x ->的x 取值范围是___
___________
9、已知函数5
3
()231f x x x =++,则不等式()(3)2f x f x +->的解集为______________
10、对于实数x 、y ,则“8x y +≠”是“2x ≠或6y ≠”的______________条件 11、对于函数()f x ,()g x ,记{}()()()
max (),()()()()f x f x g x f x g x g x f x g x ≥⎧=⎨
<⎩
,则函数
{}()max 1,2F x x x =+-(x R ∈)的最小值是______________
12、设两个命题
(1)不等式2
1
()423
x m x x +>>-对一切实数x 恒成立; (2)函数()(72)x
f x m =--是R 上的减函数
如果这两个命题仅有一个是真命题,则实数a 的取值范围是______________ 13、()f x 是定义在R 上的函数
(1)若存在1x 、2x R ∈,12x x <,使12()()f x f x <成立,则函数()f x 在R 上单调递增; (2)若存在1x 、2x R ∈,12x x <,使12()()f x f x ≤成立,则函数()f x 在R 上不可能单调递减;
(3)若存在20x >,对于任意1x R ∈都有112()()f x f x x <+成立,则函数()f x 在R 上单调递增;
(4)对任意1x 、2x R ∈,12x x <,都有12()()f x f x ≥成立,则函数()f x 在R 上单调递减; (5)函数()f x 对任意实数x 都有()(1)f x f x <+,那么()f x 在实数集R 上是增函数 以上命题正确的序号是_______________
14、若关于x 的不等式kx x x x ≥-++|3|92
2
在[1,5]x ∈上恒成立,则实数k 的取值范围是_______________ 二、选择题
15、如图,已知正ABC ∆的边长为1,E 、F 、G 分别是
AB 、BC 、CA 上的点,且AE BF CG ==,设EFG ∆的面积为y , AE 的长为x ,则y 关于x 的函数的图象大致是(ﻩﻩ)
16、已知()y f x =与()y g x =的图象如图所示,则函数()()()F x f x g x =⋅的图象可以是(
ﻩ)
()
y g x =()y f x =O x y
y x O G
E
F
C
B
A A ()
B ()
C ()
D ()
17、已知0x 是函数1
()21x
f x x
=+-的一个零点,若10(1,)x x ∈,20(,)x x ∈+∞, 则(ﻩﻩ)
(A)1()0f x <,2()0f x <ﻩ ﻩ(B)1()0f x <,2()0f x > (C )1()0f x >,2()0f x <
(D )1()0f x >,2()0f x >
18、设函数()f x 的定义域为R ,有下列三个命题
(1)若存在常数M ,使得对任意x R ∈,有()f x M ≤,则M 是函数()f x 的最大值; (2)若存在0x R ∈,使得对任意x R ∈且0x x ≠,有0()()f x f x <,则0()f x 是函数()f x 的最大值;
(3)若存在0x R ∈,使得对任意x R ∈,有0()()f x f x ≤,则0()f x 是函数()f x 的最大值 这些命题中,真命题的个数是( ﻩ) (A)0个 (B)1个ﻩﻩﻩ(C)2个ﻩ ﻩ(D)3个 三、解答题
19、用木料制作如图所示的框架,框架的下部是边长分别为x 、y (单位:m )的矩形,上部是等腰直角三角形,若要求框架围成的总面积为8(2
m ),则x 、y 分别为多少时用料最省?(精确到0.001(m ))
20、已知函数1()22
x
x f x =-
(1)设集合15()4A x f x ⎧
⎫=≤
⎨⎬⎩

,{}
2
60B x x x p =-+<,若A B ⋂≠∅,求实数p 的取值范围;
(2)若2(2)()0t
f t mf t +≥对于[1,2]t ∈恒成立,求实数m 的取值范围
x
y
21、已知()f x 是定义在[1,1]-上的奇函数,且(1)1f =-,若x 、[1,1]y ∈-,0x y +≠,则
()()
0f x f x x y
+<+
(1)用定义证明,()f x 在[1,1]-上是减函数; (2)解不等式:11(
)()12
f f x x <+-; (3)若2
()21f x t at ≥--对所有[1,1]x ∈-,[1,1]a ∈-均成立,求实数t 的取值范围
22、设函数()a f x x x
=+
,2
()22g x x x a =-+-,其中0a > (1)若1x =是关于x 的不等式()()f x g x >的解,求a 的取值范围; (2)求函数()a
f x x x
=+
在(0,2]x ∈上的最小值; (3)若对任意的1x ,2(0,2]x ∈,不等式12()()f x g x >恒成立,求a 的取值范围;
(4)当32a =时,令()()()h x f x g x =+,试研究函数()h x 在(0,)x ∈+∞上的单调性,并求
()h x 在该区间上的最小值
答案
一、填空题 1、1-;
2、[2,1)[4,6]-⋃;
3、[2,3)(,1]⋃-∞;ﻩ
4、3;
5、(,3][3,)-∞-⋃+∞;ﻩ
6、9;ﻩﻩ
7、4;ﻩ
8、(1)-;
9、3
(,)2
+∞;ﻩﻩ10、充分不必要; 11、
3
2
;ﻩ 12、(,1][3,4]-∞⋃; 13、(2);
14、(,6]-∞
二、选择题
15、C ;ﻩﻩﻩ16、A ;ﻩﻩﻩ17、B;ﻩ 18、C
三、解答题
19、解:2184
xy x +
=得84x
y x =-(0x <<)
316
22(1)2l x y x x
=++=+≥
此时8 2.343x =-≈, 2.828y =≈用料最省 20、(1)解:(,2]A =-∞,
令2
()6g x x x p =-+,则由题意()0g x <得12(,)B x x =,且12x < 即(2)0g <,得(,8)p ∈-∞ (2)22112(2)(2)022t t
t
t t
m -
+-≥对[1,2]t ∈恒成立 即22(21)(21)0t
t
m -++≥,又[1,2]t ∈时2213t
-≥
则2210t
m ++≥即2(21)t
m ≥-+恒成立
则5m ≥- 21、(1)略 (2)111121x x -≤+
<≤-得3
[,1)2
x ∈-- (3)2min ()(1)121f x f t at ==-≥--即2
20t at -≤对所有[1,1]a ∈-均成立
设2
()2h a at t =-+ [1,1]a ∈- 则由题意得(1)0
(1)0
h h ≤⎧⎨
-≤⎩得0t =
22、(1)1x =代入得1a >;
(2)min
04()242
a f x a
a ⎧<≤⎪
=⎨+
>⎪⎩ (3)min max ()()(2)8f x g x g a >==-得4a > (4)2
32
()230h x x x
=+
- (0,)x ∈+∞ 用定义易证()h x 在(0,2]x ∈上单调递减,在[2,)x ∈+∞上单调递增 则min ()(2)6h x h ==-。

相关文档
最新文档