一阶偏微分方程基本知识

合集下载

第七章 一阶线性偏微分方程

第七章  一阶线性偏微分方程

第七章 一阶线性偏微分方程7-1求下列方程组的通积分及满足指定条件的解。

1)⎪⎪⎩⎪⎪⎨⎧++=+=t y x dtdy y x dt dx 2)⎪⎪⎩⎪⎪⎨⎧-=-=y x dtdy y x dt dx 2 ,当0=t 时,1==y x 3)xy dz z x dy y z dx -=-=- 解 1) 方程组的两式相加,得t y x dt y x d ++=+)(2)(。

令 y x z +=,上方程化为一阶线性方程t z dtdz +=2, 解之得412121--=t e C z t 即得一个首次积分为121)4121(),,(C e t y x y x t t =+++=Φ-。

方程组的两式相减,得t dty x d -=-)(, 解之得另一个首次积分为 22221),,(C t y x y x t =+-=Φ。

易验证 021111det det 2211≠-=⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂Φ∂∂Φ∂∂Φ∂∂Φ∂x x y x 。

因此,11),,(C y x t =Φ和22),,(C y x t =Φ是两个独立的首次积分,所以,方程组的通积分为121)4121(),,(C e t y x y x t t =+++=Φ-, 22221),,(C t y x y x t =+-=Φ。

从中可解得通解为⎪⎪⎩⎪⎪⎨⎧--+'-'=---'+'=81414181414122212221t t C e C y t t C e C x t t 。

2)方程组的两式相比,得 yx y x dy dx --=2, 变形得恰当方程 02=--+x d y y d x y d y x d x ,解之得一个首次积分为 12222C xy y x =-+,即 =Φ),,(1y x t 2122)(C y y x =+-。

给方程组第一式乘以y ,第二式乘以x ,再相减得])[()22(2222y y x xy y x y x x y +--=-+-='-',1)(22-=+-'+'-'-'yy x y y y x y y x y , 1)(22=+-'+'-'-'-y y x y y y x y y x y 两边积分,得另一个首次积分为=Φ),,(2y x t 2arctanC t y x y =--, 易验证 211),,(C y x t =Φ和22),,(C y x t =Φ是两个独立的首次积分,所以,方程组的通积分为2122)(C y y x =+-,2arctan C t yx y =--, 通解为 ⎩⎨⎧'+'='-'+'+'=t C tC y t C C t C C x s i n c o s s i n )(c o s )(211212,其中211sin C C C =',212cos C C C ='。

第七章一阶线性偏微分方程

第七章一阶线性偏微分方程

Ψ ϕ1(x1, · · · , xn), · · · , ϕn−1(x1, · · · , xn)
= 常数
xj =ψj (xn)
(2) µ0dx + µ1dy1 + · · · + µndyn是某个函数ϕ的全微分,则ϕ = c就是方程的一个首次积 分。
【例1】 求方程组
的通积分。 【例2】 解方程组
dx xz
=
dy yz
=
dz xy
dx x
=
dy y
=
z
+
dz x2 + y2 + z2
7.2.4 一阶齐次线性偏微分方程的求解
7.2 一阶线性偏微分方程的求解
7.2.1 首次积分
定义 7.1 含有n个未知函数的一阶常微分方程组


dy1 dx
dy2 dx
= f1(x, y1, y2, · · · , yn), = f2(x, y1, y2, · · · , yn),

x2,
·
·
·
,
xn)
∂u ∂xi
=
0
(7.3)
则称其为一阶线性齐次偏微分方程。 4. 非线性偏微分方程 不是线性的偏微分方程为非线性偏微分方程。 5. 拟线性偏微分方程 若非线性偏微分方程关于其最高阶偏导数是线性的,则称它是拟线性偏微分方程。 本章讨论如下的一阶拟线性偏微分方程
n j=1
bj
(x1,பைடு நூலகம்
7.2 一阶线性偏微分方程的求解
5
7.2.3 利用首次积分求解常微分方程组
定义 7.2 称 方 程 组(7.5)的n个 互 相 独 立 的 首 次 积 分 全 体ϕj(x, y1, · · · , yn) = cj,j = 1, 2, · · · , n为方程组(7.5)的通积分。

matlab求解最简单的一阶偏微分方程

matlab求解最简单的一阶偏微分方程

matlab求解最简单的一阶偏微分方程一、引言在科学和工程领域,偏微分方程是非常重要的数学工具,用于描述各种现象和过程。

而MATLAB作为一种强大的数值计算软件,可以用来求解各种复杂的偏微分方程。

本文将以MATLAB求解最简单的一阶偏微分方程为主题,探讨其基本原理、数值求解方法以及具体实现过程。

二、一阶偏微分方程的基本原理一阶偏微分方程是指只含有一个未知函数的偏导数的微分方程。

最简单的一阶偏微分方程可以写成如下形式:\[ \frac{\partial u}{\partial t} = F(x, t, u, \frac{\partial u}{\partial x}) \]其中,\(u(x, t)\) 是未知函数,\(F(x, t, u, \frac{\partial u}{\partial x})\) 是给定的函数。

一阶偏微分方程可以描述很多实际问题,比如热传导、扩散等。

在MATLAB中,我们可以使用数值方法求解这类方程。

三、数值求解方法1. 有限差分法有限差分法是一种常用的数值求解偏微分方程的方法。

其基本思想是用离散的方式来逼近偏导数,然后将偏微分方程转化为代数方程组。

在MATLAB中,我们可以使用内置的求解器来求解离散化后的代数方程组。

2. 特征线法特征线法是另一种常用的数值求解方法,它利用特征线方程的特点来求解偏微分方程。

这种方法在求解一维情况下的偏微分方程时特别有效,可以提高求解的效率和精度。

四、MATLAB求解过程在MATLAB中,我们可以使用`pdepe`函数来求解一阶偏微分方程。

该函数可以针对特定的方程和边界条件,利用有限差分法进行离散化求解。

下面给出一个具体的例子来说明如何使用MATLAB求解最简单的一阶偏微分方程。

假设我们要求解如下的一维热传导方程:\[ \frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} \]其中,\(\alpha\) 是热传导系数。

2. 一阶偏微分方程

2. 一阶偏微分方程

§2 一阶偏微分方程一、 柯西-柯娃列夫斯卡娅定理[一阶偏微分方程的通解] 一阶偏微分方程的一般形式 是0),,,,,,,,(2121=∂∂∂∂∂∂nn x ux u x u u x x x F或()0,,,,,,,211=n n p p p u x x F ,其中()n i x up ii ,,2,1 =∂∂=如解出p 1,可得:p 1 = f (x 1 , x 2 ,…, x n , u , p 2 ,…, p n )当方程的解包含某些“任意元素”(指函数),如果适当选取“任意元素”时,可得方程的任意解(某些“奇异解”除外),则称这样的解为通解.在偏微分方程的研究中,重点在于确定方程在一些附加条件(即定解条件)下的解,而不在于求通解.[一阶方程的柯西问题]()()⎪⎩⎪⎨⎧==∂∂=n x x n n x x u p p u x x x f x u,,|,,,,,,,22211011 ϕ 称为柯西问题,式中),,(2n x x ϕ为已知函数,对柯西问题有如下的存在惟一性定理.[柯西-柯娃列夫斯卡娅定理] 设 f ( x 1 , x 2 ,, x n , u , p 2 ,, p n ) 在点 ( x 10 , x 20 ,, x n 0 , u 0 , p 20 ,, p n 0 ) 的某一邻域内解析,而),,(2n x x ϕ在点( x 20 ,, x n 0 ) 的某邻域内解析,则柯西问题在点 ( x 10 ,, x n 0 ) 的某一邻域内存在着惟一的解析解.这个定理应用的局限性较大,因它要求f 及初始条件都是解析函数,一般的定解问题未必能满足这种条件.对高阶方程也有类似定理.二、 一阶线性方程1. 一阶齐次线性方程[特征方程∙特征曲线∙初积分(首次积分)] 给定一阶齐次线性方程()()0,,,,,,211211=∂∂++∂∂n n n n x ux x x a x u x x x a (1)式中a i 为连续可微函数,在所考虑的区域内的每一点不同时为零(下同).方程组在有些书中写作0),,,,,,,,,(121=∂∂∂∂∂∂nn x ux u t u u x x x t F()n i ix x x a tx ,,,d d 21 = ( i = 1,2,, n ) 或()()()n n n n n x x x a x x x x a x x x x a x ,,,d ,,,d ,,,d 2121222111 === (2) 称为一阶齐次线性偏微分方程的特征方程.如果曲线l : x i = x i (t ) ( i =1,2,, n )满足特征方程(2),就称曲线l 为一阶齐次线性方程的特征曲线.如果函数ψ ( x 1 , x 2 ,, x n )在特征曲线),,2,1()(n i t x x i i ==上等于常数,即ψ ( x 1(t ) , x 2(t ) ,, x n (t ) ) = c 就称函数ψ ( x 1, x 2,, x n )为特征方程(2)的初积分(首次积分). [齐次方程的通解]1o 连续可微函数u = ψ ( x 1, x 2,, x n ) 是齐次线性方程(1)的解的充分必要条件是: ψ ( x 1, x 2,, x n )是这个方程的特征方程的初积分.2o 设ψi ( x 1 , x 2 ,, x n ) ( i = 1,2,, n 1-) 是特征方程(2)在区域D 上连续可微而且相互独立的初积分(因此在D 内的每一点,矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂---n n n n n n x x x x x x x x x 121112221212111ψψψψψψψψψ的秩为n 1-) ,则u = ω ( ψ1 ( x 1 , x 2 ,, x n ) ,, ψn -1 ( x 1 , x 2 ,, x n ) ) 是一阶齐次线性方程(1)的通解,其中ω为n 1-个变量的任意连续可微函数. [柯西问题] 考虑方程的柯西问题()()⎪⎩⎪⎨⎧==∂∂==∑n x x ni ini x x u x u x x x a ,,|0,,,2121011 ϕ 式中ϕ ( x2 ,, x n )为已知的连续可微函数.设ψi ( x 1 , x 2 ,, x n ) ( i = 1,2,, n 1-) 为特征方程的任意n 1-个相互独立的初积分,引入参变量 i ψ (1,,2,1-=n i ),从方程组()()()⎪⎪⎩⎪⎪⎨⎧===--120112201212011,,,,,,,,,n n n n n x x x x x x x x x ψψψψψψ解出x 2 ,, x n 得()()⎪⎩⎪⎨⎧==--12112122,,,,,,n n nn x x ψψψωψψψω 则柯西问题的解为u = ϕ ( ω2 ( ψ1 , ψ2 ,, ψn -1 ) ,, ωn ( ψ1 , ψ2 ,, ψn -1 ) )2.非齐次线性方程它的求解方法与拟线性方程相同.三、 一阶拟线性方程一阶拟线性方程为()()∑==∂∂ni n in i u x x x R x uu x x x a 12121,,,,,,,, 其中a i 及R 为x 1 , x 2 ,, x n , u 的连续可微函数且不同时为零. [一阶拟线性方程的求解和它的特征方程]()()⎪⎩⎪⎨⎧===u x x x R tun i u x x x a t x n n i i,,,,d d ),,2,1(,,,,d d 2121 或()()()ux x R uu x x a x u x x a x n n n n n ,,,d ,,,d ,,,d 11111 === 为原拟线性方程的特征方程.如果曲线l : x i = x i (t ) ( i =1,2,, n ) , u = u (t ) 满足特征方程,则称它为拟线性方程的特征曲线.设 ψi ( x 1 ,, x n ,u ) ( i = 1,2,, n ) 为特征方程的n 个相互独立的初积分,那末对于任何连续可微函数ω,ω ( ψ1 ( x 1,, x n , u ) , ψ2 ( x 1,, x n , u ) ,, ψn ( x 1,, x n , u ) ) = 0 都是拟线性方程的隐式解.[柯西问题] 考虑方程的柯西问题()()()⎪⎩⎪⎨⎧==∂∂==∑n x x ni n i ni x x u u x x x R x u u x x x a ,,|,,,,,,,,212121011 ϕ ϕ为已知的连续可微函数.设 ψ1 ( x 1 , x 2 ,, x n , u ) ,, ψn ( x 1 , x 2 ,, x n , u ) 为特征方程的n 个相互独立的初积分,引入参变量 n ψψψ,,,21 , 从()()()⎪⎪⎩⎪⎪⎨⎧===nn n n n u x x x u x x x u x x x ψψψψψψ,,,,,,,,,,,,2012201212011解出 x 2 ,, x n , u()()()⎪⎪⎩⎪⎪⎨⎧===n n n n n u x x ψψψωψψψωψψψω,,,,,,,,,21212122 则由()()()()()()()0,,,,,,,,,,,,,,,,,,,,,,2121221221121=-≡n n n n n n u x x x u x x x u x x x V ψψψωψψψωϕψψω给出柯西问题的隐式解.四、 一阶非线性方程[完全解·通解·奇异解] 一阶非线性方程的一般形式为()()n i x u p p p p u x x x F ii n n ,,2,10,,,,,,,,2121 =∂∂==若一阶偏微分方程的解包含任意n 个独立的常数,则称这样的解为完全解(全积分). 若V ( x 1, x 2 ,, x n , u , c 1 , c 2,, c n ) = 0为方程的完全解,从()n i c VV i ,,2,10,0 ==∂∂= 消去c i ,若得一个解,则称它为方程的奇异解(奇积分).以两个独立变量为例说明完全解与通解、奇异解的关系,设方程()yzq x z p q p z y x F ∂∂=∂∂==,,0,,,,有完全解V (x ,y ,z ,a ,b )=0 ( a ,b 为任意常数),则方程等价于从方程组()⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂=0,00,,,,q z Vy V p z V x V b a z y x V 消去a ,b 所得的方程.利用常数变易法把a ,b 看作x , y 的函数,将V (x ,y ,z ,a ,b )=0求关于x , y 的偏导数,得00=∂∂⋅∂∂+∂∂⋅∂∂+∂∂+∂∂=∂∂⋅∂∂+∂∂⋅∂∂+∂∂+∂∂ybb V y a a V q z V y V xbb V x a a V p z V x V那末0,0=∂∂⋅∂∂+∂∂⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂y b b V y a a V x b b V x a a V 与V=0联立可确定a ,b .有三种情况:1︒ 0≡∂∂≡∂∂bV a V ,将其与V (x ,y ,z ,a ,b )=0联立可确定不含任意常数的奇异解.2︒ 如0=∂∂=∂∂=∂∂=∂∂y bx b y a x a ,即回到完全解.3︒ 当0/,0/≡∂∂≡∂∂b V a V 时,必有()()0,,=∂∂y x b a ,这时,如果不属于情形2︒ ,则a 与b 存在函数关系:b=ω(a ),这里ω为任意可微函数,并从方程V (x ,y ,z ,a ,b )=0和()∂∂∂∂ωV a Vba +'=0消去a ,b ,可确定方程的通解.定理 偏微分方程的任何解包含在完全解内或通解内或奇异解内. [特征方程·特征带·特征曲线·初积分] 在一阶非线性方程:()F x x x u p p p n n 12120,,,,,,,, =中,设F 对所有变量的二阶偏导数存在且连续,称()n i uF p x F t p p Fp t u p F t x i i i ni ii i i ,,2,1)(d d d d ,1 =∂∂+∂∂-=∂∂=∂∂=∂∂∑=或up x p up x p p Fp up x p xp x n n n ni iinn ∂+∂-==∂+∂-=∂∂=∂==∂=∂∑=d d d d d d 11112211为非线性方程的特征方程.设特征方程的解为x i =x i (t ), u=u (t ), p i =p i (t ) (i =1,2,…,n )称它为非线性方程的特征带.在x 1,x 2,, x n ,u 空间的曲线x i =x i (t ), u=u (t ) (i=1,2,…,n )称为非线性方程的特征曲线.如果函数()n n p p p u x x x G ,,,,,,,,2121 在特征方程的任一解x i =x i (t ) (i =1,2,, n ), u=u (t ), p i =p i (t ) (i =1,2,, n )上等于常数,即()()()()()()()()G x t x t x t u t p t p t p t C n n 1212,,,,,,,, =那末函数()n n p p p u x x x G ,,,,,,,,2121 称为特征方程的初积分.[求完全解的拉格朗日-恰比方法] 考虑两个变量的情况.对于方程F (x ,y ,z ,p ,q )=0,选择使雅可比式()()0,,≠∂∂q p G F 的一个初积分G (x ,y ,z ,p ,q ).解方程组 ()()F x y z p q G x y z p q a ,,,,,,,,==⎧⎨⎪⎩⎪0(a 为任意常数) 得p (x ,y ,z ,a )及q (x ,y ,z ,a ).则方程d z=p d x+q d y的通解V (x ,y ,z ,a ,b )=0(b 是积分d z=p d x+q d y 出现的任意常数)就是方程F (x ,y ,z ,p ,q )=0的完全解. 例 求方程()z p q x y 22222+=+的完全解.解 方程的特征方程为()()()qy x z y qp q p z x p q p z z q z y p z x 22222222222d 22d 2d 2d 2d +-=+-=+== 这里成立zpxx p z z p d d d =+ 所以特征方程的一个初积分为z 2p 2 -x 2 .解方程组 ()()z p q x y z p x a22222222+-+=-=⎧⎨⎪⎩⎪ (a 为任意常数) 得 p a x zq y az=+=-22, 积分微分方程得完全解z x x a y y a a x x a y y ab 22222=++-++++-+ln(b 为任意常数)[某些容易求完全解的方程] 1︒ 仅含p ,q 的方程F (p ,q )=0G =p 是特征方程的一个初积分.从F (p ,q )=0与p=a (a 为任意常数)得q=ψ(a ),积分d z=a d x+ψ(a )d y得完全解z=ax+ψ(a )y+b (b 为任意常数)2︒ 不显含x ,y 的方程F (z ,p ,q )=0 特征方程为z Fqqz F p p q F q p F p z q F y p F x ∂∂-=∂∂-=∂∂+∂∂=∂∂=∂∂d d d d d 因此q d p-p d q =0,显然G qp=为一个初积分,由F (z ,p ,q )=0,q=pa (a 为任意常数)解得p=ψ(z ,a ).于是由d z=ψ(z ,a )d x+a ψ(z ,a )d y得()⎰++=b ay x a z z,d ψ (b 为任意常数) 可确定完全解.3︒ 变量分离形式的方程()f x p i i i i n,=∑=10特征方程为nn n ni iiinn n x f p x f p p f p zp f x p f x ∂∂-==∂∂-=∂∂=∂∂==∂∂∑=d d d d d 1111111可取初积分G i =f i (x i ,p i ) , (i =1,2,, n ).从f i (x i ,p i )=a i (i =1,2,, n )解出p i =ϕi (x i ,a i )得完全解()∑⎰=+=ni i i i i b x a x z 1d ,ϕ式中a i ,b 为任意常数,且a i i n=∑=10.[克莱罗方程] 方程()z p x f p p p i i n i n=+=∑121,,,称为克莱罗方程,其完全解为()z c x f c c c i i n i n=+=∑121,,,对c i 微分得x fc i i=-∂∂ (i =1,2,…,n ) 与完全解的表达式联立消去c i 即得奇异解.例 求方程z -xp -yq -pq =0的完全解和奇异解. 解 这是克莱罗方程,它的完全解是z=ax+by+ab对a,b 微分,得x=-b,y=-a ,消去a ,b 得奇异解z=-xy[发甫方程] 方程P (x,y,z )d x+Q (x,y,z )d y+R (x,y,z )d z=0 (1) 称为发甫方程,如果P,Q,R 二次连续可微并满足适当条件,那末方程可积分.如果可积分成一关系式时,则称它为完全可积.1︒ 方程完全可积的充分必要条件 当且仅当P,Q,R 满足条件0)()()(=∂∂-∂∂+∂∂-∂∂+∂∂-∂∂yP x Q R x R z P Q z Q y R P (2) 时,存在一个积分因子μ(x,y,z ),使d U 1=μ(P d x+Q d y+R d z )从而方程的通解为U 1(x,y,z )=c特别,当0,0,0=∂∂-∂∂=∂∂-∂∂=∂∂-∂∂yPx Q x R z P z Q y R 时,存在一个函数U (x,y,z )满足zUR y U Q x U P ∂∂=∂∂=∂∂=,, 从而 d U=P d x+Q d y+R d z 所以方程的通解为U (x,y,z )=c 所以完全可积的发甫方程的通解是一单参数的曲面族.定理 设对于发甫方程(1)在某区域D 上的完全可积条件(2)成立,则对D 内任一点M (x,y,z )一定有方程的积分曲面通过,而且只有一个这样的积分曲面通过. 2︒ 方程积分曲面的求法设完全可积条件(2)成立.为了构造积分曲面,把z 看成x,y 的函数(设R (x,y,z )≠0),于是原方程化为y RQ x R P z d d d --=由此得方程组()()()()⎪⎪⎩⎪⎪⎨⎧≡-=∂∂≡-=∂∂4,,3,,11z y x Q R Q y z z y x P R P x z发甫方程(1)与此方程组等价.把方程(3)中的y 看成参变量,积分后得一个含有常数 c 的通解()cy x z ~;,ϕ= 然后用未知函数()~cy 代替常数 c ,将()()z x y c y =ϕ,;~代入方程(4),在完全可积的条件下,可得()~cy 的一个常微分方程,其通解为 ()()~,cy y c =ψ c 为任意常数,代回()()z x y cy =ϕ,;~中即得发甫方程的积分曲面 z=ϕ(x,y,ψ(y,c ))由于发甫方程关于x,y,z 的对称性,在上面的讨论中,也可把x 或y 看成未知函数,得到同样的结果.例 求方程yz d x+2xz d y+xy d z=0的积分曲面族.解 容易验证完全可积条件成立,显然存在一个积分因子μ=1xyz,用它乘原方程得 0d d 2d =++zz y y x x 积分后得积分曲面族xy 2z=c也可把方程化为等价的方程组⎪⎪⎩⎪⎪⎨⎧-=∂∂-=∂∂y z yz x z xz 2 把y 看成参变量,积分xzx z -=∂∂得通解 zx c= 用未知函数()~cy 代替 c ,将()y c zx ~=代入方程y z y z 2-=∂∂得 ()()yy cy y c ~2d ~d -= 积分后有()~cy c y =2所以原方程的积分曲面族是xy 2z=c五、 一阶线性微分方程组[一阶线性偏微分方程组的一般形式] 两个自变量的一阶线性方程组的形式是()n i F u C x u B t u A i n j j ij n j n j jij j ij ,,2,10111 ==++∂∂+∂∂∑∑∑=== 或()n i f u b x u a t u i n j j ij n j j ij i,,2,1011 ==++∂∂+∂∂∑∑== (1) 其中A ij ,B ij ,C ij ,F i ,a ij ,b ij ,f i 是(x,t )的充分光滑函数.[特征方程·特征方向·特征曲线]⎩⎨⎧=≠==-ji ji txa ij ij ij ,1,0,0)d d det(δδ称为方程组(1)的特征方程.在点(x,t )满足特征方程的方向txd d 称为该点的特征方向.如果一条曲线l ,它上面的每一点的切线方向都和这点的特征方向一致,那末称曲线l 为特征曲线.[狭义双曲型方程与椭圆型方程] 如果区域D 内的每一点都存在n 个不同的实的特征方向,那末称方程组在D 内为狭义双曲型的.如果区域D 内的每一点没有一个实的特征方向,那末称方程组在D 内为椭圆型的. [狭义双曲型方程组的柯西问题] 1︒ 化方程组为标准形式——对角型因为det(a ij -δij λ)=0有n 个不同的实根λ1(x,t ) ,, λn (x,t ),不妨设),(),(),(21t x t x t x n λλλ<<<那末常微分方程()()n i t x txi ,,2,1,d d ==λ的积分曲线l i (i =1,2,…,n )就是方程组(1)的特征曲线. 方程()()aijk ij k i i n-==∑λδλ1的非零解(λk (1) ,, λk (n ))称为对应于特征方向λk 的特征矢量.作变换()()n i u v nj jj i i ,,2,11==∑=λ可将方程组化为标准形式——对角型()()()()n i t x v t x a x v t x t v i nj j ij ii i ,,2,1,,,1=+=∂∂+∂∂∑=βλ 所以狭义双曲型方程组可化为对角型,而一般的线性微分方程组(1)如在区域D 内通过未知函数的实系数可逆线性变换可化为对角型的话,(此时不一定要求 λi 都不相同),就称这样的微分方程组在D 内为双曲型的. 2︒ 对角型方程组的柯西问题 考虑对角型方程组的柯西问题()()()()()()n i x x v t x v t x a x v t x tv i inj i j ij i i i,,2,10,,,,1 =⎪⎩⎪⎨⎧=+=∂∂+∂∂∑=ϕβλϕi (x )是[a,b ]上的连续可微函数.设αij ,βi ,λi 在区域D 内连续可微,在D 内可得相应的积分方程组()()()n i tv x t x v il i n j j ij i i i ,,2,1d ,~1 =⎥⎦⎤⎢⎣⎡++=⎰∑=βαϕ 式中 l i 为第i 条特征曲线l i 上点(x,t )与点(x i ,0)之间的一段,(x i ,0)为l i与x 轴上[a,b ]的交点.上式可以更确切地写为()()[]()[]()[]()[]⎰∑⎭⎬⎫⎩⎨⎧+⋅+==t n j i i i j i ij i i i t x x t x x v t x x a t x x t x v 01d ,,,,,,,,,0,,,τττβττττϕ(i =1,2,, n )式中x i =x i (x ︒,t ︒,t )为过点(x ︒,t ︒)的第i 条特征曲线,利用逐次逼近法可解此积分方程.为此令()()()[]()()()()[]()[]()()[]()[]()()()()[]()[]()()[]()[]()n i t x x t x x v t x x a t x x t x v n i t x x t x x v t x x a t x x t x v n i t x x t x v i i tnj i k j i ij i i k ii i tn j i j i ij i i ii i i ,,2,1d ,,,,,,,,,0,,,,,2,1d ,,,,,,,,,0,,,,,2,10,,,}{}{01101010=+⋅+==+⋅+===⎰∑⎰∑=-=τττβττττϕτττβττττϕϕ序列{v i(k )} (k =0,1,2 ,)一致收敛于积分方程的连续可微解v i (x,t ) (i =1,2,, n ),这个v i (x,t )也就是对角型方程组的柯西问题的解.设在区域D 内对角型方程组的柯西问题的解存在,那末解与初值有下面的关系:(i) 依赖区间:过D 中任意点M (x,t )作特征曲线l 1,l n ,交x 轴于B,A ,称区间[A,B ]为M 点的依赖区间(图14.1(a )),解在M 点的值由区间[A,B ]的初值确定而与[A,B ]外的初值无关.(ii) 决定区域:过点A,B 分别作特征曲线l n ,l 1,称l n ,l 1 与区间[A,B ]围成的区域D 1为区间[A,B ]的决定区域(图14.1(b )),在区域D 1中解的值完全由[A,B ]上的初值决定.(iii) 影响区域:过点A,B 分别作特征曲线l 1,l n ,称l 1,l n 与[A,B ]围成的区域D 2为区间[A,B ]的影响区域(图14.1(c )).特别当区间[A,B ]缩为一点A 时,A 点的影响区域为D 3(图14.1(d )).在区域D 2中解的值受[A,B ]上的初值影响,而在区域D 2外的解的值则不受[A,B ]上的初值影响.图14.1[线性双曲型方程组的边值问题] 以下列线性方程组来说明:()⎪⎪⎩⎪⎪⎨⎧<++=∂∂+∂∂++=∂∂+∂∂2122221111λλλλc v b u a x v t v c v b u a xu t u (1) 1︒ 第一边值问题(广义柯西问题) 设在平面(x,t )上给定曲线段⋂AB ,它处处不与特征方向相切.过A,B 分别引最左和最右的特征曲线l 1及l 2.要求函数u (x,t ),v (x,t )在⋂AB ,l 1及l 2围成的闭区域D 上满足方程组,且在⋂AB 上取给定的函数值(图14.2(a )).2︒ 第二边值问题(古沙问题) 设l 1是过P 点的第一族特征线,l 2是第二族特征线,在l 1的一段PA 上给定v (x,t )的数值,在l 2的一段PB 上给定u (x,t )的数值,过A 点作第二族特征线,过B 点作第一族特征线相交于Q .求在闭区域PAQB 上方程组的解(图14.2(b )).3︒ 第三边值问题 设AB 为非特征曲线的曲线弧,AC 为一特征线弧,且在AB 与AC 之间不存在过A 点的另外特征曲线,过C 点作第二族特征线与过B 点的第一族特征线交于E 点,在AC 上给定v (x,t )的数值,在AB 上给定u (x,t )的数值,求ACEBA 所围成的闭区域D 上的方程组的解(图14.2(c )).图14.2[边值问题的近似解——特征线法] 以上定解问题,可用逐步逼近法求解,也可用特征线法求解的近似值.以第一边值问题为例说明.在曲线AB 上取n 个分点A 1,A 2,, A n ,并记A 为A 0,B 为A n +1,过A 0按A 0的第二特征方向作直线与过A 1按A 1的第一特征方向作直线相交于B 0;过A 1按A 1第二特征方向作直线与过A 2按A 2的第一特征方向作直线相交于B 1,最后得到B n (图14.3).用如下的近似公式来确定方程组(1)的解u (x,t ),v (x,t )在B i (i =0,1,2,…,n )的数值:()()()()()()(){}()[]()()()()()()(){}()[]u B u A B A a A u A b A v A c A A v B v A B A a A u A b A v A c A A i i i i i i i i i i i i i i i i i i i i -=++⨯+-=++⨯+⎧⎨⎪⎩⎪+++++++--11111111112122212121211λλ于是在一个三角形网格的节点上得到u,v 的数值.再经过适当的插值,当n 相当大,A i 、A i +1的距离相当小时,就得到所提问题的足够近似的解.[特殊形式的拟线性方程组——可化约系统] 一般的拟线性方程组的问题比较复杂,目前研究的结果不多,下面介绍一类特殊形式的拟线性方程组——可化约系统.如果方程组⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂+∂∂+∂∂=∂∂+∂∂+∂∂+∂∂0022221111x v D t v C x u B t u A x v D t v C x u B t uA 中所有的系数只是u,v 的函数,称它为可化约系统.考虑满足条件()()0,,≠∂∂t x v u 的方程组的解u=u (x,t ),v=v (x,t ).x,t 可以表示成u,v 的函数,且图14.3()()()()()()()()v u t x u tx vv u t x u x t v v u t x v tx u v u t x v xtu,,,,,,,,,,∂∂∂∂=∂∂∂∂∂∂-=∂∂∂∂∂∂-=∂∂∂∂∂∂=∂∂ 原方程化为⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂-∂∂-∂∂=∂∂+∂∂-∂∂-∂∂0022221111u t D u x C v t B vx A u t D u x C v t B v xA 这是关于自变量u,v 的线性方程组.这样就把求拟线性方程组满足()()0,,≠∂∂tx v u 的解,化为解线性方程组的问题.而此线性方程组满足条件()()0,,≠∂∂v u t x 的解,在(x,t )平面上的象即为原来拟线性方程组的解.。

偏微分方程的一阶与高阶解法

偏微分方程的一阶与高阶解法

偏微分方程的一阶与高阶解法偏微分方程是数学中的一个重要分支,用于描述具有多个变量的函数的行为。

它在物理学、工程学和经济学等领域具有广泛的应用。

解决偏微分方程的问题通常需要使用一阶和高阶解法。

本文将介绍偏微分方程的一阶与高阶解法,并对其进行详细的说明。

一阶偏微分方程的解法通常可以通过变量分离、特征线法或格林函数法来求解。

其中,变量分离法是最常见的解法之一。

变量分离法的基本思想是将多个变量的偏导数进行分离,从而得到可分离变量的方程。

例如,在求解一维热传导方程时,可以通过变量分离法将时间和空间变量分离,然后独立求解两个方程,并将它们的解进行组合,得到原方程的解。

另一种常见的一阶解法是特征线法。

特征线法适用于具有特殊结构的偏微分方程,它利用特征曲线对方程进行变换,将原方程转化为简化的形式。

通过对特征曲线方程进行求解,可以得到原方程的解。

格林函数法也是一种常见的一阶解法。

格林函数是指满足特定边界条件的偏微分方程的解,它可以用来表示其它边界条件下的解。

格林函数的求解通常需要使用积分变换等技巧,但是一旦求得格林函数,就可以通过与边界条件进行卷积得到方程的解。

除了一阶解法,偏微分方程还可以通过高阶解法进行求解。

高阶解法通常是指使用数值方法进行近似求解。

常见的高阶解法包括有限差分法、有限元法和边界元法等。

有限差分法是一种常见且简单易用的高阶解法。

它将偏微分方程中的导数用差分近似表示,将偏微分方程转化为代数方程组,然后通过迭代求解这个方程组来得到近似解。

有限差分法的求解过程需要选择合适的网格和差分格式,并且需要注意数值稳定性和精度的问题。

有限元法是一种更为通用的高阶解法。

它将求解区域进行离散化,并建立一个离散的函数空间,然后通过逼近这个函数空间中的函数来得到原方程的近似解。

有限元法相比于有限差分法更加灵活,可以适应更加复杂的几何形状和边界条件,并且具有较高的精度。

边界元法是另一种常见的高阶解法。

它将偏微分方程的解表示为给定边界上的积分形式,通过求解这个积分方程得到原方程的解。

一阶偏微分方程基本知识

一阶偏微分方程基本知识

一阶偏微分方程基本知识这一章我们来讨论一阶线性偏微分方程和一阶拟线性偏微分方程的解法,因为它们都可以化为常微分方程的首次积分问题,所以我们先来介绍常微分方程的首次积分;1一阶常微分方程组的首次积分首次积分的定义从第三章我们知道,n 阶常微分方程()()()1,,'',',-=n n y y y x f y ,在变换()1'12,,,,n n y y y y y y -===之下,等价于下面的一阶微分方程组()()()1112221212,,,,,,,,,,,,,,.n nn n n dy f x y y y dx dy f x y y y dxdy f x y y y dx⎧=⎪⎪⎪=⎪⎨⎪⎪⎪=⎪⎩ 在第三章中,已经介绍过方程组 通解的概念和求法;但是除了常系数线性方程组外,求一般的 的解是极其困难的;然而在某些情况下,可以使用所谓“可积组合”法求通积分,下面先通过例子说明“可积组合”法,然后介绍一阶常微分方程组“首次积分”的概念和性质,以及用首次积分方法来求解方程组 的问题;先看几个例子;例1 求解微分方程组()()22221,1.dx dy y x x y x y x y dt dt=-+-=--+- 解:将第一式的两端同乘x ,第二式的两端同乘y ,然后相加,得到 ()()12222-++-=+y x y x dtdyy dt dx x ,()()()222222112d x y x y x y dt +=-++-; 这个微分方程关于变量t 和()22x y +是可以分离,因此不难求得其解为1222221C e y x y x t=+-+,1C 为积分常数; 叫做 的首次积分;注意首次积分 的左端(),,V x y t 作为x,y ,和t 的函数并不等于常数;从上面的推导可见,当(),()x x t y y t ==时微分方程组 的解时,(),,V x y t 才等于常数1C ,这里的常数1C 应随解而异;因为式 是一个二阶方程组,一个首次积分 不足以确定它的解;为了确定 的解,还需要找到另外一个首次积分;将第一式两端同乘y ,第二式两端同乘x ,然后用第一式减去第二式,得到22y x dt dyx dt dx y+=-, 即()22y x dtdx y dt dy x+-=-, 亦即1arctan -=⎪⎭⎫ ⎝⎛dtx y d ; 积分得2arctan C t xy=+,其中2C 为积分常数;利用首次积分 和 可以确定 的通解;为此,采用极坐标cos ,sin x r y r θθ==,这样由 和 推得212211,.t e C t C r θ⎛⎫-=+= ⎪⎝⎭或 t C eC r t-=-=-221,11θ.因此我们得到方程组 的通解为 ()teC t C x 2121cos ---=,()teC t C y 2121sin ---=.例2 求解微分方程组 ()()(),,.duvw dt dvwu dt dwuv dt αβγβγαγαβ⎧=-⎪⎪⎪=-⎨⎪⎪=-⎪⎩其中0αβγ>>>是给定的常数;解 利用方程组的对称性,可得0du dv dwu v w dt dt dtαβγ++=,从而得到首次积分2221u v w C αβγ++=, 其中积分常数10C ≥;同样我们有 2220du dv dwu v w dt dt dtαβγ++=, 由此又得另一个首次积分2222222u v w C αβγ++=, 其中积分常数20C ≥;有了首次积分 和 ,我们就可以将u 和v 用w 表示,代入原方程组 的第三式,得到dw dt =,其中常数a ,b 依赖于常数12C C 和,而常数 ()()()()0,0.A B γβγγαγααββαβ--=>=>--注意 是变量可分离方程,分离变量并积分得到第三个首次积分3t C αβγ--=, 其中3C 是积分常数;因为方程组 是三阶的,所以三个首次积分 、 和 在理论上足以确定它的通解()()()123123123,,,,,,,,,,,.u t C C C v t C C C w t C C C ϕψχ=== 但是由于在式 中出现了椭圆积分,因此不能写出上述通解的具体表达式;现在我们考虑一般的n 阶常微分方程()n i iy y y x f dxdy ,,,,21 =,()n i ,2,1=, 其中右端函数()n i y y y x f ,,,,21 在1+⊂n R D 内对()12,,,,n x y y y 连续,而且对n y y y ,,,21 是连续可微的;定义1设函数()12,,,,n V V x y y y =在D 的某个子域G 内连续,而且对12,,,,n x y y y 是连续可微的;又设()12,,,,n V x y y y 不为常数,但沿着微分方程 在区域G 内的任意积分曲线()()()()1122:,,,n n y y x y y x y y x x J Γ===∈函数V 取常值;亦即()()()()()()12,,,n V x y x y x y x C x J =∈常数,或当12(,,,,)n x y y y ∈Γ时,有()12,,,,n V x y y y =常数, 这里的常数随积分曲线Γ而定,则称()12,,,,n V x y y y =C为微分方程 在区域G 内的首次积分;其中C 是一个任意常数,有时也称这里的函数()12,,,,n V x y y y 为 的首次积分;例如 和 都是微分方程 在某个区域内的首次积分;这里对区域G 有限制,是要求首次积分 和 必须是单值的连续可微函数;因此区域G 内不能包括原点,而且也不能有包含原点的回路;同理,式 、 和 都是方程 的首次积分;对于高阶微分方程 ,只要做变换 ,就可以把它化成一个与其等价的微分方程组;因此,首次积分的定义可以自然地移植到n 阶方程 ;而其首次积分的一般形式可以写为()()1',,,,n V x y y y C -=;例如,设二阶微分方程组()222sin 00d xa x a dt+=>为常数,用dxdt乘方程的两端,可得222sin 0dx d x dx a x dt dt dt+=, 然后积分,得到一个首次积分221cos 2dx a x C dt ⎛⎫-= ⎪⎝⎭;一般的,n 阶常微分方程有n 个独立的首次积分,如果求得n 阶常微分方程组的n 个独立的首次积分,则可求n 阶常微分方程组的通解; 首次积分的性质和存在性关于首次积分的性质,我们不加证明地列出下面的定理; 定理1设函数()12,,,,n x y y y Φ 在区域G 内是连续可微的,而且它不是常数,则()12,,,,n x y y y C Φ=是微分方程 在区域G 内的首次积分的充分必要条件是 110n nf f x y y ∂Φ∂Φ∂Φ+++=∂∂∂ 是关于变量()12,,,,n x y y y G ∈的一个恒等式;这个定理实际上为我们提供了一个判别一个函数是否是微分方程 首次积分的有效方法;因为根据首次积分的定义,为了判别函数()12,,,,n V x y y y 是否是微分方程 在G 内的首次积分,我们需要知道 在G 内的所有积分曲线;这在实际上是由困难的;而定理1避免了这一缺点;定理2 若已知微分方程 的一个首次积分 ,则可以把微分方程 降低一阶; 设微分方程组 有n 个首次积分()()12,,,,1,2,,i n i x y y y C i n Φ==,如果在某个区域G 内它们的Jacobi 行列式()()1212,,,0,,,n n D D y y y ΦΦΦ≠,则称它们在区域G 内是相互独立的;定理3设已知微分方程 的n 个相互独立的首次积分 ,则可由它们得到 在区域G 内的通解()()12,,,,1,2,,i i n y x C C C i n ϕ==,其中12,,,n C C C 为n 个任意常数在允许范围内,而且上述通解表示了微分方程在G 内的所有解;关于首次积分的存在性,我们有定理 4 设()00001,,,n p x y y G =∈,则存在0p 的一个邻域0G G ⊂,使得微分方程 在区域0G 内有n 个相互独立的首次积分;定理5 微分方程 最多只有n 个相互独立的首次积分;定理6 设 是微分方程 在区域G 内的n 个相互独立的首次积分,则在区域G 内微分方程 的任何首次积分()12,,,,n V x y y y =C ,可以用 来表达,亦即()()()1211212,,,,,,,,,,,,,,n n n n V x y y y h x y y y x y y y =ΦΦ⎡⎤⎣⎦,其中[]*,,*h 是某个连续可微的函数;为了求首次积分,也为了下一节的应用,人们常把方程组 改写成对称的形式12121n n dy dy dy dxf f f ===, 这时自变量和未知函数的地位是完全平等的;更一般地,人们常把上述对称式写成()()()1211221212,,,,,,,,,,nn n n n dy dy dy Y y y y Y y y y Y y y y ==并设12,,,n n Y Y Y G R ⊂在区域内部不同时为零,例如如果设0,n Y ≠ 则 等价于()()()1212,,,1,2,,1,,,i n i n n n Y y y y dy i n dy Y y y y ==-;请注意,式 中的n y 相当于自变量,()1,2,,1i x i n =-相当于未知函数,所以在方程组 中只有n--1个未知函数,连同自变量一起,共有n 个变元;不难验证,对于系统 ,定理1相应地改写为:设函数()12,,,n y y y ϕ连续可微,并且不恒等于常数,则()12,,,n y y y ϕ=C 是 的首次积分的充分必要条件是关系式()()()()1121212121,,,,,,,,,,,,0n n n n n nY y y y y y y Y y y y y y y y y ϕϕ∂∂++=∂∂在G 内成为恒等式;如果能得到 的n -1个独立的首次积分,则将它们联立,就得到 的通积分;方程写成对称的形式后,可以利用比例的性质,给求首次积分带来方便;例3 求dx dy dz y x z==的通积分; 解 将前两个式子分离变量并积分,得到方程组的一个首次积分 221x y C -= 其中1C 是任意常数,再用比例的性质,得()()d x y dzx y z+=+,两边积分,又得到一个首次积分2x yC z +=,其中2C 是任意常数; 和 是相互独立的,将它们联立,便得到原方程组得通积分 221x y C -=,2x y C z +=.例4 求dx dy dzcy bz az cx bx ay==---的通积分;解 利用比例的性质,可以得到 .00dx dy dz xdx ydy zdz adx bdy cdzcy bz az cx bx ay ++++====---于是有0,0.xdx ydy zdz adx bdy cdz ++=++=分别积分,就得到两个首次积分22212,.x y z C ax by cz C ++=++= 将它们联立,就得到原系统的通积分,其中12C C 和为任意常数; 例5 求解二体问题,即求解方程组()()()2322222232222223222220,0,0.d x xdt x y z d y ydt x y z d z zdt x y z ααα+=+++=+++=++ 其中常数,GM G M α=是引力常数,是相对静止的这个天体的质量;现在求二体问题的运动轨线;以x 乘第二式两边,以y 乘第三式两边,然后相减,得22220,d y d zz y dt dt-=即0d dz dy y z dt dt dt ⎛⎫-= ⎪⎝⎭,积分便得到1,dz dy yz C dt dt-= 这里1C 是任意常数,用类似的方法,可以得到23,.dx dzzx C dt dtdy dx x y C dt dt-=-= ()()4.1.274.1.28其中23,C C 都是任意常数;分别用x 、y 、z 乘 , 和 的两边,然后三式相加,得到 1230.C x C y C z ++= 这时一个平面方程;说明二体问题的运动轨迹()()(),,x x t y y t z z t ===位于 所表示的平面内;因此二体问题的轨迹是一条平面曲线;重新选取坐标平面,不妨将轨迹线所在的平面选为x ,y 平面,于是二体问题的运动方程是()()2322222322220,0.d x xdt x y d y y dt x y αα⎧+=⎪+⎪⎨⎪+=⎪+⎩()()4.1.304.1.31由这两式可以看到()22322220dx d x dy d y dx dy x y x y dt dt dt dt dt dt α-⎛⎫⎛⎫++++= ⎪ ⎪⎝⎭⎝⎭, 上式可以写成()2212220,d dx dy dx y dt dt dt dt α-⎡⎤⎛⎫⎛⎫+-+=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦两边积分,得到一个首次积分()221222.dx dy x y A dt dt α-⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭其中A 为积分常数;引入极坐标cos ,sin x r y r θθ==,经过简单的运算,上式可以写成2222.dr d r A dt dt r θα⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭ 另一方面,以y 乘 ,以x 乘 ,然后两式相减,得22220d x d yy x dt dt-=,即0d dy dx x y dt dt dt ⎛⎫-= ⎪⎝⎭, 积分后得到另一个首次积分 dy dx x y B dt dt-=, 化成极坐标,便得2d r B dtθ=; 设0B ≠,则由 和 解得dr d θ=,不妨把“±”与B 合并,仍记为B ,则上式可以写成B d d θ⎛⎫ ⎪=,记2,0A B α⎛⎫∆=+∆≤ ⎪⎝⎭若,则上式没有意义,故总设0∆>;将 积分,得到0arccos .B αθθ⎛⎫- ⎪=-这里0θ又是一个积分常数;从上式得到二体问题轨迹线的极坐标方程()201B r Bαθθ=+-;由平面几何知道,这是一条二次曲线;它的离心率是0ε=>;当1ε<时,轨迹为一个椭圆;当1ε=时,轨迹为一个抛物线;当1ε>时,轨迹为一双曲线;由 可知,r 依赖于常数,A B α和,其中GM α=是系统常数;A 和B 由初始条件00,,t t t dr d r dtdt θ===和确定;如果00(0)t d B dtθ===即,则由 知()0,d t dtθθ=等于常数,这表示运动的轨迹是一条射线,这是显然的事;这个例子说明,虽然二体问题的解x=xt 和y=yt 没有求出来,但是利用首次积分,却完整地求出了运动的轨迹方程;2 一阶齐次线性偏微分方程下面我们讨论一阶线性偏微分方程和一阶拟线性偏微分方程的解法; 一阶线性偏微分方程一阶线性偏微分方程的一般形式为()()()0,,,,,,,,2122121211=∂∂++∂∂+∂∂nn n n n x u x x x A x u x x x A x u x x x A , 或简记为()0,,,121=∂∂∑=ini n i x ux x x A , 其中u 为n x x x ,,,21 的未知函数()2n ≥;假定系数函数12,,,n A A A()1,,n x x D ∈对是连续可微的,而且它们不同时为零,即在区域D 上有()121,,,0nin i A x x x =>∑;注意微分方程组 是线性齐次的;对于偏微分方程组 , 我们考虑一个对称形式的常微分方程组()()()n n n n n x x x A dx x x x A dx x x x A dx ,,,,,,,,,2121222111 ===,它叫做 的特征方程,注意特征方程 是一个n -1阶常微分方程组,所以它有n -1个首次积分()()12,,,1,2,,1i n i x x x C i n ϕ==-;我们的目的是通过求 的首次积分来求 的解; 的解与 的首次积分之间的关系有如下的定理定理1 假设已经得到特征方程组 的1-n 个首次积分 ()i n i C x x x =,,,21 ϕ, ()1,,2,1-=n i 则一阶偏微分方程 的通解为()()()()()12112212112,,,,,,,,,,,,,,n n n n n u x x x x x x x x x x x x ϕϕϕ-=Φ其中Φ为一任意1-n 元连续可微函数; 证明 设()12,,,n x x x C ϕ=是方程 的一个首次积分;因为函数12,,,n A A A 不同时为零,所以在局部邻域内不妨设()12,,,0n n A x x x ≠,这样特征方程 等价于下面标准形式的微分方程组()()()()11111111,,,,,,,.,,n n n n n n n nn n A x x dx dx A x x A x x dx dx A x x --⎧=⎪⎪⎪⎨⎪⎪=⎪⎩因此 也是 的一个首次积分,从而有恒等式110n i i n n iA x A x ϕϕ-=∂∂+=∂∂∑, 亦即恒有()11,,0ni n i iA x x x ϕ=∂=∂∑; 这就证明了非常数函数()12,,,n x x x ϕ为方程 的一个首次积分的充要条件为恒等式 成立;换言之,()12,,,n x x x ϕ为方程 的一个首次积分的充要条件是()12,,,n u x x x ϕ=为偏微分方程 的一个非常数解;因为 是微分方程 的n -1个独立的首次积分,所以根据首次积分的理论得知,对于任意连续可微的非常数n -1元函数Φ,()()112112,,,,,,,,n n n x x x x x x C ϕϕ-Φ=⎡⎤⎣⎦就是 的一个首次积分;因此,相应的函数 是偏微分方程 的一个解;反之,设()12,,,n u u x x x =是偏微分方程 的一个非常数解,则()12,,,n u x x x C =是特征方程 的一个首次积分,因此,根据首次积分的理论得知,存在连续可微函数()11,,n ϕϕ-Φ,使恒等式()()()12112112,,,,,,,,,,,n n n n u x x x x x x x x x ϕϕ-≡Φ⎡⎤⎣⎦成立,即偏微分方程 的任何非常数解可以表示成 的形式;另外,如果允许Φ是常数,则 显然包括了方程 的常数解; 因此,公式 表达了偏微分方程组 的所有解,也就是它的通解; 例1 求解偏微分方程()()0=∂∂--∂∂+xzy x x z y x 022>+y x .解 原偏微分方程 的特征方程为yx dyy x dx --=+ 它是一阶常微分方程组,求得其一个首次积分为C ey x xy=+arctan22,由定理1知,原偏微分方程的通解为()⎪⎪⎭⎫ ⎝⎛+Φ=x y e y x y x z arctan 22,,其中Φ为任意可微的函数;例2 求解边值为题()0,0,0,01,.f z x y z z z f xy ∂=>>>∂⎪==⎩解 原偏微分方程 的特征方程为zdz ydy xdx ==, 由1C ==; 再由2,ln dzz C z ==得. 故方程的通解为()()z y y x z y x f ln 2,,,--Φ=其中Φ为任意二元可微的函数,可由边值条件确定, 因为()()1ln 2,1,,--Φ=y y x y x f ()xy y y x =-Φ=2,,令y y x 2,=-=ηξ,则2ηξ+=x ,4,222ηηξ=⎪⎭⎫ ⎝⎛+=y x ,()=Φηξ,4222ηηξ⎪⎭⎫ ⎝⎛+;代入 式,得到()()z y y x z y x f ln 2,,,--Φ=()()()222ln 24ln 2⎥⎥⎦⎤⎢⎢⎣⎡-+--=z y y x z y()()16ln 2ln 222zx zy --=.一阶拟线性非齐次偏微分方程下面讨论一阶拟线性非齐次偏微分方程()()()()u x x x B x u u x x x A x u u x x x A x u u x x x A n n n n n n ,,,,,,,,,,,,,,212122121211 =∂∂++∂∂+∂∂的求解方法;式 中函数()11,,,,,n n A A B x x u G ∈和关于变元是连续可微的;这里所说的“拟线性”是指方程关于未知函数的偏导数都是一次的,各个系数()u x x x A n i ,,,21 ,()n i ,,2,1 =中可能含有未知函数u ,而“非齐次”是指存在不含未知函数偏导数的自由项()u x x x B n ,,,,21 ;和一阶线性偏微分方程()()()120121121,,,,,,,,,ni n n n i iuA x x xB x x x B x x x u x =∂=+∂∑相比较,显然式拟线性方程 比线性方程 更广泛;我们将求解 的问题化成求解线性齐次方程的问题,设()C u x x x V n =,,,,21是 的隐函数形式的解,且0≠∂∂uV,则根据隐函数微分法得uV x V x ui i∂∂∂∂-=∂∂, ()n i ,,2,1 = 将 代入 中,经过整理得()()()()112212121212,,,,,,,,,,,,,,0.n n n n n nVVA x x x u A x x x u x x VVA x x x uB x x x u x u∂∂++∂∂∂∂++=∂∂由此,可以将V 视为关于u x x x n ,,,,21 的函数, 变成了关于未知函数()u x x x V n ,,,,21 的一阶线性齐次偏微分方程;于是函数()u x x x V n ,,,,21 应是方程 的解;反过来,假设函数()u x x x V n ,,,,21 是 的解,且0≠∂∂uV,则由 和 可以推出由方程()u x x x V n ,,,,21 =0 所确定的隐函数()12,,,n u u x x x =是方程 的解;这样求解方程 的问题就化成了求解 的问题;为了求解 ,先写出其特征方程组为()()()()u x x x B du u x x x A dx u x x x A dx u x x x A dx n n n n n n ,,,,,,,,,,,,,,,,212121222111 ====. 式 可化为n 个常微分方程,求得它的n 个首次积分为()i n i C u x x x =,,,,21 ϕ, ()1,2,,i n =就得到 的通解为()()()()()u x x x u x x x u x x x u x x x V n n n n ,,,,,,,,,,,,,,,,,,2121221121 ϕϕϕΦ=其中Φ是所有变元的连续可微函数;我们将 称为方程 的特征 方程组;上述过程写成定理就是 定理 设函数()()12,,;1,2,i n A x x x u i n =和()12,,;n B x x x u 在区域1n G R +⊂ 内连续可微,12,,,n A A A 在G 内不同时为零,设()012,,,;n V V x x x u =是 的一个解,且()00120,,,,;0n V V x x x u u∂≠=∂则必是方程 的一个隐式解;反之()12,,,;n x x x u ϕ是 的一个隐式解,并且0,uϕ∂≠∂ 则从它确定的函数 ()12,,,n u u x x x =,必是 的某个解()012,,,;n V V x x x u =,使()()01212,,,;,,,0.n n V x x x u x x x ≡一阶线性非齐次偏微分方程 为一阶拟线性非齐次偏微分方程的特殊情况,其解法完全与求解方程 的解法相同;例4 求解()21=∂∂+∂∂--+yz x z yx z . 解 原一阶拟线性非齐次偏微分方程()18.1.5的特征方程为211dz dy yx z dx ==--+, 故由21dzdy =,积分后得12C z y =-,求得一个首次积分z y -=21ϕ,再利用合比定理,有1dy yx z dy dx dz =-----, 积分后得22C y x z y =--+,故求得另一个首次积分为 y x z y --+=22ϕ, 所以 的通解为()02,2=--+-Φy x z y y z .例5 求解 ()1212,0nnu u ux x x mu m x x x ∂∂∂+++=≠∂∂∂.解 式为线性非齐次偏微分方程,是拟线性非齐次偏微分方程的特例,其特征方程为mudux dx x dx x dx n n ==== 2211, 分别积分,得n 个首次积分m n n n x u x x x x x x 111132121,,,,====-ϕϕϕϕ . 故原线性非齐次偏微分方程的隐式通解为0,,,,111312=⎪⎪⎭⎫⎝⎛Φm n x u x x x x x x , 其中Φ是各个自变量的连续可微函数,解出u 得显式通解()⎪⎪⎭⎫⎝⎛=11312121,,,,,,x x x x x x F x x x x u n m n . 习题四1 求解下列偏微分方程1()12120,0.kky y yx x x k x x x ∂∂∂+++=≥∂∂∂2()()()0,u u u y z z x x y x y z∂∂∂+++++=∂∂∂ 3()()()2222220.h h ha b c b c a c b a ab c∂∂∂++++-=∂∂∂ 2 求解下列初值问题 10,1,x u y z =⎪==-⎩当时。

1.3一阶线性偏微分方程的通解法

1.3一阶线性偏微分方程的通解法

1.3 一阶线性偏微分方程的通解法1.3.1 (3),1.3.2 (3),1.3.3(2)通解法:对某些偏微分方程,通过积分先求出通解,再由定解条件定出特解的解法。

1.3.1 两个自变量的一阶线性偏微分方程(,)(,)(,)(,)0.1(,),(,),(,),(,)D (,),(,)u ua x yb x yc x y u f x y x y a x y b x y c x y f x y a x y b x y ∂∂++=∂∂()其中,为平面区域上的连续函数,且不同时为0.1D (,)0,(,)0,(,)(,)(,)(,)(,)(,)(,)(,)=exp -exp ()0.3(,)(,)(,)()a x y b x y u c x y f x y u y b x y b x y x c x y c x y f x y u x y dy dy dy g x b x y b x y b x y g x C ≡≠∂+=∂⎡⎤⎛⎞⎛⎞+⎢⎥⎜⎟⎜⎟⎝⎠⎝⎠⎣⎦∫∫∫若在上,则(0.2)可看做含参数的常微,其通解.(其中,为任意函数。

)D (,)(,)0,=,)(,)(,)(,)0(,)a x y b x y x y x y xyJ x y xyξϕηψϕϕϕψϕψψψ≠⎧⎨=⎩∂∂∂∂∂==≠∂∂∂∂∂若在上,则方程(0.2)不能直接积分求解。

试作变量代换((0.4)要求其雅可比行列式(保证新变量的独立性)利用链式法则++(,)=((,,(,)(,.=,)(,)(,)=0u u u u u ux x x y y y u x y u u x y u u u a b a b cu f xy x y x y a x y b x y x y ϕψϕψξηξηξηξηξηϕϕψψξηξϕϕϕ∂∂∂∂∂∂∂∂∂∂==∂∂∂∂∂∂∂∂∂∂=⎛⎞⎛⎞∂∂∂∂∂∂++++=⎜⎟⎜⎟∂∂∂∂∂∂⎝⎠⎝⎠∂∂+∂∂,的方程(0.1)变成)))的新方程(0.5)若取(是一阶齐次线性偏微分方程(0.6)的解,则新(,(,)u a b cu f xy u u ψψηηξη⎛⎞∂∂∂++=⎜⎟∂∂∂⎝⎠方程(0.5)成为(0.2)型的方程,(0.7)对积分即可求出其通解),代回原自变量即得通解。

偏微分方程的基本概念与分类

偏微分方程的基本概念与分类

偏微分方程的基本概念与分类偏微分方程(Partial Differential Equation,简称PDE)是描述自然现象中变量之间关系的数学方程。

与常微分方程(Ordinary Differential Equation,简称ODE)不同,PDE中的未知函数包括多个自变量。

偏微分方程在物理、工程、经济学等科学领域中起着重要的作用。

本文将介绍偏微分方程的基本概念与分类。

一、基本概念1. 偏导数(Partial Derivative):偏导数是指一个多元函数对其中某一个自变量的导数。

对于函数f(x1, x2, ..., xn),它的第i个自变量xi的偏导数表示为∂f/∂xi。

2. 偏微分方程(Partial Differential Equation):偏微分方程是包含偏导数的方程,它的解是由未知函数和它的偏导数组成。

一般形式为F(x1, x2, ..., xn, u, ∂u/∂x1, ∂u/∂x2, ..., ∂u/∂xn) = 0,其中u表示未知函数,∂u/∂xi表示偏导数。

3. 解的阶数(Order of Solution):偏微分方程解的阶数是指解中包含的最高阶导数的阶数。

阶数决定了方程解的光滑程度。

二、分类偏微分方程按照数学形式、物理意义、解的性质等多种方式进行分类。

以下是常见的几种分类方式:1. 分类一:线性与非线性线性偏微分方程满足叠加原理,其解的线性组合仍然是方程的解。

常见的线性偏微分方程有波动方程、热传导方程和拉普拉斯方程等。

非线性偏微分方程则不满足叠加原理,其解的性质更加复杂。

2. 分类二:齐次与非齐次齐次偏微分方程中,方程的右侧项为零。

齐次方程的解中,只包含满足方程的线性组合。

非齐次方程则包含了右侧项对应的特解。

非齐次方程的解是齐次解与特解的和。

3. 分类三:椭圆型、双曲型和抛物型椭圆型偏微分方程的典型代表是拉普拉斯方程,它描述了稳态情况下的物理问题。

双曲型方程的典型代表是波动方程,描述了弦上的振动等动态问题。

[整理]一阶线性偏微分方程.

[整理]一阶线性偏微分方程.

第七章 一阶线性偏微分方程例7-1 求方程组 ()()()yzB A Cdzxz A C Bdy yz C B Adx -=-=- 通积分,其中C B A ,,为互不相等的常数。

解 由第一个等式可得xyzydyA C Bxyz xdx C B A -=-,即有0=---ydy AC B xdx C B A , 两边积分得方程组的一个首次积分 122,C y AC Bx C B A z y x Φ=---=),(。

由第二个等式可得xyzzdzB AC xyz ydy A C B -=-,即有0=---zdz BA C ydy A CB ,两边积分得方程组的另一个首次积分 222,C z BA Cy A C B z y x Ψ=---=),(。

由于,雅可比矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂ψ∂∂ψ∂∂ψ∂∂Φ∂∂Φ∂∂Φ∂=∂ψΦ∂z B A Cy A C B y A C B x C B A y yxz y xz y x 002),,(),( 的秩为2,这两个首次积分相互独立,于是原方程组的通积分为122C y A C B x C B A =--- 222C z BA Cy A C B =--- 。

评注:借助于方程组的首次积分求解方程组的方法称为首次积分法。

要得到通积分需要求得n 个独立的首次积分,n 为组成方程组的方程个数。

用雅可比矩阵的秩来验证首次积分的独立性。

例7-2 求方程组 ()()⎪⎪⎩⎪⎪⎨⎧-+--=-+-=11d 2222y x y x dtdy y x x y dtx 的通解。

解 由原方程组可得 )1)((2222-++-=+y x y x dtdy y dt dx x 即dt y x y x y x d )1)((2)(222222-++-=+这个方程关于变量t 和22y x +是可以分离的,因此易求得它的通积分为1222221),,(C e yx y x t y x t=+-+=Φ 这是原方程组的一个首次积分。

一阶偏微分方程组求解

一阶偏微分方程组求解

一阶偏微分方程组求解
摘要:
一、一阶偏微分方程组的概念与基本概念
二、一阶偏微分方程组的求解方法
三、一阶偏微分方程组的应用实例
正文:
一、一阶偏微分方程组的概念与基本概念
一阶偏微分方程组是指包含一组一阶偏导数的方程组。

其中,偏导数是指函数关于某个变量的导数。

一阶偏微分方程组广泛应用于物理、工程和经济等多个领域。

二、一阶偏微分方程组的求解方法
求解一阶偏微分方程组的方法有很多,其中最常用的方法是以下几种:
1.变量代换法:通过引入一个新的变量,将原方程组中的偏导数关系式转化为关于新变量的普通导数关系式,从而简化问题。

2.分离变量法:将方程组中的每个方程看作一个关于某个变量的微分方程,分别求解,最后通过边界条件确定各个变量的值。

3.积分法:对于某些特殊的一阶偏微分方程组,可以通过积分的方法求解。

4.待定系数法:对于某些具有特定形式的一阶偏微分方程组,可以通过设待定系数的方式求解。

三、一阶偏微分方程组的应用实例
一阶偏微分方程组在实际问题中有广泛应用,例如:
1.在物理学中,一阶偏微分方程组可以用来描述电磁波在介质中的传播过程。

2.在经济学中,一阶偏微分方程组可以用来描述商品价格、货币供应量等经济变量之间的关系。

3.在工程领域,一阶偏微分方程组可以用来描述管道中流体的流动过程、电路中电流电压的关系等。

总之,一阶偏微分方程组是偏微分方程中的一种基本类型,其求解方法多样,应用领域广泛。

一阶偏微分方程教程

一阶偏微分方程教程

一阶偏微分方程教程一、基本概念偏微分方程是指含有多个变量的、涉及未知函数及其偏导数的方程。

一阶偏微分方程是指未知函数的最高阶导数出现在一阶的偏微分方程。

通常用变量x、y表示自变量,用u表示未知函数。

一般形式的一阶偏微分方程为:F(x,y,u,u_x,u_y)=0其中,u_x和u_y分别表示u对x和y的偏导数。

二、解法解一阶偏微分方程的方法主要有特征线法、分离变量法和变换法。

1.特征线法:对于形如P(x,y)u_x+Q(x,y)u_y=R(x,y)的一阶偏微分方程,通过假设u=M(x,y)使得PdM=QdN,解得一条特征线,然后再由特征线的参数表示来求解原偏微分方程。

2.分离变量法:对于形如F(x,y,u)u_x+G(x,y,u)u_y=H(x,y,u)的一阶偏微分方程,可以将原方程化简为两个单变量的常微分方程,再分别求解。

3.变换法:通过引入新的变量或者函数进行变量替换,将原方程转化为另一种形式,使得新形式的方程具有更易求解的性质。

三、应用1.热传导方程:热传导方程描述了物体内部温度分布随时间的变化规律。

它是一个偏微分方程,通过求解热传导方程,可以分析物体的温度变化,从而设计合适的散热装置。

2.波动方程:波动方程描述了机械波在介质中的传播规律。

通过求解波动方程,可以研究地震波、声波等的传播特性,为地震预测和声学设计提供理论基础。

3.稳定性分析:稳定性分析是工程和经济学中一个重要的问题,通过求解偏微分方程,可以研究系统的稳定性,并优化系统的运行。

总结:一阶偏微分方程是数学中重要的研究对象,本教程介绍了一阶偏微分方程的基本概念、解法和应用。

掌握解一阶偏微分方程的方法,对于研究自然界的现象和优化工程设计具有重要意义。

最后,希望读者通过学习本教程可以深入了解一阶偏微分方程,并能够独立解决相关问题。

第七章 一阶线性偏微分方程 常微分方程课件 高教社ppt 王高雄教材配套课件

第七章  一阶线性偏微分方程 常微分方程课件 高教社ppt 王高雄教材配套课件

第七章一阶线性偏微分方程§7.1 首次积分和求解常微分方程组基本概念(,,)ni 1n i 1i u X x x 0x =∂=∂∑(,,)(,,)ni1n1ni 1iuX x x Z x x x =∂=∂∑(,,,)(,,,)ni 1n 1n i 1i uY x x u Z x x u x =∂=∂∑例丨例1解x yu uc0u cu0 x y∂∂+=+=∂∂即例2例2 解(,,)(,,)x y y x u g x y u u g x y u 0-=(,)()()(,)xy x y y x x y u y y x u x x y y u xyu u u v u v u v u g g u u g g u u g u g 0v v x y ∂==-=-⋅--⋅=-⋅=∂(,(,,))((,,))u g x y u 0u g x y u ϕΦ==或特征方程定义•齐次线性偏微分方程特征方程•拟线性偏微分方程特征方程(,,)ni1n i 1iu X x x 0x =∂=∂∑(,,,)(,,,)ni 1n 1n i 1iu Y x x u Z x x u x =∂=∂∑d d d n1212nx x x X X X ===d d d d n 1212n x x x uY Y Y Z====首次积分定义首次积分d (,,,),(),,,6d 0ii 1n i 0i y f x y y y x y i 1nx===()首次积分彼此独立彼此独立(,,)(,,)n 1111n 1n n 1nny y D D y y y y ψψψψψψ∂∂∂∂=∂∂∂∂n 1111n 11nn x x x x ϕϕϕϕ--∂∂⎡⎤⎢⎥∂∂⎢⎥⎢⎥⎢⎥∂∂⎢⎥⎢⎥∂∂⎣⎦一阶线性偏微分方程与常微分方程组的关系d (,)d yf x y 8x=()d (,)d y f x y 0x y x x yψψψψ∂∂∂∂+=+=∂∂∂∂(,)u u f x y 09x y∂∂+=∂∂()d d (,)d d u u u y u uf x y 0x x y x x y ∂∂∂∂=+=+=∂∂∂∂定理1定理112n 12nf f f 010x y y y ψψψψ∂∂∂∂++++=∂∂∂∂()d (,,,),(),,,d 0ii 1n i 0i y f x y y y x y i 1n 6x===()证(,,,)0001n x y y G∈()(,,,)i i 0y x i 12n ϕ==(,(),,())1n x x x const ψϕϕ=d(,(),,())d 1n x x x 0x ψϕϕ=(,,,)(,,,)(,,,)n00000001n i 01n 01n i 1i x y y f x y y x y y 0x y ψψ=∂∂+=∂∂∑(,,,)0001n x y y G ∈12n 12nf f f 010x y y y ψψψψ∂∂∂∂++++=∂∂∂∂()(),,,d(,(),,())d i i 1n 12n y x 12n i 12nx x x f f f 0xxy y y ϕψψψψψϕϕ==⎛⎫∂∂∂∂=++++= ⎪∂∂∂∂⎝⎭(,(),,())1n x x x constψϕϕ=d (,,,),(),,,d 0ii 1n i 0i y f x y y y x y i 1n 6x===()§7.3 利用首次积分求解常微分方程组定理2d(,,,),,,dii1nyf x y y i1n11x==()(,,,),,,i1n ix y y c i1n12ψ==(),证(,,,)(,,,)12n 12n 0y y y ψψψ∂≠∂(,,,),,,i 1n i x y y c i 1n 12ψ==()(,,,),,,i 1n i x y y c i 1n 13ϕ==()(,(,,,),,(,,,)),,,j 11n n 1n j x x c c x c c c j 12n ψϕϕ==d (,,,)(,,,),,,d n i j 1n j 1n i 1ix x 0j 12nxy xϕψϕϕψϕϕ=∂∂+⋅==∂∂∑,,,,j j j1n 1nf f 0j 12n 14x y y ψψψ∂∂∂+++==∂∂∂()(,,,),,,nj ii 1n d f x 0j 12ny dxψϕϕϕ∂⎡⎤-==⎢⎥∂⎣⎦∑(,,,)(,,,)(,,,),,,nj 1n i 1n j 1n i 1i x f x x 0j 12n x y ψϕϕϕϕψϕϕ=∂∂+⋅==∂∂∑d (,,,),,,d ii 1n y f x y y i 1n 11x==()(,,,),,,i 1n i x y y c i 1n 12ψ==()(,,,)(,,,)12n 12n 0y y y ψψψ∂≠∂d (,,,),,,d ii 1n f x j 12nx ϕϕϕ==(,,,),,,,i i 1n y x c c i 12nϕ==(,,,,),,,,i i 01n y x x y y i 12nϕ==(,,,)(,,,)i i 01n c x y y i 12n ψ==(,,,)(,,,)i i 1n y x c c i 12n ϕ==(,,,,)(,,,)(,,,)i 001n i i 01n x x y y y x c c i 12n ϕϕ===(,,,)(,,,,),,,,i 1n i 01n x c c x x y y i 12n ϕϕ==(,,,,)(,,,)i i 01n y x x y y i 12n ϕ==(,,,)(,,,)i i i 01n c c x y y i 12n ψ===,d (,,,),,,d ii 1n y f x y y i 1n 11x==()求首次积分方法(,)(,,)x c y x c 00c cϕψ∂∂≠≠∂∂或d d d d n12012ny y y x g g g g ====(,,)i 0i g g f i 1n ==,,,01nμμμ,d d d d 0011n n 011n n g g g 0x y y μμμμμμϕ+++=+++=d (,,,),,,d ii 1n y f x y y i 1n 11x==()例1 求解方程组d d d d 222222y2xy x x y z z 2xz x x y z ⎧=⎪--⎪⎨⎪=⎪--⎩d d d 222x y zx y z 2xy 2xz==--d d y z yz=1y c z=d d d d ()222x x y y z z yx x y z 2xy++=++2222x y zc y++=12222yc z x y z c y ⎧=⎪⎪⎨++⎪=⎪⎩例2 求方程组的通积分d d d x y z xz yz xy==,,012g xz g yz g xy===,,012y x 2z μμμ===-001122g g g 0μμμ++=()2012dx dy dz d xy z μμμ++=-21xy z c -=2xc y=212xy z c x cy ⎧-=⎪⎨=⎪⎩。

2一阶偏微分方程的求解方法

2一阶偏微分方程的求解方法

1)
(6.23)
由假设(6.18), f j (x1, x2,, xn) 在某区域 D 内处处不同时为零, 这意
味着上述以 f j (x1, x2,, xn) ( j 1, 2,, n )为变量的线性方程组在区 域 D 内有非零解, 所以其系数行列式在区域 D 内必为零, 即
u x1
(u, u1 ,, un 1 ) (x1, x2,, xn )
(6.20 )
通过这 n 1个独立的首次积分, 我们可以获得偏微分方程(6.17)
的通解结构.
.
例6.6 试求偏微分方程 u u 0 的通解.
x y
解: 作自变量变换
x
y
1 (t 2 1 (t
s) s)
Байду номын сангаас
2

u u x u y 1 (u u ) 0 s x s y s 2 x y
6.24
其中 (,) 是任意的二元连续可微函数. 确定某函数关系 0 使得(6.24)满足初始条件 u |z1 xy, 我们有
0 ( x y , 2 y ) xy.
令 x y, 2 y. 解之得
x ( 1)2, y 12.
2
4
故可确定
0 为
0 (
,)
xy
1 (
4
1)2 2.
2
回代通解内可得满足满足初始条件的解:
例6.7 求解偏微分方程
(x y) u (x y) u 0,
x
y
其中 x2 y2 0.
解: 特征方程为
dx dy , xy xy
它有一个首次积分:
x2
y2
arctan y
ex
C.

一阶偏微分方程组求解

一阶偏微分方程组求解

一阶偏微分方程组求解一、一阶偏微分方程组的定义和基本概念一阶偏微分方程组是指包含多个未知函数的偏微分方程组,其中最高阶导数为一次。

它们在数学、物理、工程等领域具有广泛的应用。

一阶偏微分方程组的一般形式为:u/t = Au + F(x, u)其中,u(x, t) 是未知函数,A 是系数矩阵,F(x, u) 是非线性函数。

二、常见的一阶偏微分方程组类型及求解方法1.热传导方程:描述热在物质中的传播过程,求解方法有分离变量法、有限差分法等。

2.波动方程:描述波的传播过程,求解方法有分离变量法、有限元法等。

3.牛顿冷却定律方程:描述物体在热交换过程中的温度变化,求解方法有边界层法、有限差分法等。

4.反应扩散方程:描述化学反应过程中物质的扩散,求解方法有有限差分法、有限元法等。

三、数值求解方法及其优缺点1.分离变量法:将偏微分方程组分解为多个一阶常微分方程,然后分别求解。

优点是计算简单、收敛速度快,缺点是适用于对称和具有特定结构的方程组。

2.有限差分法:将空间或时间离散化,利用差分代替微分。

优点是适用于各种偏微分方程组,缺点是对网格要求较高,可能导致误差累积。

3.有限元法:将求解域划分为有限个元素,在每个元素内建立近似解,然后通过插值函数叠加得到全局解。

优点是适用于复杂几何结构和非线性方程组,缺点是计算成本较高。

四、实际应用场景及案例分析1.热传导问题:分析电子器件、建筑物的温度分布,为散热设计和节能提供依据。

2.波动问题:分析声波、电磁波在介质中的传播特性,为通信、导航等系统优化提供支持。

3.反应扩散问题:研究生物膜、化学反应过程中的物质传输和反应速率,为相关领域提供理论依据。

五、总结与展望一阶偏微分方程组在多个领域具有广泛应用,掌握其求解方法和实际应用场景对于解决实际问题具有重要意义。

一阶偏微分方程教程

一阶偏微分方程教程
2
方程的解:若函数u连续并具有方程所涉及的连续 方程的解:若函数 连续并具有方程所涉及的连续 的各阶偏导数, 的各阶偏导数 , 且该函数代入方程使得方程在某 区域内成为恒等式, 区域内成为恒等式 , 则称该函数为方程在该区域 内的解 古典解) 内的 解 ( 古典解 ) 。 满足某些特定条件的解称为 特解,这些条件称为定解条件 一般情况下, 定解条件。 特解 , 这些条件称为 定解条件 。 一般情况下 , 一 个具有n个自变量的 阶方程的解可以含有 个n-1 个具有 个自变量的m阶方程的解可以含有 个自变量的 阶方程的解可以含有m个 元任意函数,这样的解称为通解。 元任意函数,这样的解称为通解。 通解 定解问题 : 定解条件通常包括 边界条件 和 初始条 定解问题:定解条件通常包括边界条件 边界条件和 两种。含有定解条件的方程求解问题称为定解 件 两种 。 含有定解条件的方程求解问题称为 定解 问题, 包括初值问题( 问题) 问题 , 包括初值问题 ( Cauchy问题 ) 、 边值问 问题 题和混合问题。 题和混合问题。
u u u P ( x, y , z ) + Q ( x, y , z ) + R ( x, y , z ) x y z = f ( x, y, z )u + g ( x, y, z )
为已知函数。 其中 f , g为已知函数。 为已知函数 其特征方程组为
(6)
dx dy dz du = = = P Q R fu + g
12
于是
Φ ( t , s ) = f (± t + y , ± t + y s )
2 0 2 0
从而原Cauchy问题的解为 问题的解为 从而原
u = Φ ( x2 y 2 , x2 z 2 )

一阶偏微分方程的解法

一阶偏微分方程的解法

一阶偏微分方程的解法偏微分方程是数学里一个广泛应用的领域。

其中,一阶偏微分方程是最为基础的一类,也是最常见的一类偏微分方程。

本文将介绍一阶偏微分方程的解法,希望能够对学习和应用偏微分方程的人们提供一定的帮助。

一、基础概念在介绍一阶偏微分方程的解法之前,我们需要先了解一些基础概念。

偏微分方程中的“偏”表示该方程与多个变量有关,微分方程表示该方程中包含有未知函数的导数项,即该方程描述了一个函数在不同变量下的变化。

一阶偏微分方程中,未知函数的偏导数项最高只有一次,且只涉及到一个变量。

方程中的未知函数只依赖于某一个变量,它的解也只涉及到一个变量。

因此,一阶偏微分方程通常可以写成以下的形式:$$ F(u_x, u_y, u_{xx}, u_{yy}, u_{xy}, x, y) = 0 $$其中,$u_x, u_y, u_{xx}, u_{yy}, u_{xy}$分别表示未知函数在不同变量下的偏导数,$x, y$是独立变量。

为了解决该方程,需要找到一个函数 $u(x,y)$,使得它满足该方程。

二、解法分析接下来,我们将介绍一阶偏微分方程的解法。

我们将着重介绍三种解法,分别是:特征线法、变换法和分离变量法。

1. 特征线法特征线法是一种经典的解法,适用于一些特殊的偏微分方程。

特征线法的基本思路是寻找一些特殊的曲线,这些曲线上的函数值保持不变,可以将函数沿这些曲线推进求解。

以以下方程为例:$$ u_x + u_y = x $$我们可以通过特征线法求解。

我们先假设存在某个变换,将$x,y$变为$\xi,\eta$,使得方程能够写成:$$ u_\xi + u_\eta = 1 $$这时,可以通过对$\xi, \eta$求偏导数,得到:$$ \frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} +\frac{\partial u}{\partial \eta}\frac{\partial \eta}{\partial x} $$$$ \frac{\partial u}{\partial y} = \frac{\partial u}{\partial \xi}\frac{\partial \xi}{\partial y} + \frac{\partial u}{\partial \eta} $$接着,我们可以找到一条特殊的曲线$\xi = \eta$,使得沿着该曲线推进方程不变:$$ \frac{du}{d\xi} = \frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta} = 1 $$在这个方程中,$u$ 只与$\xi$有关,因此可以直接求解得到:$$ u = \frac{1}{2}\xi^2 + C $$将$\xi,\eta$变回$x,y$,得到:$$ u = \frac{1}{2}(x-y)^2 + C $$2. 变换法变换法是一种寻求自变量的新变换,使得原方程可以转化为一些已知的方程的方法。

一阶线性偏微分方程与解法

一阶线性偏微分方程与解法

一阶线性偏微分方程与解法一阶线性偏微分方程是微分方程中的一类重要方程,它具有广泛的应用领域和解法。

本文将介绍一阶线性偏微分方程的基本形式、解法和具体应用。

一、基本形式一阶线性偏微分方程的一般形式可以表示为:\[ a(x,t)\frac{\partial u}{\partial x} + b(x,t)\frac{\partial u}{\partial t} = c(x,t,u) \]其中,\( u = u(x,t) \) 是未知函数, \( a(x,t), b(x,t), c(x,t,u) \) 是给定函数。

二、解法(1)变量可分离法如果方程可以表示为 \( f(x)dx + g(t)dt = 0 \),其中 \( f(x) \) 和 \( g(t) \) 是关于 \( x \) 和 \( t \) 的函数,那么方程可以通过变量可分离法解析地求解。

具体求解方法是分离变量并进行积分:\[ \int f(x)dx + \int g(t)dt = \int 0 \]求出积分后的结果,并将 \( u(x,t) \) 表示出来。

(2)特征线法特征线法适用于方程为线性齐次的情况,即 \( c(x,t,u) = 0 \)。

使用特征线法可以将一阶线性偏微分方程转化为一阶常微分方程。

求解一阶常微分方程后,再通过特征线反解得到原方程的解。

具体求解步骤如下:1. 确定特征曲线的参数方程,通过 \( \frac{dx}{a(x,t)} =\frac{dt}{b(x,t)} \) 可以得到参数方程。

2. 将未知函数按照参数方程表示,得到 \( u = u(\phi) \),其中 \( \phi \) 是参数。

3. 对上式两边求导,得到 \( \frac{du}{d\phi} = \frac{\partialu}{\partial x}\frac{dx}{d\phi} + \frac{\partial u}{\partial t}\frac{dt}{d\phi} \)。

常微分方程一阶线性偏微分方程

常微分方程一阶线性偏微分方程

常微分方程一阶线性偏微分方程7.1基本概念对于自变量 x_1、x_2、…x_n(n\geq2)与未知函数 u 的一阶偏导数 \frac{\alpha u}{\alpha x_1}、\frac{\alpha u}{\alpha x_2}、…\frac{\alpha u}{\alpha x_n}一阶偏微分方程:F(x_1,x_2,…x_n;u,\frac{\alphau}{\alpha x_1},\frac{\alpha u}{\alphax_2},…\frac{\alpha u}{\alpha x_n})=0 (7.1)一阶线性偏微分方程:\sum_{i=1}^{n}{X_i(x_1,x_2,…x_n)\frac{\alphau}{\alpha x_i}}=X(x_1,x_2,…x_n)(7.2)a一阶齐次线性偏微分方程:\sum_{i=1}^{n}{X_i(x_1,x_2,…x_n)\frac{\alphau}{\alpha x_i}}=0 (7.2)b一阶拟线性偏微分方程:\sum_{j=1}^{n}{Y_j(x_1,x_2,…x_n;z)\frac{\alphaz}{\alpha x_j}}=Z(x_1,x_2,…x_n;z)(7.3)解 u=\varphi(x_1,x_2,…x_n)可以想象为在空间(x_1,x_2,…x_n,u)中的一张n维曲面,通常称为偏微分方程(7.1)的积分曲面。

称\frac{dx_1}{X_1}=\frac{dx_2}{X_2}=…=\frac{dx_n}{X_n} (7.5)为(7.2)b的特征方程。

(7.3)的求解问题则可化为(7.2)b的方程类型来处理。

7.2 一阶线性偏微分方程与常微分方程组的关系考虑初值问题(p344)首次积分:n个首次积分称为彼此独立的:常微分方程组与一阶线性偏微分方程之间的关系:7.3 利用首次积分求解常微分方程组考虑方程组通积分:方程组(7.11)的n个彼此独立的首次积分的全体(7.12)称为(7.11)的通积分。

一阶偏微分方程组求解

一阶偏微分方程组求解

一阶偏微分方程组的求解通常依赖于方程组的具体形式。

一般来说,求解一阶偏微分方程组的方法包括分离变量法、特征线法、变换法等。

我将提供一个简单的示例来说明这些方法的应用。

考虑一个二元一阶偏微分方程组:\(\frac{\partial u}{\partial x} = F(x, y)\)\(\frac{\partial u}{\partial y} = G(x, y)\)其中,\(u(x, y)\) 是未知函数,\(F(x, y)\) 和\(G(x, y)\) 是已知函数。

这是一个常见的一阶偏微分方程组。

以下是一些解方程组的方法:1. 分离变量法:首先,将方程组中的偏微分项分离变量,然后积分。

例如,对第一个方程\(\frac{\partial u}{\partial x} = F(x, y)\) 进行积分,可以得到\(u(x, y) = \int F(x, y)dx + C_1(y)\),其中\(C_1(y)\) 是关于\(y\) 的积分常数。

接着,对第二个方程\(\frac{\partial u}{\partial y} = G(x, y)\) 进行积分,可以得到\(u(x, y) = \int G(x, y)dy + C_2(x)\),其中\(C_2(x)\) 是关于\(x\) 的积分常数。

将这两个结果合并,可以得到方程组的解。

2. 特征线法:特征线法是一种常用于解一阶偏微分方程组的方法,它通过引入新的坐标系统来简化方程。

具体的应用取决于方程组的形式和特性。

3. 变换法:变换法涉及将偏微分方程组通过某种变换转化为更容易解的形式。

这通常需要选择合适的变换函数,并进行适当的代换。

需要注意的是,一阶偏微分方程组的求解可能会因方程组的具体形式和边界条件而异。

解这类方程组通常需要一定的数学技巧和分析能力。

如果您具体提供方程组的形式和边界条件,我可以尝试为您提供更具体的解决方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一阶偏微分方程根本知识这一章我们来讨论一阶线性偏微分方程和一阶拟线性偏微分方程的解法,因为它们都可以化为常微分方程的首次积分问题,所以我们先来介绍常微分方程的首次积分。

一阶常微分方程组的首次积分首次积分的定义从第三章我们知道,n阶常微分方程y n fx,y',y'', ,y n1,〕在变换yy,yy',L,ynyn112〕之下,等价于下面的一阶微分方程组dy1f1x,y1,y2,L,yn,dxdy2f2x,y1,y2,L,y n,dxMMMMdy nf n x,y1,y2,L,y n.dx〔〕在第三章中,已经介绍过方程组〔〕通解的概念和求法。

但是除了常系数线性方程组外,求一般的〔〕的解是极其困难的。

然而在某些情况下,可以使用所谓“可积组合〞法求通积分,下面先通过例子说明“可积组合〞法,然后介绍一阶常微分方程组“首次积分〞的概念和性质,以及用首次积分方法来求解方程组〔〕的问题。

先看几个例子。

例1求解微分方程组--WORD格式--可编辑--dx yxx2y21,dy xyx2y2 1.dt dt〔〕解:将第一式的两端同乘x,第二式的两端同乘y,然后相加,得到x dx y dy x2y2x2y21,dt dt1dx2y2x2y2x2y21dt。

2这个微分方程关于变量t和x2y2是可以别离,因此不难求得其解为x2y21e2t C1,x2y2〔〕C1为积分常数。

〔〕叫做〔〕的首次积分。

注意首次积分〔〕的左端V x,y,t作为x,y,和t的函数并不等于常数;从上面的推导可见,当xx(t),y y(t)时微分方程组〔〕的解时,Vx,y,t才等于常数C1,这里的常数C1应随解而异。

因为式〔〕是一个二阶方程组,一个首次积分〔〕缺乏以确定它的解。

为了确定〔〕的解,还需要找到另外一个首次积分。

将第一式两端同乘y,第二式两端同乘x,然后用第一式减去第二式,得到y dx x dy x2y2,dt dt即x dy y dx x2y2,dt dt亦即d arctan yx。

1dt积分得--WORD格式--可编辑--arctan yC2,tx〔〕其中C2为积分常数。

利用首次积分〔〕和〔〕可以确定〔〕的通解。

为此,采用极坐标x rcos,y rsin,这样由〔〕和〔〕推得112tC1,t C2. r2e或r1,C2t.1C1e2t因此我们得到方程组〔〕的通解为x cosC22t t,ysinC2t2t.1C1e1C1e 〕duvw,dt例2求解微分方程组dv wu, dtdwuv.dt〕其中0是给定的常数。

解利用方程组的对称性,可得du dv dw0,u v wdt dt dt 从而得到首次积分u2v2w2C1,〔〕其中积分常数C10。

同样我们有2u du2v dv2w dw0,dt dt dt由此又得另一个首次积分2u22v22w2C2,--WORD格式--可编辑--〔〕其中积分常数C20。

有了首次积分〔〕和〔〕,我们就可以将u和v用w表示,代入原方程组〔〕的第三式,得到dw a Aw2bBw2,dt〔〕其中常数a,b依赖于常数C1和C2,而常数A0,B0.注意〔〕是变量可别离方程,别离变量并积分得到第三个首次积分dw t C3,(a Aw2)b Bw2〔〕其中C3是积分常数。

因为方程组〔〕是三阶的,所以三个首次积分〔〕、〔〕和〔〕在理论上足以确定它的通解u t,C1,C2,C3,v t,C1,C2,C3,w t,C1,C2,C3.但是由于在式〔〕中出现了椭圆积分,因此不能写出上述通解的具体表达式。

现在我们考虑一般的n阶常微分方程dy if i x,y1,y2,,y n,i1,2,n,dx〕其中右端函数f i x,y1,y2, ,y n在DR n1内对x,y1,y2,L,y n连续,而且对y1,y2,,y n是连续可微的。

定义1设函数VVx,y1,y2,L,y n 在D的某个子域G内连续,而且对x,y1,y2,L,y n是连续可微的。

又设Vx,y1,y2,L,y n 不为常数,但沿着微分方程〔〕在区域G内的任意积分曲线:y1y1x,y2y2x,L,y n y nxx J--WORD格式--可编辑--函数V 取常值;亦即Vx,y 1x,y 2x,Ly n xC 常数x J ,或当(x,y 1,y 2,L,y n )时,有Vx,y 1,y 2,L,y n =常数,这里的常数随积分曲线而定,那么称Vx,y 1,y 2,L,y n =C 〔〕为微分方程〔〕在区域G 内的首次积分。

其中 C 是一个任意常数,有时也称这里的函数Vx,y 1,y 2,L,y n 为〔〕的首次积分。

例如〔〕和〔〕都是微分方程〔〕在某个区域内的首次积分。

这里对区域G 有限制,是要求首次积分〔〕和〔〕必须是单值的连续可微函数。

因此区域内不能包括原点,而且也不能有包含原点的回路。

同理,式〔〕、〔〕和〔〕都是方程〔〕的首次积分。

对于高阶微分方程〔〕,只要做变换〔〕,就可以把它化成一个与其等价的微分方程组。

因此,首次积分的定义可以自然地移植到n 阶方程〔〕。

而其首次积分的一般形式可以写为V x,y,y ',L,y n1C 。

〔〕例如,设二阶微分方程组d 2x2,dt 2asinx0a0为常数用dx乘方程的两端,可得dtdxd 2x 2dx0,dtdt 2a sinx dt然后积分,得到一个首次积分--WORD 格式--可编辑--1dx 2a2cosxC。

2dt一般的,n阶常微分方程有n个独立的首次积分,如果求得n阶常微分方程组的n个独立的首次积分,那么可求n阶常微分方程组的通解。

首次积分的性质和存在性关于首次积分的性质,我们不加证明地列出下面的定理。

定理1设函数x,y1,y2,L,y n在区域G内是连续可微的,而且它不是常数,那么x,y1,y2,L,y n C〕是微分方程〔〕在区域G内的首次积分的充分必要条件是xf1L f n0 y1y n〕是关于变量x,y1,y2,L,y n G的一个恒等式。

这个定理实际上为我们提供了一个判别一个函数是否是微分方程〔〕首次积分的有效方法。

因为根据首次积分的定义,为了判别函数V x,y1,y2,L,y n是否是微分方程〔〕在G内的首次积分,我们需要知道〔〕在G内的所有积分曲线。

这在实际上是由困难的。

而定理1防止了这一缺点。

定理2假设微分方程〔〕的一个首次积分〔〕,那么可以把微分方程〔〕降低一阶。

设微分方程组〔〕有n个首次积分i x,y1,y2,L,y n C i i 1,2,L,n,〔〕如果在某个区域G内它们的Jacobi行列式--WORD格式--可编辑--D1,2,L,n0,D y1,y2,L,y n〔〕那么称它们在区域G内是相互独立的。

定理3设微分方程〔〕的n个相互独立的首次积分〔〕,那么可由它们得到〔〕在区域G内的通解y ii x,C1,C2,L,C n i 1,2,L,n,〔〕其中C1,C2,L,C n为n个任意常数〔在允许范围内〕,而且上述通解表示了微分方程〔〕在G内的所有解。

关于首次积分的存在性,我们有定理4设p0x0,y10,L,y n0G,那么存在p0的一个邻域G0G,使得微分方程〔〕在区域G0内有n个相互独立的首次积分。

定理5微分方程〔〕最多只有n个相互独立的首次积分。

定理6设〔〕是微分方程〔〕在区域G内的n个相互独立的首次积分,那么在区域G内微分方程〔〕的任何首次积分V x,y1,y2,L,y n=C,可以用〔〕来表达,亦即Vx,y1,y2,L,y n h1x,y1,y2,L,y n,L,n x,y1,y2,L,y n,其中h*,L,*是某个连续可微的函数。

为了求首次积分,也为了下一节的应用,人们常把方程组〔〕改写成对称的形式dy1dy2L dy n dx,f1f2f n1这时自变量和未知函数的地位是完全平等的。

更一般地,人们常把上述对称式写成--WORD格式--可编辑--dy 1dy 2Ldy n,Y 1y 1,y 2,L,y nY 2y 1,y 2,L,y nY n y 1,y 2,L,y n〔〕并设Y 1,Y 2,L,Y n 在区域GR n 内部不同时为零,例如如果设Y n0,那么〔〕等价于dy i Y i y 1,y 2,L ,y ni 1,2,L,n1。

dy nY n y 1,y 2,L,y n〔 〕请注意,式〔〕中的y n 相当于自变量,x i i 1,2,L ,n1相当于未知函数,所以在方程组〔〕中只有n--1 个未知函数,连同自变量一起,共有n 个变元。

不难验证,对于系统〔〕,定理1相应地改写为:设函数y 1,y 2,L,y n 连续可微,并且不恒等于常数,那么y 1,y 2,L,y n =C 是〔〕的首次积分的充分必要条件是关系式Y 1y 1,y 2,L,y ny 1,y 2,L,y n LY n y 1,y 2,L,y ny 1,y 2,L,y ny 1y n〔1.23〕在G 内成为恒等式。

如果能得到〔〕的n-1个独立的首次积分,那么将它们联立,就得到〔 〕的通积分。

方程写成对称的形式后,可以利用比例的性质,给求首次积分带来方便。

例3求dx dy dz的通积分。

yx z--WORD 格式--可编辑--解将前两个式子别离变量并积分,得到方程组的一个首次积分x2y2C1〕其中C1是任意常数,再用比例的性质,得dx y dz,x y z两边积分,又得到一个首次积分x yC2,z〔〕其中C2是任意常数。

〔〕和〔〕是相互独立的,将它们联立,便得到原方程组得通积分x2y2C1,xyC2z.例4求dx dybx dz的通积分。

cybz azcx ay解利用比例的性质,可以得到dx dy dz xdx ydy zdzadxbdycdz.cybz az cxbx ay00于是有xdx ydy zdz0,adx bdy cdz0.分别积分,就得到两个首次积分x2y2z2C1,axbyczC2.将它们联立,就得到原系统的通积分,其中C1和C2为任意常数。

例5求解二体问题,即求解方程组d2x xdt2x2y2z232 d2y ydt2x2y2z232 d2z zdt2x2y2z2320, 0, 0.其中常数GM,G是引力常数,M是相对静止的这个天体的质--WORD格式--可编辑--量。

现在求二体问题的运动轨线。

以x乘第二式两边,以y乘第三式两边,然后相减,得z d2y y d2z0,dt2dt2即d dz dy,y z0dt dt dt积分便得到y dz dyz C1, dt dt〕这里C1是任意常数,用类似的方法,可以得到z dx x dz C2,dt dtx dy y dx C3.dt dt其中C2,C3都是任意常数。

相关文档
最新文档