小学数学概念集合
人教版小学四年级上册数学全部概念
人教版小学四年级上册数学全部概念
一、数的概念
1.数:用来表示物体数量的符号或符号组合,可以是自然数、零、负数、分数、小数等。
2.自然数:1、2、3、4、5、6、7、8、9、10、11、12、13、14、15……
3.零:表示没有数量的数,是自然数的补充。
4.负数:表示小于零的数,用负号“-”加上自然数表示。
5.分数:表示一个数量分成几份的数,由分子和分母组成,分子表示份数,分母表示总份数。
6.小数:表示一个数量分成无穷多份的数,由整数部分和小数部分组成,用小数点“.”分开。
二、运算概念
1.加法:将两个数的数量相加,得到一个总数的运算。
2.减法:将一个数的数量减去另一个数的数量,得到一个差的运算。
3.乘法:将两个数的数量相乘,得到一个积的运算。
4.除法:将一个数的数量除以另一个数的数量,得到一个商的运算。
三、图形概念
1.点:图形中最小的单位,表示位置的符号。
2.线段:由两个点连接而成的线段,可以用来表示距离。
3.矩形:由四条相互垂直或平行的线段组成的四边形。
4.圆:由一个点和一个半径组成的圆形。
5.三角形:由三条相互垂直或平行的线段组成的三角形。
小学数学1-6年级必备的数学概念
小学数学1-6年级必背的数学概念(包含口决、定义分类)1、什么是图形的周长?围成一个图形所有边长的总和就是这个图形的周长。
2、什么是面积?物体的表面或围成的平面图形的大小叫做他们的面积。
3、加法各部分的关系:一个加数=和-另一个加数4、减法各部分的关系:减数=被减数-差被减数=减数+差5、乘法各部分之间的关系:一个因数=积÷另一个因数6、除法各部分之间的关系:除数=被除数÷商被除数=商×除数7、角(1)什么是角?从一点引出两条射线所组成的图形叫做角。
(2)什么是角的顶点?围成角的端点叫顶点。
(3)什么是角的边?围成角的射线叫角的边。
(4)什么是直角?度数为90°的角是直角。
(5)什么是平角?角的两条边成一条直线,这样的角叫平角。
(6)什么是锐角?小于90°的角是锐角。
(7)什么是钝角?大于90°而小于180°的角是钝角。
(8)什么是周角?一条射线绕它的端点旋转一周所成的角叫周角,一个周角等于360°.8、垂直问题(1)什么是互相垂直?什么是垂线?什么是垂足?两条直线相交成直角时,这两条线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
(2)什么是点到直线的距离?从直线外一点向一条直线引垂线,点和垂足之间的距离叫做这点到直线的距离。
9、三角形(1)什么是三角形?有三条线段围成的图形叫三角形。
(2)什么是三角形的边?围成三角形的每条线段叫三角形的边。
(3)什么是三角形的顶点?每两条线段的交点叫三角形的顶点。
(4)什么是锐角三角形?三个角都是锐角的三角形叫锐角三角形。
(5)什么是直角三角形?有一个角是直角的三角形叫直角三角形。
(6)什么是钝角三角形?有一个角是钝角的三角形叫钝角三角形。
(7)什么是等腰三角形?两条边相等的三角形叫等腰三角形。
(8)什么是等腰三角形的腰?有等腰三角形里,相等的两个边叫做等腰三角形的腰。
小学数学1—6年级概念大全(60项)
小学数学1—6年级概念大全(60项)1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(8+9)×5=8×5+9×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
7、简便乘法:被乘数、乘数末尾有O的乘法,可以先把O 前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
9、等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
10、什么叫方程式?答:含有未知数的等式叫方程式。
11、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
12、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
13、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
14、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
15、异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
16、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
17、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
18、分数除以整数(0除外),等于分数乘以这个整数的倒数。
19、真分数:分子比分母小的分数叫做真分数。
20、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
小学数学概念大全
小学数学概念大全数学是一门充满奥秘和乐趣的学科,而小学阶段是为未来的数学学习打下坚实基础的重要时期。
在小学数学中,有许多重要的概念,让我们一起来了解一下吧!一、数的认识1、自然数用来表示物体个数的 1、2、3、4、5……叫做自然数。
0 也是自然数,最小的自然数是 0,没有最大的自然数。
2、整数像……-3、-2、-1、0、1、2、3……这样的数称为整数。
整数包括正整数、0 和负整数。
3、分数把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
例如,把一个苹果平均分成 4 份,其中的 1 份就是 1/4。
4、小数把整数“1”平均分成 10 份、100 份、1000 份……这样的一份或几份是十分之几、百分之几、千分之几……可以用小数表示。
5、百分数表示一个数是另一个数的百分之几的数叫做百分数,也叫百分率或百分比。
百分数通常用“%”来表示。
二、数的运算1、加法把两个(或几个)数合并成一个数的运算,叫做加法。
2、减法已知两个加数的和与其中的一个加数,求另一个加数的运算,叫做减法。
3、乘法求几个相同加数的和的简便运算,叫做乘法。
4、除法已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
三、常见的量1、长度单位常见的长度单位有千米(km)、米(m)、分米(dm)、厘米(cm)、毫米(mm)。
2、面积单位常用的面积单位有平方千米(km²)、公顷、平方米(m²)、平方分米(dm²)、平方厘米(cm²)。
3、体积单位体积单位有立方米(m³)、立方分米(dm³)、立方厘米(cm³)。
4、质量单位常见的质量单位有吨(t)、千克(kg)、克(g)。
5、时间单位时间单位有时(h)、分(min)、秒(s)。
6、货币单位人民币的单位有元、角、分。
四、图形与几何1、点、线、面、体点动成线,线动成面,面动成体。
2、直线、射线、线段直线没有端点,可以向两端无限延伸;射线有一个端点,可以向一端无限延伸;线段有两个端点,不能延伸。
小学数学:集合思想
集合思想1. 集合的概念。
把指定的具有某种性质的事物看作一个整体,就是一个集合(简称集),其中每个事物叫做该集合的元素(简称元)。
给定的集合,它的元素必须是确定的,即任何一个事物是否属于这个集合,是明确的。
如“学习成绩好的同学”不能构成一个集合,因为构成它的元素是不确定的;而“语文和数学的平均成绩在90分及以上的同学”就是一个集合。
一个给定集合中的元素是互不相同的,即集合中的元素不重复出现。
只要两个集合的元素完全相同,就说这两个集合相等。
集合的表示法一般用列举法和描述法。
列举法就是把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法。
描述法就是在花括号内写出规定这个集合元素的特定性质来表示集合的方法。
列举法的局限性在于当集合的元素过多或者有无限多个时,很难把所有的元素一一列举出来,这时描述法便体现出了优越性。
此外,有时也可以用封闭的曲线(文恩图)来直观地表示集合及集合间的关系,曲线的内部表示集合的所有元素。
一一对应是两个集合之间元素(这种元素不一定是数)的一对一的对应,也就是说集合A中的任一元素a,在集合B中都有唯一的元素b与之对应;并且在集合B中的任一元素b,在集合A中也有唯一的元素a与之对应。
数集之间可以建立一一对应,如正奇数集合和正偶数集合之间的元素可以建立一一对应。
其他集合之间也可以建立一一对应,如五(1)班有25个男生,25个女生,如果把男生和女生各自看成一个集合,那么这两个集合之间可以建立一一对应;再如,中国、美国、俄罗斯、英国、法国、德国作为一个集合,北京、华盛顿、莫斯科、伦敦、巴黎、柏林作为一个集合,这两个集合之间也可以建立一一对应。
2. 集合思想的重要意义。
集合理论是数学的理论基础,从集合论的角度研究数学,便于从整体和部分及二者的关系上研究数学各个领域的知识。
如数系的扩展,从小学的自然数到整数,再到中学的有理数、无理数和实数,都可以从集合的角度来描述。
有时用集合语言来表述有关概念更为简洁,如全体偶数的集合可表示为{x|x=2k,k∈Z}。
小学数学的所有概念大全
小学数学的所有概念大全一、代数知识:整数:1、质数一个数除了1和它本身,不再有其它的约数(因数),这个数叫做质数(质数也叫做素数)。
2、合数一个数除了1和它本身,还有别的约数(因数),这个数叫做合数注意:1只有一个约数(因数),就是它本身,1既不是质数,也不是合数。
最小的质数是2,也是质数中唯一的一个偶数(偶数解释见下),其余的质数均为奇数(奇数解释见下)。
3、偶数偶数就是可以被2整除的自然数(包括)也叫做双数。
偶数通常用“2k”表示。
4、奇数奇数就是不能被2整除的自然数,也叫做单数。
奇数通常用2k+1表示注:偶数除了2以外都是合数。
偶数:能被2整除的数。
(也包括)奇数:不能被2整除的数。
5、自然数:表示物体的数量的数,最小的自然数是“0”自然数也是整数。
是正整数与负整数的分界线。
6、合数:除了“1”和它本身以外还有别的约数(因数)的数。
最小的合数“4”。
7、质数:只有“1”和它本身两个约数(因数)的数。
最小的质数是“2”。
8、“1”既不是合数也不是质数9、互质数:只有公约数(因数)“1”的两个数。
10、公约数(因数):两个数公有的约数(因数)。
11、公倍数:两个数私有的倍数。
12、质因数:把一个合数分解成几个质数相乘的形式,这几个质数叫作这个合数的质因数。
13、分解质因数:把一个合数分解成几个质数相乘的形式,这个过程叫做分解质因数。
14、能被2、3、5整除数的特性:能被2整除数的特性:个位上的数字是,2,4,6,8能被3整除数的特征:各位上的数字之和是3的倍数能被5整除数的特征:个位上的数字是,5能被9整除数的特征:各位上的数字之和是9的倍数.能被4或25整除数的特性:末两位上的数是4或25的倍数.能被8或125整除数的特征:末三位数是8或125的倍数.15、小数:小数的根本性质:在小数开端添上”0”或去掉”0”,小数的大小稳定.无限小数:小数部分的为数是无限的。
无限循环小数:小数局部的数位有纪律的.无限不循环小数:小数部分没规律(又叫无理数)纯循环小数:从小数部分第一位开始循环`混循环小数:不是从小数部分第一位开始循环循环节:从小数部分的某一位起.开是依次不断重复一个或几个数字.这些数字叫做循环节.16、分数分数的意义:把单位”1”平均分成若干份,取其中的一份或几份的数叫做分数.分数的基本性质:分数的分子和分母同时乘或除以一个数(除外).分数的大小不变.真分数<1.假分数≥1将一个分数的份子与分母同时同时除以他们的最大公因数,这个过程叫约分.而获得的这个分数叫最简分数.最简分数:分母与分子互质的时候.这个分数就叫最简分数.将几个异分母的分数使用分数的根本性质将分母变成一样.这个过程叫通分.在分数大小的比力中会遍及遇到通分.二、几何知识:一个封闭式图形,将他的周围围上1圈,这个圈的长度是他的周长.一个物体所占空间的大小叫做这个物体的体积.一个物体所能包容别的物体的体积叫做这个物体的容积一个物体表面的面积叫表面积三角形的内角和是180度.四边形的内角和是360度.N边形的内角和是(边长-2)×180度.外角:1条边的反向延长线与相邻的一条边所夹的角叫做外角.三角形的外角是不相邻的两个内角之和,任何关闭式的图形的外角和都是360度1、线:直线:没有端点,没有长度,无限延长射线:有一个端点,没有长度,无限延长线段:有两个端点,有长度.由一个点引出的两条射线,这两条射线所夹的这个局部叫做角,而XXX叫做极点.角分为几种角:锐角(大于度小于90度),直角(等于90度),钝角(大于90度小于180度),平角(等于180度),周角(等于360度)由1点做一条线段的垂线,这个点叫做垂足.当两条直线永久不订交时,就说明这两条直线相互平行.2、平面图形:三角形:三角形中最大的角是钝角的话这个三角形叫钝角三角形.三角形中最大的角是直角的话这个三角形叫直角三角形三角形中最大的角是锐角的话这个三角形叫锐角三角形从极点做与他对边的垂线段.这个垂线段的长度叫做这个三角形的高.1个三角形有三条高.当三角形有两条边的长度相等时,这个三角形叫等腰三角形,等腰三角形长度相等的两个边叫做腰,而剩下的叫底.当三角形3条边相等时,这个三角形叫等边三角形,等边三角形是非凡的等腰三角形.他的3个角都是60度.四边形:一个四边形的四个角都是直角.且任意不相邻的两条边互相平行时,这个四边形叫长方形.当四条边都相等时,且每个角是90度时,这是个正方形.正方形是特殊的长方形.当四边形的任意两条边互相平行时,这个图形是平行四边形(长方形是特殊的平行四边形).平行四边形有无数条高.当4条边长度相等时.这个图形叫菱形(菱形是特殊的平行四边形).只有一组对边相互平行时,这个图形叫梯形.梯形上面那条边叫上底.上面那条边叫下底.而梯形的左右两条边叫梯形的腰.当左右两条边的长度相等时.这个梯形叫等腰梯形.圆的周长与直径的比值始终是定值。
小学生的集合了解集合的概念和运算
小学生的集合了解集合的概念和运算在小学数学学习中,集合是一个重要的概念。
通过了解集合的定义和运算,可以帮助小学生建立数学思维和解决问题的能力。
本文将介绍集合的概念、运算及其在小学数学中的应用。
一、集合的概念集合是指把具有某种共同特征的对象或者元素组成的整体。
例如,小学生的全体学生可以组成一个集合,集合中的每个元素就是一个小学生。
集合通常用大写字母表示,而集合中的元素用小写字母表示。
集合的表示法有两种方式,一种是列举法,即将集合中的元素一个一个列举出来;另一种是描述法,即通过描述集合中元素所具有的共同特征来表示。
二、集合的运算1. 并集并集是指将两个或多个集合中所有的元素合并在一起,去除重复的元素后形成的新集合。
并集的符号为“∪”。
例如,集合A={1, 2, 3},集合B={2, 3, 4},则A∪B={1, 2, 3, 4}。
2. 交集交集是指两个或多个集合中共同存在的元素组成的新集合。
交集的符号为“∩”。
例如,集合A={1, 2, 3},集合B={2, 3, 4},则A∩B={2, 3}。
3. 差集差集是指从一个集合中去除与另一个集合中相同元素后所得到的新集合。
差集的符号为“-”。
例如,集合A={1, 2, 3},集合B={2, 3, 4},则A-B={1}。
4. 补集补集是指在全集中去除某个集合的元素形成的新集合。
补集的符号为“'”或“-”。
例如,全集U={1, 2, 3, 4},集合A={2, 3},则A'={1, 4}或者A-U={1, 4}。
5. 子集子集是指一个集合中的所有元素都是另一个集合的元素的情况。
子集的符号为“⊆”。
例如,集合A={1, 2},集合B={1, 2, 3},则A⊆B。
6. 空集空集是指不包含任何元素的集合,用符号“∅”表示。
三、集合的应用集合在小学数学中有着广泛的应用,以下介绍两个常见的应用场景。
1. 数据统计集合的概念可以帮助小学生进行数据统计和分析,以解决实际问题。
小学数学重点认识集合和集合的运算
小学数学重点认识集合和集合的运算集合是我们在数学中常常遇到的一个概念。
它代表了一组具有共同特征的对象的整体。
在小学数学中,重点认识集合的概念以及它的基本运算。
一、认识集合集合是指由若干特定对象组成的一个整体。
其中的对象可以是数字、字母、图形、动物等等。
常用大括号{}表示一个集合,并用逗号将其中的元素分隔开来。
例如,我们可以有一个集合A,其中包含了小学一年级学生的名字:A = {小明, 小红, 小华, 小杰, 小强}注意,集合是没有顺序的,我们并不关心其中元素的排列顺序。
二、集合的表示方法除了用大括号{}表示一个集合外,还有几种其他常用的集合表示方法:1. 列举法:即直接将集合中的元素列举出来。
比如在上面的例子中,我们用列举法表示了集合A。
2. 描述法:通过一定条件来描述集合的元素。
例如,我们可以用描述法表示全体正整数的集合:N = {x | x是正整数}3. 图形法:将集合中的元素用图形表示出来。
比如用一个圆圈表示集合,圆圈内的元素即为集合中的元素。
三、集合的运算集合的运算包括交集、并集和补集。
1. 交集:交集是指同时属于两个集合的元素组成的新集合。
用符号∩表示交集运算。
例如,我们有集合A = {1, 2, 3}和集合B = {2, 3, 4},它们的交集为A∩B = {2, 3}。
2. 并集:并集是指属于任何一个集合的元素组成的新集合。
用符号∪表示并集运算。
例如,对于集合A和B,它们的并集为A∪B = {1, 2, 3, 4}。
3. 补集:补集是指在一个全集中,不属于某个给定集合的元素组成的集合。
一般将全集用U表示。
例如,对于集合A = {1, 2, 3},它的补集为A' = U - A = {4, 5, 6, ...}。
四、集合的运算规律在进行集合的运算时,有一些基本的规律需要注意:1. 交换律:交集和并集都满足交换律,即A∩B = B∩A,A∪B = B∪A。
2. 结合律:交集和并集都满足结合律,即(A∩B)∩C = A∩(B∩C),(A∪B)∪C = A∪(B∪C)。
小学数学所有的基础概念
小学数学所有的基础概念集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]小学数学所有的基础概念180条小学数学基础概念【自然数】我们在数物体的时候,用来表示物体个数的1,2,3,4,5,...叫做自然数。
一个物体也没有,用“0”表示,“0”也是自然数,它是最小的自然数,没有最大的自然数,自然数是无限的。
【整数】在小学阶段,整数通常指自然数。
【数字】表示数目的符号叫做数字,通常把数字叫做数码。
【加法】把两个数合并成一个数的运算,叫做加法。
【加数】在加法中相加的两个数,叫做加数。
【和】在加法中两个加数相加得到的数叫做和。
【减法】已知两个数的和与其中一个数,求另一个加数的运算,叫做减法。
【被减数】在减法中,已知的和叫做被减数。
【减数】在减法中,减去的已知加数叫做减数。
【差】在减法中,求出的未知加数叫做差。
【乘法】求几个相同加数的和的简便运算,叫做乘法。
【因数】在乘法中,相乘的两个数都叫做积的因数。
【积】在乘法中,乘得的结果叫做积。
【除法】已知两个因数的积,与其中一个因数,求另一个因数的运算,叫做除法。
【被除数】在除法中已知的积叫做被除数。
【除数】在除法中,已知的一个因数叫做除数。
【商】在除法中,未知的因数叫做商。
【计数单位】一,十,百,千,万,十万,百万,千万,亿......都叫做计数单位。
【十进制计数法】每相邻的两个计数单位间的进率是十。
这种计数方法叫做十进制计数法。
【数位】写数的时候,把计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
一个数字所在的数位不同,表示的数的大小也不同。
第一个数位称为个位,依次是十位,百位,千位,万位,十万位......【有余数除法】一个整数除以另一个不为零的整数,得到整数的商以后还有余数,这样的除法叫做有余数的除法。
余数比除数小。
【整数四则混合运算】我们学过的加减乘除四种运算,统称为四则运算。
【第一级运算】在四则运算中,加法和减法叫做第一级运算。
小学数学概念汇总
2022年3月23日;第1页共5页 小学总复习概念整理【1】一、整数和小数1.最小的一位数是1,最小的自然数是02.小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。
3.小数点左边是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位……4.小数的分类:有限小数小数 无限循环小数无限小数 无限不循环小数5.整数和小数都是按照十进制计数法写出的数。
6.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。
7.小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍……小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……二、数的整除1.整除:整数a 除以整数b (b≠0),除得的商正好是整数而且没有余数,我们就说a 能被b 整除,或者说b 能整除a 。
2.约数、倍数:如果数a 能被数b 整除,a 就叫做b 的倍数,b 就叫做a 的约数。
3.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
一个数约数的个数是有限的,最小的约数是1,最大的约数是它本身。
4.按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
5.按一个数约数的个数,非0自然数可分为1、质数、合数三类。
质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数。
质数都有2个约数。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
合数至少有3个约数。
最小的质数是2,最小的合数是41~20以内的质数有:2、3、5、7、11、13、17、191~20以内的合数有:4、6、8、9、10、12、14、15、16、186.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。
能被5整除的数的特征:个位上是0或者5的数,都能被5整除。
小学数学概念大全
小学数学概念大全Newly compiled on November 23, 2020整数概念【自然数】我们在数物体的时候,用来表示物体个数的1,2,3,4,5,...叫做自然数。
一个物体也没有,用“0”表示,“0”也是自然数,它是最小的自然数,没有最大的自然数,自然数是无限的。
【整数】在小学阶段,整数通常指自然数。
【数字】表示数目的符号叫做数字,通常把数字叫做数码。
【加法】把两个数合并成一个数的运算,叫做加法。
【加数】在加法中相加的两个数,叫做加数。
【和】在加法中两个加数相加得到的数叫做和。
【减法】已知两个数的和与其中一个数,求另一个加数的运算,叫做减法。
【被减数】在减法中,已知的和叫做被减数。
【减数】在减法中,减去的已知加数叫做减数。
【差】在减法中,求出的未知加数叫做差。
【乘法】求几个相同加数的和的简便运算,叫做乘法。
【因数】在乘法中,相乘的两个数都叫做积的因数。
【积】在乘法中,乘得的结果叫做积。
【除法】已知两个因数的积,与其中一个因数,求另一个因数的运算,叫做除法。
【被除数】在除法中已知的积叫做被除数。
【除数】在除法中,已知的一个因数叫做除数。
【商】在除法中,未知的因数叫做商。
【计数单位】一,十,百,千,万,十万,百万,千万,亿......都叫做计数单位。
【十进制计数法】每相邻的两个计数单位间的进率是十。
这种计数方法叫做十进制计数法。
【数位】写数的时候,把计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
一个数字所在的数位不同,表示的数的大小也不同。
第一个数位称为个位,依次是十位,百位,千位,万位,十万位......【有余数除法】一个整数除以另一个不为零的整数,得到整数的商以后还有余数,这样的除法叫做有余数的除法。
余数比除数小。
【整数四则混合运算】我们学过的加减乘除四种运算,统称为四则运算。
【第一级运算】在四则运算中,加法和减法叫做第一级运算。
【第二级运算】在四则运算中,乘法和除法叫做第二级运算。
小学数学基本概念
小学数学基本概念
1. 数:指具有数量、大小和大小比较关系的概念。
2. 数字:指表示数的符号,包括0, 1, 2, 3, 4, 5, 6, 7, 8, 9等。
3. 数轴:指一种用直线上的点表示数的方法,可利用它展示大小关系和加减运算。
4. 整数:指正整数、负整数和0组成的数集。
5. 分数:指以两个整数表示的带有分数线的数,其中分母不为0。
6. 分数线:指分数中表示分子和分母的水平线。
7. 百分数:指以百分号%表示的分数形式,如60%就是60的分数形式。
8. 十进制:指使用十个数字0-9表示数的计数法,如123就是百位上是1、十位上是2、个位上是3的数字。
9. 位数:指数在十进制下的位数,如123的位数为3。
10. 小数:指以小数点表示的数,可以用分数表示,如0.5就是1/2。
小学数学全部概念
小学数学全部概念
小学数学全部概念对孩子们来说是非常重要的,也是考试中经常要考查的知识点。
数学有助于孩子们更好地掌握知识,理解和处理解决问题的思维模式。
小学数学的所有概念有:数量,空间,文字,变化,表示,计算和逻辑。
一、数量概念是指操作数字和数学运算的基本概念,例如加法,减法,乘法,
除法,数量,计数等。
二、空间概念是指学习描述物体的位置,大小,形状的几何元素,例如正方形,三角形,圆,矩形,多边形等。
三、文字概念是指用数字来表示和估算数学问题的概念,例如量词,数的概念,根式,百分比,比例和比率等。
四、变化概念是指把物体从一种形态变换到另一种形态的概念,例如缩放,旋转,平移,反射,分解等。
五、表示概念是指学习通过各种表达工具来表达数学想法的概念,例如图形化
表达,文字表达,代数表示,函数,连续变化等。
六、计算概念是指学习使用数学解决特定问题时应用的技巧,例如求和法,减法,乘法,算术等。
七、逻辑概念是指学习以推理,分析,推断,比较,归纳等方式对数学问题进
行思考的概念,例如逻辑证明,推理,论证和分析等。
以上就是小学数学全部概念,非常重要,通过这些概念,孩子们可以更深入地
理解数学,从而帮助他们更好地掌握数学的相关知识,推理能力和思维技能,为以后的学习更衣打底。
小学数学必备180条小学数学基础概念小学生学好数学的基础
180条小学数学基础概念导语:180条小学数学基础概念,说实话,整理不易,希望能对孩子们有所帮助。
这是概念性知识,需要结合题目讲解给孩子,帮孩子梳理清楚小学的概念。
整数概念【自然数】我们在数物体的时候,用来表示物体个数的1,2,3,4,5,...叫做自然数。
一个物体也没有,用“0”表示,“0”也是自然数,它是最小的自然数,没有最大的自然数,自然数是无限的。
【整数】在小学阶段,整数通常指自然数。
【数字】表示数目的符号叫做数字,通常把数字叫做数码。
【加法】把两个数合并成一个数的运算,叫做加法。
【加数】在加法中相加的两个数,叫做加数。
【和】在加法中两个加数相加得到的数叫做和。
【减法】已知两个数的和与其中一个数,求另一个加数的运算,叫做减法。
【被减数】在减法中,已知的和叫做被减数。
【减数】在减法中,减去的已知加数叫做减数。
【差】在减法中,求出的未知加数叫做差。
【乘法】求几个相同加数的和的简便运算,叫做乘法。
【因数】在乘法中,相乘的两个数都叫做积的因数。
【积】在乘法中,乘得的结果叫做积。
【除法】已知两个因数的积,与其中一个因数,求另一个因数的运算,叫做除法。
【被除数】在除法中已知的积叫做被除数。
【除数】在除法中,已知的一个因数叫做除数。
【商】在除法中,未知的因数叫做商。
【计数单位】一,十,百,千,万,十万,百万,千万,亿......都叫做计数单位。
【十进制计数法】每相邻的两个计数单位间的进率是十。
这种计数方法叫做十进制计数法。
【数位】写数的时候,把计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
一个数字所在的数位不同,表示的数的大小也不同。
第一个数位称为个位,依次是十位,百位,千位,万位,十万位......【有余数除法】一个整数除以另一个不为零的整数,得到整数的商以后还有余数,这样的除法叫做有余数的除法。
余数比除数小。
【整数四则混合运算】我们学过的加减乘除四种运算,统称为四则运算。
【第一级运算】在四则运算中,加法和减法叫做第一级运算。
小学数学概念全部归纳
小学数学概念全部归纳整数概念【自然数】我们在数物体的时候,用来表示物体个数的1,2,3,4,5,...叫做自然数。
【整数】在小学阶段,整数通常指自然数。
【数字】表示数目的符号叫做数字,通常把数字叫做数码。
【加法】把两个数合并成一个数的运算,叫做加法。
【加数】在加法中相加的两个数,叫做加数。
【和】在加法中两个加数相加得到的数叫做和。
【减法】已知两个数的和与其中一个数,求另一个加数的运算,叫做减法。
【被减数】在减法中,已知的和叫做被减数。
【减数】在减法中,减去的已知加数叫做减数。
【差】在减法中,求出的未知加数叫做差。
【乘法】求几个相同加数的和的简便运算,叫做乘法。
【因数】在乘法中,相乘的两个数都叫做积的因数。
【积】在乘法中,乘得的结果叫做积。
【除法】已知两个因数的积,与其中一个因数,求另外一个因数的运算,叫做除法。
【被除数】在除法中已知的积叫做被除数。
【除数】在除法中,已知的一个因数叫做除数。
【商】在除法中,未知的因数叫做商。
【十进制计数法】每相邻的两个计数单位间的进率是十。
【整数四则混合运算】我们学过的加减乘除四种运算,统称为四则运算。
【第一级运算】在四则运算中,加法和减法叫做第一级运算。
【第二级运算】在四则运算中,乘法和除法叫做第二级运算。
【整除】两个整数相除,如果用字母透露表现可以这样说:整数a除以整数b(b不等于0)除得的商正好是整数而没有余数,我们就说a能被b整除,也能够说b能整除a。
【约数和倍数】如果数a能被b(b不等于)整除,a叫做b的倍数,b叫做a的约数或a的因数。
【质数】一个数,如果只要1和它自己两个约数,这样的数叫做质数或者素数。
比方2、3、5、7、11都是质数。
【素数】素数就是质数。
【合数】一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
【质因数】每个合数都可以写成几个质数相乘的形式。
其中每个质数都是这个合数的因数,叫做这个合数的质因数。
【分解质因数】把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
小学数学中的集合的概念与运算
小学数学中的集合的概念与运算数学是一门逻辑性强、需要思维严谨的学科,而小学数学作为数学学科的基础,是孩子们打好数学基础的关键阶段。
在小学数学的学习中,集合的概念与运算是其中重要的内容之一。
本文将从集合的概念、集合的表示方法、集合的分类以及集合的运算等方面进行论述,帮助小学生更好地理解和掌握集合的知识。
一、集合的概念集合是数学中一个基本的概念,它是由一些确定的对象所组成的整体。
这些对象可以是具体的事物,也可以是抽象的概念。
例如,一个水果篮中的苹果、梨子和香蕉可以构成一个集合,我们可以用大括号{}来表示,如{苹果,梨子,香蕉}。
在集合中的每个对象被称为集合的元素。
上述例子中,苹果、梨子和香蕉都是该集合的元素。
我们可以用小写字母来代表集合的元素,例如a表示苹果,b表示梨子,c表示香蕉,那么该集合可以表示为{a,b,c}。
需要注意的是,集合中的元素是无序的,重复的元素只能算一个。
二、集合的表示方法在小学数学中,我们通常用描述法和列举法来表示集合。
1. 描述法:描述法是通过描述集合中元素的共同特征来表示集合。
例如,表示“小于10的正整数集合”的描述法可以标记为{x|x < 10},其中的x表示元素,竖线|的意思是“使得”,读作“x使得x小于10”。
2. 列举法:列举法是通过把集合中的元素逐个写出来来表示集合。
例如,表示一个由元素1、2、3组成的集合可以标记为{1, 2, 3}。
三、集合的分类在小学数学中,集合可以按照元素的性质进行分类,主要有空集、全集、单元素集、双元素集和多元素集等。
1. 空集:空集是不含任何元素的集合,用符号∅表示。
例如,一个不含有水果的水果篮可以表示为空集,其表示为∅。
2. 全集:全集是指研究问题所涉及到的元素的集合,用符号U表示。
例如,在一个数学问题中,如果我们研究的范围是小于10的整数,那么这个范围内的所有整数构成的集合就可以表示为全集U。
3. 单元素集:只含有一个元素的集合称为单元素集。
小学数学1-6年级必备数学概念汇总
小学数学1-6年级必备数学概念汇总1、什么是图形的周长?围成一个图形所有边长的总和就是这个图形的周长。
2、什么是面积?物体的表面或围成的平面图形的大小叫做他们的面积。
3、加法各部分的关系:一个加数=和-另一个加数4、减法各部分的关系:减数=被减数-差被减数=减数+差5、乘法各部分之间的关系:一个因数=积÷另一个因数6、除法各部分之间的关系:除数=被除数÷商被除数=商×除数7、角(1)什么是角?从一点引出两条射线所组成的图形叫做角。
(2)什么是角的顶点?围成角的端点叫顶点。
(3)什么是角的边?围成角的射线叫角的边。
(4)什么是直角?度数为90°的角是直角。
(5)什么是平角?角的两条边成一条直线,这样的角叫平角。
(6)什么是锐角?小于90°的角是锐角。
(7)什么是钝角?大于90°而小于180°的角是钝角。
(8)什么是周角?一条射线绕它的端点旋转一周所成的角叫周角,一个周角等于360°.8、垂直问题(1)什么是互相垂直?什么是垂线?什么是垂足?两条直线相交成直角时,这两条线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
(2)什么是点到直线的距离?从直线外一点向一条直线引垂线,点和垂足之间的距离叫做这点到直线的距离。
9、三角形(1)什么是三角形?有三条线段围成的图形叫三角形。
(2)什么是三角形的边?围成三角形的每条线段叫三角形的边。
(3)什么是三角形的顶点?每两条线段的交点叫三角形的顶点。
(4)什么是锐角三角形?三个角都是锐角的三角形叫锐角三角形。
(5)什么是直角三角形?有一个角是直角的三角形叫直角三角形。
(6)什么是钝角三角形?有一个角是钝角的三角形叫钝角三角形。
(7)什么是等腰三角形?两条边相等的三角形叫等腰三角形。
(8)什么是等腰三角形的腰?有等腰三角形里,相等的两个边叫做等腰三角形的腰。
(9)什么是等腰三角形的顶点?两腰的交点叫做等腰三角形的顶点。
小学数学定义概念大全
小学数学定义概念大全(一)整数2、自然数:用来表示物体个数0.1.2.3.4.5,…叫做自然数。
一个物体也没有,用“0”表示,“0”是最小的自然数,没有最大的自然数,自然数的个数是无限的。
3、自然数的基本单位:任何非“0”的自然数都就是由若干个“1”共同组成,所以“1”就是自然数的基本单位。
自然数不仅则表示事物的多少,还则表示事物的次序。
4、“0”的含义:一个物体也没有,用“0”表示,但并不是说“0”只表示没有物体,它还有多方面的含义。
比如在表示温度时,它是正、负温度的分界线;在刻度尺上,它是起点;在数轴上它是整数和负数的划分点;在计数中,“0”起占位作用。
还可以从运算的角度认识“0”,如任何数加“0”都等于原数;0和任何数相乘得0;0不能做除数……5、计数单位:数数时用的单位就叫作计数单位。
计数单位存有:个(一),十,百,千,万,十万,百万,千万,亿,十亿,百亿,千亿,……6、数位:把计数单位按一定的顺序排列起来,它们所占的位置就叫做数位。
数位有:个位、十位、百位、千位、万位、十万位、百万位、千万位、亿位、十亿位、百亿位、千亿位……7、多位数的读法:从高位至低位,一级一级地念,每一级末尾的0都念不出,其它数位存有一个0或已连续存有几个0都所读一个零。
8、多位数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
9、比较正整数大小的方法:如果数位相同,那么数位多的数就小。
如果位数相同,左起第一位上数小的那个数就小;如果左起第一位上的数相同,就比较左起第二位上的数。
依次以此类推直至比较出数的大小。
10、倍数和因数:自然数a(a≠0)乘自然数b(b≠0),所得积c,c就是a和b的倍数,a和b就是c的因数.例如:4×5=20,4和5是20的因数,20是4和5的倍数。
13、质数:一个数只有1和它本身两个因数,这个数叫做质数(或素数),最轻的质数就是2.14、合数:一个数除了1和它本身以外还有别的因数,这个数叫合数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概念公式要点
小数的意义
①把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
②一个小数由整数部分、小数部分和小数点部分组成。
数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
在小数里,每相邻两个计数单位之间的进率都是10。
小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
③小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
④小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字
小数的基本性质:小数的末尾添上0或者去掉0,小数的大小不变。
计算法则
小数乘法的计算法则:先按整数乘法的计算法则算出积,再看两个因数中共有几位小数,就从积的右边起向左边数出几位,点上小数点。
如果小数的位数不够,就要在前面用“0”补足。
小数除法的计算法则:除数是整数时,按整数除法的计算法则计算,商的小数点要和被除数的小数点对齐。
除数是小数时,先移动除数的小数点,把除数变成整数,除数的小数点向右移动几位,被除数的小数点也要向右移动几位,(位数不够时末尾用“0”补足),然后按照除数是整数的小数除法法则进行计算。
.四则运算的互逆关系(解方程中使用)
减法是加法的逆运算,除法是乘法的逆运算。
①加数+加数=和(另一个加数=和-一个加数)
②被减数-减数=差(减数=被减数-差)(被减数=差+减数)
③因数×因数=积(另一个因数=积÷一个因数)
④被除数÷除数=商
(除数=被除数÷商)(被除数=商×除数)
.四则运算定律
加法交换律:a+b=b+a,加法结合律:(a+b)+c=a+(b+c)
乘法交换律:ab=ba,乘法结合律:(ab)c=a(bc) 乘法分配律:(a±b)c=ac±bc
运算性质
①减法的基本性质:a-(b+c)=a-b-c a-b-c=a-(b+c)
②除法的基本性质:a÷b÷c=a÷(b×c)(a±b)÷c=a÷c±b÷c
三角形
①三角形的定义:由三条线段首位顺次连接围成的图形叫三角形。
三角形两边之和大于第三
边。
三角形具有稳定性。
四边形容易变形。
②从三角形的一个顶点到对边的垂直线段是三角形的高。
这条对边是三角形的底。
三角形有三条高,直角三角形其中两条高是它的直角边。
③三角形内角和是180度,四边形内角和是360度,多边形内角和=180°×(边数-2)。
④直角三角形的两个两个锐角的和是90度,等腰直角三角形两锐角都是45度。
⑤两条边相等的三角形叫等腰三角形,三条边相等的三角形是等边三角形,等边三角形是特殊的等腰三角形。
等腰三角形每个角都是60°.
⑥三角形按角分为:锐角三角形、直角三角形、钝角三角形。
按边分为:不等边三角形、等边三角形、等腰三角形。
平行四边形:两组对边分别平行且相等的四边形叫平行四边形。
平行四边形易变形,不稳定。
长方形和正方形是特殊的平行四边形。
.梯形:只有一组对边平行的四边形叫梯形。
平面图形的周长和面积概念和公式
⑴周长的概念:围成一个图形的所有边长的总和叫作这个图形的周长。
面积的概念:物体的表面或围成的平面图形的大小叫做它的面积。
⑵周长、面积公式
①正方形C周长S面积a边长
正方形的周长=边长×4C=4a
正方形的面积=边长×边长S=a×a
②长方形C周长S面积a边长
长方形的周长=(长+宽)×2C=2(a+b) 长方形的面积=长×宽S=ab
单位换算
常用的长度单位有:千米、米、分米、厘米、毫米。
除1千米=1000米外,其他相邻的两个长度单位间的进率是10。
常用的面积单位有:平方千米、平方公顷、平方米、平方分米、平方厘米。
除1公顷=10000平方米外,其他相邻的两个面积单位间的进率是100.
时间单位:世纪、年、季度、月、日、时、分、秒。
进率:1世纪=100年;一年=365天(平年)或366天(闰年);一年=12个月;一年=4个季度;1季度=3个月;1日=24时;1时=60分;1分=60秒。
大月有:一月、三月、五月、七月、八月、十月、十二月,各月31天。
小月有:四月、六月、九月、十一月,各月30天。
二月:平年二月28天,闰年二月29天。
.确定闰年的方法:公历纪年法中,是4的倍数的大多是闰年;公历年份是整百年的,必须是400的倍数才是闰年。
如:1600年是闰年,1700年是平年。
.常用质量单位有:克、千克、吨。
进率:相邻的两个质量单位间的进率是1000,即1吨=1000千克,1千克=1000克。
名数的改写:高级单位换算成低级单位就乘进率;低级单位换算成高级单位就除以进率。
(大化小乘以进率,小聚大除以进率)。