指数函数、对数函数、幂函数的图像和性质知识点总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)指数与指数函数
1.根式
(1)根式的概念
(2).两个重要公式
①⎪⎩
⎪⎨⎧⎩⎨⎧<-≥==)0()0(||a a a a a a
a n
n
;
②a a n
n =)((注意a 必须使n a 有意义)。
2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)m
n
a
a m n N n *=>∈>、且;
②正数的负分数指数幂: 10,,1)m n
m n
a
a m n N n a
-
*=
=
>∈>、且
③0的正分数指数幂等于0,0的负分数指数幂没有意义.
注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。 (2)有理数指数幂的性质 ①a r a s =a r+s (a>0,r 、s ∈Q ); ②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );. 3.指数函数的图象与性质 n 为奇数 n 为偶数
注:如图所示,是指数函数(1)y=a x ,(2)y=b x,(3),y=c x (4),y=d x 的图象,如何确定底数a,b,c,d 与1之间的大小关系?
提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c 1>d 1>1>a 1>b 1,∴c>d>1>a>b 。即无论在轴的左侧还是右侧,底数按逆时针方向变大。 (二)对数与对数函数
1、对数的概念 (1)对数的定义
如果(01)x
a N a a =>≠且,那么数x 叫做以a 为底,N 的对数,记作log N
a x =,其中a
叫做对数的底数,N 叫做真数。 (2)几种常见对数
2(1)对数的性质(0,1a a >≠且):①1
log 0a =,②l o
g 1a
a =,③l
o g N
a a N =,④l
o g N a a
N =。
(2)对数的重要公式:
①换底公式:log log (,1,0)log N N
a b
b
a
a b N =>均为大于零且不等于; ②1
log log b a a
b =
。 (3)对数的运算法则:
如果0,1a a >≠且,0,0M N >>那么 ①N M MN a a a log log )(log +=; ②N M N
M
a a a
log log log -=; ③)(log log R n M n M a n
a ∈=;
④b m
n
b a n
a m log log =
。
注:确定图中各函数的底数a ,b ,c ,d 与1的大小关系
提示:作一直线y=1,该直线与四个函数图象交点的横坐标即为它们相应的底数。
∴0 指数函数y=a x与对数函数y=log a x互为反函数,它们的图象关于直线y=x对称。 (三)幂函数 1、幂函数的定义 形如y=xα(a∈R)的函数称为幂函数,其中x是自变量,α为常数 注:幂函数与指数函数有本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置。 2、幂函数的图象 注:在上图第一象限中如何确定y=x3,y=x2,y=x, 1 2 y x =,y=x-1方法:可画出x=x0; 当x0>1时,按交点的高低,从高到低依次为y=x3,y=x2,y=x, 1 2 y x =,y=x-1; 当0 1 2 y x =,y=x,y=x2,y=x3。