专题4.1 指数与指数函数(精讲精析篇)(解析版)
高考数学复习指数与指数函数-重难点题型精讲(解析)

专题2.11 指数与指数函数-重难点题型精讲1.分数指数幂 (1)m na =n,a m (a >0,m ,n ∈N *,且n 〉1);m na=1m na(a >0,m ,n ∈N *,且n 〉1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理数指数幂的运算性质:a r a s =a r +s ,(a r )s =a rs ,(ab )r =a r b r ,其中a 〉0,b >0,r ,s ∈Q . 2.指数函数的图象与性质(1)R 【思考】1。
如图所示是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x 的图象,则a ,b ,c ,d 与1之间的大小关系为________.提示 c 〉d >1〉a 〉b >02.结合指数函数y =a x (a >0,a ≠1)的图象和性质说明a x >1(a >0,a ≠1)的解集是否与a 的取值有关. 提示 当a >1时,a x >1的解集为{x |x >0};当0<a <1时,a x >1的解集为{x |x <0}.【题型1 指数幂的运算】【例1】(2020秋•荔湾区校级期中)化简下列各式.(1)(√23⋅√3)6﹣4•(1649)−12−√24•80.25﹣(2020)0;(2)√a 3b 2⋅√ab 23(a 14b 12)4⋅√a3(a >0,b >0).【解题思路】利用有理数指数幂的运算性质求解. 【解答过程】解:(1)原式=(213×312)6−4×(47)2×(−12)−214×814−1 =4×27﹣7−(2×8)14−1 =108﹣7﹣2﹣1 =98. (2)原式=a 32⋅b 22⋅a 16⋅b 26a⋅b2⋅a −13⋅b 13=a 53⋅b 43a 23⋅b 73=ab ﹣1.【变式1—1】(2020秋•济宁期中)(1)计算:(94)12−(﹣9.6)0﹣(278)−23+(23)−2;(2)已知a 12+a−12=3,求a 2+a −2+1a+a −1+2的值.【解题思路】(1)根据指数幂的运算法则即可求出;(2)根据完全平方公式即可求出. 【解答过程】解:(1)原式=32−1﹣(32)3×(−23)+94=32−1−49+94=8336, (2)∵a 12+a −12=3,∴a +a ﹣1=(a 12+a −12)2﹣2=7,∴a 2+a ﹣2=(a +a ﹣1)2﹣2=47,∴原式=47+17+2=489=163.【变式1-2】(2020秋•新泰市校级期中)化简求值:(请写出化简步骤过程)①0.064−13−(−59)0+[(−2)3]−43+16−0.75+0.0112;②1.5−13×(−76)0+814×√24+(√23×√3)6−√(−23)23.【解题思路】把根式化为分数指数幂,根据幂的运算法则计算即可. 【解答过程】解:①0.064−13−(−59)0+[(−2)3]−43+16−0.75+0.0112 =(0.43)−13−1+(−2)3×(−43)+(24)﹣0。
指数函数及其性质(解析版)

微专题15 指数函数及其性质【方法技巧与总结】知识点一、指数函数的图象及性质:x y a =01a <<时图象 1a >时图象图象性质①定义域R ,值域(0,)+∞②01a =,即0x =时,1y =,图象都经过()0,1点 ③x a a =,即1x =时,y 等于底数a ④在定义域上是单调减函数 ④在定义域上是单调增函数 ⑤0x <时,1x a >0x >时,01x a <<⑤0x <时,01x a <<0x >时,1x a >⑥既不是奇函数,也不是偶函数(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论. (2)当01a <<时,x →+∞,0y →;当1a >时x →-∞,0y →. 当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快. 当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快. (3)指数函数xy a =与1xy a ⎛⎫= ⎪⎝⎭的图象关于y 轴对称.知识点二、指数函数底数变化与图像分布规律 (1)①x y a =,②x y b =,③x y c =,④x y d =,则:01b a d c <<<<<又即:,()0x ∈+∞时,x x x x b a d c <<<(底大幂大) ,0()x ∈∞-时,x x x x b a d c >>>(2)特殊函数2x y =,3x y =,1()2x y =,1()3x y =的图像:【题型归纳目录】题型一:指数函数的图象基本性质:定点、对称性、单调性 题型二:指数 (型) 函数的单调性应用(1): 复合函数的值域问题 题型三:指数 (型) 函数的单调性应用(2): 复合函数的单调问题 题型四:指数(型) 函数中的奇偶性及与单调性的综合 【典型例题】题型一:指数函数的图象基本性质:定点、对称性、单调性 例1.(2022·全国·高一课时练习)已知函数()2x af x -=的图象关于直线2x =对称,则a =( )A .1B .2C .0D .-2【答案】B【解析】函数2xy =的图象关于y 轴对称,将函数2x y =的图象向右平移2个单位长度可得函数22x y -=的图象,所以函数22x y -=的图象关于直线2x =对称,故2a =.故选:B例2.(2022·福建·莆田二中高一期中)已知函数()21,24,2xx f x x x ⎧-≤⎪=⎨-+>⎪⎩,若实数,,a b c 满足a b c <<,且()()()f a f b f c ==,则22a c b c +++的取值范围为( )A .()4,8B .()4,16C .()8,32D .()16,32【答案】D【解析】作出函数()f x 的图象,如图,当0x <时,()()21120,1x xf x =-=-∈,由图可知,()()()()0,1f a f b f c ==∈,即()40,1c -∈ 得34c <<,则8216c <<,由()()f a f b =,即2121a b-=-,得1221a b -=-,求得222a b +=,∴()()222222216,32a cb c c a b c +++=+=⨯∈,故选:D例3.(2022·全国·高一课时练习)若222log xx x >>,则x 的取值范围为( )A .()3,4B .()4,+∞C .()0,2D .()1,2【答案】D【解析】在同一平面直角坐标系中作出函数2y x =,2x y =,2log y x =的图象如下图所示,数形结合可知:当12x <<时,222log xx x >>,x 的取值范围为()1,2.故选:D.变式1.(多选题)(2022·全国·高一单元测试)已知()2102,0x x f x x x x ⎧->=⎨--≤⎩,,则方程()220()xf a a R --=∈的根个数可能是( ) A .3 B .4 C .5 D .6【答案】ABD【解析】令()221xt t -=≥-,在同一坐标系中作出函数()(1)y f t t =≥-和直线y a =的图象,分析()0f t a -=的根:①当1a >时,方程()0f t a -=有一个根1t ,且12t >,方程122xt -=,对应2个x ,故方程()220()xf a a R --=∈有2个根;②当a =1时,方程()0f t a -=有两个根11t =-,22t =,方程122xt -=,对应1个x ,方程222x t -=对应2个x ,故方程()220()xf a a R --=∈有3个根.③当0<a <1时,方程()0f t a -=有三个根110t -<<,201t <<,312t <<,方程122xt -=,对应2个x ,方程222x t -=对应2个x ,方程322x t -=对应2个x ,故方程()220()x f a a R --=∈有6个根.④当a =0时,方程()0f t a -=有两个根10t =,21t =,方程122xt -=,对应2个x ,方程222x t -=对应2个x ,故方程()220()xf a a R --=∈有4个根.故选:ABD.变式2.(多选题)(2022·全国·高一期末)(多选)已知函数()x f x a b =-的图象如图所示,则( )A .a >1B .0<a <1C .b >1D .0<b <1【答案】BD【解析】观察图象得,函数()x f x a b =-是单调递减的,因此,01a <<,图象与y 轴交点纵坐标0y 有:001y <<,而0x =时,1y b =-,于是得011b <-<,解得01b <<, 所以01a <<,01b <<.故选:BD变式3.(多选题)(2022·全国·高一课时练习)已知函数()21xf x =-,实数a ,b 满足()()f a f b =()a b <,则( )A .222a b +>B .a ∃,b ∈R ,使得01a b <+<C .222a b +=D .0a b +<【答案】CD【解析】画出函数()21xf x =-的图象,如图所示.由图知1221a b -=-,则222a b +=,故A 错,C 对.由基本不等式可得22222222a b a b a b +=+>⋅=21a b +<,则0a b +<,故B 错,D 对.故选:CD .变式4.(2022·全国·高一单元测试)函数11x y a -=+图象过定点A ,点A 在直线()31,0mx ny m n +=>>上,则121m n+-最小值为___________. 【答案】92【解析】当1x =时,012y a =+=,11x y a -∴=+过定点()1,2A ,又点A 在直线3mx ny +=上,23∴+=m n ,即()122m n -+=, 1m >,0n >,10m ∴->,()()()21121121212512121m n m n m n m n m n -⎛⎫⎛⎫∴+=+-+=++≥ ⎪ ⎪---⎝⎭⎝⎭()2112952212m n m n ⎛- +⋅= -⎝(当且仅当()2121m nm n -=-,即53m =,23n =时取等号),121m n ∴+-的最小值为92. 故答案为:92.变式5.(2022·江苏·高一专题练习)函数27x y a -=+(0a >,且1a ≠)的图象恒过定点P ,P 在幂函数()f x x α=的图象上,则(3)f =_______;【答案】27【解析】因为函数27x y a -=+(0a >,且1a ≠)的图象恒过定点P , 所以由指数型函数性质得()2,8P , 因为P 在幂函数()f x x α=的图象上 所以28α=,解得3α=,所以()3f x x =,()327f =.故答案为:27变式6.(2022·全国·高一课时练习)函数()120.58x y -=-的定义域为______.【答案】(),3-∞- 【解析】因为()120.580.58xxy -=-=-0.580x ->,则322x ->,即3x ->,解得3x <-,故函数()120.58x y -=-的定义域为(),3-∞-.故答案为:(),3-∞-.变式7.(2022·全国·高一单元测试)已知函数()2x f x a -[)2,+∞,则=a _________. 【答案】4【解析】由题意可知,不等式20x a -≥的解集为[)2,+∞,则220a -=,解得4a =, 当4a =时,由240x -≥,可得2242x ≥=,解得2x ≥,合乎题意. 故答案为:4.变式8.(2022·全国·高一专题练习)已知函数f (x )=ax +b (a >0,a ≠1).(1)若f (x )的图象如图①所示,求a ,b 的取值范围;(2)若f (x )的图象如图②所示,|f (x )|=m 有且仅有一个实数解,求出m 的范围. 【解析】(1)由f (x )为减函数可知a 的取值范围为(0,1),又f (0)=1+b <0,所以b 的取值范围为(-∞,-1); (2)()f x 的图象过点(2,0),(0,2)-,所以2002a b a b ⎧+=⎨+=-⎩,解得3,3a b ==-, 所以()(3)3x f x =-,在同一个坐标系中,画出函数|()|y f x =和y m =的图象, 观察图象可知,当0m =或3m ≥时,两图象有一个交点, 若|()|f x m =有且仅有一个实数解,m 的范围是:0m =或3m ≥.题型二:指数 (型) 函数的单调性应用(1): 复合函数的值域问题 例4.(2022·全国·高一专题练习)函数1423x x y +=++的值域为____. 【答案】()3,+∞ 【解析】令2(0)x t t =>,∴函数()1423x x y x R +=++∈化为()()222312(0)f t t t t t =++=++>,()3f t ∴>,即函数1423x x y +=++的值域为()3,+∞.故答案为:()3,+∞例5.(2022·全国·高一单元测试)函数221()2x xy -+=的值域为( )A .1[,)2+∞B .1(,]2-∞C .(,2]-∞D .(0,2]【答案】A【解析】函数221()2x x y -+=定义域为R ,222(1)11x x x -+=--+≤,又函数1()2x在R 上单调递减,则221(221)x x -+≥, 所以函数221()2x x y -+=的值域为1[,)2+∞.故选:A例6.(2022·黑龙江·佳木斯一中高一期末)已知()212221x x xf x a +=+-+(其中a R ∈且a 为常数)有两个零点,则实数a 的取值范围是___________. 【答案】()4,+∞【解析】设()20,xt =∈+∞,由()212221x x xf x a +=+-+有两个零点, 即方程()2210t a t +-+=有两个正解,所以()21212Δ2402010a t t a t t ⎧=-->⎪+=->⎨⎪=>⎩,解得4a >,即()4,a ∈+∞, 故答案为:()4,+∞.变式9.(2022·河南·登封市第一高级中学高一阶段练习)函数113()934x xf x --⎛⎫=++ ⎪⎝⎭在[1,)-+∞上的值域为___________. 【答案】375,44⎛⎤⎥⎝⎦【解析】2113113()9334334x x xx f x --⎛⎫⎛⎫⎛⎫⎛⎫=++=+ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+⎝⎭∵[1,)x ∈-+∞则令(],3130xt ⎛⎫⎪⎭∈= ⎝2334y t t =++在(]0,3递增∴375,44y ⎛⎤∈ ⎥⎝⎦故答案为:375,44⎛⎤⎥⎝⎦.变式10.(2022·陕西渭南·高一期末)方程23x x k +=的解在()1,2内,则k 的取值范围是___________. 【答案】()5,10【解析】令()23,1,2xy x x =+∈,显然该函数为增函数,122315,23210+⨯=+⨯=,值域为()5,10,故510k <<. 故答案为:()5,10.变式11.(2022·河南·洛宁县第一高级中学高一阶段练习)函数()()420x xf x x --=+>的值域是______.【答案】()0,2【解析】令()20,1xt -∈=,则2y t t =+,因为函数2y t t =+在0,1上单调递增,所以()20,2y t t =+∈,故()f x 的值域为()0,2.故答案为:()0,2.变式12.(2022·全国·高一课时练习)已知函数f (x )=ax +b (a >0,a ≠1),其中a ,b 均为实数. (1)若函数f (x )的图象经过点A (0,2),B (1,3),求函数()1y f x =的值域; (2)如果函数f (x )的定义域和值域都是[﹣1,0],求a +b 的值. 【解析】(1)函数f (x )=ax +b (a >0,a ≠1),其中a ,b 均为实数,函数f (x )的图象经过点A (0,2),B (1,3),∴123b a b +=⎧⎨+=⎩,∴21a b =⎧⎨=⎩,∴函数f (x )=2x +1>1,函数()1121xy f x ==+<1. 又()1121x f x =+>0,故函数()1y f x =的值域为(0,1). (2)如果函数f (x )的定义域和值域都是[﹣1,0],若a >1,函数f (x )=ax +b 为增函数,∴1110b a b ⎧+=-⎪⎨⎪+=⎩,求得a 、b 无解.若0<a <1,函数f (x )=ax +b 为减函数,∴1011b a b ⎧+=⎪⎨⎪+=-⎩,求得122a b ⎧=⎪⎨⎪=-⎩, ∴a +b 32=-.变式13.(2022·河南·洛宁县第一高级中学高一阶段练习)已知函数()2422ax x f x ++=.(1)当1a =时,求()f x 的值域; (2)若()f x 有最大值16,求a 的值. 【解析】(1)当1a =时,()2422xx f x ++=.因为2t y =在R 上单调递增,且()2242222y x x x =++=+-≥-, 可得24221224x x ++-≥=,所以()2124f x -≥=, 故()f x 的值域为1,4⎡⎫+∞⎪⎢⎣⎭.(2)令242t ax x =++,因为函数2t y =在其定义域内单调递增, 所以要使函数()f x 有最大值16,则242t ax x =++的最大值为4,故20,44424,22a a a a <⎧⎪⎨⎛⎫⎛⎫-+⨯-+=⎪ ⎪⎪⎝⎭⎝⎭⎩解得2a =-. 故a 的值为2-.变式14.(2022·全国·高一课时练习)已知函数()x f x a =(0a >且1a ≠)的图象经过点()2,16-. (1)求a ,并比较27()4f m +与1()4f m -的大小;(2)求函数224()xx g x a -+-=的值域.【解析】(1)由已知得:216a -=,解得14a =,所以()14xf x ⎛⎫= ⎪⎝⎭, 因为()14xf x ⎛⎫= ⎪⎝⎭在R 上单调递减,2227117()()2()04424m m m m m +--=-+=-+>,所以271()()44f m f m +<-;(2)因为2224(1)33x x x -+-=----≤,所以2243116444x x -+--⎛⎫⎛⎫≥= ⎪⎪⎝⎭⎝⎭,故()g x 的值域是[64,)+∞; 变式15.(2022·全国·高一专题练习)求下列函数的定义域、值域: (1)513x y -=(2)2231.2x x y --⎛⎫= ⎪⎝⎭【解析】(1)由函数解析式可知:15105x x -≥⇒≥,所以函数的定义域为:1|5x x ⎧⎫≥⎨⎬⎩⎭; 510x -≥,所以510331x -≥=,因此函数的值域为:[1,)+∞;(2)由函数的解析式可知:函数的定义域为R ,222323122x x xx y ---++⎛⎫== ⎪⎝⎭,因为2223(1)44x x x -++=--+≤,所以223402216xx -++<≤=,因此函数的值域为:(0,16]. 变式16.(2022·山东·嘉祥县第一中学高一期中)设函数()()()10,1x xf x a k a a a -=-->≠是定义域R 的奇函数. (1)求k 值;(2)若()10f >,试判断函数单调性并求使不等式()()2210f x tx f x +++>在定义域上恒成立的t 的取值范围;(3)若()813f =,且()()222x xg x a a mf x -=+-在[)1,+∞上最小值为2-,求m 的值.【解析】(1)()f x 是定义域为R 的奇函数,()00f ∴=,即()110k --=,解得2k =;经检验成立 (2)因为函数()x xf x a a -=-(0a >且1a ≠),又()10f >,10a a∴->,又0a >, 1a ∴>,由于x y a =单调递增,x y a -=单调递减,故()f x 在R 上单调递增,不等式化为()()221f x tx f x +>--.221x tx x ∴+>--,即()2210x t x +++>恒成立,()2240t ∴∆=+-<,解得40t -<<;(3)由已知()813f =,得183a a -=,即23830a a --=,解得3a =,或13a =-(舍去),()()()()22233333333222x x x x x x x x g x m m ----∴=+----=+-,令()33x xt f x -==-,是增函数,1x ≥,()813t f ∴≥=,则()22282223y t mt t m m t ⎛⎫=-+=-+-≥ ⎪⎝⎭,若83m ≥,当t m =时,2min 22y m =-=-,解得823m =<,不成立;若83m <,当83t =时,min 64162293y m =-+=-,解得258123m =<,成立; 所以2512m =. 题型三:指数 (型) 函数的单调性应用(2): 复合函数的单调问题例7.(2022·全国·高一单元测试)若函数241()3x axf x -+⎛⎫= ⎪⎝⎭在区间()1,2上单调递增,则a 的取值范围为_________.【答案】1,2⎛⎤-∞ ⎥⎝⎦【解析】因为函数13xy ⎛⎫= ⎪⎝⎭是实数集上的减函数,所以由复合函数的单调性可知,函数24y x ax =-+在区间()1,2上单调递减, 函数24y x ax =-+的对称轴为2x a =,且开口向下,所以有21a ≤, 解得a 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦,故答案为:1,2⎛⎤-∞ ⎥⎝⎦.例8.(2022·北京·牛栏山一中高一阶段练习)写出一个满足函数()+1221,>=+2,x x ag x x x x a ≤⎧-⎨-⎩在(),-∞+∞上单调递增的a 值_____________. 【答案】1(答案不唯一)【解析】因为()+1221,>=+2,x x ag x x x x a ≤⎧-⎨-⎩,当>x a 时()+121x g x -=在定义域上单调递增,当x a ≤时()()22+211x x g x x --==+-, 画出+121x y -=,2+2y x x -=的图象如下所示:要使函数()g x 在(),-∞+∞上单调递增,由图可知当1a ≤时均可满足函数()g x 在(),-∞+∞上单调递增; 故答案为:1(答案不唯一)例9.(多选题)(2022·江苏·无锡市市北高级中学高一期中)函数2(65)1()()2x x f x -+-=在下列哪些区间内单调递减( ) A .(3),-∞ B .(3,5)C .(1,3)D .(2,3)【答案】ACD【解析】由题意,函数1()2xy =在R 上单调递减,又由函数265y x x =-+-在(3),-∞上单调递增,在(3,)+∞上单调递减, 由复合函数的单调性可知,函数()f x 在(3),-∞上单调递减, 结合选项,可得选项ACD 符合题意. 故选:ACD.变式17.(2022·全国·高一单元测试)已知()()321,1,1xa x x f x a x ⎧-+≤=⎨>⎩是定义域为R 上的减函数,则a 的取值范围是( ) A .20,3⎛⎫⎪⎝⎭B .12,23⎡⎫⎪⎢⎣⎭C .()1,+∞D .2,13⎛⎫ ⎪⎝⎭【答案】B【解析】由题意,132001321a a a a -<⎧⎪<<⎨⎪-+≥⎩,故230121a a a ⎧<⎪⎪<<⎨⎪≥⎪⎩,解得12,23a ⎡⎫∈⎪⎢⎣⎭故选:B变式18.(2022·全国·高一单元测试)若2233x y x y ---<-,则( ) A .x y < B .||||x y < C .x y > D .||||x y >【答案】A【解析】设函数()23x x f x -=-,因为函数2,3x x y y -==-都是实数集上的增函数, 所以函数()23x x f x -=-也是实数集上的增函数,由22332323()()x y x y x x y y f x y x y -----<-⇒-<-⇒<⇒<, 故选:A变式19.(2022·河南·登封市第一高级中学高一阶段练习)函数2435x x y -+-=的单调递减区间是( )A .[2,)+∞B .(,2]-∞C .(,1]-∞D .[1,)+∞【答案】A【解析】设243x x μ=-+-,在(,2]-∞单调递增,在[2,)+∞单调递减,5y μ=在(,)-∞+∞单调递增,根据“同增异减”可得,函数2435x x y -+-=的单调递减区间是[2,)+∞.故选:A.题型四:指数(型) 函数中的奇偶性及与单调性的综合例10.(2022·浙江温州·高一期中)已知函数()()21R 2x x f x x a-=∈+为奇函数;(1)求实数a 的值; (2)求()f x 的值域;(3)若关于x 的方程()()121001t f x b b ---=<<无实数解,求实数t 的取值范围.【解析】(1)由函数()212x xf x a -=+是定义域为R 的奇函数, 则()()f x f x -=-,即212122x x x x a a----=-++,即1221122x x x xa a --=-+⋅+, 所以122x x a a +⋅=+,即()()1210xa --=在R x ∈上恒成立,解得1a =;(2)由(1)得1a =,则()2121221212121x x x x x f x -+-===-+++,又函数2x y =单调递增,且20x >, 所以211x +>,20221x<<+, 所以()11f x -<<,即函数()f x 的值域为()1,1-; (3)由()()121001t f x b b ---=<<无实数解,即()121t f x b -=+无实数解,又()()22,2f x ∈-,所以112t b -+≤-或112t b -+≥, 即13t b -≤-(不成立),或11t b -≥, 又01b <<,所以10t -≤, 即1t ≤.例11.(2022·全国·高一课时练习)已知函数()()240,12x xa a f x a a a a-+=>≠+是定义在R 上的奇函数. (1)求a 的值;(2)求函数()f x 的值域;(3)当()1,2x ∈时,()220xmf x +->恒成立,求实数m 的取值范围.【解析】(1)因为()f x 是定义在R 上的奇函数,所以()002420022a a a f a a a -+-===++,解得2a =,当2a =时,()2121x x f x -=+,此时()()21122112x xx x f x f x -----===-++,所以2a =时,()2121x x f x -=+是奇函数.所以2a =;(2)由(1)可得()2121221212121x x x xxf x -+-===-+++, 因为20x >,可得211x +>,所以10121x <<+, 所以22021x-<-<+, 所以211121x -<-<+, 所以函数()f x 的值域为()1,1-; (3)由()220x mf x +->可得()22x mf x >-,即122221x x xm ->+-⋅,可得()()212122x xx m +->-对于()1,2x ∈恒成立, 令()211,3xt -=∈,则()()2121t t tt m t-=-++>,函数21y t t=-+在区间()1,3单调递增,所以221013133t t -+<-+=,所以103m ≥, 所以实数m 的取值范围为10,3⎡⎫+∞⎪⎢⎣⎭.例12.(2022·贵州·黔西南州金成实验学校高一期末)已知函数4()12xf x a a=-+(0a >且1a ≠)为定义在R 上的奇函数.(1)利用单调性的定义证明函数()f x 在R 上单调递增;(2)求不等式()22(4)0f x x f x ++->的解集.(3)若函数()()1g x kf x =-有零点,求实数k 的取值范围.【解析】(1)由题意得:()40102f a =-=+,解得:2a =,142()112221x x f x +=-=-++, 任取12,x x R ∈,且12x x <,则()()()()()1212122121211111122222222222()112121212121212121x x x x x x x x x x x x f x f x +++++----=--+=-==++++++++因为12,x x R ∈,且12x x <,所以1211220x x ++-<,12210,210x x +>+>,所以()()()1221111222()02121x x x x f x f x ++--=<++,故()12()f x f x < 所以函数()f x 在R 上单调递增; (2)()22(4)0f x x f x ++->,即()22(4)f x x f x +>--,因为2()121x f x =-+为定义在R 上的奇函数, 所以()22(4)(4)f x x f x f x +>--=-,因为2()121x f x =-+为定义在R 上单调递增, 所以224x x x +>-, 解得:1x >或4x <-, 所以解集为:()(),41,-∞-+∞;(3)()()211121x g x kf x k ⎛⎫=-=-- ⎪+⎝⎭有零点, 当0k =时,()()11g x kf x =-=-,没有零点,不合题意,舍去; 当0k ≠时,即21121x k-=+有根, 其中当0x >时,21x >,212x +>,20121x<<+, 故()2()10,121x f x =-∈+, 又因为2()121x f x =-+在R 上为奇函数, 所以当0x <时,()2()11,021x f x =-∈-+, 且()00f =,所以2()121x f x =-+在R 上的值域为()1,1-, 故()()11,00,1k∈-⋃, 解得:()(),11,k ∈-∞-+∞,所以实数k 的取值范围为()(),11,k ∈-∞-+∞.变式20.(2022·全国·高一课时练习)已知函数()f x ,()g x 分别是定义在R 上的偶函数与奇函数,且()()+22.x f x g x =(1)求()f x 与()g x 的解析式;(2)若对()1,2x ∀∈,不等式()()()2220f x m g x -++恒成立,求实数m 的最大值. 【解析】(1)由题意()()+22xf xg x = ①,所以()()22xf xg x --+-= ,函数()f x ,()g x 分别是定义在R 上的偶函数与奇函数, 所以()()()(),f x f x g x g x =--=-所以()()22xf xg x --= ②,由①②解得()222x xf x -+=,22()4x xg x --=;(2)对()1,2x ∀∈,不等式()()()2220f x mg x -++恒成立,即()22222222024x x x xm --+--++,令22x x t -=-,315,24t ⎛⎫∈ ⎪⎝⎭,则222222x x t -+=+,不等式等价于()2222024t tm +-++在315,24t ⎛⎫∈ ⎪⎝⎭上恒成立, 所以min 622m t t ⎛⎫++ ⎪⎝⎭,因为60,0t t>>,所以6626t t t t+⋅= 当且仅当6t t =即3156,24t ⎛⎫= ⎪⎝⎭时取等号, 所以246,462m m +-,即m 的最大值为46 2.变式21.(2022·辽宁·高一阶段练习)设函数()()212x xk f x k -=+-⋅(x ∈R ,k ∈Z ).(1)若()k f x 是偶函数,求实数k 的值;(2)若存在[]1,2x ∈,使得()()014f mf x x +≤成立,求实数m 的取值范围. 【解析】(1)(1)若()k f x 是偶函数,则()()k k f x f x -=,即()()212212x x x xk k --+-⋅=+-⋅,即()()()()221212122x x x x x xk k k ----=-⋅--⋅=--,则11k -=,即2k =.(2)(2)存在[]1,2x ∈,使得()()014f mf x x +≤成立, 即2422x x x m -⋅≤-+,则()242242212x x x x xm ----+≤=⋅+-,设2x t -=,因为12x ≤≤,所以1142t ≤≤, 所以()22422141x x t t --⋅+-=+-, 令()224125y t t t =+-=+-, 因为1142t ≤≤,所以当12t =时,函数取得最大值152144y =+-=,则54m ≤, 所以实数m 的取值范围为5,4⎛⎤-∞ ⎥⎝⎦.变式22.(2022·河北沧州·高一期末)已知函数()22xxf x a -=+⋅为偶函数()a ∈R . (1)判断()f x 在[0,2]上的单调性并证明;(2)求函数()2()44x x g x mf x a -=-++⋅在[1,2]-上的最小值. 【解析】(1)()f x 为偶函数,()()f x f x ∴=-, 即2222x x x x a a --+⋅=+⋅,()()1212x x a a --⋅=-⋅,则10,1a a -==.所以()22x xf x -=+.()f x 在[0,2]为增函数,证明如下:任取1x ,2x ,且1202x x ≤<≤,()()()1122122222x x x x f x f x ---=+-+211212121211222222222x x x x x x x x x x +-=-+-=-+()()1212121212121212221212222122222x x x x x x x x x x x x x x x x ++++--⎛⎫=--=--=-⋅ ⎪⎝⎭,1202x x ≤<≤,12220x x ∴-<,12210x x +->, ()121212212202x x x x x x ++-∴-⋅<.即()()12f x f x <,∴()f x 在[0,2]上单调递增.(2)()()22244x x x xg x m --=-+++,令1222([1,2])2x x xx t x -=+=+∈-,结合题意及(1)的结论可知172,4t ⎡⎤∈⎢⎥⎣⎦. ()22442222x x x x t --+=+-=-,22217()()22()22,4g x h t t mt t m m t ⎛⎫⎡⎤∴==--=---∈ ⎪⎢⎥⎣⎦⎝⎭.①当174m ≥时,min 1725717()4162h t h m ⎛⎫==- ⎪⎝⎭; ②当1724m <<时,2min ()()2h t h m m ==--; ③当2m ≤时,min ()(2)24h t h m ==-.综上,()2min24,2172,242571717,1624m m g x m m m m ⎧⎪-≤⎪⎪=--<<⎨⎪⎪-≥⎪⎩.变式23.(2022·全国·高一课时练习)已知函数()()2422ax x f x a ++=∈R .当1a =时,()f x 的值域为______;若()f x 的最大值为16,则a 的值为______. 【答案】 1,4⎡⎫+∞⎪⎢⎣⎭【解析】当1a =时,()2422xx f x ++=,设242t x x =++,则()2222t x =+-≥-,因为2x y =在R 上是增函数,所以24221224x x ++-≥=,即()14f x ≥,所以函数的值域是1,4⎡⎫+∞⎪⎢⎣⎭;要使函数()f x 的最大值为16,则242t ax x =++的最大值为4,故2042444a a a <⎧⎪⎨⨯-=⎪⎩,解得2a =-.故答案为:1,4⎡⎫+∞⎪⎢⎣⎭;2-【过关测试】 一、单选题1.(2022·河南南阳·高一期中)已知函数()32,1,12,1,x x f x x x -⎧<-=⎨-≥-⎩若()()20f f a -+=,则实数=a ( )A .2-B .2C .4D .6【答案】B【解析】由题知()()222422f --===-,()()20f f a -+=所以()4f a =-,因为1x <-时,()22xf x -=>,所以,1a ≥-, 所以()3124f a a =-=-,解得2a =.故选:B2.(2022·天津·高一期末)设x ∈R ,则“|2|<1x -”是“3<27x ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】由|2|<1x -可知,1<2<1x --,即1<<3x ,根据指数函数性质,3x y =是R 上递增的指数函数,3<27x 即33<3x ,故<3x ,显然1<<3x 可推出<3x ,但反之不成立,故“|2|<1x -”是“3<27x ”的充分不必要条件. 故选:A3.(2022·山东·嘉祥县第一中学高一期中)已知函数()f x 为R 上的奇函数,当0x <时,()133x f x =-,则()0f x ≥的解集为( )A .[)[)1,01,∞-⋃+B .[]1,1-C .[][)1,01,-⋃+∞D .[)(]1,00,1-【答案】C【解析】因为函数()f x 为R 上的奇函数, 所以()00f =,又当0x <时,()133xf x =-,当0x >时,0x -<,则()()133xf x f x --=-=-,所以0x >时,()1133xf x ⎛⎫=- ⎪⎝⎭,则由()0f x ≥可得,011033x x >⎧⎪⎨⎛⎫-≥ ⎪⎪⎝⎭⎩或01303x x <⎧⎪⎨-≥⎪⎩或0x =,解得1x ≥或10x -≤<或0x =,综上可得,不等式()0f x ≥的解集为[][)1,01,-⋃+∞. 故选:C .4.(2022·全国·高一课时练习) 若存在正数x ,使得关于x 的不等式()31xx a -<成立,则实数a 的取值范围是( ) A .[)3,+∞ B .[)1,-+∞C .()1,-+∞D .()0,+∞【答案】C【解析】由题意知13x x a ⎛⎫-< ⎪⎝⎭成立,即13xa x ⎛⎫>- ⎪⎝⎭成立.令()13xf x x ⎛-⎫⎪⎝⎭=,显然()f x 在()0,+∞上单调递增,所以0x ∀>,()()01f x f >=-, 所以实数a 的取值范围是()1,-+∞. 故选:C5.(2022·全国·高一课时练习)若实数x ,y 满足2022202320222023x y y x --+<+,则( ) A .1x y> B .1x y< C .0x y -< D .0x y ->【答案】C【解析】令()20222023x xf x -=-,由于2022x y =,2023x y -=-均为R 上的增函数,所以()20222023x x f x -=-是R 上的增函数.因为2022202320222023x y y x --+<+,所以2022202320222023x x y y ---<-,即()()f x f y <,所以x y <,所以0x y -<. 故选:C .6.(2022·全国·高一单元测试)在同一坐标系中,函数2y ax bx =+与函数xy b =的图象可能为( )A .B .C .D .【答案】B【解析】函数x y b =的是指数函数,0b >且1b ≠,排除选项C ,如果0a >,二次函数的开口方向向上,二次函数的图象经过原点,并且有另一个零点:b x a=-, 所以B 正确;对称轴在x 轴左侧,C 不正确; 如果0a <,二次函数有一个零点0bx a=->,所以D 不正确. 故选:B .7.(2022·全国·高一专题练习)若2525x x y y ---≤-,则有( ) A .0x y +≥ B .0x y +≤ C .0x y -≤ D .0x y -≥【答案】B【解析】构造函数()25x xf x -=-,易得函数()f x 单调递增,由2525x x y y ---≤-,可得()()f x f y ≤-,0x y x y ∴≤-⇒+≤, 故选:B.8.(2022·云南·昆明市官渡区第一中学高一阶段练习)已知函数()33,0,0x x f x x x -⎧≤=⎨->⎩若()()22f a f a -≥-,则实数a 的取值范围是( ) A .[2,1]- B .1,12⎡⎤⎢⎥⎣⎦C .(,1]-∞D .1,2⎡⎫+∞⎪⎢⎣⎭【答案】A【解析】因为()33,0,0x x f x x x -⎧≤=⎨->⎩,当0x ≤时()3xf x -=单调递减,且()1f x ≥,当0x >时,3()f x x =-单调递减,且()0f x <,所以函数()33,0,0x x f x x x -⎧≤=⎨->⎩在定义域上单调递减,因为()22()f a f a -≥-,所以22a a -≤-,解得21a -≤≤,即实数a 的取值范围为:[2,1]-. 故选:A. 二、多选题9.(2022·山东·青岛二中高一期中)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x R ∈,用[]x 表示不超过的最大整数,则[]y x =称为高斯函数,例如[]3.54-=-,[]2.12=.已知函数()()1112x xa f x a a =->+,则关于函数()()g x f x =⎡⎤⎣⎦的叙述中正确的是( ) A .()f x 是奇函数 B .()g x 是偶函数 C .()f x 在R 上是增函数 D .()g x 的值域是{}1,0-【答案】ACD【解析】A 选项:()()()1211122121x x x x x x xa a a a f x a a a ---=-==+++,()()()112121x xxx a a f x a a -----==++,∴()()f x f x -=-, ∴()f x 为奇函数,故A 正确;B 选项:∵()()g x f x =⎡⎤⎣⎦∴()()11g f ⎡⎤=⎣⎦,()()11g f ⎡⎤-=-⎣⎦,∵()f x 为奇函数,∴()()f x f x =--,∴()()11f f =--,∴()()11g g ≠-,故B 错误;C 选项:()()11111111112121221x x x x x xa a f x a a a a +-=-=-=--=-++++, ∵1a >,∴x a 为增函数,∴11xa +为减函数, ∴()1121xf x a =-+为增函数,故C 正确; D 选项:∵0x a >,∴11x a +>,∴111xa <+,∴()1122f x -<<. 又∵()()g x f x =⎡⎤⎣⎦,∴()g x 的值域为{}1,0-,故D 正确. 故选:ACD .10.(2022·河南南阳·高一期中)不等式34270x x +-+≥成立的一个充分不必要条件是( ) A .{}3,4x ∈ B .0x ≤C .1x ≥D .02x ≤≤【答案】AB【解析】令20x t =>,所以,不等式()()3242787170x x t t t t +-+=-+=--≥,解得7t ≥或01t <≤所以,27x ≥或021x <≤,解得2log 7x ≥或0x ≤, 所以,不等式34270x x +-+≥的解集为(][)2,0log 7,-∞+∞,因为所求的是不等式34270x x +-+≥成立的一个充分不必要条件, 故只需满足是(][)2,0log 7,-∞+∞真子集即可,所以,只有AB 选项满足,CD 选项不满足. 故选:AB11.(2022·全国·高一课时练习)(多选)定义在[]1,1-上的函数()2943x xf x =-⋅+⋅,则下列结论中正确的是( )A .()f x 的单调递减区间是[]0,1B .()f x 的单调递增区间是[]1,1-C .()f x 的最大值是()02f =D .()f x 的最小值是()16f =-【答案】ACD【解析】设3x t =,[]1,1x ∈-,则3x t =是增函数,且1,33t ⎡⎤∈⎢⎥⎣⎦,又函数()2224212y t t t =-+=--+在1,13⎡⎤⎢⎥⎣⎦上单调递增,在[]1,3上单调递减,因此()f x 在[]1,0-上单调递增,在[]0,1上单调递减,故A 正确,B 错误;()()max 02f x f ==,故C 正确;()1019f -=,()16f =-,因此()f x 的最小值是6-,故D 正确. 故选:ACD . 三、填空题12.(2022·山东省青岛第十九中学高一期中)若函数(),142,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩ 对于R 上任意两个不相等实数12,x x ,不等式()()()12120x x f x f x -->⎡⎤⎣⎦恒成立,则实数a 的取值范围为______. 【答案】[)4,8【解析】若函数(),142,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩对于R 上任意两个不相等实数12,x x , 不等式()()()12120x x f x f x -->⎡⎤⎣⎦恒成立,则函数()f x 在R 上单调递增,则1402422a aa a ⎧⎪>⎪⎪->⎨⎪⎪≥-+⎪⎩,解得:48a ≤<,故实数a 的取值范围为[)4,8, 故答案为:[)4,8.13.(2022·内蒙古·北方重工集团第五中学高一阶段练习(文))已知函数()()10x f x a x -=≥的图象经过点1(2,),2其中0a >且1a ≠,则函数()(0)y f x x =≥的值域是________. 【答案】(]02,【解析】因为()()10x f x a x -=≥的图象经过点1(2,),2所以2112a -=,解得12a =,则()()1102x f x x -⎛⎫=≥ ⎪⎝⎭,因为0x ≥,所以11x -≥-,所以12102x -⎛⎫< ⎝⎭≤⎪,即函数()(0)y f x x =≥的值域是(]02,, 故答案为:(]02,14.(2022·四川·成都铁路中学高一阶段练习)已知函数()142f x x x =+-.若存在()2,x ∈+∞,使得()42a a f x ≤-成立,则实数a 的取值范围是______.【答案】[2,)+∞【解析】因为()2,x ∈+∞,所以20x ->, 所以()1144(2)822f x x x x x =+=-++-- 124(2)8122x x ≥-⋅=-, 当且仅当14(2)2x x -=-,即52x =时取等号,所以min ()12f x =,因为存在()2,x ∈+∞,使得()42a af x ≤-成立, 所以()min 42a af x ≤-,即1242a a ≤-,所以()222120a a --≥,即23a ≤-(舍去),或24a ≥,得2a ≥,所以a 的取值范围为[2,)+∞, 故答案为:[2,)+∞15.(2022·全国·高一课时练习)若函数()()22133xa x f x +-+=在(),1-∞上单调递减,则实数a 的取值范围是______.【答案】1,2⎛⎫-∞- ⎪⎝⎭【解析】因为3x y =是R 上的增函数,()2213y x a x =+-+在21,2a -⎛⎫-∞- ⎪⎝⎭上单调递减,所以,根据复合函数单调性,要使()f x 在(),1-∞上单调递减,需2112a --≥,解得12a ≤-,所以,实数a 的取值范围是1,2⎛⎫-∞- ⎪⎝⎭.故答案为:1,2⎛⎫-∞- ⎪⎝⎭16.(2022·全国·高一课时练习)若函数1()1x f x a -=-(0a >,且1a ≠)在区间()321,2a a -⎛⎫ ⎪⎝⎭上单调递减,则实数a 的取值范围是______. 【答案】35,46⎛⎤⎥⎝⎦【解析】函数11x y a -=-(0a >,且1a ≠)的图象是将函数x y a =(0a >,且1a ≠)的图象向右平移1个单位,再向下平移1个单位得到的,故函数1()1x f x a -=-(0a >,且1a ≠)的图象恒过点()1,0.当01a <<时,结合函数()f x 的图象:若函数()f x 在区间()321,2a a -⎛⎫ ⎪⎝⎭上单调递减,则()()01321232112a a a a ⎧⎪<<⎪-⎪<⎨⎪⎪-≤⎪⎩,解得3546a <≤.当1a >时,结合函数()f x 的图象:若()f x 在区间()321,2a a -⎛⎫ ⎪⎝⎭上单调递减,则()()1321232112a a a a ⎧⎪>⎪-⎪<⎨⎪⎪-≤⎪⎩,无实数解. 综上,实数a 的取值范围为35,46⎛⎤⎥⎝⎦.解法二: 若()32112a a x -<<<,则110x a -->,所以()11x f x a -=-在区间()321,2a a -⎛⎫ ⎪⎝⎭上单调递增,不符合题意;当01a <<时,函数1x y a -=在区间()321,2a a -⎛⎫ ⎪⎝⎭上单调递减,要使函数1()1x f x a -=-在区间()321,2a a -⎛⎫ ⎪⎝⎭上单调递减,则110x a -->在区间()321,2a a -⎛⎫⎪⎝⎭上恒成立,所以()()01321232112a a a a ⎧⎪<<⎪-⎪<⎨⎪⎪-≤⎪⎩,解得3546a <≤.故实数a 的取值范围是35,46⎛⎤ ⎥⎝⎦.故答案为:35,46⎛⎤⎥⎝⎦.四、解答题17.(2022·山东·青岛二中高一期中)已知函数()()2,R f x x bx c b c =++∈,且()0f x ≤的解集为[]1,2-.(1)求函数()f x 的解析式;(2)解关于x 的不等式()()21mf x x m >--(其中0m>);(3)设()()232xf xg x --=,若对任意的1x ,[]21,2x ∈,都有()()12g x g x t -≤,求t 的取值范围.【解析】(1)由()0f x ≤的解集为[1,2]-可得1,2-是方程20x bx c ++=的两个根,所以122b c -+=-⎧⎨-=⎩,解得1,2b c =-=-,所以2()2f x x x =--; (2)()()21mf x x m >--,化简有()222(1)m x x x m -->--即()2220mx m x -++>,可整理得()()()2100mx x m -->>, ①当2m =时,21m=,不等式的解集为()(),11-∞⋃+∞,; ②当02m <<时,21m>,不等式的解集为()2,1,m ⎛⎫-∞+∞ ⎪⎝⎭;③当2m >时,21m<,不等式的解集为()2,1,m ⎛⎫-∞+∞ ⎪⎝⎭;(3)由题意,()()21322xx f x g x ---==,对任意的[]12,1,2x x ∈,都有12|()()|g x g x t -≤, 则当[]1,2x ∈时,max min ()()g x g x t -≤,因为当[]1,2x ∈时,()g x 单调递增,所以()max 22()g x g ==,()0min 1()21g x g ===,所以max min 2)1(1()g x g x =--=, 所以1t ≥,即t 的取值范围为[)1,+∞18.(2022·广东·深圳外国语学校高一期中)已知函数()f x 对任意的实数,m n 都有()()()1f m n f m f n +=+-,且当0x >时,有()1f x >.(1)求证:()f x 在R 上为增函数;(2)若()()923292x x xf f k -⋅+⋅->对任意[)0,x ∈+∞恒成立,求实数k 的取值范围.【解析】(1)设12x x <,令2m n x +=,1n x =,()()()22111f x f x x f x ∴=-+-, 则()()()21211f x f x f x x -=--;210x x ->,()211f x x ∴->,()()210f x f x ∴->,()f x ∴在R 上为增函数.(2)由题意得:()()()92329392312x x x x x f f k f k -⋅+⋅-=⋅-⋅-+>,()39231x x f k ∴⋅-⋅->,令0m n ==,则()()0201f f =-,解得:()01f =,()f x 为R 上的增函数,39230x x k ∴⋅-⋅->,3923x x k ∴<⋅-⋅,令31x t =≥,设()()2321g t t t t =-≥,()()min 11g t g ∴==,1k ∴<,即实数k 的取值范围为(),1-∞.19.(2022·福建省福州高级中学高一期末)已知函数()421x x f x k =+⋅+,()421x x g x =++. (1)若对于任意的R x ∈,()0f x >恒成立,求实数k 的取值范围; (2)若()()()f x h xg x =,且()h x 的最小值为2-,求实数k 的值. 【解析】(1)由()0f x >,得4210x xk +⋅+>恒成立,所以22x x k ->--对于任意的R x ∈,恒成立,因为()22222222x x x x x x -----=-+≤-⋅-,当且仅当22x x -=,即=0x 时取等号, 所以2k >-,即实数k 的取值范围为(2,)-+∞(2)()421221()111()421421212x x x x x x x x x x f x k k k h x g x +⋅+⋅--===+=+++++++,令1121221322x xx xt =++≥⋅=,当且仅当122x x =,即=0x 时取等号,则11(3)k y t t-=+≥, 当1k 时,11(3)k y t t -=+≥为减函数,则21,3k y +⎛⎤∈ ⎥⎝⎦无最小值,舍去, 当=1k 时,=1y 最小值不是2-,舍去, 当1k <时,11(3)k y t t -=+≥为增函数,则2,13k y +⎡⎫∈⎪⎢⎣⎭,最小值为223k +=-,解得=8k -,综上,=8k -20.(2022·全国·高一课时练习)已知函数()xf x ba =(其中a ,b 为常数,且0a >,1a ≠)的图象经过点()1,1M ,()3,9N .(1)求a b +的值;(2)当3x ≤-时,函数11xy a b ⎛⎫=+ ⎪⎝⎭的图象恒在函数2y x t =+图象的上方,求实数t 的取值范围.【解析】(1)∵函数()xf x ba =(其中a ,b 为常数,且0a >,1a ≠)的图象经过点()1,1M ,()3,9N ,∴319ba ba =⎧⎨=⎩∴29a =,∴3a =-(舍)或3a =,13b =,∴103a b +=; (2)由(1)得当3x ≤-时,函数133xy ⎛⎫=+ ⎪⎝⎭的图象恒在函数2y x t =+图象的上方, 即当3x ≤-时,不等式13203xx t ⎛⎫+--> ⎪⎝⎭恒成立,亦即当3x ≤-时,min 1323x t x ⎡⎤⎛⎫<+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.设()()13233xg x x x ⎛⎫=+-≤- ⎪⎝⎭,∵13xy ⎛⎫= ⎪⎝⎭在(],3-∞-上单调递减,2y x =-在(],3-∞-上单调递减,∴()1323xg x x ⎛⎫=+- ⎪⎝⎭在(],3-∞-上单调递减,∴()()min 336g x g =-=, ∴36t <.。
决战2020年高考数学(理)函数与导数专题: 指数与指数函数(解析版)

函数与导数函数 指数与指数函数一、具体目标:指数函数(1) 了解指数函数模型的实际背景.(2) 理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(3) 理解指数函数的概念及其单调性,掌握指数函数图像通过的特殊点,会画底数为2,3,10,1/2,1/3的指数函数的图像.(4) 体会指数函数是一类重要的函数模型.二、知识概述: 根式和分数指数幂 1.根式(1)概念:式子na 叫做根式,其中n 叫做根指数,a 叫做被开方数.(2)性质:(na )n=a (a 使n a 有意义);当n 为奇数时,na n=a ,当n 为偶数时,na n=|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0.2.分数指数幂(1)规定:正数的正分数指数幂的意义是a mn =na m (a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是a -mn =1n a m(a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义. (2)有理指数幂的运算性质(注意逆用) (1),(,,0)rsr sa a a r s Q a +⋅=∈>(2),(,,0)r s r s a a a r s Q a -÷=∈>【考点讲解】(3)(),(,,0)r s rs a a r s Q a =∈>.(4)(),(,0,0)s s sab a b s Q a b =∈>> 2.指数函数及其性质(1)概念:函数y =a x (a >0且a ≠1)叫做指数函数,其中指数x 是变量,函数的定义域是R ,a 是底数. (2)指数函数的图象与性质:a >1 0<a <1图象定义域 R 值域(0,+∞)性质过定点(0,1),即x =0时,y =1当x >0时,y >1; 当x <0时,0<y <1 当x <0时,y >1; 当x >0时,0<y <1 在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数3. 指数型函数有如下的性质: 形如. ()(0,1)f x y a a a >≠=一类函数,有如下结论:(1)()(0,1)f x y aa a >≠=的定义域、奇偶性与()f x 的定义域、奇偶性相同;(2)先确定()f x 的值域,再利用指数函数的单调性,确定()(0,1)f x y a a a >≠=的值域;(3)()(0,1)f x y aa a >≠=的单调性具有规律“同增异减”,即(),u u f x y a ==的单调性相同时,()(0,1)f x y a a a >≠=是增函数,(),u u f x y a ==的单调性不同时,()(0,1)f x y a a a >≠=是减函数.【真题分析】1.【2019优选题】若4a 2-4a +1=3(1-2a )3,则实数a 的取值范围是________.【解析】左边=(2a -1)2=||2a -1,右边=1-2a, 即||2a -1=1-2a, ∴2a -1≤0,解得a ≤12.【答案】⎩⎨⎧a ⎪⎪⎭⎬⎫a ≤122.【2019优选题】计算14030.75333264()(2)162---⎡⎤--++⎣⎦= . 【解析】化简:4164164331==-,1612])2[(4343==--,81161161161643434375.0====--,原式=11191416816-++=-.【答案】916-3.【2019优选题】若x ,x-1122为方程x 2-3x +a =0的两根,则-33222232x x x x -+-=+-________. 【解析】因为-1122x ,x 为方程x 2-3x +a =0的两根,所以-11223x x ,+=所以3322x x-+=()111221x x x x --⎛⎫+⋅+- ⎪⎝⎭2111122223x x x x --⎡⎤⎛⎫⎛⎫⎢⎥=+⋅+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=3×(32-3)=18,x 2+x -2=()212x x-+-x x -⎡⎤⎛⎫⎢⎥=+-- ⎪⎢⎥⎝⎭⎣⎦22112222=(32-2)2-2=47,所以33222232x x x x --+-=+-18314723-=-.【答案】134.【2018优选题】函数y =(a 2-5a +5)a x 是指数函数,则a 的值为________.【解析】∵函数y =(a 2-5a +5)a x 是指数函数,∴a 2-5a +5=1,解得a =1或a =4.又∵指数函数y =a x 的底数a 需满足a >0且a ≠1,∴a =4. 【答案】45.【2018优选题】函数y =a x +2-2(a >0,且a ≠1)的图像恒过点(m ,n ),则2m n a -=_______.【解析】令x +2=0,则x =-2, y =a x +2-2=a 0-2=-1,∴函数y =a x +2-2的图像恒过点(-2,-1),即m =-2,n =-1,∴m-n-a a a +===22201.【答案】16. 【2015山东,5分】已知函数f (x )=a x +b (a >0,且a ≠1) 的定义域和值域都是[]-1,0,则a +b =________. 【解析】当a >1时,函数f (x )=a x +b 在定义域上是增函数,∴f (0)为函数最大值,f (-1)为函数最小值,∴1110b a b -+=-⎧⎨+=⎩,,无解,不符合题意,舍去;当0<a <1时,函数f (x )=a x +b 在定义域上是减函数,∴f (-1)为函数最大值,f (0)为函数最小值,∴1110b a b -+=-⎧⎨+=⎩,,解得b =-2,a =12,∴a +b =-32.【答案】-327.【2019优选题】若存在正数x 使2x (x -a )<1成立,则a 的取值范围是( )A .(-∞,+∞)B .(-2,+∞)C .(0,+∞)D .(-1,+∞)【解析】∵2x (x -a )<1,∴x -a <12x .∵存在正数x 使2x (x -a )<1成立,即存在正数x 使x -a <12x 成立,即存在正数x 使函数y =x -a 的图像在函数y =12x 的图像的下方.在坐标系中画出图像,如下图:由图像可知当-a <1,即a >-1时,存在正数x 使2x (x -a )<1成立. 【答案】D8. 【2019年高考全国Ⅰ卷理数】已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<【解析】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,c <=<=即01,c <<则a c b <<.故选B . 【答案】B9.【2019年高考全国Ⅱ卷理数】若a >b ,则( ) A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0D .│a │>│b │【解析】取2,1a b ==,满足a b >,但ln()0a b -=,则A 错,排除A ;由219333=>=,知B 错,排除B ;取1,2a b ==-,满足a b >,但|1||2|<-,则D 错,排除D ;因为幂函数3y x =是增函数,a b >,所以33a b >,即a 3−b 3>0,C 正确.故选C . 【答案】C10.【2019年高考浙江】在同一直角坐标系中,函数1x y a =,1(2log )a y x =+(a >0,且a ≠1)的图象可能是【解析】当01a <<时,函数xy a =的图象过定点(0,1)且单调递减,则函数1x y a=的图象过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭的图象过定点1(,0)2且单调递减,D 选项符合; 当1a >时,函数xy a =的图象过定点(0,1)且单调递增,则函数1xy a =的图象过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭的图象过定点1(,02)且单调递增,各选项均不符合.综上,选D. 【答案】D11.【2019优选题】比较大小:(Ⅰ)a =1335-⎛⎫ ⎪⎝⎭,b =1435-⎛⎫ ⎪⎝⎭,c =1434-⎛⎫⎪⎝⎭,则它们的大小关系是________.(Ⅱ)a =(-3)3,b =-125,c =.π03,则它们的大小关系是________.(Ⅲ) 53532a ,b ,c ===,则它们的大小关系为________.【解析】:(Ⅰ) 113433,55a b --⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭Q , 函数y =⎝⎛⎭⎫35x为减函数,11433355--⎛⎫⎛⎫∴>> ⎪ ⎪⎝⎭⎝⎭315⎛⎫= ⎪⎝⎭,∴a >b >1.14110441434555154434b c ---⎛⎫ ⎪⎛⎫⎛⎫⎛⎫⎝⎭===>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫ ⎪⎝⎭∵, ∴b >c ,∴a >b >c .(Ⅱ)∵a =(-3)3<0,0<b =125-<50=1, c =π0.3>π0=1,∴a <b <c .(Ⅲ)∵53532a ,b ,c ===,∴101021055525a (),c ====(2)10=25=32,∴a 10<c 10,∴a <c .∵b 6=(33)6=32=9,c 6=(2)6=23=8,∴b 6>c 6,∴b >c .综上,a <c <b . 【答案】(Ⅰ)a >b >c (Ⅱ)a <b <c (Ⅲ)a <c <b12.【2016高考江苏卷】已知函数()(0,0,1,1)xxf x a b a b a b =+>>≠≠. 设12,2a b ==.(1)求方程()2f x =的根; (2)若对任意x R ∈,不等式(2)f()6f x m x ≥-恒成立,求实数m 的最大值;(3)若01,1a b <<>,函数()()2g x f x =-有且只有1个零点,求ab 的值。
4.2 指数函数(精练)(解析版) -人教版高中数学精讲精练(必修一)

x
2
1 ,故值域为 y
|
0
y
1
.
8.(2021·黑龙江·绥化市第一中学高一期中)已知函数 f x 4x a 2x 3 , a R .
(1)当 a 4 ,且 x 0, 2 时,求函数 f x 的值域;
(2)若函数 f x 在0, 2 的最小值为1,求实数 a 的值;
【答案】(1)1,3 (2) a 2 2
③
y
2
x
是指数函数;
④ y xx 的底数是 x 不是常数,不是指数函数;
⑤
y
3
1 x
的指数不是自变量
x
,不是指数函数;
1
⑥ y x3 是幂函数.
故答案为:③
9.(2021·全国·高一专题练习)函数 y a2 5a 5 ax 是指数函数,则 a 的值为________.
【答案】 4
f
x
ax2 2x ,
a
1 x
x 1
3a,
x
1 的最小值为
2,则实数
a 的取值范围是______.
【答案】1,
【解析】由题意,函数
f
x
ax2 2x ,
a 1 x
x 1
3a, x
1 的最小值为
2
,
因为函数 f x 在[1, ) 上为增函数,可得 x 1时,函数 f x 有最小值为 2 ,
则当 x (,1) 时,函数 f x 2 , min
)
A. c a b
B. c b a
【答案】A
1
2
【解析】
b
1 4
3
1 2
3
,
C. b c a
指数以及指数函数的整理讲义经典-(含答案)

指数以及指数函数的整理讲义经典-(含答案)指数与指数函数⼀、指数(⼀)n 次⽅根:1的3次⽅根是( )A .2B .-2C .±2D .以上都不对 2、若4a -2+(a -4)0有意义,则实数a 的取值范围是( )A .a ≥2B .a ≥2且a ≠4C .a ≠2D .a ≠4(⼆)、 n 为奇数,a a n n = n 为偶数,??<-≥==0,0,a a a a a a n n1.下列各式正确的是( )=-3 =a =2 D .a 0=12、.(a -b )2+5(a -b )5的值是( )A .0B .2(a -b )C .0或2(a -b )D .a -b 3、若xy ≠0,那么等式 4x 2y 2=-2xy y 成⽴的条件是( )A .x >0,y >0B .x >0,y <0C .x <0,y >0D .x <0,y <0 4、求下列式⼦(1).334433)32()23()8(---+-(2)223223--+132811621258---????;;;243的结果为 A 、5B 、5C 、-5D 、-53、把下列根式写成分数指数幂的形式:(1)32ab (2)()42a -(3)3432x x x(四)、实数指数幂的运算性质(1)r a ·s r r a a += ),,0(R s r a ∈>;(2)rs s r a a =)( ),,0(R s r a ∈>;(3)sr r a a ab =)( ),,0(R s r a ∈>.1.对于a >0,b ≠0,m 、n ∈N *,以下运算中正确的是( )A .a m a n =a mnB .(a m )n =am +nC .a m b n =(ab )m +nD .(b a )m=a -m b m2、若0,x >则13111424(2x +3)(2x -3)-4x = .3.计算-13-(-78)0+[(-2)3]-43+16-+|-|12=________.题型⼀: 1、求值:(1-;(22、已知*N n ∈,化简()()()()=+++++++++----11111233221n n Λ_____。
2021高考数学复习专题指数与指数函数(精讲)

指数与指数函数精讲【核心素养分析】1.了解指数函数模型的实际背景;2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算;3.理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点,会画底数为2,3,10,12,13的指数函数的图象;4.体会指数函数是一类重要的函数模型。
5.培养学生逻辑推理、直观想象、数学运算的素养。
【重点知识梳理】 知识点一 根式(1)概念:式子na 叫做根式,其中n 叫做根指数,a 叫做被开方数.(2)性质:(na )n=a (a 使na 有意义);当n 为奇数时,na n=a ,当n 为偶数时,na n=|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0.知识点二 分数指数幂(1)规定:正数的正分数指数幂的意义是a m n =na m (a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是a -mn =1n a m(a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理指数幂的运算性质:a r a s =a r +s ;(a r )s =a rs ;(ab )r =a r b r ,其中a >0,b >0,r ,s ∈Q. 知识点三 指数函数及其性质(1)概念:函数y =a x (a >0且a ≠1)叫做指数函数,其中指数x 是自变量,函数的定义域是R ,a 是底数. (2)指数函数的图象与性质【特别提醒】1.画指数函数y =a x (a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎫-1,1a .2.在第一象限内,指数函数y =a x (a >0且a ≠1)的图象越高,底数越大. 【典型题分析】高频考点一 指数幂的运算例1.【2020·全国Ⅲ卷文数】Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1et I K t --+,其中K为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为(ln19≈3)A .60B .63C .66D .69【方法技巧】指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先算指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数. (4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答. 【变式探究】(2020·四川棠湖中学模拟)⎝⎛⎭⎫-278-23+0.002-12-10(5-2)-1+π0=________. 高频考点二 指数函数的图像及其应用例2.(2020·广西柳州高级中学模拟) 函数f (x )=a x -b 的图象如图,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0【方法技巧】有关指数函数图象问题的解题思路(1)已知函数解析式判断其图象,一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除. (2)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.(3)有关指数方程、不等式问题的求解,往往是利用相应的指数型函数图象,数形结合求解. (4)根据指数函数图象判断底数大小的问题,可以通过直线x =1与图象的交点进行判断.【变式探究】(2020·浙江余姚中学模拟)函数y =a x -b (a >0,且a ≠1)的图象经过第二、三、四象限,则a b 的取值范围是________.高频考点三 比较指数式的大小例3.【2020·天津卷】设0.70.80.713,(),log 0.83a b c -===,则,,a b c 的大小关系为( ) A .a b c << B .b a c <<C .b c a <<D .c a b <<【方法技巧】利用指数函数的性质比较幂值的大小,先看能否化成同底数,能化成同底数的先化成同底数幂,再利用函数单调性比较大小,不能化成同底数的,一般引入“1”等中间量比较大小;【变式探究】(2020·安徽马鞍山二中模拟)已知a =20.2,b =0.40.2,c =0.40.6,则( ) A .a >b >c B .a >c >b C .c >a >bD .b >c >a高频考点四 解简单的指数方程或不等式例4.(2020·山东日照一中模拟)方程4x +|1-2x |=11的解为________【方法技巧】利用指数函数的性质解简单的指数方程或不等式,先利用幂的运算性质化为同底数幂,再利用函数单调性转化为一般不等式求解;【变式探究】(2020·山东济南外国语学校模拟)已知函数f (x )=a +14x +1的图象过点⎝⎛⎭⎫1,-310,若-16≤f (x )≤0,则实数x 的取值范围是________.高频考点五 指数函数性质的综合应用例5.(2020·福建泉州五中模拟)已知函数f (x )=⎝⎛⎭⎫13. (1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值;243-+ax x(3)若f (x )的值域是(0,+∞),求a 的值.【方法技巧】解答指数函数性质的综合应用,首先判断指数型函数的性质,再利用其性质求解。
《指数函数》经典讲义(完整版)

指数函数讲义经典整理(含答案)一、同步知识梳理知识点1:指数函数函数(01)xy a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R知识点2:指数函数的图像和性质知识点3:指数函数的底数与图像的关系指数函数在同一直角坐标系中的图像的相对位置与底数大小的关系 如图所示,则01c d a b <<<<<,在y 轴右侧,图像从下到上相应的底数也由小变大, 在y 轴左侧,图像从上到下相应的底数也由小变大 即无论在y 轴左侧还是右侧,底数按逆时针方向变大在第一象限内,“底大图高”知识点4:指数式、指数函数的理解① 分数指数幂与根式或以互化,通常利用分数指数幂进行根式的运算② 根式的运算、变形、求值、化简及等式证明在数学中占有重要的地位,是研究方程、不等式和函数的基础,应引起重视③ 在有关根式、分数指数幂的变形、求值过程中,要注意运用方程的观点处理问题,通过解方程或方程组来求值④ 在理解指数函数的概念时,应抓住定义的“形式”,像1223,,21xx y y x y y =⋅===- 等函数均不符合形式()01x y a a a =>≠且,因此,它们都不是指数函数⑤ 画指数函数x y a =的图像,应抓住三个关键点:()()11,,0,1,1,a a ⎛⎫- ⎪⎝⎭二、同步题型分析题型1:指数函数的定义、解析式、定义域和值域例1:已知函数,且. (1)求m 的值;(2)判定f (x )的奇偶性;(3)判断f (x )在(0,+∞)上的单调性,并给予证明.考点:指数函数的定义、解析式、定义域和值域;函数单调性的判断与证明. 专题: 计算题. 分析:(1)欲求m 的值,只须根据f (4)=的值,当x=4时代入f (x )解一个指数方程即可;(2)求出函数的定义域x|x≠0},利用奇偶性的定义判断f (x )与f (﹣x )的关系,即可得到答案; (3)利用单调性的定义证明即可.任取0<x1<x2,只要证明f (x1)>f (x2),即可. 解答: 解:(1)因为,所以,所以m=1.(2)因为f (x )的定义域为{x|x≠0},又,所以f (x )是奇函数. (3)任取x1>x2>0,则,因为x1>x2>0,所以,所以f (x1)>f (x2),所以f(x)在(0,+∞)上为单调增函数.点评:本题主要考查了函数单调性的判断、函数奇偶性的判断,与证明及指数方程的解法.在判定函数奇偶性时,一定注意函数的定义域关于原点对称,属于基础题.例2:已知函数,(1)讨论函数的奇偶性;(2)证明:f(x)>0.考点:指数函数的定义、解析式、定义域和值域;函数奇偶性的判断;函数奇偶性的性质.专题:计算题.分析:(1)由2x﹣1≠0解得义域为{x|x≠0},关于原点对称.f(﹣x)=()(﹣x)=()x=f(x),故该函数为偶函数.(2)任取x∈{x|x≠0},当x>0时,2x>20=1且x>0,故,从而.当x<0时,﹣x>0,故f(﹣x)>0,由函数为偶函数,能证明f(x)>0在定义域上恒成立.解答:解:(1)该函数为偶函数.由2x﹣1≠0解得x≠0即义域为{x|x≠0}关于原点对称…(2分)f(﹣x)=()(﹣x)=﹣(+)x=()x=()x=()x=f(x)(6分)故该函数为偶函数.…(7分)(2)证明:任取x∈{x|x≠0}当x>0时,2x>20=1且x>0,∴2x﹣1>0,故从而…(11分)当x<0时,﹣x>0,∴f(﹣x)>0,…(12分)又因为函数为偶函数,∴f(x)=f(﹣x)>0,…(13分)∴f(x)>0在定义域上恒成立.…(14分)点评:本题考查函数的奇偶性的判断和证明f(x)>0.解题时要认真审题,注意指数函数性质的灵活运用.例3:已知函数y=ax(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,记.(1)求a的值;(2)求f(x)+f(1﹣x)的值;(3)求的值.考点:指数函数的定义、解析式、定义域和值域.专题:综合题;函数的性质及应用.分析:(1)由y=ax单调得a+a2=20,由此可求a;(2)写出f(x),代入运算可得;(3)借助(2)问结论分n为奇数、偶数讨论可求;解答:解:(1)∵函数y=ax(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,且y=ax单调,∴a+a2=20,得a=4,或a=﹣5(舍去);(2)由(1)知,∴====1;(3)由(2)知f(x)+f(1﹣x)=1,得n为奇数时,=×1=;n为偶数时,=+f()==;综上,=.点评:本题考查指数函数的单调性、最值等知识,属中档题.题型2:指数函数的图像变换.例1:已知函数y=|2x﹣2|(1)作出其图象;(2)由图象指出函数的单调区间;(3)由图象指出当x取何值时,函数有最值,并求出最值.考点:指数函数的图像变换.专题:综合题;函数的性质及应用.分析:(1)函数y=|2x﹣2|图象是由y=2x的图象向下平移2个单位,再将x轴下方的部分翻着到x轴上方得到.(2)结合函数的图象,可得函数的减区间和增区间.(3)数形结合可得,当x=1时,ymiin=0.解答:解:(1)函数y=|2x﹣2|图象是由y=2x的图象向下平移2个单位,再将x轴下方的部分翻着到x轴上方得到,如图所示:(2)结合函数的图象,可得函数的减区间为(﹣∞,1],增区间为(1,+∞).(3)数形结合可得,当x=1时,ymiin=0.点评:本题主要考查指数函数的图象和性质综合,体现了数形结合的数学思想,属于中档题.题型3:指数函数单调性例1:已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0(1)若a•b>0,判断函数f(x)的单调性;(2)若a=﹣3b,求f(x+1)>f(x)时的x的取值范围.考点:指数函数的单调性与特殊点;函数单调性的判断与证明;函数单调性的性质.专题:函数的性质及应用.分析:(1)分a>0,b>0和a<0,b<0两种情况讨论,运用单调性的定义可作出判断;(2)当a=﹣3b时,f(x)=﹣3b•2x+b•3x=b(3x﹣3•2x),分b>0,b<0两种情况进行讨论,整理可得指数不等式解出即可;解答:解:(1)当a>0,b>0时,任意x1,x2∈R,且x1<x2,则f(x1)﹣f(x2)=a(﹣)+b(﹣),∵<,<,a>0,b>0,∴a(﹣)<0,b(﹣)<0,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),故函数f(x)在R上是增函数;当a<0,b<0时,同理,可判断函数f(x)在R上是减函数;(2)当a=﹣3b时,f(x)=﹣3b•2x+b•3x=b(3x﹣3•2x),则f(x+1)>f(x)即化为b(3x+1﹣3•2x+1)>b(3x﹣3•2x),若b>0,则有3x+1﹣3•2x+1>3x﹣3•2x,整理得,解得x>1;若b<0,则有3x+1﹣3•2x+1<3x﹣3•2x,整理得,解得x<1;故b>0时,x的范围是x>1;当b<0时,x的范围是x<1.点评:本题考查函数单调性的判断、指数函数的单调性的应用,考查分类讨论思想,属基础题.例2:已知定义在(﹣1,1)上的奇函数f(x).在x∈(﹣1,0)时,f(x)=2x+2﹣x.(1)试求f(x)的表达式;(2)用定义证明f(x)在(﹣1,0)上是减函数;(3)若对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立,求实数t的取值范围.考点:指数函数综合题;奇偶性与单调性的综合.专题:计算题;函数的性质及应用.分析:(1)由f(x)是定义在(﹣1,1)上的奇函数可得f(0)=0,x∈(0,1)时,f(x)=﹣f(﹣x)=﹣(2x+2﹣x);从而写出f(x)的表达式;(2)取值,作差,化简,判号,下结论五步;(3)对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立转化为对于x∈(0,1)上的每一个值,不等式t>﹣恒成立,从而可得.解答:解:(1)∵f(x)是定义在(﹣1,1)上的奇函数,∴f(0)=0,设∈(0,1),则﹣x∈(﹣1,0),则f(x)=﹣f(﹣x)=﹣(2x+2﹣x),故f(x)=;(2)任取x1,x2∈(﹣1,0),且x1<x2,则f(x1)﹣f(x2)=+﹣(+)=,∵x1<x2<0,∴﹣<0,0<<1,故f(x1)﹣f(x2)>0,故f(x)在(﹣1,0)上是减函数;(3)由题意,t•2x•f(x)<4x﹣1可化为t•2x•(﹣(2x+2﹣x))<4x﹣1,化简可得,t>﹣,令g(x)=﹣=﹣1+,∵x∈(0,1),∴g(x)<﹣1+=0,故对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立可化为t≥0.点评:本题考查了函数的性质的综合应用及恒成立问题的处理方法,属于难题.例3:已知函数f(x)=|2x﹣1﹣1|,(x∈R).(1)证明:函数f(x)在区间(1,+∞)上为增函数,并指出函数f(x)在区间(﹣∞,1)上的单调性;(2)若函数f(x)的图象与直线y=t有两个不同的交点A(m,t),B(n,t),其中m<n,求m+n 的取值范围.考点:指数函数综合题.专题:计算题;证明题.分析:(1)函数单调性的证明,通常依据定义,步骤为:取值,作差,变形,定号,下结论,由于与指数函数有关,求解时要利用到指数函数的单调性;(2)由(1)可知,函数的值域为(0,1),要使函数f(x)的图象与直线y=t有两个不同的交点,故有t∈(0,1)又函数f(x)的图象与直线y=t有两个不同的交点,所以A(m,t),B(n,t)分别位于直线x=1的两侧,由m<n,得m<1<n,故可以求出m+n,进而由t∈(0,1),可求m+n的取值范围.解答:解:(1)证明:任取x1∈(1,+∞),x2∈(1,+∞),且x1<x2,=,∵x1<x2,∴,∴,∴f(x1)<f(x2).所以f(x)在区间(1,+∞)上为增函数.(5分)函数f(x)在区间(﹣∞,1)上为减函数.(6分)(2)因为函数f(x)在区间(1,+∞)上为增函数,相应的函数值为(0,+∞),在区间(﹣∞,1)上为减函数,相应的函数值为(0,1),由题意函数f(x)的图象与直线y=t有两个不同的交点,故有t∈(0,1),(8分)易知A(m,t),B(n,t)分别位于直线x=1的两侧,由m<n,得m<1<n,故2m﹣1﹣1<0,2n ﹣1﹣1>0,又A,B两点的坐标满足方程t=|2x﹣1﹣1|,故得t=1﹣2m﹣1,t=2n﹣1﹣1,即m=log2(2﹣2t),n=log2(2+2t),(12分)故m+n=log2(2﹣2t)+log2(2+2t)=log2(4﹣4t2),当0<t<1时,0<4﹣4t2<4,﹣∞<log2(4﹣4t2)<2.因此,m+n的取值范围为(﹣∞,2).(17分)点评:本题的考点是指数函数综合问题,主要考查函数单调性的证明,考查函数图形的性质,有较强的综合性.依据定义,证明函数的单调性的步骤通常为:取值,作差,变形,定号,下结论三、课堂达标检测检测题1:已知函数f(x)=(其中e=2.71828…是一个无理数).(1)求函数f(x)的定义域;(2)判断奇偶性并证明之;(3)判断单调性并证明之.考点:指数函数的定义、解析式、定义域和值域;函数单调性的判断与证明;函数奇偶性的判断.专题:计算题;证明题.分析:(1)把分子整理变化成和分母相同的一部分,进行分子常数化,则变量只在分母上出现,根据分母是一个指数形式,恒大于零,得到函数的定义域是全体实数.(2)根据上一问值函数的定义域关于原点对称,从f(﹣x)入手整理,把负指数变化为正指数,就得到结果,判断函数是一个奇函数.(3)根据判断函数单调性的定义,设出两个任意的自变量,把两个自变量的函数值做差,化成分子和分母都是因式乘积的形式,根据指数函数的性质,判断差和零的关系.解答:解:f(x)==1﹣(1)∵e2x+1恒大于零,∴x∈R(2)函数是奇函数∵f(﹣x)==又由上一问知函数的定义域关于原点对称,∴f(x)为奇函数(3)是一个单调递增函数设x1,x2∈R 且x1<x2则f(x1)﹣f(x2)=1﹣=∵x1<x2,∴∴f(x1)﹣f(x2)<0即f(x1)<f(x2)∴f(x)在R是单调增函数点评:本题考查函数的定义域,考查函数的奇偶性的判断及证明.考查函数单调性的判断及证明,考查解决问题的能力,是一个综合题目.检测题2:已知函数f(x)=2ax+2(a为常数)(1)求函数f(x)的定义域.(2)若a=1,x∈(1,2],求函数f(x)的值域.(3)若f(x)为减函数,求实数a的取值范围.考点:指数函数的定义、解析式、定义域和值域;指数函数的单调性与特殊点.专题:常规题型;转化思想.分析:(1)利用指数函数的定义域来考虑.(2)利用函数f(x)在(1,2]上的单调性求函数的值域.(3)根据复合函数的单调性,函数u=ax+2必须为减函数.解答:解:(1)函数y=2ax+2对任意实数都有意义,所以定义域为实数集R.(2)因为a=1,所以f(x)=2x+2.易知此时f(x)为增函数.又因为1<x≤2,所以f(1)<f(x)≤f(2),即8<f(x)≤16.所以函数f(x)的值域为(8,16].(3)因为f(x)为减函数,而y=2u是增函数,所以函数u=ax+2必须为减函数.所以得a<0点评:本题考查指数函数的定义域、值域、单调性,复合函数的单调性,体现转化的数学思想.检测题3:设f(x)的定义域是(﹣∞,0)∪(0,+∞),且f(x)对任意不为零的实数x都满足f(﹣x)=﹣f(x).已知当x>0时(1)求当x<0时,f(x)的解析式(2)解不等式.考点:指数函数的定义、解析式、定义域和值域;函数奇偶性的性质.专题:常规题型.分析:(1)求当x<0时,f(x)的解析式,在哪个区间上求解析式,就在哪个区间上取值x,再转化到已知区间上求解析式,由f(﹣x)=﹣f(x)解出f(x)即可.(2)解不等式f(x)<﹣,分x>0和x<0两种情况,根据求得的解析式求解即可.解答:解:(1)当x<0时,﹣x>0,=又f(﹣x)=﹣f(x)所以,当x<0时,(2)x>0时,,∴化简得∴,解得1<2x<4∴0<x<2当x<0时,∴解得2x>1(舍去)或∴x<﹣2解集为{x|x<﹣2或0<x<2}点评:本题考查分段函数解析式的求法,注意在哪个区间上求解析式,就在哪个区间上取值,再转化到已知的区间上求解析式,再根据奇偶性,解出f(x)来.解不等式也要分段求解,注意x的取值范围.11。
(完整word版)指数及指数函数知识点及习题

指数及指数函数(一)指数与指数幂的运算1.根式的概念一般地,如果a x n=,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.此时,a 的n 次方根用符号n a 表示.式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数.此时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号-n a 表示.正的n 次方根与负的n 次方根可以合并成±n a (a >0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作00=n . 结论:当n 是奇数时,a a n n =当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a n n2.分数指数幂)1,,,0(*>∈>=n N n m a a an m nm)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义 3.有理指数幂的运算性质 (1)r a ·sr r aa += ),,0(Q s r a ∈>;(2)rssr a a =)( ),,0(Q s r a ∈>; (3)srra a ab =)(),0,0(Q r b a ∈>>.(一)指数函数的概念一般地,函数)1a ,0a (a y x≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:○1 指数函数的定义是一个形式定义 ○2 注意指数函数的底数的取值范围,底数为什么不能是负数、零和1.(二)指数函数的图象和性质注意内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.指数函数的图象如右图:4图象特征函数性质1a > 1a 0<< 1a > 1a 0<<向x 、y 轴正负方向无限延伸 函数的定义域为R 图象关于原点和y 轴不对称 非奇非偶函数函数图象都在x 轴上方 函数的值域为R +函数图象都过定点(0,1) 1a 0=自左向右看, 图象逐渐上升 自左向右看, 图象逐渐下降 增函数减函数在第一象限内的图象纵坐标都大于1 在第一象限内的图象纵坐标都小于1 1a ,0x x >> 1a ,0x x <>在第二象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都大于1 1a ,0x x <<1a ,0x x ><图象上升趋势是越来越陡图象上升趋势是越来越缓函数值开始增长较慢,到了某一值后增长速度极快;函数值开始减小极快,到了某一值后减小速度较慢;利用函数的单调性,结合图象还可以看出:(1)在[a ,b]上,)1a 0a (a )x (f x≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [; (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; (4)当1a >时,若21x x <,则)x (f )x (f 21<;指数与指数函数练习题一、选择题:1、化简1111132168421212121212-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,结果是( ) A 、11321122--⎛⎫- ⎪⎝⎭B 、113212--⎛⎫- ⎪⎝⎭ C 、13212-- D 、1321122-⎛⎫- ⎪⎝⎭2、44等于( ) A 、16a B 、8a C 、4a D 、2a3、若1,0a b ><,且b b a a -+=则b b a a --的值等于( )A 、6B 、2±C 、2-D 、24、函数()2()1xf x a =-在R 上是减函数,则a 的取值范围是( )A 、1>a B 、2<a C、a <、1a <<5、下列函数式中,满足1(1)()2f x f x +=的是( )A 、 1(1)2x +B 、14x + C 、2x D 、2x -6、已知01,1a b <<<-,则函数xy a b =+的图像必定不经过( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限7、一批设备价值a 万元,由于使用磨损,每年比上一年价值降低%b ,则n 年后这批设备的价值为( )A 、(1%)na b -B 、(1%)a nb -C 、[1(%)]n a b -D 、(1%)na b -8、若103,104x y ==,则10x y -= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题4.1指数与指数函数(精讲精析篇)提纲挈领点点突破热门考点01 根式的化简与求值(1)任意实数的奇次方根只有一个,正数的偶次方根有两个且互为相反数. (2)(na )n 是实数a 的n 次方根的n 次幂,其中实数a 的取值由n 的奇偶性决定.n a ⎩⎪⎨⎪⎧n 为偶数,a 为非负实数n 为奇数,a 为任意实数,且n a 符号与a 的符号一致【典例1】化简下列各式: ①4(x -2)4; ②5(x -π)5. 【答案】见解析. 【解析】 ①4(x -2)4=|x -2|=⎩⎪⎨⎪⎧x -2,x ≥2,-x +2,x <2.②5(x -π)5=x -π. 【典例2】化简下列各式:(1)x 2-2x +1-x 2+6x +9(-3<x <3); (2)(a -1)2+1-2a +a 2+3(1-a )3.【答案】见解析.【解析】(1)原式=(x -1)2-(x +3)2=|x -1|-|x +3|.∵-3<x <3,∴当-3<x <1时,原式=-(x -1)-(x +3)=-2x -2; 当1≤x <3时,原式=(x -1)-(x +3)=-4.∴原式=⎩⎪⎨⎪⎧-2x -2,-3<x <1,-4,1≤x <3.(2)由a -1知a -1≥0,∴原式=a -1+(a -1)2+1-a =a -1. 【规律方法】1.根式化简或求值的注意点解决根式的化简或求值问题,首先要分清根式为奇次根式还是偶次根式,然后运用根式的性质进行化简或求值.2.对n a n 与(na )n 的进一步认识(1)对(n a )n 的理解:当n 为大于1的奇数时,(n a )n 对任意a ∈R 都有意义,且(na )n =a ,当n 为大于1的偶数时,(n a )n 只有当a ≥0时才有意义,且(na )n =a (a ≥0).(2)对na n的理解:对任意a ∈R 都有意义,且当n 为奇数时,n a n =a ;当n 为偶数时,n a n=|a |=⎩⎪⎨⎪⎧a a ≥0-a a <0.(3)对于根式的运算还要注意变式,整体代换,以及平方差、立方差和完全平方、完全立方公式的运用,做到化繁为简,必要时进行讨论. 3.有限制条件的根式化简的步骤热门考点02 指数幂的化简与求值指数幂运算的一般原则:(1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数. (4)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数. 【典例3】计算:.【答案】12. 【解析】.【典例4】已知则的值为__________.【答案】【解析】题意,∴,∴,故答案为.【典例5】(2020·上海高三专题练习)若1a >,0b <,且22b b a a -+=b b a a --=_________. 【答案】2- 【解析】22b ba a-+=()22228b bb b a a a a --+=++=,故226b b a a -+=,()22224b b b b a a a a ---=+-=,1a >,0b <,故0b b a a --<,故2b b a a -=--.故答案为:2-. 【特别提醒】根式、指数幂的条件求值,是代数式求值问题的常见题型,一般步骤是: (1)审题:从整体上把握已知条件和所求代数式的形式和特点;(2)化简:①化简已知条件;②化简所求代数式;(3)求值:往往通过整体代入,简化解题过程.如本题求值问题实质上考查整体思想,考查完全平方公式、立方和(差)公式的应用,如,,,解题时要善于应用公式变形.热门考点03 指数函数的图象及应用常考题型及技法(1)已知函数解析式判断其图象一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除. (2)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.(3)有关指数方程、不等式问题的求解,往往是利用相应的指数型函数图象,数形结合求解. (4)判断指数函数图象上底数大小的问题,可以先通过令x =1得到底数的值再进行比较.【典例6】(2020·上海高一课时练习)函数xy a =和(1)y a x =+(其中0a >且1a ≠)的大致图象只可能是( )A .B .C .D .【答案】C 【解析】由于(1)y a x =+过点()1,0-,故D 选项错误.当1a >时,xy a =过()0,1且单调递增;(1)y a x =+过点()1,0-且单调递增,过()0,a 且1a >.所以A 选项错误.当01a <<时,xy a =过()0,1且单调递减,(1)y a x =+过点()1,0-且单调递增,过()0,a 且01a <<.所以B 选项错误.综上所述,正确的选项为C. 故选:C【典例7】(2019·贵州省织金县第二中学高一期中)函数21()x f x a -=(0a >且1)a ≠过定点( )A .(1,1)B .1(,0)2C .(1,0)D .1(,1)2【答案】D 【解析】令12102x x -=⇒=,所以函数21()x f x a-=(0a >且1)a ≠过定点1(,1)2. 【总结提升】1.对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.2.判断指数函数图象上底数大小的问题,可以先通过令x =1得到底数的值再进行比较.3.识图的三种常用方法(1)抓住函数的性质,定性分析:①从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;②从函数的单调性,判断图象的变化趋势;③从周期性,判断图象的循环往复;④从函数的奇偶性,判断图象的对称性.⑤从函数的特征点,排除不合要求的图象. (2)抓住函数的特征,定量计算:从函数的特征点,利用特征点、特殊值的计算分析解决问题. (3)根据实际背景、图形判断函数图象的方法:①根据题目所给条件确定函数解析式,从而判断函数图象(定量分析); ②根据自变量取不同值时函数值的变化、增减速度等判断函数图象(定性分析). 4.过定点的图象(1)画指数函数y =ax(a >0,a≠1)的图象,应抓住三个关键点(0,1),(1,a), .特别注意,指数函数的图象过定点(0,1); (2) xy a =与xy a-=的图象关于y 轴对称;(3)当a >1时,指数函数的图象呈上升趋势,当0<a <1时,指数函数的图象呈下降趋势;简记:撇增捺减.热门考点04 指数函数的性质及应用1.指数函数图象的变化规律指数函数的图象随底数变化的规律可归纳为:在第一象限内,图象自下而上对应的底数依次增大. 2.有关指数函数性质的问题类型及解题思路(1)比较指数幂大小问题.常利用指数函数的单调性及中间值(0或1).(2)简单的指数不等式的求解问题.解决此类问题应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及单调性问题时,要借助“同增异减”这一性质分析判断. 【典例8】(2016新课标全国III )已知,,,则( )A. B. C. D.【答案】A 【解析】因为,,所以,故选A .【典例9】(2017·北京高考真题(理))已知函数1()3()3x x f x =-,则()f xA .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数【答案】A 【解析】分析:讨论函数()133xxf x ⎛⎫=- ⎪⎝⎭的性质,可得答案. 详解:函数()133xxf x ⎛⎫=- ⎪⎝⎭的定义域为R ,且()()111333,333xxx xxx f x f x --⎡⎤⎛⎫⎛⎫⎛⎫-=-=-+=--=-⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦即函数()f x 是奇函数,又1y 3,3xx y ⎛⎫==- ⎪⎝⎭在R 都是单调递增函数,故函数()f x 在R 上是增函数.故选A.【典例10】(2019·天津河西区一模)已知f (x )=|2x -1|,当a <b <c 时,有f (a )>f (c )>f (b ),则必有( ) A .a <0,b <0,c <0 B .a <0,b >0,c >0 C .2-a <2c D .1<2a +2c <2【答案】D【解析】作出函数f (x )=|2x -1|的图象, 如图所示,因为a <b <c ,且有f (a )>f (c )>f (b ),所以必有a <0,0<c <1,且|2a -1|>|2c -1|,所以1-2a >2c -1,则2a +2c <2,且2a +2c >1,故选D.【典例11】(2019·浙江学军中学高一期中)已知函数1()421x x f x a +=-⋅+. (1)若函数()f x 在[]0,2x ∈上有最大值8-,求实数a 的值; (2)若方程()0f x =在[]1,2x ∈-上有解,求实数a 的取值范围. 【答案】(1)5;(2)1718a ≤≤ 【解析】(1)因为[]0,2x ∈,所以令[]21,4xt =∈,所以得到函数()221f t t at =-+,开口向上,对称轴为t a =,当52a ≤时,则在4t =时,()f t 取最大值,即()()max 48f t f ==-, 所以16818a -+=-,解得258a =,不满足52a ≤,所以舍去,当52a >时,则1t =时,()f t 取最大值,即()()max 18f t f ==-,所以1218a -+=-,解得5a =,满足52a >,综上,a 的值为5.(2)因为[]1,2x ∈-,所以令12,42xm ⎡⎤=∈⎢⎥⎣⎦,所以得到函数()221f m m am =-+令()0f m =,得2210m am -+=,即12a m m=+, 所以要使()0f m =有解, 则函数2y a =与函数1y m m=+有交点, 而函数1y m m =+,在1,12⎡⎤⎢⎥⎣⎦上单调递减,在[]1,4上单调递增, 故在1x =时,有min 2y =,在4x =时,有max 174y =, 所以可得21724a ≤≤, 所以a 的范围为1718a ≤≤. 【典例12】(2020·上海高三专题练习)已知函数22513x x y ++⎛⎫= ⎪⎝⎭,求其单调区间及值域.【答案】在(),1-∞-上是增函数,在()1,-+∞上是减函数,值域为10,81⎛⎤ ⎥⎝⎦【解析】根据复合函数单调性“同增异减”的法则,将问题转化为求二次函数的单调递减区间问题.解:令13Uy ⎛⎫= ⎪⎝⎭,225U x x =++,则y 是关于U 的减函数,而U 是(),1-∞-上的减函数,()1,-+∞上的增函数,∴2251 3x xy++⎛⎫= ⎪⎝⎭在(),1-∞-上是增函数,而在()1,-+∞上是减函数,又∵()2225144U x x x=++=++≥, ∴22513x xy++⎛⎫= ⎪⎝⎭的值域为4110,0,381⎛⎤⎛⎫⎛⎤=⎥⎪ ⎥⎝⎭⎝⎦⎥⎝⎦.【总结提升】1在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,既不同底又不同次数的幂函数值比较大小:常找到一个中间值,通过比较幂函数值与中间值的大小进行判断.准确掌握各个幂函数的图象和性质是解题的关键.2.指数函数的图象在第一象限内底大图高(逆时针方向底数依次变大).当幂的底数不确定时,要注意讨论底数的不同取值情况.3.根据指数函数图象判断底数大小的问题,可以通过直线x=1与图象的交点进行判断.如图是指数函数(1)y =a x,(2)y=b x,(3)y=c x,(4)y=d x的图象,底数a,b,c,d与1之间的大小关系为c>d>1>a>b.规律:在y轴右(左)侧图象越高(低),其底数越大.4.幂函数y=xα的形式特点是“幂指数坐在x的肩膀上”,图象都过点(1,1).它们的单调性要牢记第一象限的图象特征:当α>0时,第一象限图象是上坡递增;当α<0时,第一象限图象是下坡递减.然后根据函数的奇偶性确定y轴左侧的增减性即可.巩固提升1.(2019·华东师大二附中前滩学校高三月考)函数1(0,1)xy a a aa=->≠的图象可能是().A.B.C .D .【答案】D 【解析】∵0a >,∴10a>,∴函数x y a =需向下平移1a 个单位,不过(0,1)点,所以排除A ,当1a >时,∴101a <<,所以排除B ,当01a <<时,∴11a>,所以排除C ,故选D.2.(2020·宾县第二中学高二期末(文))已知,a b ∈R ,则“ln ln a b >”是“11()()33a b<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】 ∵ln ln a b > ∴0a b >>∵1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭∴a b >∵0a b >>是a b >的充分不必要条件∴ln ln a b >是1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭的充分不必要条件 故选A3.(2019·贵州省织金县第二中学高一期中)函数(01)||xxa y a x =<<的图像的大致形状是( )A .B .C .D .【答案】D 【解析】 根据01a <<(01)||x xa y a x =<<,0,0x x a x y a x ⎧>∴=⎨-<⎩01a <<,∴x y a =是减函数,x y a =-是增函数.(01)||xxa y a x =<<在(0)+∞,上单调递减,在()0-∞,上单调递增 故选:D.4.(2020·上海高三专题练习)函数()12x f x -的定义域是 ( ) A .(],0-∞ B .[)0,+∞C .(),0-∞D .(),-∞+∞【答案】A【解析】120x -≥,解得0x ≤, ∴函数的定义域(],0-∞,故选A.5.(2020·四川省高一期末)设.1084y =,0.728y =,3434y =,则( )A .312y y y >>B .213y y y >>C .132y y y >>D .123y y y >>【答案】B 【解析】()20.80.81.16224y ===,()0.70.73 2.12822y ===,()332 1.5443422y ===.因为 2.1 1.6 1.5222>>,故213y y y >>. 故选:B6.(2020·上海高三专题练习)函数f (x )=x a -b 的图象如图,其中a 、b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0 <a <1,b >0D .0 <a <1,b <0【答案】C 【解析】从曲线走向结合指数函数的单调性可知0<a<1, 又f (0)=1-b 1<,所以b >0, 故选:C.7.(2020·上海高三专题练习)已知01,1a b <<<-,则函数x y a b =+的图像必定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【解析】此题考查指数函数的图像的性质和指数函数的上下平移;有已知得到:此指数函数是减函数,分布在第一,二象限,渐近线是x 轴,即0y =;xy a b =+(1b <-)是由指数函数向下平移大于1个单位得到的,即原来指数函数所过的定点(0,1)向下平移到原点的下方了,所以图像不经过第一象限,所以选A ,如下图所示:8.(2020·上海高三专题练习)若函数1()21x f x =+, 则该函数在(-∞,+∞)上是 ( ) A .单调递减无最小值 B .单调递减有最小值 C .单调递增无最大值 D .单调递增有最大值【答案】A 【解析】设21x t =+,则当(),x ∈-∞+∞时为增函数,且1t >;于是()11121xy t t ==>+为减函数,其图象如图所示: 则故121x y =+为减函数且1y <;图象在y 轴上方,0y >,所以原函数既无最小值,也无最大值.故正确答案为A.9.(2019·天津高三高考模拟)若,则函数的值域是( )A .B .C .D .【答案】B 【解析】 将化为,即,解得,所以,所以函数的值域是.故选C.10.(2020·上海高一课时练习)已知实数a ,b 满足01a b <<<,则下列各式中正确的是( ) A .221333b a b<<B .122333b a b<<C .212333a b b<<D .221333a b b<<【答案】D 【解析】当0α>时,幂函数y x α=在()0,x ∈+∞上为增函数,所以当01a b <<<时有2233a b <, 因为01b <<,所以指数函数xy b =在x ∈R 上为减函数, 因此有 2133b b <, 所以有:221333a b b <<故选:D11.(2018届山东、湖北部分重点中学冲刺(二))定义在上的奇函数,当时,,则关于的函数的所有零点之和为( )A.B.C.D.【答案】C【解析】当时,又是奇函数,画出函数的图象,由函数图象可知: ,有个零点,其中有两个零点关于对称,还有两个零点关于对称,所以这四个零点的和为零,第五个零点是直线与函数,交点的横坐标,即方程的解,,故选C.12.(2015·江苏高考真题)不等式224x x-<的解集为________.【答案】(1,2).- 【解析】,2222,xx-∴<是一个递增函数;故答案为:.13.(2019·安徽马鞍山二中高三月考(文))若函数3x m y a n -=+-(0a >且1a ≠)的图象恒过定点(3,2),则m n +=______. 【答案】7 【解析】 ∵函数3x my an -=+-(0a >且1a ≠)的图象恒过定点,令0x m -=,可得x m =,2y n =-,可得函数的图象经过定点(),2m n -.再根据函数的图象经过定点()3,2, ∴3m =,22n -=,解得3m =,4n =,则7m n +=, 故答案为:7.14. (2020·湖北省高一期末)当生物死亡后,它机体内原有的碳14会按确定的规律衰减.按照惯例,人们将每克组织的碳14含量作为一个单位大约每经过5730年,一个单位的碳14衰减为原来的一半,这个时间称为“半衰期”.当死亡生物组织内的碳14的含量不足死亡前的千分之一时,用一般的放射性探测器就测不到碳14了.如果用一般的放射性探测器不能测到碳14,那么死亡生物组织内的碳14至少经过了_____个“半衰期”.(提示:910.001952=)【答案】10 【解析】设生物组织内原有的碳14含量为x ,需要经过n 个“半衰期”才不能测到碳14,则1121000n x x ⋅<,即10.0012n <, 由参考数据可知,910.001950.0012=>,10110.001950.0009750.00122=⨯=<,所以10n =, 故答案为:10.15.(2015·湖南高考真题(理))已知函数32,(),x x m f x x x m ⎧≤=⎨>⎩,,若存在实数a ,使函数g(x)=f(x)-a 有两个零点,则实数m 的取值范围是________. 【答案】()(),01,-∞⋃+∞ 【解析】∵()()g x f x a =-有两个零点, ∴()f x a =有两个零点,即()y f x =与y a =的图象有两个交点, 由32x x =可得,0x =或1x =.①当1m >时,函数()f x 的图象如图所示,此时存在a 满足题意,故1m >满足题意.②当1m =时,由于函数()f x 在定义域R 上单调递增,故不符合题意. ③当01m <<时,函数()f x 单调递增,故不符合题意.④0m =时,()f x 单调递增,故不符合题意. ⑤当0m <时,函数()y f x =的图象如图所示,此时存在a 使得()y f x =与y a =有两个交点.综上可得0m <或1m >.所以实数m 的取值范围是()(),01,-∞⋃+∞.16.(2019·上海市高桥中学高一期末)在下列命题中:①两个函数的对应法则和值域相同,则这两个是同一个函数;②()222xxf x -=在R 上单调递增,③若函数()1f x -的定义域为[]0,2,则函数()1f x +的定义域为[]2,0-;④若函数()f x 在其定义域内不是单调函数,则()f x 不存在反函数;⑤()42222xx f x =+++函数的最小值为4;⑥若关于x 的不等式1202xxm --<在[]0,1区间内恒成立,则实数m 的范围是()0,2其中真命题的序号有_________. 【答案】③ 【解析】对于①:对应法则和值域相同的两个函数,其定义域不一定相同, 如f (x )=x 2,x ∈R 与g (x )=x 2,x ∈[0,+∞),∴①错误; 对于②: ()222xxf x -=在(),1-∞ 上单调递减,在()1,+∞ 上单调递增,故②错误;对于③:∵函数()1f x -的定义域为[]0,2,∴111x -≤-≤ ,即()f x 的定义域为[]1,1-,∴111x -≤+≤,即20x -≤≤,∴函数()1f x +的定义域为[]2,0-,∴③正确;对于④:函数f (x )1x=在定义域上不单调,但函数f (x )存在反函数,∴④错误; 对于⑤:()42222xxf x =+++,令()222,xt =+∈+∞ 则()4f x t t=+在()2,+∞上单调递增,没有最小值,∴⑤错误. 对于⑥:由|2x ﹣m |12x -<0,得|2x﹣m |12x <,∴11222x x xm --<<, 即112222x xx x m -+<<在区间[0,1]内恒成立,∵函数f (x )122xx =-在区间[0,1]内单调递增,∴f (x )的最大值为32;令g (x )122xx =+,t =2x (1≤t ≤2),则y =t 1t+在[1,2]上为增函数,由内函数t =2x 为增函数,∴g (x )122x x =+在区间[0,1]内单调递增,g (x )的最小值为2.∴322m <<.∴⑥错误.故答案为:③。