高一期末考试数学真题试卷

合集下载

高一数学第一学期期末试卷及答案5套

高一数学第一学期期末试卷及答案5套

高一数学第一学期期末试卷及答案5套完卷时间:120分钟 满分:150分第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题意要求的) 1、若角终边经过点,则( )A.B.C. D.2、函数的一条对称轴是( ) A.B.C.D.3、已知集合}1{>=x x A ,11{|()}24xB x =>,则A B ⋂=( ) A .R B .),1(+∞C .)2,(-∞D .)2,1( 4、( ) A.B.C.D.5、已知⎪⎩⎪⎨⎧>+-≤=0,1)1(0,2cos )(x x f x x x f π,则=)2(f ( ) A . 1- B .1 C . 3- D . 36、已知,则()()3sin 2cos 2sin sin 2πθπθπθπθ⎛⎫+++ ⎪⎝⎭⎛⎫--- ⎪⎝⎭等于( )A. 23—B. C. D. 7、若向量,,则在方向上的投影为( ) A. -2 B. 2 C.D.8、若()f x 对于任意实数x 都有12()()21f x f x x-=+,则(2)f =( )A.0B.1C.83D.49、若向量,i 为互相垂直的单位向量,—j 2=j m +=且与的夹角为锐角,则实数m 的取值范围是 ( )A .⎝ ⎛⎭⎪⎫12,+∞B .(-∞,-2)∪⎝ ⎛⎭⎪⎫-2,12C .⎝ ⎛⎭⎪⎫-2,23∪⎝ ⎛⎭⎪⎫23,+∞D .⎝⎛⎭⎪⎫-∞,1210、已知函数2(43)3,0,()log (1)1,0,a x a x a x f x x x ⎧+-+<⎪=⎨++≥⎪⎩在R 上单调递减,则实数a 的取值范围是( )A. 13[,]34B.1334⎛⎤ ⎥⎝⎦,C. 103⎛⎤ ⎥⎝⎦,D.30,4⎛⎫⎪⎝⎭11、已知,函数在(,)上单调递减,则的取值范围是( )A. (0,]B. (0,2]C. [,]D. [,]12、将函数()⎪⎭⎫⎝⎛=x 2cos 4x f π和直线()1x x g —=的所有交点从左到右依次记为,若P 点坐标为()30,=++A P 2....( )A. 0B. 2C. 6D. 10二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡的相应位置上) 13、已知角θ的终边经过点(39,2)a a -+,且θsin >0,θcos <0则a 的取值范围是 14、已知函数3()2,(0,1)x f x a a a -=+>≠且,那么其图象经过的定点坐标是15、已知2cos ,63πα⎛⎫-=⎪⎝⎭则2sin 3πα⎛⎫-= ⎪⎝⎭________. 16、已知关于的方程0a cos 3sin =+θθ—在区间()π,0上有两个不相等的实数根,则=+2cosβα__________.三、解答题:(本大题共6小题,共70分.解答写出文字说明,写明过程或演算步骤) 17、(本题满分10 分)已知四点A (-3,1),B (-1,-2),C (2,0),D ()(1)求证:;(2) ,求实数m 的值.18、(本题满分12 分) 已知是的三个内角,向量,,且.(1) 求角; (2)若,求.19、(本题满分12 分)已知函数()log (2)log (3),a a f x x x =++-其中01a <<. (1)求函数()f x 的定义域;(2)若函数()f x 的最小值为4-,求a 的值20、(本题满分12 分)已知函数()sin()f x A x ωϕ=+,其中0,0,0A ωϕπ>><<,函数()f x 图像上相邻的两个对称中心之间的距离为4π,且在3x π=处取到最小值2-. (1)求函数()f x 的解析式;(2)若将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将向左平移6π个单位,得到函数()g x 图象,求函数()g x 的单调递增区间。

高一数学期末试卷附答案

高一数学期末试卷附答案

高一数学期末试卷附答案1/2(B)1/4(C)-1/4(D)-1/2高一数学期末试卷一、选择题(共15题,每题3分,共45分)1.设M={x|x≤13}。

b=11,则下面关系中正确的是()A) {b}⊆M (B) {b}∉M (C) {b}∈M (D) {b}⊂M2.设集合A={x|-21},则集合A∩B等于()A) {x|11} (D) {x|x>2}3.函数y=lg(5-2x)的定义域是()A) (-∞。

5/2] (B) (-∞。

5/2) (C) [0.5/2) (D) [0.5/2]4.已知函数f(x)=x^2+3x+1,则f(x+1)=()A) x^2+3x+2 (B) x^2+5x+5 (C) x^2+3x+5 (D) x^2+3x+65.设P:α=π/6;Q:sinα=1/2,则P是Q的()A) 充分条件 (B) 必要条件 (C) 充分必要条件 (D) 既不充分又不必要条件6.sin(-π/6)的值是()A) 1/2 (B) -1/2 (C) 3/2 (D) -3/27.cosα0,则角α在第()A) 二象限 (B) 三象限 (C) 四象限 (D) 一象限8.函数y=tanx-cotx的奇偶性是()A) 奇函数 (B) 既是奇函数,也是偶函数 (C) 偶函数 (D) 非奇非偶函数9.函数y=cos(π/2 x+2)的周期是()A) 2π (B) π (C) 4 (D) 4π10.下列函数中,既是增函数又是奇函数的是()A) y=3x (B) y=x^3 (C) y=log3x (D) y=sin x11.函数y=x^2+1(x≥0)的反函数是()A) y=x-1 (B) y=x+1 (C) 1-x(x≤1) (D) x-1(x≥1)12.函数f(x)=4-x的反函数f^-1(x)的值域是()A) [-2,2] (B) (-∞,4] (C) (-∞,+∞) (D) [4,+∞)13.sin(π/4)的值是()A) 6-2√2 (B) 2-3√2 (C) √2/2 (D) 2+3√2/214.在△ABC中,若cosAcosB=sinAsinB,则此三角形为()A) 任意三角形 (B) 锐角三角形 (C) 钝角三角形 (D) 直角三角形15.计算sin(3π/8)cos(π/8)的值是()A) 1/2 (B) 1/4 (C) -1/4 (D) -1/216.已知三角形ABC,其中a=2,b=2,B=3,求角A的大小。

学科网高一数学试卷期末

学科网高一数学试卷期末

一、选择题(每题5分,共50分)1. 已知函数$f(x) = x^2 - 2x + 1$,则函数的最小值为()。

A. 0B. 1C. 2D. 32. 若等差数列$\{a_n\}$中,$a_1 = 3$,公差$d = 2$,则第10项$a_{10}$为()。

A. 17B. 19C. 21D. 233. 已知直线$y = kx + b$经过点$A(1, 2)$和点$B(3, 4)$,则$k$的值为()。

A. 1B. 2C. 3D. 44. 若复数$z = a + bi$($a, b \in \mathbb{R}$)满足$|z| = 1$,则$\overline{z}$的值为()。

A. $a - bi$B. $-a + bi$C. $-a - bi$D. $a + bi$5. 在三角形ABC中,$A = 60^\circ$,$AB = 4$,$AC = 6$,则$BC$的长度为()。

A. 2B. 4C. 6D. 86. 已知函数$f(x) = \sqrt{x^2 + 1}$,则函数的定义域为()。

A. $(-\infty, +\infty)$B. $[0, +\infty)$C. $(-\infty, 0) \cup [0, +\infty)$D. $(0, +\infty)$7. 若等比数列$\{a_n\}$中,$a_1 = 2$,公比$q = \frac{1}{2}$,则第5项$a_5$为()。

A. 2B. 1C. $\frac{1}{2}$D. $\frac{1}{4}$8. 已知圆的方程为$x^2 + y^2 - 4x - 6y + 9 = 0$,则圆心坐标为()。

A. (2, 3)B. (3, 2)C. (2, -3)D. (-3, 2)9. 若向量$\vec{a} = (1, 2)$,$\vec{b} = (3, 4)$,则$\vec{a} \cdot\vec{b}$的值为()。

A. 5B. 6C. 7D. 810. 在等腰三角形ABC中,$AB = AC$,$AD$是底边BC上的高,若$BD = 3$,则$AD$的长度为()。

高一数学期末考试测试卷参考答案

高一数学期末考试测试卷参考答案

高一数学期末考试测试卷参考答案1.B【详解】因为,所以,则,所以复数所对应的向量的坐标为.故选:B 2.A【详解】,故选:A.3.D【详解】向量在上的投影为,向量在上的投影向量为.故选:D.4.C 【详解】由题意,可得,即因为,所以,即,故△ABC 是直角三角形故选:C 5.A【详解】由可得: ,故 ,解得 ,故 ,故选:A 6.C【详解】根据题意:概率等于没有黄球的概率减去只有白球或只有红球的概率.即.故选:.7.D【详解】对于A ,空间中两直线的位置关系有三种:平行、相交和异面,故A 错误;对于B ,若空间中两直线没有公共点,则这两直线异面或平行,故B 错误;对于C ,和两条异面直线都相交的两直线是异面直线或相交直线,故C 错误;12i z z +=⋅()2i 11z -⋅=()()112i 12i 12i 2i 12i 112i 555z ----====------z 12,55⎛⎫-- ⎪⎝⎭()441414333333AD AB BD AB BC AB AC AB AB AC a b =+=+=+-=-+=-+ a b ·cos 3a π ab 1·cos ·232b a b b b π=⨯= 1cos 22a b C a ++=⨯cos b C a=2222b a b c a ab+-=222a b c =+90A =︒sin 2sin B C =2b c =22222567cos 248b c a c A bc c +--===2,4c b ==11sin 4222ABC S bc A ==⨯⨯ 3331115162312p ⎛⎫⎛⎫⎛⎫=---= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C对于D ,如图,在长方体中,当所在直线为所在直线为时,与相交,当所在直线为所在直线为时,与异面,若两直线分别是正方体的相邻两个面的对角线所在的直线,则这两直线可能相交,也可能异面,故D 正确.(8题)故选:D8.A【详解】在△ABC 中,b cos A =c﹣a ,由正弦定理可得sin B cos A =sin C ﹣sin A ,可得sin B cos A =sin (A +B )﹣sin A =sin A cos B +cos A sin B ﹣sin A ,即sin A cos B =sin A ,由于sin A ≠0,所以,由B ∈(0,π),可得B=,设AD =x,则CD =2x ,AC =3x ,在△ADB ,△BDC,△ABC 中分别利用余弦定理,可得cos ∠ADB=,cos ∠CDB =,cos ∠ABC =,由于cos ∠ADB =﹣cos ∠CDB ,可得6x 2=a 2+2c 2﹣12,再根据cos ∠ABC =,可得a 2+c 2﹣9x 2=ac ,所以4c 2+a 2+2ac =36,根据基本不等式可得4c 2+a 2≥4ac ,所以ac ≤6,当且仅当a =c 所以△ABC 的面积S =ac sin ∠ABC ac A .9.AC【详解】对于A ,是纯虚数,故A 正确;对于B ,,对应的点的坐标为,位于第四象限,故B 错误;对于C ,复数的共轭复数为,故C 正确;对于D ,,故D 错误.故选:AC10.BC ABCD A B C D -''''A B ',a BC 'b a b A B ',a B C 'b a b 12121212121cos 2B =3π2244x c x +-22448x a x +-22292a c x ac+-12122z 12(1i)2i 13i z z -=--=-(1,3)-1z 11i z =+12(1i)2i 2i 2z z =-⋅=+11.【详解】对于A ,由,则,故A 错误;对于B ,与相互独立,则与相互独立,故,故B 正确;对于CD ,互斥,则,,故C 正确,D 错误.故选:BC11.BC【详解】对于A 选项,由图形可知,直线、异面,A 错;对于B 选项,连接,因为,则直线与所成角为或其补角,易知为等边三角形,故,因此,直线与所成的角为,B 对;对于C 选项,分别取、的中点、,连接、、,因为四边形为正方形,、分别为、的中点,所以,且,又因为,则四边形为矩形,所以,,且,同理可证,且,因为平面,则平面,因为平面,则,因为,、平面,所以,平面,因为平面,所以,,因此,平面与平面所成二面角的平面角为,因为平面,平面,所以,,又因为,故为等腰直角三角形,故,因此,平面与平面所成二面角的平面角为,C 对;对于D 选项,易知,又因为且,则四边形为等腰梯形,分别过点、在平面内作、,垂足分别为、,()()0.2,0.6P A P B ==()()1P A P B+≠A B A B ()()()()()()10.48P AB P A P B P A P B ==-=,A B ()()()0.8P A B P A P B ⋃=+=()()0P AB P =∅=AM BN 1AD 1//MN CD MN AC 1ACD ∠1ACD △160ACD ∠= MN AC 60 AB CD E F ME MF EF ABCD E F AB CD //AE DF AE DF =AD AE ⊥AEFD EF AB ⊥//EF AD 1//MF DD 12MF DD ==1DD ⊥ABCD MF ⊥ABCD AB ⊂ABCD AB MF ⊥EF MF F ⋂=EF MF ⊂EMF AB ⊥EMF ME ⊂EMF AB ME ⊥AMB ABCD MEF ∠MF ⊥ABCD EF ⊂ABCD MF EF ⊥2MF EF ==MEF 45MEF Ð=o AMB ABCD 45 BN ===1A M =1//MN A B 112MN A B =1A BNM M N 1A BNM 1MP A B ⊥1NQ A B ⊥P Q因为,,,所以,,所以,,因为,,,则四边形为矩形,所以,,所以,所以,,由A 选项可知,平面截正方体所得的截面为梯形,故截面面积为,D 错.故选:BC.12.2【详解】.故答案为:2.13.【详解】在中,由正弦定理可得,,又由题知,所以,整理得,,在中,由余弦定理得,,所以,又,所以.故答案为:.14. 【详解】由题意,恰有一个人面试合格的概率为:,甲签约,乙、丙没有签约的概率为;1A M BN =1MA P NBQ ∠=∠190MPA NQB ∠=∠= 1Rt Rt A MP BNQ △≌△1A P BQ =//MN PQ 1MP A B ⊥1NQ A B ⊥MNQP PQ MN ==112A B PQ A P BQ -====MP ===BMN 1A BNM ()1922A B MN MP +⋅==()2202a kb b a b kb k k -⋅=⋅-⇔-=⇔= π3ABC sin sin sin C c A B a b =++sin sin sin a b C a c A B -=-+a b c a c a b-=-+222b a c ac =+-ABC 2222cos b a c ac B =+-1cos 2B =()0,B π∈3B π=3π49793113113114(1)(1(1(1)(1)(14334334339P =⨯-⨯-+-⨯⨯-+-⨯-⨯=13112(1)4333P =⨯-⨯=甲未签约,乙、丙都签约的概率为甲乙丙三人都签约的概率为,所以至少一人签约的概率为.故答案为:;.15.【详解】(1)由频率分布直方图可得分数不小于60的频率为:,则分数小于60的频率为:,故从总体的500名学生中随机抽取一人,其分数小于60的概率估计为;(2)由频率分布直方图易得分数小于70的频率为,分数小于80的频率为,则测评成绩的第分位数落在区间上,所以测评成绩的第分位数为;(3)依题意,记事件 “抽到的学生分数小于30”,事件 “抽到的学生是男生”,因为分数小于40的学生有5人,其中3名男生;所以“抽到的学生是男生”的概率为,因为分数小于30的学生有2人,其中1名男生,所以“抽到的学生分数小于30” 的概率为,因为事件表示“抽到的学生分数小于30且为男生”,满足条件的只有1名男生,所以,因为,所以这两个事件不相互独立.16.【详解】(1)由,,故,由余弦定理可得,即,即,13111(143336P=-⨯⨯=3311143312P =⨯⨯=2117336129++=4979()0.020.040.02100.8++⨯=10.80.2-=0.20.40.875%[)70,8075%0.35701078.750.4+⨯=A =B =()35P B =()25P A =AB ()15P AB =()()()P A P B P AB ≠sin θ=π,π2θ⎛⎫∈ ⎪⎝⎭cos θ==2222cos 54413BD AB AD AB AD θ=+-⋅=++=BD CD ==sin sin AB BD ADB θ=∠sin sin AB ADB BD θ∠=⋅==则故有,故,;(2),,故,则,其中,则当,即ABCD 的面积最大,此时,即此时小路BD.17.【详解】(1)取棱的中点,连接、、,则就是所求作的线,如图:在正方体中,连,是的中点,为的中点,则,且,于是得四边形是平行四边形,有,而平面,平面,因此平面,πcos cos sin 2ADC ADB ADB ⎛⎫∠=+∠=-∠= ⎪⎝⎭2222cos 4132225AC AD CD AD CD ADC ⎛=+-⋅∠=+-⨯= ⎝5AC =22111117sin 222222ABCD ABD BCD S S S AB AD BD θ=+=⋅+=+⨯= 1sin 2ABD S AB AD θθ=⋅= 2222cos 549BD AB AD AB AD θθθ=+-⋅=+-=-21922BCD S BD θ==- ()995sin 22ABCD ABD BCD S S S θθθϕ=+=+-=-+ sin ϕ=π0,2ϕ⎛⎫∈ ⎪⎝⎭π2θϕ-=πcos cos sin 2θϕϕ⎛⎫=+=-= ⎪⎝⎭2917BD ⎛=-= ⎝1DD F AF CF AC ,,FC FA CA 1111ABCD A B C D -EF E 1CC F 1DD EF CD BA ∥∥EF CD BA ==ABEF AF BE ∥BE ⊂1BD E AF ⊄1BD E AF 1BD E又,,即四边形为平行四边形,则,又平面,平面,于是有平面,而,平面,从而得平面平面,所以就是所求作的线.(2)在正方体中,连接,如图,且,则四边形为平行四边形,有,三棱锥的体积,所以四棱锥的体积.18.【详解】(1)解:由频率分布直方图,根据平均数的计算公式,估计这次知识能力测评的平均数:分.(2)解:由频率分布直方图,可得的频率为,的频率为,所以用分层随机抽样的方法从,两个区间共抽取出4名学生,可得从抽取人,即为,从中抽取人,即为,从这4名学生中随机抽取2名依次进行交流分享,有 ,共有12个基本事件;其中第二个交流分享的学生成绩在区间的有:,共有3个,所以概率为.(3)解:甲最终获胜的可能性大.理由如下:由题意,甲至少得1分的概率是,1FD CE ∥1FD CE =1CED F 1CF ED ∥1ED ⊂1BD E CF ⊄1BD E CF 1BD E CF AF F ⋂=,CF AF ⊂AFC AFC 1BD E ,,FC FA CA 1111ABCD A B C D -11111,,,,,,AD BC EA EB EC ED AC 11AB C D ∥11AB C D =11ABC D 1112ABC D ABC S S = △1E ABC -111111112()21233263E ABC A BC E BC E V V S AB BC C E AB --==⋅=⋅⋅=⨯⨯⨯= 11E ABC D -111423E ABC D E ABC V V --==(650.01750.015850.045950.03)1084.5x =⨯+⨯+⨯+⨯⨯=[)60,700.1[]90,1000.3[)60,70[]90,100[)60,701a []90,10031,2,3()()()()(),1,,2,,3,1,2,1,3,a a a ()()()()()()()2,3,1,,2,,3,,2,1,3,1,3,2a a a []60,70()()()1,,2,,3,a a a 31124P ==4750可得,其中,解得,则甲的2分或3分的概率为:,所以乙得分为2分或3分的概率为,因为,所以甲最终获胜的可能性更大.19.【详解】(1)由题知,,所以∠AOB 是所折成的直二面角的平面角,即OA ⊥OB .因为,所以AO ⊥平面,所以OC 是AC 在平面内的射影,在四边形ABCD是等腰梯形中,,高得,,在和中,, 所以,,所以,因为AO ⊥平面,平面,所以,因为,所以平面,因为平面,所以(2)由(1)知,,所以⊥平面AOC .设,过点E 作于点F ,连接,因为,所以平面,因为平面,所以所以是二面角的平面角.由(1)知得,,高得,.所以,,12471(1)(1)(1)2550p ----=01p ≤≤45p =1241241241243(1(1(12552552552555P =⨯⨯-+⨯-⨯+-⨯⨯+⨯⨯=253255>1OA OO ⊥1OB OO ⊥1OO OB O = 1OBCO 1OBCO 3AB CD =h =tan A =6AB =2CD =1OO =1Rt OO B 1Rt OO C △11tan OB OO B OO ∠==111tan O C O OC OO ∠===160OO B ∠=︒130O OC ∠=︒1OC BO ⊥1OBCO 1BO ⊂1OBCO 1AO BO ⊥AO OC O = 1BO ⊥AOC AC ⊂AOC 1AC BO ⊥1AC BO ⊥1OC BO ⊥1BO 1OC O B E ⋂=EF AC ⊥1O F 1EF O B E = AC ⊥1O EF 1O F ⊂1O EF 1O F AC⊥1O FE ∠1O AC O --3AB CD =h =tan A =6AB =2CD =3OA =1OO =11O C =所以,因为平面平面,平面平面,,所以平面,因为平面,所以 所以又所以二面角1O A =AC =1AOO D ⊥1BOO C 1AOO D 11BOO C OO =11OO CO ⊥1CO ⊥1AOO D 1AO ⊂1AOO D 11CO AO ^111O A O C O F AC ⋅=11sin30O E OO =⋅= 111sin O E O FE O F ∠==1O AC O --。

2023-2024学年江苏省徐州市高一(上)期末数学试卷【答案版】

2023-2024学年江苏省徐州市高一(上)期末数学试卷【答案版】

2023-2024学年江苏省徐州市高一(上)期末数学试卷一、选择题。

本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x|14<2x <4},B ={0,1,2},则A ∩B =( )A .{0}B .{0,1}C .{1,2}D .{0,1,2}2.已知扇形的半径为2cm ,弧长为4cm ,则该扇形的面积为( ) A .1cm 2B .2cm 2C .4cm 2D .8cm 23.若命题“∃x ∈R ,x 2+4x +t <0“是假命题,则实数t 的最小值为( ) A .1B .2C .4D .84.已知a >b ,则下列不等式中,正确的是( ) A .a 2>b 2 B .|a |>|b |C .sin a >sin bD .2a >2b5.若α=4π3,则√1−sinα1+sinα+√1+sinα1−sinα=( ) A .4B .2C .4√33D .2√336.2023年12月30日,我国在酒泉卫星发射中心使用长征二号丙运载火箭成功发射卫星互联网技术试验卫星.在不考虑空气阻力的情况下,火箭的最大速度v (单位:km /s )和燃料的质量M (单位:kg )、火箭(除燃料外)的质量m (单位:kg )的函数关系是v =alg(1+Mm)(a 是参数).当M =5000m 时,v 大约为( )(参考数据:1g 2≈0.3010) A .2.097aB .3.699aC .3.903aD .4.699a7.已知函数f(x)=1x 2+1−e 4x +1e2x ,若a =tan171°,b =tan188°,c =tan365°,则( )A .f (a )<f (b )<f (c )B .f (b )<f (a )<f (c )C .f (b )<f (c )<f (a )D .f (c )<f (b )<f (a )8.已知函数f (x )=x +1x −2,且关于x 的方程f (|e x ﹣1|)+2k|e x −1|−3k 2=0有三个不同的实数解,则实数k 的取值范围为( ) A .(0,23)B .(−12,0)∪(23,+∞)C .(1+√73,+∞) D .{−12}∪(1+√73,+∞)二、选择题。

2023-2024学年江苏省南通市高一(上)期末数学试卷【答案版】

2023-2024学年江苏省南通市高一(上)期末数学试卷【答案版】

2023-2024学年江苏省南通市高一(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若扇形的圆心角为2rad,半径为1,则该扇形的面积为()A.12B.1C.2D.42.已知全集U=R,集合A={x|﹣2≤x≤3},B={x|x<﹣1或x>4},则集合A∩(∁U B)=()A.{x|﹣1≤x≤3}B.{x|x≤3或x≥4}C.{x|﹣2≤x<﹣1}D.{x|﹣2≤x<4}3.函数f(x)=4x+9x+1,x∈(﹣1,+∞)的最小值为()A.6B.8C.10D.124.若角θ的终边经过点P(1,3),则sinθcosθ+cos2θ=()A.−65B.−25C.25D.655.函数f(x)=2log3x+2x﹣5的零点所在区间是()A.(0,1)B.(1,32)C.(32,2)D.(2,3)6.设函数f(x)=sin(ωx+π4)(ω>0)的最小正周期为T.若2π<T<3π,且对任意x∈R,f(x)+f(π3)≥0恒成立,则ω=()A.23B.34C.45D.567.已知函数f(x)的定义域为R,y=2f(x)﹣sin x是偶函数,y=f(x)﹣cos x是奇函数,则[f(x)]2+[f(π2+x)]2=()A.5B.2C.32D.548.已知函数f(x)=lg|x|﹣cos x,记a=f(log0.51.5),b=f(1.50.5),c=f(sin(1﹣π)),则()A.a<b<c B.a<c<b C.c<b<a D.c<a<b二、选择题:本题共4小题,每小题5分,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.下列各式中,计算结果为1的是()A.sin75°cos15°+cos75°sin15°B.cos222.5°﹣sin222.5°C.√3−tan15°1+√3tan15°D.tan22.5°1−tan222.5°10.若a>b>0,c>d>0,则()A .a ﹣c >b ﹣dB .a (a +c )>b (b +d )C .d a+d<c b+cD .b+d b+c<a+d a+c11.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( ) A .y =x −23B .y =2|x |+1C .y =x 2﹣x ﹣2D .y =2x ﹣2﹣x12.如图,弹簧挂着的小球做上下振动,小球的最高点与最低点间的距离为10(单位:cm ),它在t (单位:s )时相对于平衡位置(静止时的位置)的高度hcm 由关系式ℎ=Asin(πt +π4)确定,其中A >0,t ≥0.则下列说法正确的是( )A .小球在往复振动一次的过程中,从最高点运动至最低点用时2sB .小球在往复振动一次的过程中,经过的路程为20cmC .小球从初始位置开始振动,重新回到初始位置时所用的最短时间为12sD .小球从初始位置开始振动,若经过最高点和最低点的次数均为10次,则所用时间的范围是[2014,2114)三、填空题:本题共4小题,每小题5分,共20分。

高一数学期末(含答案)

高一数学期末(含答案)

高一数学期末(含答案)2019-2020学年度第一学期期末考试高一数学参考答案一、选择题1.解析:根据函数y=cos(-2x)的周期公式T=2π/|ω|可知,函数的最小正周期是T=π/2.故选D。

2.解析:根据勾股定理可得r=√(4^2+3^2)=5,由任意角的三角函数定义可得cosα=-4/5.故选B。

3.删除。

4.解析:由cos(π+α)=-cosα得cosα=-1/3.故选A。

5.解析:根据三角函数的基本关系sin^2α+cos^2α=1和1-cos2α=2sin^2(α/2)可得sinα=√(1-cos^2α)=√(26/169),tanα=sinα/cosα=-2/3.故选D。

6.删除。

7.解析:由题意可得函数f(x)的图像是连续不断的一条曲线,且f(-2)0,故f(0)·f(1)<0,即函数在(0,1)内有一个零点。

故选C。

8.解析:由勾股定理可得EB=√(ED^2+DB^2)=√(1+1/9)=√(10/9),AD=AB-DB=2AB/3,故EB/AD=√(10/9)/(2AB/3)=√10/2=AB/AD。

故选A。

9.解析:由a+b=a-b两边平方得a^2+2ab+b^2=a^2-2ab+b^2,即ab=0,故a⊥b。

故选A。

10.解析:大正方形的边长为10,小正方形的边长为2,故小正方形的对角线长为2√2.由勾股定理可得大正方形的对角线长为10√2,故大正方形内切圆的半径为5-√2,故其面积为(5-√2)^2π=23π-10√2.故选A。

4sinα-2cosα = 2(2sinα-cosα) = 2(2tanα-1)cosα/√(1+4tan^2α) 4(1-2sin^2α)/(5+3tanα) = 8/135cosα+3sinα = √34sin(α+0.424)sinαcosα = 22/37tanα=2.sinα=4/√20.cosα= -1/√20cos2α=5/13.cosα=±√5/13因为α是第三象限角,所以cosα=-√5/13.sinα=-2√5/131) 设X=2x+π/3,则X=2x+2πk/3.k∈Zy=sinX的单调递减区间为[2kπ+π/3.2kπ+5π/3]。

2024届北京市高一数学第一学期期末经典试题含解析

2024届北京市高一数学第一学期期末经典试题含解析

2024届北京市高一数学第一学期期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本大题共10小题,每小题5分,共50分。

在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.如图,在等腰梯形ABCD 中,222CD AB EF a ===,,E F 分别是底边,AB CD 的中点,把四边形BEFC 沿直线EF 折起使得平面BEFC ⊥平面ADFE .若动点P ∈平面ADFE ,设,PB PC 与平面ADFE 所成的角分别为12,θθ(12,θθ均不为0).若12=θθ,则动点P 的轨迹围成的图形的面积为A.214a B.249a C.214a π D.249a π 2.设1153a =,1315b =,151log 3c =,则,,a b c 的大小关系是()A.a b c <<B.a c b <<C.c a b <<D.c b a <<3.设定义在R 上的函数()f x 满足:当12x x <时,总有()()122122xxf x f x <,且()12f =,则不等式()2xf x >的解集为() A.(),1-∞ B.()1,+∞ C.()1,1-D.()(),11,-∞+∞4.工艺扇面是中国书面一种常见的表现形式.某班级想用布料制作一面如图所示的扇面.已知扇面展开的中心角为120︒,外圆半径为40cm ,内圆半径为20cm .则制作这样一面扇面需要的布料为()2cm .A.4003πB.400πC.800πD.7200π5.已知偶函数()f x 在[)0,∞+上单调递增,且()30f =,则()20f x ->的解集是( ) A.{}33x x -<< B.{1x x <-或}5x > C.{3x x <-或}3x > D.{5x x <-或}1x >6.已知()3sin 5απ-=,则cos2=α() A.-925 B.925C.-725 D.7257.设函数()()()sin cos f x a x b x παπβ=+++,其中a ,b ,α,β都是非零常数,且满足()120193f =-,则()2020f =()A.3-B.13-C.13D.38.下列所给出的函数中,是幂函数的是 A.3y x =- B.3y x -= C.32y x =D.31y x =-9.已知命题“x R ∃∈,使()212102x a x +-+≤”是假命题,则实数a 的取值范围是() A.1a <- B.13a -<< C.3a >-D.31a -<<10.函数f (x )=ln x +3x -4的零点所在的区间为( ) A.()0,1 B.()1,2 C.()2,3D.()2,4二、填空题:本大题共6小题,每小题5分,共30分。

2023-2024学年江苏省南京市高一(上)期末数学试卷【答案版】

2023-2024学年江苏省南京市高一(上)期末数学试卷【答案版】

2023-2024学年江苏省南京市高一(上)期末数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符 1.已知集合M ={﹣1,0,1},N ={0,1,2},则M ∪N =( ) A .{﹣1,0,1,2} B .{﹣1,0,1} C .{﹣1,0,2}D .{0,1}2.命题“∀x ∈R ,x +2≤0”的否定是( ) A .∃x ∈R ,x +2>0 B .∃x ∈R ,x +2≤0 C .∀x ∈R ,x +2>0D .∀x ∉R ,x +2>0 3.若函数f (x )=x 2﹣mx +3在区间(﹣∞,2)上单调递减,则实数m 的取值范围是( ) A .(﹣∞,2]B .[2,+∞)C .(﹣∞,4]D .[4,+∞)4.已知角θ的终边经过点P (x ,﹣5),且tanθ=512,则x 的值是( ) A .﹣13B .﹣12C .12D .135.已知a =log 0.32,b =log 0.33,c =log 32,则下列结论正确的是( ) A .a <b <cB .a <c <bC .c <a <bD .b <a <c6.北京时间2023年5月10日21时22分,搭载天舟六号货运飞船的长征七号遥七运载火箭,在我国文昌航天发射场点火发射,约10分钟后,天舟六号货运飞船与火箭成功分离并进入预定轨道,发射取得圆满成功.在不考虑空气阻力的情况下,火箭的最大速度v (km /s )和燃料的质量M (kg )、火箭(除燃料外)的质量m (kg )的函数关系的表达式为v =2ln(1+Mm ),若火箭的最大速度v 达到10km /s ,则M m的值是( ) A .5e ﹣1B .e 5﹣1C .510﹣1D .105﹣17.已知定义在R 上的函数f (x )={cosx ,x ≤0f(x −π),x >0,则f(113π)的值是( )A .−√32B .−12C .12D .√328.在等式a b =N 中,如果只给定a ,b ,N 三个数中的一个数,那么a b =N 就成为另两个数之间的“函数关系”.如果N 为常数10,将a 视为自变量x (x >0且x ≠1),则b 为x 的函数,记为y ,那么x y =10,现将y 关于x 的函数记为y =f (x ).若f (m 2)>f (2m ),则实数m 的取值范围是( ) A .(0,2)B .(1,2)C .(0,1)∪(1,2)D .(0,12)∪(1,2)二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题 9.若a <b <0,c ∈R ,则( )A .a +c <b +cB .ab <b 2C .1a <1bD .b a <ab10.已知关于x 的不等式ax 2+bx +c >0的解集是{x |1<x <3},则( ) A .a <0B .a +b +c =0C .4a +2b +c <0D .不等式cx 2﹣bx +a <0的解集是{x |x <﹣1或x >−13}11.古人立杆测日影以定时间,后来逐步形成了正切和余切的概念.余切函数可以用符号表示为f (x )=cot x ,其中cotx =tan(π2−x),则下列关于余切函数的说法正确的是( )A .定义域为{x |x ≠k π,k ∈Z }B .在区间(π2,π)上单调递增C .与正切函数有相同的对称中心D .将函数y =﹣tan x 的图象向右平移π2个单位可得到函数y =cot x 的图象12.已知扇形的半径为r ,弧长为l .若其周长的数值为面积的数值的2倍,则下列说法正确的是( ) A .该扇形面积的最小值为8 B .当扇形周长最小时,其圆心角为2 C .r +2l 的最小值为9D .1r 2+4l 2的最小值为12三、填空题:本大题共4小题,每小题5分,共20分.请把答案填写在答题卡相应位置上 13.已知幂函数f (x )=x α的图象经过点(9,3),则f (8)的值是 . 14.已知sin(x +π6)=13,则sin 2(π3−x)的值是 .15.已知定义在实数集R 上的偶函数f (x )在区间[0,+∞)上是单调增函数,若f (lgx )<f (1),则实数x 的取值范围是 .16.已知函数f(x)=log 9x +12x −1的零点为x 1.若x 1∈(k ,k +1)(k ∈Z ),则k 的值是 ;若函数g (x )=3x +x ﹣2的零点为x 2,则x 1+x 2的值是 .四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出必要的文字说明, 17.(10分)(1)已知a +a﹣1=3,求a 12+a−12的值;(2)求值:e ln 2+(lg 5)2+lg 5lg 2+lg 20.18.(12分)设全集U =R ,已知集合A ={x |x 2﹣5x +4≤0},B ={x |m ≤x ≤m +1}. (1)若A ∩B =∅,求实数m 的取值范围;(2)若“x ∈B ”是“x ∈A ”的充分条件,求实数m 的取值范围.19.(12分)已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示. (1)求函数f (x )的解析式;(2)求函数y =f (x )在区间[﹣π,0]上的单调减区间.20.(12分)已知函数f(x)=a⋅2x−12x +1(a ∈R).(1)若函数f (x )为奇函数,求a 的值;(2)当a =3时,用函数单调性的定义证明:函数f(x)=a⋅2x−12x +1在R 上单调递增;(3)若函数y =f (x )﹣2x 有两个不同的零点,求a 的取值范围.21.(12分)如图,有一条宽为30m 的笔直的河道(假设河道足够长),规划在河道内围出一块直角三角形区域(图中△ABC )种植荷花用于观赏,C ,B 两点分别在两岸l 1,l 2上,AB ⊥AC ,顶点A 到河两岸的距离AE =h 1,AD =h 2,设∠ABD =α.(1)若α=30°,求荷花种植面积(单位:m 2)的最大值; (2)若h 2=4h 1,且荷花的种植面积为150m 2,求sin α.22.(12分)若存在实数对(a ,b ),使等式f (x )•f (2a ﹣x )=b 对定义域中每一个实数x 都成立,则称函数f (x )为(a ,b )型函数.(1)若函数f (x )=2x 是(a ,1)型函数,求a 的值; (2)若函数g(x)=e 1x 是(a ,b )型函数,求a 和b 的值;(3)已知函数h (x )定义在[﹣2,4]上,h (x )恒大于0,且为(1,4)型函数,当x ∈(1,4]时,ℎ(x)=−(log 2x)2+m ⋅log 2x +2.若h (x )≥1在[﹣2,4]恒成立,求实数m 的取值范围.2023-2024学年江苏省南京市高一(上)期末数学试卷参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符1.已知集合M={﹣1,0,1},N={0,1,2},则M∪N=()A.{﹣1,0,1,2}B.{﹣1,0,1}C.{﹣1,0,2}D.{0,1}解:因为集合M={﹣1,0,1},N={0,1,2},所以M∪N={﹣1,0,1,2},故选:A.2.命题“∀x∈R,x+2≤0”的否定是()A.∃x∈R,x+2>0B.∃x∈R,x+2≤0C.∀x∈R,x+2>0D.∀x∉R,x+2>0解:命题为全称命题,则命题的否定为“∃x∈R,x+2>0”.故选:A.3.若函数f(x)=x2﹣mx+3在区间(﹣∞,2)上单调递减,则实数m的取值范围是()A.(﹣∞,2]B.[2,+∞)C.(﹣∞,4]D.[4,+∞)解:函数f(x)=x2﹣mx+3开口向上,对称轴方程为x=m 2,所以函数的单调递减区间为(﹣∞,m2 ],要使在区间(﹣∞,2)上单调递减,则m2≥2,解得m≥4.即m的范围为[4,+∞).故选:D.4.已知角θ的终边经过点P(x,﹣5),且tanθ=512,则x的值是()A.﹣13B.﹣12C.12D.13解:由题意得,tanθ=512=−5x,故x=﹣12.故选:B.5.已知a=log0.32,b=log0.33,c=log32,则下列结论正确的是()A.a<b<c B.a<c<b C.c<a<b D.b<a<c解:∵log0.33<log0.32<log0.31=0,∴b<a<0,∵log32>log31=0,∴c>0,∴b<a<c.故选:D.6.北京时间2023年5月10日21时22分,搭载天舟六号货运飞船的长征七号遥七运载火箭,在我国文昌航天发射场点火发射,约10分钟后,天舟六号货运飞船与火箭成功分离并进入预定轨道,发射取得圆满成功.在不考虑空气阻力的情况下,火箭的最大速度v (km /s )和燃料的质量M (kg )、火箭(除燃料外)的质量m (kg )的函数关系的表达式为v =2ln(1+Mm ),若火箭的最大速度v 达到10km /s ,则M m的值是( ) A .5e ﹣1B .e 5﹣1C .510﹣1D .105﹣1解:由题意知火箭的最大速度v 达到10km /s ,故10=2ln(1+M m ),即1+Mm =e 5,∴M m =e 5−1. 故选:B .7.已知定义在R 上的函数f (x )={cosx ,x ≤0f(x −π),x >0,则f(113π)的值是( )A .−√32B .−12C .12D .√32解:定义在R 上的函数f (x )={cosx ,x ≤0f(x −π),x >0,则f(113π)=f(83π)=f(5π3)=f(2π3)=f(−π3)=cos(−π3)=12. 故选:C .8.在等式a b =N 中,如果只给定a ,b ,N 三个数中的一个数,那么a b =N 就成为另两个数之间的“函数关系”.如果N 为常数10,将a 视为自变量x (x >0且x ≠1),则b 为x 的函数,记为y ,那么x y =10,现将y 关于x 的函数记为y =f (x ).若f (m 2)>f (2m ),则实数m 的取值范围是( ) A .(0,2)B .(1,2)C .(0,1)∪(1,2)D .(0,12)∪(1,2)解:因为x y =10,(x >0且x ≠1),所以lgx y =lg 10=1,即ylgx =1, 所以y =f (x )=1lgx,所以函数f (x )在(0,1),(1,+∞)上单调递减, 若f (m 2)>f (2m ),则0<m 2<2m <1,或1<m 2<2m ,解得0<m <12或1<m <2.故选:D .二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题 9.若a <b <0,c ∈R ,则( ) A .a +c <b +cB .ab <b 2C .1a <1bD .b a <ab解:对于A ,由a <b ,两边都加上c ,可得a +c <b +c ,故A 正确; 对于B ,a <b <0,两边都乘以b ,可得ab >b 2,故B 不正确; 对于C ,a <b <0,则1a −1b =b−a ab >0,可知1a >1b,故C 不正确;对于D,a<b<0,则ba −ab=b2−a2ab=(b+a)(b−a)ab<0,可得ba<ab,故D正确.故选:AD.10.已知关于x的不等式ax2+bx+c>0的解集是{x|1<x<3},则()A.a<0B.a+b+c=0C.4a+2b+c<0D.不等式cx2﹣bx+a<0的解集是{x|x<﹣1或x>−13}解:因为不等式ax2+bx+c>0的解集是{x|1<x<3},所以a<0且1,3为方程ax2+bx+c=0的两根,A正确;故{1+3=−ba1×3=ca,所以b=﹣4a,c=3a,所以a+b+c=a﹣4a+3a=0,B正确;4a+2b+c=4a﹣8a+3a=﹣a>0,C错误;由不等式cx2﹣bx+a=3ax2+4ax+a<0可得3x2+4x+1>0,解得x<﹣1或x>−13,D正确.故选:ABD.11.古人立杆测日影以定时间,后来逐步形成了正切和余切的概念.余切函数可以用符号表示为f(x)=cot x,其中cotx=tan(π2−x),则下列关于余切函数的说法正确的是()A.定义域为{x|x≠kπ,k∈Z}B.在区间(π2,π)上单调递增C.与正切函数有相同的对称中心D.将函数y=﹣tan x的图象向右平移π2个单位可得到函数y=cot x的图象解:根据cotx=tan(π2−x),所以余切函数的图象如图所示:对于A:函数的定义域为{x|x≠kπ,k∈Z},故A正确;对于B:在区间(π2,π)上单调递减,故B错误;对于C :与正切函数有相同的对称中心,都为(kπ2,0)(k ∈Z ),故C 正确;对于D :将函数y =﹣tan x 的图象向右平移π2个单位可得到函数y =﹣tan (x −π2)=cot x 的图象,故D 正确. 故选:ACD .12.已知扇形的半径为r ,弧长为l .若其周长的数值为面积的数值的2倍,则下列说法正确的是( ) A .该扇形面积的最小值为8 B .当扇形周长最小时,其圆心角为2 C .r +2l 的最小值为9D .1r 2+4l 2的最小值为12解:因为扇形的半径为r ,弧长为l ,所以扇形的周长为2r +l ,面积为12lr ;因为2r +l =2×12lr ,所以l =2rr−1,且r >1;所以扇形的面积为S =12×2r r−1×r =r 2r−1=(r−1)2+2(r−1)+1r−1=(r ﹣1)+1r−1+2≥2√(r −1)⋅1r−1+2=4,当且仅当r ﹣1=1r−1,即r =2时取等号,所以选项A 错误; 扇形的周长为L =2r +2r r−1=2(r ﹣1)+2r−1+4≥2√2(r −1)⋅2r−1+4=8, 当且仅当2(r ﹣1)=2r−1,即r =2时取等号,此时圆心角为|α|=l r =42=2,α=±2,选项B 错误; r +2l =r +4r r−1=r +4+4r−1=(r ﹣1)+4r−1+5≥2√(r −1)⋅4r−1+5=9, 当且仅当r ﹣1=4r−1,即r =3时取等号,选项C 正确; 1r 2+4l 2=1r 2+(r−1)2r 2=1−2r +2r 2=2(1r −12)2+14]≥12,当r =2时取等号,所以选项D 正确.故选:CD .三、填空题:本大题共4小题,每小题5分,共20分.请把答案填写在答题卡相应位置上 13.已知幂函数f (x )=x α的图象经过点(9,3),则f (8)的值是 2√2 . 解:根据幂函数f (x )=x α的图象经过点(9,3),可得9α=3,求得α=12,故f (x )=x 12=√x .故f (8)=√8=2√2.故答案为:2√2.14.已知sin(x +π6)=13,则sin 2(π3−x)的值是 89 .解:∵cos (π3−x )=sin(x +π6)=13,∴sin2(π3−x)=1﹣cos2(π3−x)=1−19=89.故答案为:8 9.15.已知定义在实数集R上的偶函数f(x)在区间[0,+∞)上是单调增函数,若f(lgx)<f(1),则实数x的取值范围是110<x<10.解:∵f(x)定义在实数集R上的偶函数,在区间[0,+∞)上是单调增函数∴f(x)中(﹣∞,0)上是减函数又f(lgx)<f(1)∴﹣1<lgx<1∴110<x<10故答案为:110<x<1016.已知函数f(x)=log9x+12x−1的零点为x1.若x1∈(k,k+1)(k∈Z),则k的值是1;若函数g (x)=3x+x﹣2的零点为x2,则x1+x2的值是2.解:函数f(x)=log9x+12x−1是增函数,f(1)=−12<0,f(2)=log92>0,满足f(1)f(2)<0,所以函数的零点x1∈(1,2),所以k的值为1.函数f(x)=log9x+12x−1=12(log3x+x﹣2),函数的零点是y=log3x与y=2﹣x两个函数的图象的交点的横坐标x1,函数g(x)=3x+x﹣2的零点为x2,是函数y=3x与y=2﹣x图象交点的横坐标,由于y=log3x与y=3x是反函数,关于y=x对称,并且y=2﹣x与y=x垂直,交点坐标(1,1),所以x1+x2的值是2.故答案为:1;2.四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,17.(10分)(1)已知a+a﹣1=3,求a 12+a−12的值;(2)求值:e ln2+(lg5)2+lg5lg2+lg20.解:(1)因为(a 12+a−12)2=a+a﹣1+2=3+2=5,又因为a 12+a−12>0,所以a12+a−12=√5;(2)e ln2+(lg5)2+lg5lg2+lg20=2+1g5(lg5+1g2)+1g2+1=2+1g5+1g2+1=2+1+1=4.18.(12分)设全集U=R,已知集合A={x|x2﹣5x+4≤0},B={x|m≤x≤m+1}.(1)若A∩B=∅,求实数m的取值范围;(2)若“x∈B”是“x∈A”的充分条件,求实数m的取值范围.解:(1)由x 2﹣5x +4≤0,解得1≤x ≤4,所以A ={x |1≤x ≤4}. 因为A ∩B =∅,且B ≠∅,所以m +1<1或m >4,得m <0或m >4, 所以实数m 的取值范围是{m |m <0或m >4}.(2)因为“x ∈B ”是“x ∈A ”的充分条件,所以B ⊆A , 所以{m ≥1m +1≤4,解得1≤m ≤3,所以实数m 的取值范围是{m |1≤m ≤3}.19.(12分)已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示. (1)求函数f (x )的解析式;(2)求函数y =f (x )在区间[﹣π,0]上的单调减区间.解:(1)由图可知A =2,T =4×(π3−π12)=π,所以ω=2πT=2.∵f (x )=2sin (2x +φ)的图象经过点(π12,2), ∴π6+φ=π2+2kπ,k ∈Z ,即φ=π3+2kπ,k ∈Z .∵0<φ<π,所以φ=π3,∴f(x)=2sin(2x +π3).(2)令π2+2kπ≤2x +π3≤3π2+2kπ,k ∈Z ,解得π12+kπ≤x ≤7π12+kπ,k ∈Z ,∴f(x)=2sin(2x +π3)的减区间为[π12+kπ,7π12+kπ],k ∈Z ,∴f(x)=2sin(2x +π3)在[﹣π,0]上的减区间为[−11π12,−5π12].20.(12分)已知函数f(x)=a⋅2x−12x +1(a ∈R).(1)若函数f (x )为奇函数,求a 的值;(2)当a =3时,用函数单调性的定义证明:函数f(x)=a⋅2x−12x +1在R 上单调递增;(3)若函数y =f (x )﹣2x 有两个不同的零点,求a 的取值范围.解:(1)由 f (0)=0,得a =1,此时f(x)=2x−12x +1.因为f(−x)=2−x−12−x +1=1−2x1+2x =−f(x),所以f (x )为奇函数,故a =1. 证明:(2)当a =3时,f(x)=3⋅2x−12x +1=3−42x +1.任取x 1,x 2∈R ,且x 1<x 2,则f(x 1)−f(x 2)=42x 2+1−42x 1+1=4(2x1−2x2)(1+2x 1)(1+2x 2), 因为x 1<x 2,所以2x 1<2x 2,2x 1+1>0,2x 2+1>0, 所以4(2x 1−2x 2)(1+2x 1)(1+2x 2)<0,即f (x 1)<f (x 2),所以函数f(x)=a⋅2x−12x +1在R 上单调递增.解:(3)y =f (x )﹣2x 有两个不同的零点,等价于(2x )2+(1﹣a )2x +1=0有两个不同的实数解. 令t =2x (t >0),则t 2+(1﹣a )t +1=0在(0,+∞)有两个不同的实数解, 所以{(1−a)2−4>0a −1>0,解得a >3.所以a 的取值范围为(3,+∞).21.(12分)如图,有一条宽为30m 的笔直的河道(假设河道足够长),规划在河道内围出一块直角三角形区域(图中△ABC )种植荷花用于观赏,C ,B 两点分别在两岸l 1,l 2上,AB ⊥AC ,顶点A 到河两岸的距离AE =h 1,AD =h 2,设∠ABD =α.(1)若α=30°,求荷花种植面积(单位:m 2)的最大值; (2)若h 2=4h 1,且荷花的种植面积为150m 2,求sin α.解:由题可得,AB =ℎ2sinα,AC =ℎ1cosα. (1)当α=30°时,AB =2h 2,AC =2√31, 所以S △ABC =12AB ⋅AC =2√31ℎ2,又因为h 1+h 2=30,h 1,h 2≥0, 所以S △ABC =√31ℎ2≤√3(ℎ1+ℎ22)2=150√3,当且仅当h 1=h 2=15时取等号.所以荷花种植区域面积的最大值为150√3m 2.(2)因为h 1+h 2=30,h 2=4h 1,所以h 1=6,h 2=24,故AB =24sinα,AC =6cosα,α∈(0,π2), 从而S △ABC =12AB ⋅AC =72sinαcosα=150, 所以sinαcosα=1225,① 所以(sinα+cosα)2=1+2sinαcosα=4925. 又因为α∈[0,π2],所以sinα+cosα=75,② 由①②解得:sinα=35或45. 22.(12分)若存在实数对(a ,b ),使等式f (x )•f (2a ﹣x )=b 对定义域中每一个实数x 都成立,则称函数f (x )为(a ,b )型函数.(1)若函数f (x )=2x 是(a ,1)型函数,求a 的值;(2)若函数g(x)=e 1x 是(a ,b )型函数,求a 和b 的值;(3)已知函数h (x )定义在[﹣2,4]上,h (x )恒大于0,且为(1,4)型函数,当x ∈(1,4]时,ℎ(x)=−(log 2x)2+m ⋅log 2x +2.若h (x )≥1在[﹣2,4]恒成立,求实数m 的取值范围.解:(1)由f (x )=2x 是(a ,1)型函数,得f (x )•f (2a ﹣x )=2x •22a ﹣x =1,即22a =1,所以a =0. (2)由g(x)=e 1x是(a ,b )型函数,得g(x)⋅g(2a −x)=e 1x ⋅e 12ax −x =b ,则1x +12a−x =lnb ,因此x 2lnb ﹣2axlnb +2a =0对定义域{x |x ≠0}内任意x 恒成立,于是{lnb =02alnb =02a =0,解得a =0,b =1,所以a =0,b =1.(3)由h (x )是(1,4)型函数,得h (x )•h (2﹣x )=4,(1)当x =1时,h (1)•h (1)=4,而h (x )>0,则h (1)=2,满足h (x )≥1;(2)当x ∈(1,4]时,ℎ(x)=−(log 2x)2+m ⋅log 2x +2≥1恒成立,令log 2x =t ,则当t ∈(0,2]时,﹣t 2+mt +2≥1恒成立,于是m ≥t −1t 恒成立,而函数y =t −1t在(0,2]单调递增,则t −1t ≤32,当且仅当t =2时取等号,因此m ≥32; (3)当x ∈[﹣2,1)时,2﹣x ∈(1,4],则ℎ(x)=4ℎ(2−x)=4−[log 2(2−x)]2+m⋅log 2(2−x)+2,由h (x )≥1,得0<−[log 2(2−x)]2+m ⋅log 2(2−x)+2≤4,令log 2(2﹣x )=u ,则当u ∈(0,2]时,0<﹣u 2+mu +2≤4,由(2)知﹣u 2+mu +2≥1,则只需u ∈(0,2]时,﹣u 2+mu +2≤4恒成立,即m ≤2u +u 恒成立,又u +2u≥2√u ⋅2u =2√2,当且仅当u =√2时取等号,因此m ≤2√2, 所以实数m 的取值范围是:[32,2√2].。

高一数学试题及答案(8页)

高一数学试题及答案(8页)

高一数学试题及答案第一部分:选择题1. 设函数f(x) = x^2 4x + 3,求f(2)的值。

A. 1B. 0C. 1D. 22. 已知等差数列{an}的公差为2,且a1 = 3,求a5的值。

A. 7B. 9C. 11D. 133. 设集合A = {x | x > 0},B = {x | x < 5},求A∩B的值。

A. {x | x > 0, x < 5}B. {x | x > 5}C. {x | x < 0}D. {x | x < 5, x > 0}4. 若直线y = kx + 2与圆x^2 + (y 1)^2 = 4相切,求k的值。

A. 1B. 1C. 2D. 25. 设函数g(x) = |x 1| + |x + 1|,求g(x)的最小值。

A. 0B. 1C. 2D. 36. 若等比数列{bn}的首项为2,公比为3,求bn的第5项。

A. 162B. 243C. 4D. 7297. 已知函数h(x) = x^3 3x^2 + 2x,求h(x)的导数。

A. 3x^2 6x + 2B. 3x^2 6x 2C. 3x^2 + 6x + 2D. 3x^2 + 6x 28. 若直线y = mx + 1与直线y = 2x + 4平行,求m的值。

A. 2B. 2C. 1D. 19. 设集合C = {x | x^2 5x + 6 = 0},求C的值。

A. {2, 3}B. {1, 4}C. {2, 4}D. {1, 3}10. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的顶点坐标为(2,3),求b的值。

A. 12B. 12C. 6D. 6答案:1. A2. C3. A4. B5. B6. D7. A8. D9. C10. B第一部分:选择题答案解析1. 解析:将x = 2代入f(x) = x^2 4x + 3中,得到f(2) =2^2 42 + 3 = 1。

2023-2024学年江苏省连云港市高一(上)期末数学试卷【答案版】

2023-2024学年江苏省连云港市高一(上)期末数学试卷【答案版】

2023-2024学年江苏省连云港市高一(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |﹣1<x ≤1},B ={x |0≤x <2},则A ∩B =( ) A .{0,1}B .{﹣1,2}C .(﹣1,2)D .[0,1]2.sin210°=( ) A .−12B .12C .−√32D .√323.“|a |>|b |”是“a >b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件4.人的心脏跳动时,血压在增加或减少.若某人的血压满足函数式p (t )=110+20sin (140πt ),其中p (t )为血压(单位:mmHg ),t 为时间(单位:min ),则此人每分钟心跳的次数为( ) A .50B .70C .90D .1305.在△ABC 中,∠ACB =90°,BC =a ,AC =b ,且1a +2b=1,则△ABC 的面积的最小值为( )A .3+√2B .2C .4D .86.设a 为实数,已知函数f(x)=a −13x−1的图象关于原点对称,则a 的值为( ) A .−12B .12C .2D .﹣27.已知函数f(x)={−log 2x ,x ≥1,2−x ,x <1,若f (2+a 2)<f (6a ﹣3),则实数a 的取值范围是( )A .1<a <5B .a >5或a <1C .2<a <3D .a >3或a <28.已知函数f(x)=Asin(ωx +φ)+B(A >0,ω>0,|φ|<π2)的部分图象如图,则函数f (x )( )A .图象关于直线x =−π3对称B .图象关于点(π6,3)对称C .在区间(2π3,5π6)上单调递减 D .在区间(−5π12,π12)上的值域为(1,3) 二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分. 9.下列不等式成立的有( )A .1.212>0.812B .cos4π7<cos 5π8C .1.20.8>0.81.2D .log 520>log 2510.要得到函数f(x)=sin(2x −π3)的图象,只要把( )A .函数y =sin2x 的图象向右平移π6个单位长度B .函数y =sin(x −π3)的图象上每一个点的横坐标变为原来的2倍(纵坐标不变)C .函数y =sin2x 的图象向左平移5π6个单位长度D .函数y =cos2x 的图象向右平移5π12个单位长度11.已知函数f (x )=lgx ,任意的x 1,x 2∈(0,+∞),下列结论正确的是( ) A .f(x 1)−f(x 2)=f(x 1x 2)B .若x 1≠x 2,则f(x 1)+f(x 2)2>f(x 1+x 22)C .y =f(1−x1+x)是奇函数D .若|f (x 1)|=|f (x 2)|,且x 1≠x 2,则x 1+x 2>212.已知函数f (x )=2|cos x |﹣cos|x |,则( ) A .函数f (x )的最大值为3B .函数f (x )的最小正周期为πC .函数f (x )的图象关于直线x =π对称D .函数f (x )在(2π3,3π2)上单调递减 三、填空题:本题共4小题,每小题5分,共20分. 13.求值:log 48= .14.已知cos α<0,且tan α>0,则角α是第 象限角.15.已知函数f (x )=sin (ωx )在[−π3,π4]上单调递增,则ω的最大值是 .16.已知函数f (x )是R 上的偶函数,f (x +1)为奇函数,则函数f (x )的最小正周期为 . 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知tan α=2,计算: (1)sinα+cosα5cosα−2sinα;(2)cos αsin α.18.(12分)设a 为实数,函数f (x )=ax 2﹣(a ﹣1)x +a .(1)若函数f(x)有且只有一个零点,求a的值;(2)若不等式f(x)>0的解集为空集,求a的取值范围.19.(12分)已知函数f(x)=2sin(2x+π6).(1)用“五点法”画出函数f(x)在一个周期内的简图;(2)若关于x的方程f(x)=t(t∈R)在区间[0,π2]上有唯一解,求t的取值范围.20.(12分)如图1,有一块半径为2(单位:cm)的半圆形钢板,计划裁剪成等腰梯形ABCD的形状,它的下底AB是半圆的直径,上底CD的端点在圆周上.为了求出等腰梯形ABCD的周长y(单位:cm)的最大值,小明和小亮两位同学分别给出了如下两种方案:(1)小明的方案:设梯形的腰长为x(单位:cm),请你帮他求y与x之间的函数关系式,并求出梯形周长的最大值;(2)小亮的方案:如图2,连接AC,设∠BAC=θ,请你帮他求y与θ之间的函数关系式,并求出梯形周长的最大值.21.(12分)已知函数f(x)=log2(4x﹣a•2x+a+2)(a∈R).(1)若a=5,解不等式f(x)>0;(2)若函数f(x)在区间[﹣1,+∞)上的最小值为﹣1,求a的值.22.(12分)设m,t为实数,函数f(x)=lnx+x+m和g(x)=x2﹣tx﹣1.(1)若函数f(x)在区间(2,e)上存在零点,求m的取值范围;(2)设x1∈{x|F(x)=0},x2∈{x|G(x)=0},若存在x1,x2,使得|x1﹣x2|≤1,则称F(x)和G(x)“零点贴近”.当m=﹣1时,函数f(x)与g(x)“零点贴近”,求t的取值范围.2023-2024学年江苏省连云港市高一(上)期末数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|﹣1<x≤1},B={x|0≤x<2},则A∩B=()A.{0,1}B.{﹣1,2}C.(﹣1,2)D.[0,1]解:∵集合A={x|﹣1<x≤1},B={x|0≤x<2},∴A∩B={x|0≤x≤1}.故选:D.2.sin210°=()A.−12B.12C.−√32D.√32解:sin210°=sin(180°+30°)=﹣sin30°=−1 2,故选:A.3.“|a|>|b|”是“a>b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件解:设a=﹣2,b=0,此时满足|a|>|b|,但不满足a>b,充分性不成立,设a=2,b=﹣3,此时满足a>b,但不满足|a|>|b|,必要性不成立,故|a|>|b|是a>b的既不充分也不必要条件.故选:D.4.人的心脏跳动时,血压在增加或减少.若某人的血压满足函数式p(t)=110+20sin(140πt),其中p(t)为血压(单位:mmHg),t为时间(单位:min),则此人每分钟心跳的次数为()A.50B.70C.90D.130解:因为函数p(t)=110+20sin(140πt)的周期为T=2π140π=170(min),所以此人每分钟心跳的次数f=1T=70.故选:B.5.在△ABC中,∠ACB=90°,BC=a,AC=b,且1a+2b=1,则△ABC的面积的最小值为()A.3+√2B.2C.4D.8解:因为a>0,b>0,可得1a>0,2b>0,则1a+2b≥2√1a⋅2b=2√2ab,当且仅当1a =2b 时,即a =2,b =4时,等号成立,所以√2ab ≤1,解得ab ≥8,所以△ABC 的面积的最小值为S =12ab ≥4.故选:C .6.设a 为实数,已知函数f(x)=a −13x−1的图象关于原点对称,则a 的值为( ) A .−12B .12C .2D .﹣2解:因为f(x)=a −13x−1的图象关于原点对称,所以f (x )为奇函数,所以f (﹣x )+f (x )=0, 即a −13x −1+a −13−x −1=2a −13x −1+3x3x −1=2a +1=0,所以a =−12.故选:A .7.已知函数f(x)={−log 2x ,x ≥1,2−x ,x <1,若f (2+a 2)<f (6a ﹣3),则实数a 的取值范围是( )A .1<a <5B .a >5或a <1C .2<a <3D .a >3或a <2解:因为函数f(x)={−log 2x ,x ≥1,2−x,x <1,,当x ≥1时,f (x )=﹣log 2x 单调递减,且最大值为f (1)=0, 当x <1时,f (x )=2﹣x单调递减,且最小值y >2﹣1=12,故函数f(x)={−log 2x ,x ≥1,2−x,x <1,单调递减f (2+a 2)<f (6a ﹣3),则2+a 2>6a ﹣3,可得a 2﹣6a +5>0,解得a >5或a <1. 故选:B .8.已知函数f(x)=Asin(ωx +φ)+B(A >0,ω>0,|φ|<π2)的部分图象如图,则函数f (x )( )A .图象关于直线x =−π3对称B .图象关于点(π6,3)对称C .在区间(2π3,5π6)上单调递减 D .在区间(−5π12,π12)上的值域为(1,3) 解:由图象可得A =12(5﹣1)=2,则f (x )=2sin (ωx +φ)+B ,f (x )的最大值为2+B =5,∴B =3, ∴f (x )=2sin (ωx +φ)+3,f (x )过点(0,2),∴f (0)=2sin φ+3=2,∴sin φ=−12,∵|φ|<π2,∴φ=−π6,∴f (x )=2sin (ωx −π6)+3,∵f (x )过点(−π6,1),∴f (−π6)=2sin (−π6ω−π6)+3=1,可得sin (π6ω+π6)=1,∴π6ω+π6=2k π+π2,k ∈Z ,可得ω=2+12k ,k ∈Z ,由图象可知T 4>π6,∴T >2π3,即2πω>2π3,∴0<ω<3,∴ω=2, ∴f (x )=2sin (2x −π6)+3,对于A :f (−π3)=2sin (−5π6)+3=2,不是最值,则f (x )的图象不关于直线x =−π3对称,错误;对于B :f (π6)=2sin π6+3=4≠3,错误;对于C :2k π+π2≤2x −π6≤2k π+3π2,k ∈Z , ∴k π+π3≤x ≤k π+5π6,k ∈Z , ∴f (x )的单调递减区间为[k π+π3,k π+5π6],k ∈Z .k =0时,f (x )在[π3,5π6]上单调递减,(2π3,5π6)⊆[π3,5π6],正确;对于D :∵x ∈(−5π12,π12), ∴2x −π6∈(﹣π,0),可得sin (2x −π6)∈[﹣1,0),∴f (x )∈[1,3),D 错误. 故选:C .二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分. 9.下列不等式成立的有( )A .1.212>0.812B .cos4π7<cos 5π8C .1.20.8>0.81.2D .log 520>log 25解:对于A .因为幂函数y =√x 在定义域上单调递增,所以1.212>0.812成立,故A 正确;对于B ,因为函数y =cos x 在(0,π)上单调递减,且0<4π7<5π8<π, 所以cos4π7>cos 5π8,故B 错误; 对于C ,1.20.8>1.20>1,0.81.2<0.80<1,所以1.20.8>0.81.2,故C 正确; 对于D ,log 520<log 525=2,log 25>log 24=2,所以log 520<log 25,故D 错误. 故选:AC .10.要得到函数f(x)=sin(2x −π3)的图象,只要把( )A .函数y =sin2x 的图象向右平移π6个单位长度B .函数y =sin(x −π3)的图象上每一个点的横坐标变为原来的2倍(纵坐标不变)C .函数y =sin2x 的图象向左平移5π6个单位长度D .函数y =cos2x 的图象向右平移5π12个单位长度 解:函数y =sin2x 的图象向右平移π6个单位长度得f (x )=sin[2(x −π6)]=sin(2x −π3),故A 正确;对于B ,函数y =sin(x −π3)的图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得y =sin(12x −π3),故B 错误;对于C ,函数y =sin2x 的图象向左平移5π6个单位长度得;f (x )=sin[2(x +5π6)]=sin(2x +5π3)=sin(2x −π3),故C 正确; 对于D ,函数y =cos2x 的图象向右平移5π12个单位长度得:f (x )=cos[2(x −5π12)]=cos(2x −5π6)=cos(2x −π3−π2)=sin(2x −π3),故D 正确. 故选:ACD .11.已知函数f (x )=lgx ,任意的x 1,x 2∈(0,+∞),下列结论正确的是( ) A .f(x 1)−f(x 2)=f(x1x 2)B .若x 1≠x 2,则f(x 1)+f(x 2)2>f(x 1+x 22)C .y =f(1−x1+x)是奇函数D .若|f (x 1)|=|f (x 2)|,且x 1≠x 2,则x 1+x 2>2解:对于A ,f (x 1)﹣f (x 2)=lgx 1﹣lgx 2=lg x 1x 2,故A 正确;对于B ,因为f (x )=lgx 在(0,+∞)上是增函数,且x 1≠x 2,所以f(x 1)+f(x 2)2=lg √x 1x 2,f (x 1+x 22)=lg x 1+x 22,x 1+x 22>√x 1x 2,故B 错误;对于C ,f (1−x 1+x )=lg 1−x 1+x ,f (1+x 1−x )=lg 1+x 1−x ,因为f (1−x 1+x )+f (1+x 1−x )=lg 1−x 1+x +lg 1+x 1−x =lg [1−x 1+x ⋅1+x1−x ]=lg 1=0,故y =f (1−x1+x)是奇函数,故C 正确;对于D ,由x 1≠x 2得f (x 1)=﹣f (x 2),即lgx 1+lgx 2=0,即lg (x 1x 2)=0,所以x 1x 2=1,由基本不等式得x 1+x 2⩾2×1=2,因为x 1≠x 2,所以等号取不到,所以x 1+x 2>2,故D 正确. 故选:ACD .12.已知函数f (x )=2|cos x |﹣cos|x |,则( ) A .函数f (x )的最大值为3B .函数f (x )的最小正周期为πC .函数f (x )的图象关于直线x =π对称D .函数f (x )在(2π3,3π2)上单调递减 解:对于A ,根据余弦函数的性质,可知当x =π时,f (x )=2|cos π|﹣cos|π|=2+1=3,达最大值,故A 正确; 对于B ,因为f (π3)=12,f (4π3)=32,可得f(π3)≠f(π3+π),故函数f (x )的最小正周期不是π,B 项不正确;对于C ,因为cos|(2π﹣x )|=cos (2π﹣x )=cos x =cos|x |, 所以f (2π﹣x )=2|cos (2π﹣x )|﹣cos|(2π﹣x )|=2|cos x |﹣cos|x |,可得f (2π﹣x )=f (x ),所以f (x )的图象关于直线x =π对称,故C 正确; 对于D ,因为在(2π3,3π2)上f (x )有最大值f (π)=2, 所以f (x )在(2π3,3π2)上先增后减,故D 不正确. 故选:AC .三、填空题:本题共4小题,每小题5分,共20分. 13.求值:log 48=32. 解:log 48=lo g 2223=32.故答案为:32.14.已知cos α<0,且tan α>0,则角α是第 三 象限角.解:∵cos α<0,∴角α是第二三象限的角或者在x 轴的非正半轴上,∵tan α>0,∴角α是第一三象限的角,则角α是第三象限的角. 故答案为:三.15.已知函数f (x )=sin (ωx )在[−π3,π4]上单调递增,则ω的最大值是 32 .解:∵函数f (x )=sin (ωx )在[−π3,π4]上单调递增,∴−π3•ω≥−π2 且π4•ω≤π2,求得ω≤32,则ω的最大值为32,故答案为:32.16.已知函数f (x )是R 上的偶函数,f (x +1)为奇函数,则函数f (x )的最小正周期为 4 . 解:因为函数f (x )是R 上的偶函数,所以f (﹣x )=f (x ), 因为f (x +1)为奇函数,所以f (x )的图象关于(1,0)对称,即f (2﹣x )+f (x )=0, 所以f (2+x )+f (﹣x )=f (2+x )+f (x )=0, 所以f (2+x )=﹣f (x ),所以f (4+x )=f (x ),则函数f (x )的最小正周期为4. 故答案为:4.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知tan α=2,计算: (1)sinα+cosα5cosα−2sinα;(2)cos αsin α.解:(1)因为tan α=2,所以sinα+cosα5cosα−2sinα=tanα+15−2tanα=2+15−2×2=3;(2)cos αsin α=sinαcosαsin 2α+cos 2α=tanαtan 2α+1=222+1=25. 18.(12分)设a 为实数,函数f (x )=ax 2﹣(a ﹣1)x +a . (1)若函数f (x )有且只有一个零点,求a 的值; (2)若不等式f (x )>0的解集为空集,求a 的取值范围. 解:(1)根据题意,f (x )=ax 2﹣(a ﹣1)x +a , 当a =0时,f (x )=x ,有且只有一个零点,符合题意,当a ≠0时,若f (x )有且只有一个零点,即方程ax 2﹣(a ﹣1)x +a =0有且只有1个根, 则有Δ=(a ﹣1)2﹣4a 2=0,解可得a =﹣1或13,综合可得:a =0或﹣1或13;(2)f(x)>0即ax2﹣(a﹣1)x+a>0,当a=0时,f(x)>0即x>0,其解集不是空集,不符合题意;当a≠0时,f(x)>0即ax2﹣(a﹣1)x+a>0,若其解集为∅,必有{a>0Δ=(a−1)2−4a2≤0,解可得a≤﹣1,即a的取值范围为(﹣∞,﹣1].19.(12分)已知函数f(x)=2sin(2x+π6).(1)用“五点法”画出函数f(x)在一个周期内的简图;(2)若关于x的方程f(x)=t(t∈R)在区间[0,π2]上有唯一解,求t的取值范围.解:(1)列表:描点,连线,画出f(x)在[0,π]上的大致图像如图:;(2)由于x∈[0,π2],所以2x+π6∈[π6,7π6],所以f(x)=2sin(2x+π6)∈[−12,1],由于关于x的方程f(x)=t(t∈R)在区间[0,π2]上有唯一解,所以t∈[−12,12).20.(12分)如图1,有一块半径为2(单位:cm)的半圆形钢板,计划裁剪成等腰梯形ABCD的形状,它的下底AB是半圆的直径,上底CD的端点在圆周上.为了求出等腰梯形ABCD的周长y(单位:cm)的最大值,小明和小亮两位同学分别给出了如下两种方案:(1)小明的方案:设梯形的腰长为x(单位:cm),请你帮他求y与x之间的函数关系式,并求出梯形周长的最大值;(2)小亮的方案:如图2,连接AC,设∠BAC=θ,请你帮他求y与θ之间的函数关系式,并求出梯形周长的最大值.解:(1)作DE⊥AB于E,连接BD,因为AB为直径,所以∠ADB=90°,在Rt△ADB与Rt△AED中,∠ADB=90°=∠AED,∠BAD=∠DAE,所以Rt△ADB∽Rt△AED,所以ADAB=AEAD,即AE=AD2AB;又AD =x ,AB =4,所以AE =x 24;所以CD =AB ﹣2AE =4﹣2×x 24=4−x 22, 于是y =AB +BC +CD +AD =4+x +4−x 22+x =−12x 2+2x +8, 由于AD >0,AE >0,CD >0,所以x >0,x 24>0,4−x 22>0,解得0<x <2√2;所以函数为y =−12x 2+2x +8,x ∈(0,2√2).当x =−22×(−12)=2时,y 取得最大值为−12×4+2×2+8=10.(2)过点C 作CF 垂直于AB 于点F ,因为AB 是半圆的直径,所以∠ACB =90°,AB =4, 所以BC =AB sin θ=4sin θ,又因为∠BCF =∠CAB =θ,所以BF =BC sin θ=4sin 2θ, 所以CD =AB ﹣2BF =4﹣8sin 2θ,所以梯形ABCD 的周长为y =AB +CD +2BC =4+4﹣8sin 2θ+8sin θ=﹣8sin 2θ+8sin θ+8,且θ∈(0,π4),即y =﹣8sin 2θ+8sin θ+8,θ∈(0,π4);设t =sin θ,则t ∈(0,√22),所以y =﹣8t 2+8t +8,当t =12时,y 取得最大值为﹣8×14+8×12+8=10,即当θ=π6时,y 取得最大值10.21.(12分)已知函数f (x )=log 2(4x ﹣a •2x +a +2)(a ∈R ). (1)若a =5,解不等式f (x )>0;(2)若函数f (x )在区间[﹣1,+∞)上的最小值为﹣1,求a 的值. 解:(1)当a =5时,f(x)=log 2(4x −5⋅2x +7),不等式为log 2(4x −5⋅2x +7)>0,则4x ﹣5•2x +7>1,即4x ﹣5•2x +6>0, 设t =2x >0,不等式化为t 2﹣5t +6>0,解得0<t <2或t >3,故x <1或x >log 23, 故不等式的解集为(﹣∞,1)∪(log 23,+∞). (2)设g (x )=4x ﹣a •2x +a +2,根据题意知,当x∈[﹣1,+∞)时,g(x)min=1 2,设t=2x≥12,函数化为h(t)=t2﹣at+a+2,其对称轴为t=a2,当a2≤12,即a≤1时,ℎ(t)min=ℎ(12)=94+12a=12,解得a=−72,符合题意;当a2>12,即a>1时,ℎ(t)min=ℎ(a2)=a+2−a24=12,解得a=2+√10或a=2−√10(舍),故a值为−72或2+√10.22.(12分)设m,t为实数,函数f(x)=lnx+x+m和g(x)=x2﹣tx﹣1.(1)若函数f(x)在区间(2,e)上存在零点,求m的取值范围;(2)设x1∈{x|F(x)=0},x2∈{x|G(x)=0},若存在x1,x2,使得|x1﹣x2|≤1,则称F(x)和G(x)“零点贴近”.当m=﹣1时,函数f(x)与g(x)“零点贴近”,求t的取值范围.解:(1)令f(x)=0,即f(x)=lnx+x+m=0,得m=﹣(lnx+x).令h(x)=﹣(lnx+x),易知g(x)在(0,+∞)上单调递减,h(2)=﹣(ln2+2),h(e)=﹣(lne+e)=﹣(1+e),所以h(x)在(2,e)上的值域为(﹣1﹣e,﹣ln2﹣2),所以m的取值范围(﹣1﹣e,﹣ln2﹣2).(2)当m=﹣1时,f(x)=lnx+x﹣1,易知函数f(x)在(0,+∞)上单调递增,令f(x)=lnx+x﹣1=0,易知f(1)=ln1+1﹣1=0,所以x1=1.由|x1﹣x2|≤1,得|1﹣x2|≤1,解得0≤x2≤2,即x2∈[0,2].要使函数f(x)与g(x)“零点贴近”,则函数g(x)在[0,2]上有零点,对于g(x)=x2﹣tx﹣1,Δ=t2+4>0,所以g(x)=0有两个零点,而g(0)=﹣1<0,所以g(2)≥0,即22﹣2t﹣1≥0,解得t≤3 2.故实数t的取值范围是(−∞,32 ].。

高一数学试题1

高一数学试题1

试卷第1页,共4页高一数学期末测试卷一、单选题(共40分)1.已知A ={-1,0,1,3,5},B ={x |2x -3<0},RA B =( )A .{0,1}B .{-1,1,3}C .{-1,0,1}D .{3,5}2.已知函数()()()2,01,0x x f x x x x ⎧+≤⎪=⎨+>⎪⎩,则()()1f f -=( )A .0B .1C .2D .43.tan 480的值等于( ) A .3-B 3C .3D 34.命题“00x ∃>,20210x x -+->”的否定为( ) A .00x ∃>,200210x x -+-≤ B .00x ∃≤,20210x x -+-> C .0x ∀>,2210x x -+-≤ D .0x ∀>,2210x x -+->5.函数()121f x x x =++ ) A .[)2,-+∞ B .[)()2,11,---+∞C .()1,-+∞D .[)2,1--6.()f x 是定义域为R 的奇函数,且(1)()0f x f x +-=,若3355f ⎛⎫=- ⎪⎝⎭,则75f ⎛⎫= ⎪⎝⎭( )A .75-B .35C .35D .757.下列函数中,满足对任意的1212,(0,)()∈+∞≠x x x x ,有1212()()0f x f x x x ->-是( ) A .()ln 2y x =+B .1y x =-+C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+8.下列命题是真命题的是( ) A .若ac bc >.则a b > B .若22a b >,则a b >C .若a b >,则11a b <D .若c d >,a c b d ->-,则a b >二、多选题(共20分)9.已知集合{}{}1,4,,1,2,3A a B ==,若{}1,2,3,4A B =,则a 的取值可以是( ) A .2B .3C .4D .510.下列函数中最小正周期为π,且为偶函数的是( )试卷第2页,共4页A .cos y x =B .sin 2y x =C .πsin 22y x ⎛⎫=+ ⎪⎝⎭D .1cos 2y x =11.以下各选项中,p 是q 的充分不必要条件的是( ) A .p :某四边形是菱形,q :某四边形对角线相互垂直 B .p :三角形有两边上的高相等,q :三角形为等腰三角形 C .22::,p ac bc q a b >> D .,::p x A B q x A B ∈∈12.设()f x 为定义在R 上的奇函数,当0x ≥时,()22(x f x x b b =++为常数),则( ) A .1b =- B .()313f -=-C .55(3)8f -=- D .函数()f x 仅有一个零点三、填空题(共20分) 13. 17cos 3π⎛⎫-= ⎪⎝⎭_____________. 14.当0a >且1a ≠时,函数24x y a -=+的图象一定经过定点___________15.已知()2121f x x +=+,则()f x = ______16.已知函数f (x )=12log ,02,0xx x x >⎧⎪⎨⎪<⎩,若关于x 的方程f (x )=k 有两个不等的实数根,则实数k 的取值范围是___________. 四、解答题17(10分).求(1)21log 32.5log 6.25lg1002+++; (2)20.53221820.756427--⎛⎫⎛⎫-+⨯ ⎪⎪⎝⎭⎝⎭.试卷第3页,共4页18(12分).已知一扇形的圆心角为α,半径为R ,弧长为()0L α>. (1)已知扇形的周长为10cm ,面积是24cm ,求扇形的圆心角;(2)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?并求此扇形的最大面积.19.(12分)已知3sin 5α=,π,π2α⎛⎫∈ ⎪⎝⎭,求: (1)cos α的值; (2)cos 3πα⎛⎫- ⎪⎝⎭的值.20.(12分)已知函数()()2ln 28f x x x =-++的定义域为A ,集合{}0B x x a =->.(1)求集合A ; (2)设U =R ,若UA B =∅,求实数a 的取值范围.试卷第4页,共4页21.(12分)已知函数()234f x x x =--.(1)求不等式()0f x >的解集; (2)若()1,x ∈+∞,求()51f x x +-的最小值.22.(12分)已知函数2()3f x x ax a =++-,[]2,4x ∈-. (1)当2a =时,写出函数()f x 的单调区间和值域(不用写过程); (2)求()f x 的最小值()g a 的表达式.答案第5页,共1页。

高一数学期末试题(有答案)

高一数学期末试题(有答案)

高一数学期末试题(有答案)距离期末考试越来越近了,大家是不是都在紧张的温习中呢?查字典数学网编辑了2021年高一数学期末试题,希望对您有所协助!一、填空题(本大题共14小题,每题5分,共70分,请将答案填写在答题卷相应的位置上)1.不等式的解集为▲ .2.直线:的倾斜角为▲ .3.在相距千米的两点处测量目的,假定,,那么两点之间的距离是▲ 千米(结果保管根号).4.圆和圆的位置关系是▲ .5.等比数列的公比为正数,,,那么▲ .6.圆上两点关于直线对称,那么圆的半径为7.实数满足条件,那么的最大值为▲ .8. ,,且,那么▲ .9.假定数列满足:, ( ),那么的通项公式为▲ .10.函数,,那么函数的值域为11.函数,,假定且,那么的最小值为▲ .12.等比数列的公比,前项的和为 .令,数列的前项和为,假定对恒成立,那么实数的最小值为▲ .13. 中,角A,B,C所对的边为 .假定,那么的取值范围是14.实数成等差数列,过点作直线的垂线,垂足为 .又点,那么线段长的取值范围是▲ .二、解答题:(本大题共6道题,计90分.解容许写出必要的文字说明、证明进程或演算步骤)15.(此题总分值14分)的三个顶点的坐标为 .(1)求边上的高所在直线的方程;(2)假定直线与平行,且在轴上的截距比在轴上的截距大1,求直线与两条坐标轴围成的三角形的周长.16.(此题总分值14分)在中,角所对的边区分为,且满足 .(1)求角A的大小;(2)假定,的面积,求的长.17.(此题总分值15分)数列的前项和为,满足 .等比数列满足: .(1)求证:数列为等差数列;(2)假定,求 .18.(此题总分值15分)如图,是长方形海域,其中海里,海里.现有一架飞机在该海域失事,两艘海事搜救船在处同时动身,沿直线、向前结合搜索,且 (其中、区分在边、上),搜索区域为平面四边形围成的海平面.设,搜索区域的面积为 .(1)试树立与的关系式,并指出的取值范围;(2)求的最大值,并指出此时的值.19.(此题总分值16分)圆和点 .(1)过点M向圆O引切线,求切线的方程;(2)求以点M为圆心,且被直线截得的弦长为8的圆M的方程;(3)设P为(2)中圆M上恣意一点,过点P向圆O引切线,切点为Q,试探求:平面内能否存在一定点R,使得为定值?假定存在,央求出定点R的坐标,并指出相应的定值;假定不存在,请说明理由.20.(此题总分值16分)(1)公差大于0的等差数列的前项和为,的前三项区分加上1,1,3后依次成为某个等比数列的延续三项, .①求数列的通项公式;②令,假定对一切,都有,求的取值范围;(2)能否存在各项都是正整数的无量数列,使对一切都成立,假定存在,请写出数列的一个通项公式;假定不存在,请说明理由.扬州市2021—2021学年度第二学期期末调研测试试题高一数学参考答案 2021.61. 2. 3. 4.相交 5.1 6.37.11 8. 9. 10. 11.3 12. 13.14.15.解:(1) ,∴边上的高所在直线的斜率为…………3分又∵直线过点∴直线的方程为:,即…7分(2)设直线的方程为:,即…10分解得:∴直线的方程为:……………12分∴直线过点三角形斜边长为∴直线与坐标轴围成的直角三角形的周长为. (14)分注:设直线斜截式求解也可.16.解:(1)由正弦定理可得:,即;∵ ∴ 且不为0∴ ∵ ∴ ……………7分(2)∵ ∴ ……………9分由余弦定理得:,……………11分又∵ ,∴ ,解得:………………14分17.解:(1)由得:,………………2分且时,经检验亦满足∴ ………………5分∴ 为常数∴ 为等差数列,且通项公式为………………7分(2)设等比数列的公比为,那么,∴ ,那么,∴ ……………9分① ②得:…13分………………15分18.解:(1)在中,,在中,,∴ …5分其中,解得:(注:观察图形的极端位置,计算出的范围也可得分.)∴ ,………………8分(2)∵ ,……………13分当且仅当时取等号,亦即时,答:当时,有最大值. ……………15分19.解:(1)假定过点M的直线斜率不存在,直线方程为:,为圆O的切线; …………1分当切线l的斜率存在时,设直线方程为:,即,∴圆心O到切线的距离为:,解得:∴直线方程为: .综上,切线的方程为:或……………4分(2)点到直线的距离为:,又∵圆被直线截得的弦长为8 ∴ ……………7分∴圆M的方程为:……………8分(3)假定存在定点R,使得为定值,设,,∵点P在圆M上∴ ,那么……………10分∵PQ为圆O的切线∴ ∴ ,即整理得: (*)假定使(*)对恣意恒成立,那么……………13分∴ ,代入得:整理得:,解得:或∴ 或∴存在定点R ,此时为定值或定点R ,此时为定值 . ………………16分20.解:(1)①设等差数列的公差为 .∵ 的前三项区分加上1,1,3后依次成为某个等比数列的延续三项∴ 即,∴解得:或∵ ∴ ∴ ,………4分②∵ ∴ ∴ ∴ ,整理得:∵ ∴ ………7分(2)假定存在各项都是正整数的无量数列,使对一切都成立,那么∴ ,……,,将个不等式叠乘得:∴ ( ) ………10分假定,那么∴当时,,即∵ ∴ ,令,所以与矛盾. ………13分假定,取为的整数局部,那么当时,∴当时,,即∵ ∴ ,令,所以与矛盾.∴假定不成立,即不存在各项都是正整数的无量数列,使对一切都成立. ………16分。

人教A版新教材高一上学期期末考试数学试卷(共五套)

人教A版新教材高一上学期期末考试数学试卷(共五套)

人教版新教材高一上学期期末考试数学试卷(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}210A x x =-<,{}01B x x =≤≤,那么A B 等于( ) A .{}0x x ≥B .{}1x x ≤C .102x x ⎧⎫<<⎨⎬⎩⎭D .102x x ⎧⎫≤<⎨⎬⎩⎭2.若12cos 13x =,且x 为第四象限的角,则tan x 的值等于( ) A .125 B .125-C .512D .512-3.若2log 0.5a =,0.52b =,20.5c =,则,,a b c 三个数的大小关系是( ) A .a b c << B .b c a << C .a c b <<D .c a b <<4.已知1(1)232f x x -=+,且()6f m =,则m 等于( )A .14B .14-C .32D .32-5.已知5()tan 3,(3)7f x a x bx cx f =-+--=,则(3)f 的值为( ) A .13-B .13C .7D .7-6.已知()f x 是定义在R 上的偶函数,且有(3)(1)f f >.则下列各式中一定成立的是( ) A .(1)(3)f f -< B .(0)(5)f f < C .(3)(2)f f >D .(2)(0)f f >7.已知()f x 是定义在R 上的奇函数,当0x ≥时,()5x f x m =+(m 为常数),则5(log 7)f -的值为( ) A .4 B .4-C .6D .6-8.函数11y x=-的图象与函数2sin π(24)y x x =-≤≤的图象所有交点的横坐标之和等于( ) A .8B .6C .4D .29.已知tan α,1tan α是关于x 的方程2230x kx k -+-=的两个实根,73ππ2α<<, 则cos sin αα+=( ) ABC.D.10.若函数,1()(4)2,12x a x f x ax x ⎧≥⎪=⎨-+<⎪⎩,且满足对任意的实数12x x ≠都有1212()()0f x f x x x ->-成立,则实数a 的取值范围是( )A .(1,)+∞B .(1,8)C .(4,8)D .[4,8)11.已知ππ()sin(2019)cos(2019)63f x x x =++-的最大值为A ,若存在实数12,x x ,使得对任意实数x 总有12()()()f x f x f x ≤≤成立,则12A x x -的最小值为( )A .π2019B .2π2019C .4π2019D .π403812.已知()f x 是定义在[4,4]-上的奇函数,当0x >时,2()4f x x x =-+,则不等式[()]()f f x f x <的解集为( ) A .(3,0)(3,4]-B .(4,3)(1,0)(1,3)---C .(1,0)(1,2)(2,3)-D .(4,3)(1,2)(2,3)--第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.5log 30.75333322log 2log log 825169-+-+=_______. 14.已知()1423x x f x +=--,则()0f x <的解集为_______.15.方程22210x mx m -+-=的一根在(0,1)内,另一根在(2,3)内,则实数m 的取值范围是______.16.若实数a ,b 满足0a ≥,0b ≥,且0ab =,则称a 与b 互补.记(,)a b a b ϕ=-,那么“(,)0a b ϕ=”是“a 与b 互补”的 条件.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)已知集合{}123A x m x m =-≤≤+,函数2()lg(28)f x x x =-++的定义域为B .(1)当2m =时,求A B 、()A B R ;(2)若A B A =,求实数m 的取值范围.18.(12分)已知函数()log (1)log (1)a a f x x x =+--,0a >且1a ≠. (1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明; (3)当1a >时,求使()0f x >的x 的解集.19.(12分)已知函数()2πcos sin()1()3f x x x x x =+∈R .(1)求()f x 的最小正周期;(2)求()f x 在区间ππ[,]44-上的最大值和最小值,并分别写出相应的x 的值.20.(12分)已知函数()f x 是定义在R 上的偶函数,且当0x ≥时,2()2f x x x =-. (1)求(0)f 及((1))f f 的值;(2)求函数()f x 在(,0)-∞上的解析式;(3)若关于x 的方程()0f x m -=有四个不同的实数解,求实数m 的取值范围.21.(12分)设函数()y f x =的定义域为R ,并且满足()()()f x y f x f y -=-,且()21f =,当0x >时,()0f x >. (1)求(0)f 的值;(2)判断函数()f x 的奇偶性;(3)如果()(2)2f x f x ++<,求x 的取值范围.22.(12分)已知定义域为R 的函数12()22x x b f x +-+=+是奇函数.(1)求b 的值;(2)判断函数()f x 的单调性,并用定义证明;(3)当1[,3]2x ∈时,2()(21)0f kx f x +->恒成立,求实数k 的取值范围.【答案解析】 第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】D【解析】因为12A x x ⎧⎫=<⎨⎬⎩⎭,{}01B x x =≤≤,所以102A B x x ⎧⎫=≤<⎨⎬⎩⎭.2.【答案】D【解析】因为x 为第四象限的角,所以5sin 13x =-,于是5tan 12x =-,故选D . 3.【答案】C【解析】2log 0.50a =<,0.521b =>,200.51c <=<,则a c b <<,故选C . 4.【答案】B【解析】因为1(1)232f x x -=+,设112x t -=,则22x t =+,所以()47f t t =+,因为()6f m =,所以476m +=,解得14m =-,故选B .5.【答案】A 【解析】5()tan 3f x a x bx cx =-+-,()()6f x f x ∴+-=-,(3)7f -=,(3)6713f ∴=--=-.故选A . 6.【答案】A【解析】∵()f x 是定义在R 上的偶函数,∴(1)(1)f f =-, 又(3)(1)f f >,∴(3)(1)f f >-,故选A . 7.【答案】D【解析】由奇函数的定义可得(0)10f m =+=,即1m =-,则5log 755(log 7)(log 7)51716f f -=-=-+=-+=-.故选D .8.【答案】A 【解析】函数111y x=-,22sin π(24)y x x =-≤≤的图象有公共的对称中心(1,0), 如图在直角坐标系中作出两个函数的图象,当14x <≤时,10y <,而函数2y 在(1,4)上出现1.5个周期的图象,且在3(1,)2和57(,)22上是减函数,在35(,)22和7(,4)2上是增函数.∴函数1y 在(1,4)上函数值为负数,且与2y 的图象有四个交点E 、F 、G 、H , 相应地,1y 在(2,1)-上函数值为正数,且与2y 的图象有四个交点A 、B 、C 、D , 且2A H B G C F D E x x x x x x x x +=+=+=+=, 故所求的横坐标之和为8,故选A . 9.【答案】C 【解析】∵tan α,1tan α是关于x 的方程2230x kx k -+-=的两个实根, ∴1tan tan k αα+=,21tan 31tan k αα⋅=-=, ∵73ππ2α<<,∴0k >, ∵24k =,∴2k =,∴tan 1α=,∴π3π4α=+,则cos α=,sin α=,则cos sin αα+=C . 10.【答案】D【解析】∵对任意的实数12x x ≠都有1212()()0f x f x x x ->-成立, ∴函数,1()(4)2,12x a x f x ax x ⎧≥⎪=⎨-+<⎪⎩在R 上单调递增, 1114021(4)122a a a a ⎧⎪>⎪⎪∴->⎨⎪⎪≥-⨯+⎪⎩,解得[4,8)a ∈,故选D . 11.【答案】B【解析】ππ()sin(2019)cos(2019)63f x x x =++-,112019cos 2019cos 201920192222x x x x =+++2019cos 2019x x =+π2sin(2019)6x =+,∴()f x 的最大值为2A =, 由题意得,12x x -的最小值为π22019T =, ∴12A x x -的最小值为2π2019,故选B . 12.【答案】B【解析】∵()f x 是定义在[4,4]-上的奇函数,∴当0x =时,(0)0f =,先求出当[4,0)x ∈-时()f x 的表达式, 当[4,0)x ∈-时,则(0,4]x -∈,又∵当0x >时,2()4f x x x =-+,∴22()()4()4f x x x x x -=--+-=--, 又()f x 是定义在[4,4]-上的奇函数,∴2()()4f x f x x x =--=-+,∴224,[4,0]()4,(0,4]x x x f x x x x ⎧+∈-⎪=⎨-+∈⎪⎩,令()0f x =,解得4x =-或0或4,当[4,0]x ∈-时,不等式[()]()f f x f x <,即2222(4)4(4)4x x x x x x +++<+, 化简得222(4)3(4)0x x x x +++<,解得(4,3)(1,0)x ∈---;当(0,4]x ∈时,不等式[()]()f f x f x <,即2222(4)4(4)4x x x x x x --++-+<-+, 化简得222(4)3(4)0x x x x --++-+<,解得(1,3)x ∈, 综上所述,(4,3)(1,0)(1,3)x ∈---,故选B .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.【答案】1【解析】原式=253log 94433332log 4log log 825(2)9-+-+ 339log (48)98log 91132=⨯⨯-+=-=.14.【答案】2{|log 3}x x <【解析】当()0f x <,即14230,023x x x +--<<<,解得2log 3x <. 15.【答案】(1,2)【解析】设22()21f x x mx m =-+-,则由题意知:函数()f x 的一个零点在(0,1)内,另一个零点在(2,3)内,则有222210(0)0(1)020(2)0430(3)0680m f f m m f m m f m m ⎧->>⎧⎪⎪<-<⎪⎪∴⇒⎨⎨<-+<⎪⎪⎪⎪>⎩-+>⎩,解得12m <<,m 的取值范围是(1,2).16.【答案】充要条件【解析】若(,)0a b ϕ=,a b =+,两边平方整理,得0ab =,且0a ≥,0b ≥,所以a 与b 互补;若a 与b 互补,则0a ≥,0b ≥,且0ab =,所以0a b +≥,此时有(,)()()()0a b a b a b a b ϕ=+=+-+=, 所以“(,)0a b ϕ=”是“a 与b 互补”的充要条件.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1){}27A B x x =-<≤,{}()21A B x x =-<<R ;(2)1(,4)(1,)2-∞--.【解析】根据题意,当2m =时,{}17A x x =≤≤,{}24B x x =-<<, 则{}27A B x x =-<≤, 又{1A x x =<R或}7x >,则{}()21A B x x =-<<R .(2)根据题意,若A B A =,则A B ⊆, 分2种情况讨论:①当A =∅时,有123m m ->+,解可得4m <-; ②当A ≠∅时,若有A B ⊆,必有12312234m m m m -≤+⎧⎪->-⎨⎪+<⎩,解可得112m -<<,综上可得:m 的取值范围是1(,4)(1,)2-∞--.18.【答案】(1){}11x x -<<;(2)奇函数,证明见解析;(3)(0,1)x ∈. 【解析】()log (1)log (1)a a f x x x =+--,若要式子有意义,则1010x x +>⎧⎨->⎩,即11x -<<,所以定义域为{}11x x -<<.(2)()f x 的定义域为(1,1)-,且()log (1)log (1)[log (1)log (1)]()a a a a f x x x x x f x -=-+-+=-+--=-, 所以()f x 是奇函数.(3)又()0f x >,即log (1)log (1)0a a x x +-->, 有log (1)log (1)a a x x +>-.当1a >时,上述不等式101011x x x x +>⎧⎪->⎨⎪+>-⎩,解得(0,1)x ∈.19.【答案】(1)πT =;(2)π4x =时,max 3()4f x =-;π12x =-时,min 3()2f x =-. 【解析】(1)2π()cos sin()13f x x x x=+-+21cos (sin )12x x x x =+-2111cos2sin cos 1sin21242x x x x x +==+-11πsin2cos21sin(2)14423x x x =--=--, 所以()f x 的最小正周期为2ππ2T ==. (2)∵[,]4ππ4x ∈-,∴5π2[,]6ππ36x -∈-, 当ππ236x -=,即π4x =时,max 113()1224f x =⨯-=-, 当ππ232x -=-,π12x =-时,()min 13()1122f x =⨯--=-. 20.【答案】(1)0(0)f =,((1))1f f =-;(2)()22f x x x =+;(3)10m -<<. 【解析】(1)0(0)f =,((1))(1)(1)1f f f f =-==-. (2)设0x <,则0x ->,22()()2()2f x x x x x -=---=+,∵()f x 偶函数,2()()2f x f x x x -==+,∴当0x <时,()22f x x x =+.(3)设函数1()y f x =及2y m =,方程()0f x m -=的解的个数,就是函数1()y f x =与2y m =图象交点的个数. 作出简图利用数形结合思想可得10m -<<.21.【答案】(1)(0)0f =;(2)奇函数;(3){|1}x x <. 【解析】(1)令0x y ==,则(00)(0)(0)f f f -=-,∴(0)0f =. (2)∵()()()f x y f x f y -=-,∴()()()00f x f f x -=-,由(1)知(0)0f =,()()f x f x -=-, ∴函数()f x 是奇函数.(3)设12,x x ∀∈R ,且12x x >,则120x x ->,()()()1212f x x f x f x -=-,∵当0x >时,()0f x >,∴()120f x x ->,即()()120f x f x ->, ∴()()12f x f x >,∴函数()f x 是定义在R 上的增函数,()()()f x y f x f y -=-, ∴()()()f x f x y f y =-+,211(2)(2)(2)(42)(4)f f f f f =+=+=+-=, ∵()(2)2f x f x ++<,∴()(2)(4)f x f x f ++<, ∴()()()(2)44f x f f x f x +<-=-,∵函数()f x 是定义在R 上的增函数,∴24x x +<-,∴1x <, ∴不等式()(2)2f x f x ++<的解集为{|1}x x <.22.【答案】(1)1b =;(2)单调递减,证明见解析;(3)(,1)-∞-. 【解析】(1)因为()f x 是定义在R 上的奇函数, 所以(0)0f =,即1022b-+=+,则1b =, 经检验,当1b =时,12()22x x bf x +-+=+是奇函数,所以1b =.(2)11211()22221x x x f x +-==-+++,()f x 在R 上是减函数,证明如下:在R 上任取12,x x ,且12x x <,则122121211122()()2121(21)(21)x x x x x x f x f x --=-=++++,因为2x y =在R 上单调递增,且12x x <,则12220x x -<, 又因为12(21)(21)0x x ++>,所以21()()0f x f x -<, 即21()()f x f x <,所以()f x 在R 上是减函数.(3)因为2()(21)0f kx f x +->,所以2()(21)f kx f x >--, 而()f x 是奇函数,则2()(12)f kx f x >-, 又()f x 在R 上是减函数,所以212kx x <-, 即221212()x k x x x -<=-在1[,3]2上恒成立, 令1t x =,1[,2]3t ∈,2()2g t t t =-,1[,2]3t ∈, 因为min ()(1)1g t g ==-,则1k <-. 所以k 的取值范围为(,1)-∞-.人教版新教材高一上学期期末考试数学试卷(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

平顶山市2024届高一数学第一学期期末统考试题含解析

平顶山市2024届高一数学第一学期期末统考试题含解析

平顶山市2024届高一数学第一学期期末统考试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(本大题共12小题,共60分)1.已知圆C :x 2+y 2+2x =0与过点A (1,0)的直线l 有公共点,则直线l 斜率k 的取值范围是() A.33,22⎡-⎢⎣⎦ B.33,33⎡-⎢⎣⎦C.11,22⎡⎤-⎢⎥⎣⎦ D.[]1,1-2.已知函数,则()2log 1,026,0x x f x x x ->⎧=⎨-≤⎩,则()()11f f --=A.22log 32- B.2log 71-C.2D.2log 63.如果幂函数()a f x x =的图象经过点()2,4,则()f x 在定义域内A.为增函数B.为减函数C.有最小值D.有最大值4.已知(2,5,6)A -,点P 在y 轴上,||7PA =,则点P 的坐标是A.(0,8,0)B.(0,2,0)C.(0,8,0)或(0,2,0)D.(0,8,0)-5.角α的终边经过点()2,1-,则2sin 3cos αα+的值为()A.55-C.5D.5-6.已知函数1()sin()f x x ωφ=+(0,2ωφπ><)的部分图象如图所示,则,ωφ的值分别为A.2,3π B.2, 3π-C.1, 6π D.1, 6π-7.已知1tan 2α=,则cos sin cos sin αααα+=-().A.2B.2-C.3D.3-8.如图,四边形ABCD 是平行四边形,则()A. B.C. D.9.下表是某次测量中两个变量,x y 的一组数据,若将y 表示为关于x 的函数,则最可能的函数模型是x 23456789y0.63 1.01 1.26 1.46 1.63 1.77 1.89 1.99A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型10.已知角α满足2cos2cos 04παα⎛⎫=+≠⎪⎝⎭,则sin2α=A .18- B.78-C.18 D.7811.已知角θ为第四象限角,则点()sin ,tan P θθ位于()A.第一象限B.第二象限C.第三象限D.第四象限12.从3名男同学,2名女同学中任选2人参加体能测试,则选到的2名同学中至少有一名男同学的概率是()A.910 B.45C.25 D.12二、填空题(本大题共4小题,共20分)0.258+(1258-)0+323log=_____14.若tan(2,4πα+=则sin cossin cosαααα-=+______15.已知tan3α=,则sin cossin cosαααα+=-___________16.函数212()log()f x x x=-的单调增区间为________三、解答题(本大题共6小题,共70分)17.降噪耳机主要有主动降噪耳机和被动降噪耳机两种.其中主动降噪耳机的工作原理是:先通过微型麦克风采集周围的噪声,然后降噪芯片生成与噪声振幅相同、相位相反的反向声波来抵消噪声(如图所示).已知某噪声的声波曲线是()2sin(0,0)3f x A x Aπϕϕπ⎛⎫=+>≤<⎪⎝⎭,其中的振幅为2,且经过点()1,2-.(1)求该噪声声波曲线的解析式()f x以及降噪芯片生成的降噪声波曲线的解析式()g x;(2)将函数()f x图象上各点的横坐标变为原来的3π倍,纵坐标不变得到函数()h x的图象.若锐角θ满足()1013hθ=-,求cos2θ的值.18.已知定义域为R的函数()122xxaf xb+-+=+是奇函数.(1)求,a b的值;(2)判断函数()f x的单调性(只写出结论即可);(3)若对任意的[1,1]t∈-不等式()()2220f t t f k t-+-<恒成立,求实数k的取值范围19.已知a R ∈,函数()21log f x a x ⎛⎫=+ ⎪⎝⎭.(1)当5a =时,解不等式()0f x >;(2)若关于x 的方程()()2log 4250f x a x a ⎡⎤--+-=⎣⎦的解集中恰有一个元素,求a 的取值范围;(3)设0a >,若对任意1,12t ⎡⎤∈⎢⎥⎣⎦,函数()f x 在区间[],1t t +上的最大值与最小值的差不超过1,求a 的取值范围.20.如图,正三棱柱111ABC A B C -的底面边长为3,侧棱13AA =,D 是CB 延长线上一点,且BD BC =()1求二面角1B AD B --的正切值;()2求三棱锥11C ABB -的体积21.函数()()2log 21x f x =-(1)解不等式()1f x <;(2)若方程()()4log 4x f x m =-有实数解,求实数m 的取值范围22.已知,a b ∈R ,0a ≠,函数()cos )f x x x b =++,1()sin cos 22a g x a x x a =⋅+++(1)若(0,)x π∈,()5f x b =-+,求sin cos x x -的值;(2)若不等式()()f xg x ≤对任意x ∈R 恒成立,求b 的取值范围参考答案一、选择题(本大题共12小题,共60分)1、B【解析】利用点到直线的距离公式和直线和圆的位置关系直接求解【详解】根据题意得,圆心(﹣1,0),r =1,设直线方程为y ﹣0=k (x ﹣1),即kx ﹣y ﹣k =0∴圆心到直线的距离d =≤1,解得33-≤k 33≤故选B【点睛】本题考查直线和圆的位置关系,点到直线的距离公式,属于基础题2、B 【解析】因为()2log 1,026,0x x f x x x ->⎧=⎨-≤⎩,所以()()()()2112617117log 71f f f f --=---=--==-,,故选B.3、C【解析】由幂函数()f x x α=的图象经过点(2,4),得到2()f x x =,由此能求出函数的单调性和最值【详解】解: 幂函数()f x x α=的图象经过点(2,4),()224a f ∴==,解得2a =,2()f x x ∴=,()f x ∴在(],0x ∈-∞递减,在[)0,x ∈+∞递增,有最小值,无最大值故选C【点睛】本题考查幂函数的概念和应用,是基础题.解题时要认真审题,仔细解答4、C【解析】依题意设()0,,0P b ,根据7PA ==,解得2,8b =,所以选C .5、D【解析】根据三角函数定义求解即可.【详解】因为角α的终边经过点()2,1-,所以5sin 5α==,25cos 5α==-,所以2565452sin 3cos 555αα+=-=-.故选:D6、B 【解析】由条件知道:27,36x x ππ==均是函数的对称中心,故这两个值应该是原式子分母的根,故得到27sin()0,sin()036w w πφπφ+=+=,由图像知道周期是π,故2w =,故47sin()0,sin()033πφπφ+=+=,再根据三角函数的对称中心得到4+=k 3πφπ,故.3πφ=-如果7433k πφπφπ+=⇒=-,根据2πφ<,得到.3πφ=-故答案为B 点睛:根据函数的图像求解析式,一般要考虑的是图像中的特殊点,代入原式子;再就是一些常见的规律,分式型的图像一般是有渐近线的,且渐近线是分母没有意义的点;还有常用的是函数的极限值等等方法7、C 【解析】将cos sin cos sin αααα+-分子分母同除以cos α,再将1tan 2α=代入求解.【详解】11cos sin 1tan 231cos sin 1tan 12αααααα+++===---.故选:C【点睛】本题主要考查同角三角函数基本关系式,还考查了运算求解的能力,属于基础题.8、D【解析】由线性运算的加法法则即可求解.【详解】如图,设交于点,则.故选:D9、D【解析】对于A ,由于x 均匀增加1,而y 值不是均匀递增,∴不是一次函数模型;对于B ,由于该函数是单调递增,不是二次函数模型;对于C ,x y a =过()0,1,∴不是指数函数模型,故选D.10、B【解析】∵2cos2cos 4παα⎛⎫=+ ⎪⎝⎭∴2222(cos sin )2(cos sin )(cos sin )(cos sin )02αααααααα-=+-=-≠,∴2cos sin 4αα+=,两边平方整理得11+2sin cos 1+sin28ααα==,∴7sin28α=-.选B 11、C 【解析】根据三角函数的定义判断sin θ、tan θ的符号,即可判断.【详解】因为θ是第四象限角,所以sin 0θ<,tan 0θ<,则点(sin ,tan )θθ位于第三象限,故选:C12、A【解析】先计算一名男同学都没有的概率,再求至少有一名男同学的概率即可.【详解】两名同学中一名男同学都没有的概率为2225110C C =,则2名同学中至少有一名男同学的概率是1911010-=.故选:A .二、填空题(本大题共4小题,共20分)13、5【解析】根据根式、指数和对数运算化简所求表达式.【详解】依题意,原式()1134422122125=⨯++=++=.故答案为:5【点睛】本小题主要考查根式、指数和对数运算,考查化归与转化的数学思想方法,属于基础题.14、12-【解析】sin cos sin cos αααα-=+tan 111tan 12tan()4απαα-=-=-++15、2【解析】将齐次式弦化切即可求解.【详解】解:因为tan 3α=,所以sin cos tan 1312sin cos tan 131+++===---αααααα,故答案为:2.16、1,12⎡⎫⎪⎢⎣⎭.【解析】结合定义域由复合函数的单调性可解得结果.【详解】由20x x ->得()f x 定义域为()0,1,令2t x x =-,则t 在112⎡⎫⎪⎢⎣⎭,单调递减,又12log y t =在()0,∞+单调递减,所以()f x 的单调递增区间是112⎡⎫⎪⎢⎣⎭,.故答案为:112⎡⎫⎪⎢⎣⎭,.三、解答题(本大题共6小题,共70分)17、(1)()252sin 36f x x ππ⎛⎫=+ ⎪⎝⎭,()252sin 36g x x ππ⎛⎫=-+ ⎪⎝⎭(2)123526【解析】(1)利用函数的振幅求得A ,代入()1,2-求得ϕ的值,从而求得函数()f x ,利用对称性求得函数()g x ;(2)利用三角函数图像变换求得()h x ,由()1013h θ=-得5cos 2313πθ⎛⎫+=- ⎪⎝⎭,利用同角三角函数的基本关系式及两角和与差的三角公式求得结果.【小问1详解】解:由()2sin (0,0)3f x A x A πϕϕπ⎛⎫=+>≤< ⎪⎝⎭振幅为2知2A =,()22sin 3f x x πϕ⎛⎫∴=+ ⎪⎝⎭,代入()1,2-有22sin 23πϕ⎛⎫+=- ⎪⎝⎭,272,2326k k πππϕπϕπ∴+=-+∴=-+,而0ϕπ≤<,()525,2sin 636f x x πππϕ⎛⎫∴=∴=+ ⎪⎝⎭而()f x 与()g x 关于x 轴对称,()()252sin 36g x f x x ππ⎛⎫∴=-=-+ ⎪⎝⎭【小问2详解】由已知()352sin 26h x f x x ππ⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭,()5102sin 22sin 22cos 2623313h ππππθθθθ⎛⎫⎛⎫⎛⎫∴=+=++=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,5cos 2313πθ⎛⎫∴+=- ⎪⎝⎭40,22333ππππθθ<<∴<+< ,而514cos 2cos 31323ππθ⎛⎫+=->-= ⎪⎝⎭,故223ππθπ<+<,12sin 2313πθ⎛⎫∴+= ⎪⎝⎭cos2cos 233ππθθ⎡⎤⎛⎫∴=+- ⎪⎢⎥⎝⎭⎣⎦cos 2cos sin 2sin 3333ππππθθ⎛⎫⎛⎫=+++ ⎪ ⎝⎭⎝⎭51123132132⎛⎫=-⨯+⨯ ⎪⎝⎭123526-=.18、(1)1a =,2b =;(2)见解析;(3)(2,)+∞.【解析】(1)根据函数奇偶性得()00f =,()()11f f -=-,解得,a b 的值;最后代入验证,(2)可举例比较大小确定单调性,(3)根据函数奇偶性与单调性将不等式化简为2k t >,再根据恒成立转化为对应函数最值问题,最后根据函数最值得结果.【详解】(1) ()f x 在R 上是奇函数,∴()00f =,∴102a b -+=+,∴1a =,∴()1122x x f x b+-=+,∴()()11f f -=-,∴111214b b --=-++,∴2b =,∴()11222xx f x +-=+,经检验知:()()f x f x -=,∴1a =,2b =(2)由(1)可知,()()()21211221221x x x f x -++==-+++在R 上减函数.(3)()()2220f t t f k t -+-< 对于[]1,1t ∈-恒成立,()()222f t t f k t ∴-<--对于[]1,1t ∈-恒成立, ()f x 在R 上是奇函数,()()222f t t f t k ∴-<-对于[]1,1t ∈-恒成立,又 ()f x 在R 上是减函数,222t t t k ∴->-,即2k t >对于[]1,1t ∈-恒成立,而函数()2g x t =在[]1,1-上的最大值为2,2k ∴>,∴实数k 的取值范围为()2,+∞【点睛】对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.19、(1)()1,0,4x ⎛⎫∈-∞-⋃+∞ ⎪⎝⎭.(2)(]{}1,23,4 .(3)2,3⎡⎫+∞⎪⎢⎣⎭【解析】(1)当5a =时,解对数不等式即可;(2)根据对数的运算法则进行化简,转化为一元二次方程,讨论a 的取值范围进行求解即可;(3)根据条件得到11f t f t -+≤()(),恒成立,利用换元法进行转化,结合对勾函数的单调性进行求解即可.试题解析:(1)由21log 50x >⎛⎫+ ⎪⎝⎭,得151x +>,解得()1,0,4x ⎛⎫∈-∞-⋃+∞ ⎪⎝⎭(2)由f (x )﹣log 2[(a ﹣4)x +2a ﹣5]=0得log 2(1x +a )﹣log 2[(a ﹣4)x +2a ﹣5]=0即log 2(1x +a )=log 2[(a ﹣4)x +2a ﹣5],即1x+a =(a ﹣4)x +2a ﹣5>0,①则(a ﹣4)x 2+(a ﹣5)x ﹣1=0,即(x +1)[(a ﹣4)x ﹣1]=0,②,当a =4时,方程②的解为x =﹣1,代入①,成立当a =3时,方程②的解为x =﹣1,代入①,成立当a ≠4且a ≠3时,方程②的解为x =﹣1或x 14a =-,若x =﹣1是方程①的解,则1x +a =a ﹣1>0,即a >1,若x 14a =-是方程①的解,则1x+a =2a ﹣4>0,即a >2,则要使方程①有且仅有一个解,则1<a ≤2综上,若方程f (x )﹣log 2[(a ﹣4)x +2a ﹣5]=0的解集中恰好有一个元素,则a 的取值范围是1<a ≤2,或a =3或a =4(3)函数f (x )在区间[t ,t +1]上单调递减,由题意得f (t )﹣f (t +1)≤1,即log 2(1t +a )﹣log 2(11t ++a )≤1,即1t +a ≤2(11t ++a ),即a ()12111t t t t t -≥-=++设1﹣t =r ,则0≤r 12≤,()()()2111232t r r t t r r r r -==+---+,当r =0时,232r r r =-+0,当0<r 12≤时,212323r r r r r =-++-,∵y =r 2r +在(0)上递减,∴r 219422r +≥+=,∴211229323332r r r r r =≤=-++--,∴实数a 的取值范围是a 23≥【一题多解】(3)还可采用:当120x x <<时,1211a a x x ++>,221211log log a a x x >⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,所以()f x 在()0,∞+上单调递减则函数()f x 在区间[],1t t +上的最大值与最小值分别为()f t ,()1f t +()()22111log log 11f t f t a a t t ⎛⎫⎛⎫-+=+-+≤ ⎪ ⎪+⎝⎭⎝⎭即()2110at a t ++-≥,对任意1,12t ⎡⎤∈⎢⎥⎣⎦成立因为0a >,所以函数()211y at a t =++-在区间1,12⎡⎤⎢⎥⎣⎦上单调递增,12t =时,y 有最小值3142a -,由31042a -≥,得23a ≥故a 的取值范围为2,3⎡⎫+∞⎪⎢⎣⎭20、(1)2(2)934【解析】()1取BC 中点O,11B C 中点E,连结OE,OA,以O 为原点,OD 为x 轴,OE 为y 轴,OA 为z 轴,建立空间直角坐标系,利用向量法能求出二面角1B AD B --的正切值()2三棱锥11C ABB -的体积1111C ABB A BB C V V --=,由此能求出结果【详解】()1取BC 中点O ,11B C 中点E ,连结OE ,OA ,由正三棱柱111ABC A B C -的底面边长为3,侧棱13AA =,D 是CB 延长线上一点,且BD BC=以O 为原点,OD 为x 轴,OE 为y 轴,OA 为z 轴,建立空间直角坐标系,则13(,2B 3,0),(0,A 0,2,9(,2D 0,0),3(,2B 0,0),所以9(,2AD = 0,33)2-,13(,2AB = 3,332-,其中平面ABD 的法向量(0,n =1,0),设平面1ADB 的法向量(,m x = y ,)z ,则19330223333022m AD x z m AB x y z ⎧⋅=-=⎪⎪⎨⎪⋅=+-=⎪⎩,取3z =,得(1,m =1,3),设二面角1B AD B --的平面角为θ,则1cos 5m n m n θ⋅==⋅,则12sin 155θ=-=,则sin tan 2cos θθθ==,所以二面角1B AD B --的正切值为2()2由(1)可得AO ⊥平面11BB C ,所以AO 是三棱锥11A BB C -的高,且332AO =,所以三棱锥11C ABB -的体积:11111111331933333224C ABB A BB C BB C V V AO S --==⨯⨯=⨯⨯⨯⨯= 【点睛】本题主要考查了二面角的求解,及空间几何体的体积的计算,其中解答中根据几何体的结构特征,建立适当的空间直角坐标系,利用向量的夹角公式求解二面角问题是求解空间角的常用方法,同时注意“等体积法”在求解三棱锥体积中的应用,着重考查了推理与运算能力,属于中档试题21、(1){}20log 3x x <<(2)1m >【解析】(1)由()1f x <,根据对数的单调性可得212x -<,然后解指数不等式即可.(2)由()()4log 4x f x m =-实数根,化为214x x m -=-有实根,令2x t =,22()210t t m ⋅-⋅+-=有正根即可,对称轴12t =,开口向上,只需0∆≥即可求解.【详解】(1)由()1f x <,即2log (21)1x -<,所以0212x <-<,123x <<,解得20log 3x <<所以不等式的解集为{}20log 3x x <<.(2)由()()4log 4x f x m =-实数根,即()()221log 21log 42x x m -=-有实数根,所以21x -=有实根,两边平方整理可得22(2)2210x x m ⋅-⋅+-=令2x t =,且1t >,由题意知22()210t t m ⋅-⋅+-=有大于1根即可,即22()21t t m ⋅-⋅+=,令2()2()21g t t t =⋅-⋅+,1t >,故()1g t >故1m >.故实数m 的取值范围1m >.【点睛】本题考查了利用对数的单调性解不等式、根据对数型方程的根求参数的取值范围,属于中档题.22、(1)5(2)见解析.【解析】(1)利用同角三角函数基本关系式进行求解;(2)作差,分离参数,将问题转化为求函数的最值问题,再利用换元思想进行求解.试题解析:(1)依题意得10sin cos 5x x +=,222sin cos 2sin ·cos 5x x x x ∴++=,即32sin ·cos 5x x =-812sin ·cos 5x x ∴-=,即()2228sin cos 2sin ·cos sin cos 5x x x x x x +-=-=由32sin ·cos 05x x =-<,()0,x π∈,得,2x ππ⎛⎫∈ ⎪⎝⎭,sin 0,cos sin cos 0,x x x x ∴>∴-210sin cos ,5x x ∴-=(2)即不等式)1sin cos sin cos 22a b a x x x x a ≤⋅+++++对任意R x ∈恒成立,即)min1sin cos sin cos 22a b a x x x x a ⎡⎤≤⋅++++⎢⎥⎣⎦下求函数)1sin cos sin cos 22a y a x x x x a =⋅+++++的最小值令sin cos ,t x x =+则4t x π⎛⎫⎡=+∈ ⎪⎣⎝⎭且21sin cos .2t x x -⋅=令())1sin cos sin cos 22a m t y a x x x x a ==⋅+++++()2211122222a t a a t a a-=+++=+++()22221222,022a a t t t a a a a ⎛⎫⎛=+++=++≠ ⎪ ⎪ ⎝⎭⎝⎭1°当()201,a m t a⎡-<<<⎣即时在区间上单调递增,()()(min 1.m t m a a ∴==+2°当20a ≤-<,即1a ≥时,()2min 2.m t m a ⎛⎫=-= ⎪ ⎪⎝⎭3°当()(2101,min a m t m a a a <-≤≤-==+即时4°当()(2110,min .a m t m a a a ->-<<==+即时min 2111,0a y a a a a ≥⎧⎪∴=⎨+<≠⎪⎩,所以当1a ≥时,2b ≤;当0a <或0<1a <时,1.b a a ≤+。

高一数学期末考试试题及答案

高一数学期末考试试题及答案

高一数学期末考试试题及答案高一期末考试试题一、选择题1.已知集合M={x∈N/x=8-m,m∈N},则集合M中的元素的个数为()A.7 B.8 C.9 D.10答案:B。

解析:当m=1时,x=7;当m=2时,x=6;当m=3时,x=5;当m=4时,x=4;当m=5时,x=3;当m=6时,x=2;当m=7时,x=1;当m=8时,x=0.因此,集合M中的元素的个数为8.2.已知点A(x,1,2)和点B(2,3,4),且AB=26,则实数x的值是()A.−3或4 B.6或2 C.3或−4 D.6或−2答案:C。

解析:根据勾股定理,AB=√[(x-2)²+(1-3)²+(2-4)²]=√[(x-2)²+4]。

因为AB=26,所以√[(x-2)²+4]=26,解得x=3或-7.但是题目中说了点A的横坐标为实数,所以x=3.3.已知两个球的表面积之比为1:9,则这两个球的半径之比为()A.1:3 B.1:3 C.1:9 D.1:81答案:B。

解析:设两个球的半径分别为r1和r2,则它们的表面积之比为4πr1²:4πr2²=1:9,化简得.4.圆x+y=1上的动点P到直线3x−4y−10=0的距离的最小值为()A.2 B.1 C.3 D.4答案:A。

解析:首先求出直线3x−4y−10=0与圆x+y=1的交点Q,解得Q(2,-1),然后求出点P到直线的距离d,设P(x,y),则d=|(3x-4y-10)/5|,根据点到直线的距离公式。

将P点的坐标代入d中,得到d的表达式为d=|(3x-4y-16)/5|。

将d表示成x和y的函数,即d=f(x,y)=(3x-4y-16)/5,然后求出f(x,y)的最小值。

由于f(x,y)的系数3和-4的比值为3:4,所以f(x,y)的最小值为f(2,-1)=-2/5,即P点到直线的最小距离为2/5,取整后为2.5.直线x−y+4=0被圆x²+y²+4x−4y+6=0截得的弦长等于()A.12B.22C.32D.42答案:B。

2023-2024学年北京市海淀区高一(上)期末数学试卷【答案版】

2023-2024学年北京市海淀区高一(上)期末数学试卷【答案版】

2023-2024学年北京市海淀区高一(上)期末数学试卷一、选择题:共14小题,每小题4分,共56分.在每小题列出的四个选项中,选出符合题目要求的一项 1.已知全集U ={﹣2,﹣1,0,1,2},集合A ={﹣2,﹣1,0},则∁U A =( ) A .{1,2,3}B .{1,2}C .(0,2)D .(1,2)2.某学校有高中学生1500人,初中学生1000人.学生社团创办文创店,想了解初高中学生对学校吉祥物设计的需求,用分层抽样的方式随机抽取若干人进行问卷调查,已知在初中学生中随机抽取了100人,则在高中学生中抽取了( ) A .150人B .200人C .250人D .300人3.命题p :“∃x ∈R ,x +2≤0”的否定是( ) A .∀x ∈R ,x +2≤0 B .∃x ∈R ,x +2≥0 C .∀x ∈R ,x +2>0D .∃x ∈R ,x +2>04.方程组{x +y =0x 2+x =2的解集是( )A .{(1,﹣1),(﹣1,1)}B .{(1,1),(﹣2,2)}C .{(1,﹣1),(﹣2,2)}D .{(2,﹣2),(﹣2,2)}5.某部门调查了200名学生每周的课外活动时间(单位:h ),制成了如图所示的频率分布直方图,其中课外活动时间的范围是[10,20],并分成[10,12),[12,14),[14,16),[16,18),[18,20]五组.根据直方图,判断这200名学生中每周的课外活动时间不少于14h 的人数是( )A .56B .80C .144D .1846.若实数a ,b 满足a >b ,则下列不等式成立的是( ) A .|a |>|b |B .a +c >b +cC .a 2>b 2D .ac 2>bc 27.函数f (x )=2x +2x 的零点所在的区间为( ) A .(0,1)B .(﹣1,0)C .(1,2)D .(2,3)8.在同一个坐标系中,函数f (x )=log a x ,g (x )=a ﹣x ,h (x )=x a 的部分图象可能是( )A.B.C.D.9.下列函数中,既是奇函数,又在(0,+∞)上单调递减的是()A.f(x)=√x B.f(x)=﹣x|x|C.f(x)=1x2+1D.f(x)=x310.已知a=20.1,b=log2√3,c=log3√2,则实数a,b,c的大小关系是()A.c>a>b B.c>b>a C.a>c>b D.a>b>c11.已知函数f(x)=12x+1−a2,则“a=1”是f(x)为奇函数的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12.已知函数f(x)=log2(x+1)+x﹣2,则不等式f(x)<0的解集为()A.(﹣∞,1)B.(﹣1,1)C.(0,1)D.(1,+∞)13.科赫(Koch)曲线是几何中最简单的分形,科赫曲线的产生方式如下:如图,将一条线段三等分后,以中间一段为边作正三角形并去掉原线段生成1级科赫曲线“”,将1级科赫曲线上每一线段重复上述步骤得到2级科赫曲线,同理可得3级科赫曲线…在分形中,一个图形通常由N个与它的上一级图形相似,且相似比为r的部分组成.若r D=1N,则称D为该图形的分形维数.那么科赫曲线的分形气维数是()A .log 23B .log 32C .1D .2log 3214.已知函数f(x)={x +a ,x ≤ax 2,x >a ,若存在非零实数x 0,使得f (﹣x 0)=﹣f (x 0)成立,则实数a 的取值范围是( ) A .(﹣∞,0]B .(−∞,14]C .[4,0]D .[−2,14]二、填空题:共6小题,每小题5分,共30分 15.函数f (x )=lg (x ﹣1)的定义域是 .16.已知幂函数f (x )的图象经过点(2,8),则f (x )= .17.农科院作物所为了解某种农作物的幼苗质量,分别从该农作物在甲、乙两个不同环境下培育的幼苗中各随机抽取了15株幼苗进行检测,量出它们的高度如图(单位:cm ):记该样本中甲、乙两种环境下幼苗高度的中位数分别为a ,b ,则|a ﹣b |= .若以样本估计总体,记甲、乙两种环境下幼苗高度的标准差分别为s 1,s 2,则s 1 s 2(用“<,>或=”连接).18.已知函数f(x)=x +4x−a 没有零点,则a 的一个取值为 ;a 的取值范围是 .19.已知函数f(x)={2x ,x ≥0−x 2,x <0,则f (x )的单调递增区间为 ;满足|f (x )|<4×104的整数解的个数为 .(参考数据:lg 2≈0.30)20.共享单车已经逐渐成为人们在日常生活中必不可少的交通工具.通过调查发现人们在单车选择时,可以使用“Tullock 竞争函数”进行近似估计,其解析式为S(x)=x ax a +(1−x)a ,x ∈[0,1],a >0(其中参数a 表示市场外部性强度,a 越大表示外部性越强).给出下列四个结论: ①S (x )过定点(12,12);②S (x )在[0,1]上单调递增; ③S (x )关于x =12对称;④取定x ,外部性强度a 越大,S (x )越小. 其中所有正确结论的序号是 .三、解答题:共64分,解答应写出文字说明,演算步骤或证明过程.21.(12分)化简求值:(Ⅰ)(49)0.5+(6427)13+(0.1)−0.2−3π0(Ⅱ)5log32−log3329+5log5322.(12分)已知一元二次方程2x2+3x﹣2=0的两个实数根为x1,x2.求值:(1)x12+x22;(2)1x1+1x2.23.(9分)国务院正式公布的《第一批全国重点文物保护单位名单》中把重点文物保护单位(下述简称为“第一批文保单位”)分为六大类.其中“A:革命遗址及革命纪念建筑物”、“B:石窟寺”、“C:古建筑及历史纪念建筑物”、“D:石刻及其他”、“E:古遗址”、“F:古墓葬”,北京的18个“第一批文保单位”所在区分布如下表:(Ⅰ)某个研学小组随机选择北京市“第一批文保单位”中的一个进行参观,求选中的参观单位恰好为“C:古建筑及历史纪念建筑物”的概率;(Ⅱ)小王同学随机选择北京市“第一批文保单位”中的“A:革命遗址及革命纪念建筑物”中的一个进行参观:小张同学随机选择北京市“第一批文保单位”中的“C:古建筑及历史纪念建筑物”中的一个进行参观.两人选择参观单位互不影响,求两人选择的参观单位恰好在同一个区的概率;(Ⅲ)现在拟从北京市“第一批文保单位”中的“C:古建筑及历史纪念建筑物”中随机抽取2个单位进行常规检查,记抽到海淀区的概率为P1,抽不到海淀区的概率记为P2,试判断P1和P2的大小(直接写出结论).24.(9分)已知集合A={x|x2−x−2<0},B={x||x−52|≥32}.(Ⅰ)求A∪B,A∩∁R B;(Ⅱ)记关于x的不等式x2﹣(2m+4)x+m2+4m≤0的解集为M,若B∪M=R,求实数m的取值范围.25.(11分)已知函数f(x)=ln(1﹣x)+kln(1+x),请从条件①、条件②这两个条件中选择一个作为已知,解答下面的问题:条件①:f(x)+f(﹣x)=0条件②:f(x)﹣f(﹣x)=0注:如果选择条件①和条件②分别解答,按第一个解答记分.(Ⅰ)求实数k的值;(Ⅱ)设函数F(x)=(1﹣x)(1+x)k,判断函数F(x)在区间上(0,1)的单调性,并给出证明;(Ⅲ)设函数g(x)=f(x)+x k+2|k|,指出函数g(x)在区间(﹣1,0)上的零点的个数,并说明理由.26.(11分)已知函数f(x),g(x),h(x)的定义域均为R,给出下面两个定义:①若存在唯一的x∈R,使得f(g(x))=h(f(x)),则称g(x)与h(x)关于f(x)唯一交换;②若对任意的x∈R,均有f(g(x))=h(f(x)),则称g(x)与h(x)关于f(x)任意交换.(Ⅰ)请判断函数g(x)=x+1与h(x)=x﹣1关于f(x)=x2是唯一交换还是任意交换,并说明理由;(Ⅱ)设f(x)=a(x2+2)(a≠0),g(x)=x2+bx﹣1,若存在函数h(x),使得g(x)与h(x)关于f(x)任意交换,求b的值;(Ⅲ)在(Ⅱ)的条件下,若g(x)与f(x)关于ω(x)=e x−1e x+1唯一交换,求a的值.2023-2024学年北京市海淀区高一(上)期末数学试卷参考答案与试题解析一、选择题:共14小题,每小题4分,共56分.在每小题列出的四个选项中,选出符合题目要求的一项 1.已知全集U ={﹣2,﹣1,0,1,2},集合A ={﹣2,﹣1,0},则∁U A =( ) A .{1,2,3}B .{1,2}C .(0,2)D .(1,2)解:∵全集U ={﹣2,﹣1,0,1,2},集合A ={﹣2,﹣1,0},∴∁U A ={1,2}. 故选:B .2.某学校有高中学生1500人,初中学生1000人.学生社团创办文创店,想了解初高中学生对学校吉祥物设计的需求,用分层抽样的方式随机抽取若干人进行问卷调查,已知在初中学生中随机抽取了100人,则在高中学生中抽取了( ) A .150人B .200人C .250人D .300人解:由题意可知,抽样比为1001000=110,所以在高中学生中抽取的人数为1500×110=150人.故选:A .3.命题p :“∃x ∈R ,x +2≤0”的否定是( ) A .∀x ∈R ,x +2≤0 B .∃x ∈R ,x +2≥0 C .∀x ∈R ,x +2>0D .∃x ∈R ,x +2>0解:由含有量词的命题的否定方法:先改变量词,然后再否定结论, 命题p :∃x ∈R ,x +2≤0,则命题p 的否定是:∀x ∈R ,x +2>0. 故选:C .4.方程组{x +y =0x 2+x =2的解集是( )A .{(1,﹣1),(﹣1,1)}B .{(1,1),(﹣2,2)}C .{(1,﹣1),(﹣2,2)}D .{(2,﹣2),(﹣2,2)}解:解{x +y =0x 2+x =2得,{x =−2y =2或{x =1y =−1,∴原方程组的解集为:{(1,﹣1),(﹣2,2)}. 故选:C .5.某部门调查了200名学生每周的课外活动时间(单位:h ),制成了如图所示的频率分布直方图,其中课外活动时间的范围是[10,20],并分成[10,12),[12,14),[14,16),[16,18),[18,20]五组.根据直方图,判断这200名学生中每周的课外活动时间不少于14h 的人数是( )A.56B.80C.144D.184解:每周的课外活动时间不少于14h的频率为2×(0.16+0.12+0.08)=0.72,故所求人数N=0.72×200=144,故选:C.6.若实数a,b满足a>b,则下列不等式成立的是()A.|a|>|b|B.a+c>b+c C.a2>b2D.ac2>bc2解:由a>b,取a=1,b=﹣1,则可排除A,C,当c=0时,ac2=bc2,故D错误,由a>b,可得a+c>b+c,故B正确.故选:B.7.函数f(x)=2x+2x的零点所在的区间为()A.(0,1)B.(﹣1,0)C.(1,2)D.(2,3)解:函数定义域为R,且在R上单调递增,<0,f(﹣1)•f(0)<0f(0)=1>0,f(﹣1)=2﹣1﹣2=−32所以函数在(﹣1,0)有唯一零点,故选:B.8.在同一个坐标系中,函数f(x)=log a x,g(x)=a﹣x,h(x)=x a的部分图象可能是()A.B.C .D .解:当a >1时,A 中,g (x )=a ﹣x应该单调递减,而h (x )=x a 在(0,1)应该在y =x 的下方,所以A 不正确; C 中,g (x )=a﹣x应该单调递减,而h (x )=x a 在(0,1)应该在y =x 的下方,f (x )=log a x 的图象应该单调递增,所以C 不正确;B 中,h (x )=x a 在(0,1)应该在y =x 的下方,所以B 不正确; D 中,f (x )=log a x 的图象应该单调递增,所以D 不正确;当0<a <1时,A 中f (x )=log a x 的图象应该单调递减,所以A 不正确; B 中,g (x )=a﹣x应该单调递增,f (x )=log a x 的图象应该单调递减,所以B 不正确;C 中,三个图象正确;D 中,g (x )=a﹣x应该单调递增,h (x )=x a 应该在(0,1)在y =x 的上方,所以D 不正确.综上所述:只有0<a <1时C 正确. 故选:C .9.下列函数中,既是奇函数,又在(0,+∞)上单调递减的是( ) A .f(x)=√x B .f (x )=﹣x |x |C .f(x)=1x 2+1 D .f (x )=x 3解:在A 中,f (x )=√x 的定义域为{x |x ≥0},定义域不关于原点对称,是非奇非偶函数,故A 错误; 在B 中,f (x )=﹣x |x |的定义域为R ,f (﹣x )=x |x |=﹣g (x ),是奇函数,x >0时,f (x )=﹣x 2在(0,+∞)上单调递减,故B 正确; 在C 中,f (x )=1x 2+1是偶函数,故C 错误;在D 中,f (x )=x 3是奇函数,在(0,+∞)上单调递增,故D 错误. 故选:B .10.已知a =20.1,b =log 2√3,c =log 3√2,则实数a ,b ,c 的大小关系是( ) A .c >a >bB .c >b >aC .a >c >bD .a >b >c解:由20.1>20,得a =20.1>1,又log 2√2<log 2√3<log 22,得12<b <1,由log 3√2<log 3√3,得c <12,综上可得a >b >c .故选:D . 11.已知函数f(x)=12x+1−a2,则“a =1”是f (x )为奇函数的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解:∵函数f(x)=12x+1−a2的定义域为R , ∴f (x )为奇函数,可得f (0)=0,解得a =1,当a =1时,f (x )=12x +1−12,f (﹣x )+f (x )=12−x +1−12+12x +1−12=2x2x +1−12+12x +1−12=0,故f (x )为奇函数.∴“a =1”是f (x )为奇函数的充要条件. 故选:C .12.已知函数f (x )=log 2(x +1)+x ﹣2,则不等式f (x )<0的解集为( ) A .(﹣∞,1)B .(﹣1,1)C .(0,1)D .(1,+∞)解:函数f (x )=log 2(x +1)+x ﹣2的定义域为(﹣1,+∞),因为y =log 2(x +1)在(﹣1,+∞)上单调递增,y =x ﹣2在(﹣1,+∞)上单调递增, 所以f (x )在(﹣1,+∞)上单调递增, 又因为f (1)=log 22+1﹣2=0,且f (x )<0,所以f (x )<f (1),所以{x >−1x <1,所以不等式f (x )<0的解集为(﹣1,1).故选:B .13.科赫(Koch )曲线是几何中最简单的分形,科赫曲线的产生方式如下:如图,将一条线段三等分后,以中间一段为边作正三角形并去掉原线段生成1级科赫曲线“”,将1级科赫曲线上每一线段重复上述步骤得到2级科赫曲线,同理可得3级科赫曲线…在分形中,一个图形通常由N 个与它的上一级图形相似,且相似比为r 的部分组成.若r D =1N,则称D 为该图形的分形维数.那么科赫曲线的分形气维数是( )A .log 23B .log 32C .1D .2log 32解:根据题意,n 级科赫曲线是由把上一级的科赫曲线全体缩小13的4个相似图形构成的,即r =13,N =4,若r D =1N ,即(13)D =14,则D =log r (1N)=log 34=2log 32.故选:D .14.已知函数f(x)={x +a ,x ≤ax 2,x >a ,若存在非零实数x 0,使得f (﹣x 0)=﹣f (x 0)成立,则实数a 的取值范围是( ) A .(﹣∞,0]B .(−∞,14]C .[4,0]D .[−2,14]解:∵x 0和﹣x 0同属于(﹣∞,a ]或(a ,+∞)时,都不可能有f (﹣x 0)=﹣f (x 0), ∴﹣x 0≤a 且x 0>a ,或x 0≤a 且﹣x 0>a , ①当﹣x 0≤a 且x 0>a 时,则﹣x 0<x 0, ∴x 0>0,若存在非零实数x 0,使得f (﹣x 0)=﹣f (x 0)成立,则﹣x 0+a =−x 02, 即a =−x 02+x 0=−(x 0−12)2+14,∵x 0>0,∴﹣(x 0−12)2+14≤14,∴a ≤14,①当x 0≤a 且﹣x 0>a 时,则﹣x 0>x 0,∴x 0<0,若存在非零实数x 0,使得f (﹣x 0)=﹣f (x 0)成立,则(﹣x 0)2=﹣(x 0+a ), 即a =−x 02−x 0=−(x 0+12)2+14,∵x 0<0,∴﹣(x 0+12)2+14≤14,∴a ≤14,综上所述,实数a 的取值范围是(﹣∞,14].故选:B .二、填空题:共6小题,每小题5分,共30分 15.函数f (x )=lg (x ﹣1)的定义域是 {x |x >1} .解:要使函数有意义,则有x ﹣1>0,解得,x >1,∴函数的定义域是{x |x >1}, 故答案为:{x |x >1}.16.已知幂函数f (x )的图象经过点(2,8),则f (x )= x 3 . 解:设幂函数f (x )=x α,把点(2,8)代入函数的解析式可得2α=8, 解得 α=3,故函数的解析式为f (x )=x 3,故答案为 x 3.17.农科院作物所为了解某种农作物的幼苗质量,分别从该农作物在甲、乙两个不同环境下培育的幼苗中各随机抽取了15株幼苗进行检测,量出它们的高度如图(单位:cm ):记该样本中甲、乙两种环境下幼苗高度的中位数分别为a ,b ,则|a ﹣b |= 3 .若以样本估计总体,记甲、乙两种环境下幼苗高度的标准差分别为s 1,s 2,则s 1 > s 2(用“<,>或=”连接).解:对空①:由题意得甲环境的幼苗高度为:31,32,33,33,35,43,44,45,49,55,57,58,59,63,65,其中位数a =45,乙环境的幼苗高度为:37,43,44,45,45,47,48,48,49,52,54,54,55,58,60,其中位数b =48,所以|a ﹣b |=|45﹣48|=3;对空②:甲环境下的幼苗平均高度为:115(31+32+33+33+35+43+44+45+49+55+57+58+59+63+65)=46.8,s 1=√115[(31−46.8)2+(32−46.8)2+(33−46.8)2+⋯+(65−46.8)2]≈1171,乙环境下的幼苗平均高度为115(37+43+44+45+45+47+48+48+49+52+54+54+55+58+60)=73915,所以s 2=√115[(37−73915)2+(43−73915)2+(44−73915)2+⋯+(60−73915)2]≈599, 所以S 1>S 2. 故答案为:3;>.18.已知函数f(x)=x +4x−a 没有零点,则a 的一个取值为 0(答案不唯一) ;a 的取值范围是 (﹣4,4) .解:函数y =x +4x ,当x >0时,y ≥2√x ⋅4x =4,当且仅当x =2时取等号,当x <0时,y ≤﹣4,所以函数f(x)=x +4x−a 没有零点,则a 的一个取值为0(答案不唯一);a 的取值范围是(﹣4,4).故答案为:0(答案不唯一);(﹣4,4).19.已知函数f(x)={2x ,x ≥0−x 2,x <0,则f (x )的单调递增区间为 (﹣∞,+∞) ;满足|f (x )|<4×104的整数解的个数为215.(参考数据:lg2≈0.30)解:当x≥0时,f(x)=2x,单调递增,当x<0时,f(x)=﹣x2,单调递增,又∵0<20=1,∴f(x)在R上单调递增,即f(x)的单调递增区间为(﹣∞,+∞),当x≥0时,f(x)=2x,由|f(x)|<4×104,可得2x<4×104,∴x<log2(4×104)=2+4lg2≈15.33,∴0≤x<15.33,又∵x∈Z,∴x的个数为16个,当x<0时,f(x)=﹣x2,由|f(x)|<4×104,可得x2<4×104,∴﹣200<x<200,又∵x<0,∴﹣200<x<0,又∵x∈Z,∴x的个数为199个,综上所述,满足|f(x)|<4×104的整数解的个数为16+199=215个.故答案为:(﹣∞,+∞);215.20.共享单车已经逐渐成为人们在日常生活中必不可少的交通工具.通过调查发现人们在单车选择时,可以使用“Tullock竞争函数”进行近似估计,其解析式为S(x)=x ax a+(1−x)a,x∈[0,1],a>0(其中参数a表示市场外部性强度,a越大表示外部性越强).给出下列四个结论:①S(x)过定点(12,12);②S(x)在[0,1]上单调递增;③S(x)关于x=12对称;④取定x,外部性强度a越大,S(x)越小.其中所有正确结论的序号是①②.解:对于①,在S(x)中,令x=12,则S(12)=(12)a2×(12)a=12,过定点(12,12),故①正确;对于②,S(x)=x ax a+(1−x)a=11+(1−xx)a=11+(1x−1)a,令g(x)=(1x−1)a,当x∈(0,1],则g(x)≥0,且由基本初等函数及复合函数的单调性知g(x)在(0,1]上单调递减,则S(x)在[0,1]上单调递增,故②正确;对于③,由②知S(x)在[0,1]上单调递增,故在[0,1]不存在对称轴,故③错误;对于④,方法一:由①知当x=12时,S(x)=12,与a的取值无关,故④错误.方法二:以a为自变量,设S(x)为T(a),则T′(a)=[x(1−x)]a[x a+(1−x)a]2lnx1−x,∵a>0,故[x(1−x)]a[x a+(1−x)a]2>0,T′(a)的正负取决于ln x1−x,当x1−x<1,即0<x<12时,T′(a)<0,随着a的增大,S(x)减小,当x1−x>1,即12<x<1时,T′(a)>0,随着a的增大,S(x)增大,故④错误.故答案为:①②.三、解答题:共64分,解答应写出文字说明,演算步骤或证明过程.21.(12分)化简求值:(Ⅰ)(49)0.5+(6427)13+(0.1)−0.2−3π0(Ⅱ)5log32−log3329+5log53解:(Ⅰ)(49)0.5+(6427)13+(0.1)−0.2−3π0=23+43+√105−3=√105−1.(Ⅱ)5log32−log3329+5log53=log3(32×932)+3=5.22.(12分)已知一元二次方程2x2+3x﹣2=0的两个实数根为x1,x2.求值:(1)x12+x22;(2)1x1+1x2.解:由题意可得x1+x2=−32,x1⋅x2=−1.(1)x12+x22=(x1+x2)2−2x1x2=(−32)2−2×(−1)=94+2=178;(2)1x1+1x2=x1+x2x1x2=−32−1=32.23.(9分)国务院正式公布的《第一批全国重点文物保护单位名单》中把重点文物保护单位(下述简称为“第一批文保单位”)分为六大类.其中“A:革命遗址及革命纪念建筑物”、“B:石窟寺”、“C:古建筑及历史纪念建筑物”、“D:石刻及其他”、“E:古遗址”、“F:古墓葬”,北京的18个“第一批文保单位”所在区分布如下表:(Ⅰ)某个研学小组随机选择北京市“第一批文保单位”中的一个进行参观,求选中的参观单位恰好为“C:古建筑及历史纪念建筑物”的概率;(Ⅱ)小王同学随机选择北京市“第一批文保单位”中的“A:革命遗址及革命纪念建筑物”中的一个进行参观:小张同学随机选择北京市“第一批文保单位”中的“C:古建筑及历史纪念建筑物”中的一个进行参观.两人选择参观单位互不影响,求两人选择的参观单位恰好在同一个区的概率;(Ⅲ)现在拟从北京市“第一批文保单位”中的“C:古建筑及历史纪念建筑物”中随机抽取2个单位进行常规检查,记抽到海淀区的概率为P1,抽不到海淀区的概率记为P2,试判断P1和P2的大小(直接写出结论).解:(Ⅰ)设选中参观单位恰好为“ C :古建筑及历史纪念建筑物”为事件A,由题意知总共有18,“ C :古建筑及历史纪念建筑物”有12,所以P(A)=1218=23;(Ⅱ)设两人选择的参观单位恰好在同一个区为事件B,由题意可知小王参观“A:革命遗址及革命纪念建筑物”与小张参观“C:古建筑及历史纪念建筑物”在同一个区的只有东城区,所以小王参观东城区景区的概率为34,小张参观东城区景区的概率为512,所以P (B )=34×512=516; (Ⅲ)当抽到的2个都是海淀区的概率为212×111=166,当抽到的2个中有1个是海淀区的概率为212×1011=1066=533, 所以P 1=166+533=16,P 2=1−16=56, 所以P 1<P 2.24.(9分)已知集合A ={x|x 2−x −2<0},B ={x||x −52|≥32}.(Ⅰ)求A ∪B ,A ∩∁R B ;(Ⅱ)记关于x 的不等式x 2﹣(2m +4)x +m 2+4m ≤0的解集为M ,若B ∪M =R ,求实数m 的取值范围. 解:(Ⅰ)∵x 2﹣x ﹣2<0,解得﹣1<x <2, ∴A ={x |﹣1<x <2},∵|x −52|≥32,解得x ≥4或x ≤1,∴B ={x |x ≤1或x ≥4},∴A ∪B ={x |x <2或x ≥4}, ∵∁R B ={x |1<x <4}, ∴A ∩∁R B ={x |1<x <2}.(Ⅱ)∵关于x 的不等式x 2﹣(2m +4)x +m 2+4m ≤0的解集为M , 由x 2﹣(2m +4)x +m 2+4m ≤0,得m ≤x ≤m +4, ∴M ={x |m ≤x ≤m +4},∵B ∪M =R ,∴{m ≤1m +4≥4,解得0≤m ≤1,∴实数m 的取值范围是{m |0≤m ≤1}.25.(11分)已知函数f (x )=ln (1﹣x )+kln (1+x ),请从条件①、条件②这两个条件中选择一个作为已知,解答下面的问题: 条件①:f (x )+f (﹣x )=0 条件②:f (x )﹣f (﹣x )=0注:如果选择条件①和条件②分别解答,按第一个解答记分. (Ⅰ)求实数k 的值;(Ⅱ)设函数F (x )=(1﹣x )(1+x )k ,判断函数F (x )在区间上(0,1)的单调性,并给出证明; (Ⅲ)设函数g (x )=f (x )+x k +2|k |,指出函数g (x )在区间(﹣1,0)上的零点的个数,并说明理由.解:(Ⅰ)令{1−x >01+x >0,解得﹣1<x <1,所以函数f (x )的定义域为(﹣1,1),若选①因为f (x )+f (﹣x )=0,即f (x )为奇函数,则ln (1﹣x )+kln (1+x )+ln (1+x )+kln (1﹣x )=0,所以(1+k )ln (1﹣x 2)=0, 因为对任意x ∈(﹣1,1)上式均成立,所以1+k =0,解得k =﹣1; 若选②因为f (x )﹣f (﹣x )=0,即f (x )为偶函数,则ln (1﹣x )+kln (1+x )﹣[ln (1+x )+kln (1﹣x )]=0,所以(1−k)ln 1−x1+x=0, 因为对任意x ∈(﹣1,1)上式均成立,可得1﹣k =0,解得k =1. (Ⅱ)若选①则k =﹣1,可得F(x)=(1−x)(1+x)−1=1−x 1+x =21+x−1, 则函数F (x )在区间(0,1)上单调递减,证明如下: 对任意x 1,x 2∈(0,1),且x 1<x 2, 则F(x 1)−F(x 2)=(21+x 1−1)−(21+x 2−1)=21+x 1−21+x 2=2(x 2−x 1)(1+x 1)(1+x 2), 因为0<x 1<x 2<1,则1+x 1>0,1+x 2>0,x 2﹣x 1>0, 所以F (x 1)﹣F (x 2)>0,即F (x 1)>F (x 2), 所以函数F (x )在区间(0,1)上单调递减;若选②则k =1,可得F (x )=(1﹣x )(1+x )=1﹣x 2, 则函数F (x )在区间(0,1)上单调递减,证明如下: 对任意x 1,x 2∈(0,1),且x 1<x 2,则F(x 1)−F(x 2)=(1−x 12)−(1−x 22)=x 22−x 12=(x 1+x 2)(x 2−x 1),因为0<x 1<x 2<1,则x 1+x 2>0,x 2﹣x 1>0, 所以F (x 1)﹣F (x 2)>0,即F (x 1)>F (x 2), 所以函数F (x )在区间(0,1)上单调递减.(Ⅲ)若选①则k =﹣1,则g(x)=f(x)+1x +2=ln 1−x 1+x +1x+2,由(Ⅱ)可知,F(x)=1−x1+x在(0,1)内单调递减,且y =lnx 在定义域内单调递增, 则f(x)=ln(1−x)−ln(1+x)=ln1−x1+x在(0,1)内单调递减, 又f (x )为奇函数,则f (x )在(﹣1,0)内单调递减,且y =1x 在(﹣1,0)内单调递减,则g (x )在(﹣1,0)内单调递减,结合g(−12)=ln3>0,g(−110)=ln 119−8<0,可知g (x )在(﹣1,0)内有且仅有一个零点;若选②则k=1,则g(x)=f(x)+x+2=ln(1﹣x2)+x+2,由(Ⅱ)可知,F(x)=1﹣x2在(0,1)内单调递减,且y=lnx在定义域内单调递增,则f(x)=ln(1﹣x)+ln(1+x)=ln(1﹣x2)在(0,1)内单调递减,又f(x)为偶函数,则f(x)在(﹣1,0)内单调递增,且y=x+2在(﹣1,0)内单调递增,则g(x)在(﹣1,0)内单调递增,结合g(−12)=ln34+32>ln1e+32=12>0,g(−99100)=ln19910000+101100<ln1e2+2=0,可知g(x)在(﹣1,0)内有且仅有一个零点.26.(11分)已知函数f(x),g(x),h(x)的定义域均为R,给出下面两个定义:①若存在唯一的x∈R,使得f(g(x))=h(f(x)),则称g(x)与h(x)关于f(x)唯一交换;②若对任意的x∈R,均有f(g(x))=h(f(x)),则称g(x)与h(x)关于f(x)任意交换.(Ⅰ)请判断函数g(x)=x+1与h(x)=x﹣1关于f(x)=x2是唯一交换还是任意交换,并说明理由;(Ⅱ)设f(x)=a(x2+2)(a≠0),g(x)=x2+bx﹣1,若存在函数h(x),使得g(x)与h(x)关于f(x)任意交换,求b的值;(Ⅲ)在(Ⅱ)的条件下,若g(x)与f(x)关于ω(x)=e x−1e x+1唯一交换,求a的值.解:(Ⅰ)g(x)与h(x)关于f(x)是唯一交换,理由如下:因为f(g(x))=(x+1)2,h(f(x))=x2﹣1,令f(g(x))=h(f(x)),所以(x+1)2=x2﹣1,解得x=﹣1,所以f(g(x))=h(f(x))有唯一解x=﹣1,所以g(x)与h(x)关于f(x)是唯一交换.(Ⅱ)由题意可知,对任意的x∈R,f(g(x))=h(f(x))成立,即对任意的x∈R,a[(x2+bx﹣1)2+2]=h(a(x2+2));因为h(x)为函数,且h(a((﹣x)2+2))=h(a(x2+2)),故b=0,故a[(x2﹣1)2+2]=h(a(x2+2)),即a[(a(x2+2)a−3)2+2]=ℎ(a(x2+2)),所以ℎ(x)=a[(xa−3)2+2]=x2a−6x+11a,综上所述,b=0.(Ⅲ)当b=0时,g(x)=x2﹣1,因为g(x)与f(x)关于w(x)=e x−1e x+1唯一交换,所以存在唯一实数x ,使得w(x 2−1)=f(e x −1e x +1), 即存在唯一实数x ,使得e x 2−1−1e x 2−1+1=a[(e x −1e x +1)2+2],即存在唯一实数x ,使得a =e x 2−1−1e x 2−1+1[(e x −1e x +1)2+2]; 令s(x)=e x 2−1−1e x 2−1+1[(e x −1e x +1)2+2],q(x)=e x 2−1−1e e2−1+1,p(x)=(e x −1e x +1)2+2,且s (x ),q (x ),p (x )定义域均为R ,又q (−x )=e (−x)2−1−1e (−x)2−1+1=e x 2−1−1ex 2−1+1=q (x ),p(−x)=(e −x −1e −x +1)2+2=(1−e x 1+e x )2+2=(e x −1e x +1)2+2=p(x), 所以q (x ),p (x )都是偶函数,所以s (x )为偶函数,因此,若存在唯一实数x 使得a =e x 2−1−1e x 2−1+1[(e x −1e x +1)2+2],只能是a =s (0),所以a =1e −11e+12=1−e2(e+1),综上所述,a 的取值为1−e2(e+1).。

2023-2024学年河北省邯郸市高一(下)期末数学试卷+答案解析

2023-2024学年河北省邯郸市高一(下)期末数学试卷+答案解析

2023-2024学年河北省邯郸市高一(下)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.有三组数据,5,5,6,6,6,7,7,7;,4,5,5,6,7,7,8,8;,3,3,3,6,9,9,9,设它们的方差依次为,则()A. B. C. D.2.在复平面内,非零复数z满足为虚数单位,则复数z对应的点在()A.一、三象限B.二、四象限C.实轴上除原点外D.坐标轴上除原点外3.已知向量,且,则向量与向量的夹角为()A. B. C. D.4.已知的顶点坐标分别是,则()A. B. C. D.5.设,是两个平面,m,l是两条直线,则下列命题为假命题的是()A.若,,,则B.若,,,则C.若,,,则D.若,,,则6.在中,,,平面内一点O满足,则向量在向量上的投影向量为()A. B. C. D.7.在三棱锥中,平面ABC,,,若该三棱锥的体积为,则其外接球的表面积为()A. B. C. D.8.甲、乙两人各有一枚质地均匀的硬币,甲抛掷2次,乙抛掷3次,事件“甲抛掷的两次中第一次正面朝上”,事件“甲抛掷的两次硬币朝上的面相同”,事件“甲得到的正面数比乙得到的正面数少”,则下列说法正确的是()A. B.C. D.二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得6分,部分选对的得2分,有选错的得0分。

9.已知非零向量,下列说法错误的是()A.若,则B.若,则C.若,且,则D.若,则与垂直的单位向量的坐标为10.已知复数z,w均不为0,则下列式子正确的是()A. B. C. D.11.在中,内角A,B,C所对的边分别为a,b,c,已知:::5:6,D为线段AC上一点,则下列判断正确的是()A.为钝角三角形B.的最大内角是最小内角的2倍C.若D为AC中点,则D.若,则三、填空题:本题共3小题,每小题5分,共15分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.血压 的最小正周期为 B.当天下午 点小王的血压为
C.当天小王有高血压D.当天小王的收缩压与舒张压之差为
【答案】BCD
11.已知函数 下列说法正确的有()
A.不存在实数a使f(x)的定义域为R
B.函数f(x)一定有最小值
C.对任意正实数af(x)的值域为R
D.若函数f(x)在区间 上单调递增则实数a的取值范围是
嘉兴市第一学期期末检测
高一数学试题卷
一、选择题:本大题共8小题每小题5分共40分在每小题给出的四个选项中只有一项是符合题目要求的.
1.已知集合 则 ()
A. B. C. D.
【答案】B
2.在平面直角坐标系 中角 的顶点与原点 重合它的始边与 轴的非负半轴重合终边 交单位圆 于点 则 的值为
A. B. C. D.
(2)
22.已知 且 是 上的奇函数且
(1)求 的解析式;
(2)若不等式 对 恒成立求 的取值范围;
(3)把区间 等分成 份记等分点的横坐标依次为 设 记 是否存在正整数 使不等式 有解?若存在求出所有 的值若不存在说明理由.
【答案】(1) ;
(2) ;
(3)存在正整数 或2.
9.下列各组函数中表示同一函数的是()
A. B.
C D.
【答案】ABD
10.血压是指血液在血管内流动时作用单位面积血管壁的侧压力它是推动血液在血管内流动的动力.血压的最大值最小值分别称为收缩压和舒张压.在未使用抗高血压药的前提下 岁以上成人收缩压 或舒张压 则说明这位成人有高血压.设从未使用过抗高血压药的小王今年 岁从某天早晨 点开始计算(即早晨 点起 )他的血压 (单位:)与经过的时间 (单位: )满足关系式 则()
【答案】
15.已知关于 的不等式 的解集为 其中 则 的最小值是___________.
【答案】
16.若 在 内无零点则 的取值范围为___________.
【答案】
四、解答题:本题共6小题共70分.解答应写出文字说明、证明过程或演算步骤.
17.已知函数
(1)求函数 的最大值;
(2)若 求 的值
【答案】(1)3(2)
C. D.
【答案】A
7.设函数 若关于x的方程 有四个实根 ( )则 的最小值为()
A. B.16C. D.17
【答案】B
8.已知abc都是正实数设 则下列判断正确的是()
A B.
C. D.
【答案】D
二、多选题:本题共4小题每小题5分共20分.在每小题给出的选项中有多项符合题目要求.全部选对的得5分有选错的得0分部分选对的得2分.
(1)请你利用所给的1月2月3月份数据求出这两个函数表达式;
(2)结果该地在4月5月6月份的新生儿人数是747883你认为哪个函数模型更符合实际?并说明理由.(参考数据由见解析
21.己知函数
(1)求 在 上的最小值;
(2)记集合 若 求 的取值范围.
【答案】(1)答案见解析
18.计算下列各式:
(1)
(2)
【答案】(1) ;
(2) .
19.已知函数 (其中 )图象上两相邻最高点之间的距离为 且点 是该函数图象上的一个最高点
(1)求函数 的解析式;
(2)把函数 的图象向右平移 个单位长度得到函数 的图象若恒有 求实数 的最小值.
【答案】(1)
(2) 的最小值为4
20.2015年10月实施了30多年的独生子女政策正式宣告终结党的十八届五中全会公报宣布在我国全面放开二胎政策.2021年5月31日中共中央政治局召开会议会议指出进一步优化生育政策实施一对夫妻可以生育三个子女政策及配套支持措施有利于改善我国人口结构落实积极应对人口老龄化国家战略保持我国人力资源禀赋优势.某镇2021年1月2月3月新生儿的人数分别为526168当年4月初我们选择新生儿人数 和月份 之间的下列两个函数关系式① ;② ( 都是常数)对2021年新生儿人数进行了预测.
【答案】C
3.已知命题 则 为()
A. B.
C. D.
【答案】D
4.设 则“ ”是“ ”的()
A.充分不必要条件B.必要不充分条件
C 充要条件D.既不充分也不必要条件
【答案】A
5.将函数 的图象向左平移 个单位得到函数f(x)的图象则()
A. B.
C D.
【答案】C
6.函数 的图象大致形状为().
A. B.
【答案】ACD
12.已知正实数xy满足 若不等式 恒成立则实数m的值可以为()
A B. C.1D.3
【答案】BC
三、填空题:本题共4小题每小题5分共20分.
13.亲爱的考生我们数学考试完整的时间是2小时则从考试开始到结束钟表的分针转过的弧度数为___________.
【答案】
14.以等边三角形每个顶点为圆心以边长为半径在另两个顶点间作一段弧三段弧围成的曲边三角形就是勒洛三角形.勒洛三角形是由德国机械工程专家机构运动学家勒洛首先发现所以以他的名字命名.一些地方的市政检修井盖方孔转机等都有应用勒洛三角形.如图已知某勒洛三角形的一段弧 的长度为 则该勒洛三角形的面积是___________.
相关文档
最新文档