《备战2020年高考》专题07平面向量-2019年高考真题和模拟题分项汇编数学(文)(原卷版)

合集下载

专题07 平面向量 解析版(2016-2020)高考数学(理)真题分项详解

专题07 平面向量     解析版(2016-2020)高考数学(理)真题分项详解

专题07 平面向量【2020年】1.(2020·新课标Ⅲ)已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b ( ) A. 3135-B. 1935-C.1735D.1935【答案】D 【解析】5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()22222526367a b a ba ab b +=+=+⋅+=-⨯+=,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 2.(2020·山东卷)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅ 的取值范用是( ) A. ()2,6- B. (6,2)- C. (2,4)- D. (4,6)-【答案】A 【解析】AB 的模为2,根据正六边形的特征,可以得到AP 在AB 方向上的投影的取值范围是(1,3)-, 结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB 方向上的投影的乘积, 所以AP AB ⋅的取值范围是()2,6-,3.(2020·北京卷)已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+,则||PD =_________;PB PD ⋅=_________.【答案】 (1).5 (2). 1-【解析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+=, 则点()2,1P ,()2,1PD ∴=-,()0,1PB =-, 因此,()22215PD =-+=,()021(1)1PB PD ⋅=⨯-+⨯-=-.4.(2020·天津卷)如图,在四边形ABCD 中,60,3B AB ︒∠==,6BC =,且3,2AD BC AD AB λ=⋅=-,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的最小值为_________.【答案】 (1). 16 (2). 132【解析】AD BC λ=,//AD BC ∴,180120BAD B ∴∠=-∠=,cos120AB AD BC AB BC AB λλ⋅=⋅=⋅1363922λλ⎛⎫=⨯⨯⨯-=-=- ⎪⎝⎭,解得16λ=, 以点B 为坐标原点,BC 所在直线为x 轴建立如下图所示的平面直角坐标系xBy ,()66,0BC C =∴,,∵3,60AB ABC =∠=︒,∴A 的坐标为3332A ⎛ ⎝⎭,∵又∵16AD BC =,则533,22D ⎛⎫ ⎪ ⎪⎝⎭,设(),0M x ,则()1,0N x +(其中05x ≤≤), 533,2DM x ⎛=- ⎝⎭,333,2DN x ⎛=- ⎝⎭,()222533321134222222DM DN x x x x x ⎛⎛⎫⎛⎫⋅=--+=-+=-+ ⎪⎪ ⎝⎭⎝⎭⎝⎭, 所以,当2x =时,DM DN ⋅取得最小值132. 5.(2020·浙江卷)设1e ,2e 为单位向量,满足21|22|-≤e e ,12a e e =+,123b e e =+,设a ,b 的夹角为θ,则2cos θ的最小值为_______. 【答案】2829【解析】12|2|2e e -≤,124412e e ∴-⋅+≤,1234e e ∴⋅≥, 222121222121212(44)4(1)()cos (22)(106)53e e e e a b e e e e e e a bθ+⋅+⋅⋅∴===+⋅+⋅+⋅⋅12424228(1)(1)3332953534e e =-≥-=+⋅+⨯. 6.(2020·江苏卷)在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是________.【答案】185【解析】∵,,A D P 三点共线, ∴可设()0PA PD λλ=>, ∵32PA mPB m PC ⎛⎫=+- ⎪⎝⎭,∴32PD mPB m PC λ⎛⎫=+- ⎪⎝⎭,即32m m PD PB PC λλ⎛⎫- ⎪⎝⎭=+, 若0m ≠且32m ≠,则,,B D C 三点共线, ∴321m m λλ⎛⎫- ⎪⎝⎭+=,即32λ=, ∵9AP =,∴3AD =,∵4AB =,3AC =,90BAC ∠=︒, ∴5BC =,设CD x =,CDA θ∠=,则5BD x =-,BDA πθ∠=-.∴根据余弦定理可得222cos 26AD CD AC xAD CD θ+-==⋅,()()()222257cos 265x AD BD AB AD BD x πθ--+--==⋅-,∵()cos cos 0θπθ+-=,∴()()2570665x x x --+=-,解得185x =,∴CD 的长度为185.当0m =时, 32PA PC =,,C D 重合,此时CD 的长度为0, 当32m =时,32PA PB =,,B D 重合,此时12PA =,不合题意,舍去.7.(2020·新课标Ⅱ)已知单位向量a ,b 的夹角为45°,ka –b 与a 垂直,则k =__________.【答案】2【解析】由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:202k a a b k →→→⨯-⋅=-=,解得:2k =.8.(2020·新课标Ⅰ)设,a b 为单位向量,且||1+=a b ,则||a b -=______________.【解析】因为,a b 为单位向量,所以1a b == 所以()2222221a b a b a a b b a b +=+=+⋅+=+⋅=解得:21a b ⋅=- 所以()22223a b a b a a b b -=-=-⋅+=【2019年】1.【2019年高考全国I 卷理数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6 B .π3C .2π3D .5π6【答案】B【解析】因为()-a b ⊥b ,所以2()-⋅=⋅-a b b a b b =0,所以2⋅=a b b ,所以cos θ=22||12||2⋅==⋅a b b a b b ,所以a 与b 的夹角为π3,故选B .2.【2019年高考全国II 卷理数】已知AB →=(2,3),AC →=(3,t ),BC →=1,则AB →·BC →= A .−3 B .−2 C .2D .3【答案】C【解析】由BC →=AC →—AB →=(1,t-3),211BC ==,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .3.【2019年高考北京卷理数】设点A ,B ,C 不共线,则“AB →与AC →的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】AB 与AC 的夹角为锐角,所以2222||||2||||2AB AC AB AC AB AC AB AC ++⋅>+-⋅,即22||||AB AC AC AB +>-,因为AC AB BC -=,所以|AB +AC |>|BC |;当|AB +AC |>|BC |成立时,|AB +AC |2>|AB -AC |2AB ⇒•AC >0,又因为点A ,B ,C 不共线,所以AB 与AC 的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C .4.【2019年高考全国III 卷理数】已知a ,b 为单位向量,且a ·b =0,若2=c a ,则cos ,=a c ___________. 【答案】23【解析】因为2=c a ,0⋅=a b ,所以22⋅=⋅a c a b 2=,222||4||5||9=-⋅+=c a b b ,所以||3=c ,所以cos ,=a c 22133⋅==⨯⋅a c a c .5.【2019年高考天津卷理数】在四边形ABCD 中,,5,30AD BC AB AD A ==∠=︒∥,点E在线段CB 的延长线上,且AE BE =,则BD AE ⋅=_____________.【答案】1-【解析】建立如图所示的直角坐标系,∠DAB =30°,23,5,AB AD ==则(23,0)B ,535(,)22D . 因为AD ∥BC ,30BAD ∠=︒,所以30ABE ∠=︒, 因为AE BE =,所以30BAE ∠=︒, 所以直线BE 的斜率为33,其方程为3(23)3y x =-, 直线AE 的斜率为33-,其方程为33y x =-. 由3(23),333y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩得3x =,1y =-, 所以(3,1)E -.所以35(,)(3,1)122BD AE =-=-.6.【2019年高考江苏卷】如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.【答案】3.【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+-,()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭, 得2213,22AB AC =即3,AB AC =故3ABAC=【2018年】1.【2018·全国I 卷 】在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC -B .1344AB AC - C .3144AB AC +D .1344AB AC +【答案】A【解析】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++ 1113124444BA BA AC BA AC =++=+,所以3144EB AB AC =-. 故选A.2.【2018·全国II 卷 】已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4 B .3 C .2 D .0【答案】B【解析】因为()()22222||1213⋅-=-⋅=--=+=a a b a a b a 所以选B.3.(2018·浙江卷)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是 A .3−1 B .3+1 C .2 D .2−3【答案】A【解析】设,则由得,由b 2−4e ·b +3=0得因此|a −b |的最小值为圆心到直线的距离23=32减去半径1,为选A.4.【2018·天津卷 】如图,在平面四边形ABCD 中,,,120,AB BC AD CD BAD ⊥⊥∠=1,AB AD ==若点E 为边CD 上的动点,则AE BE ⋅的最小值为A .2116 B .32C .2516D .3【答案】A【解析】连接AD ,取AD 中点为O ,可知ABD △为等腰三角形,而,AB BC AD CD ⊥⊥,所以BCD △为等边三角形,3BD =. 设()01DE tDC t =≤≤AE BE ⋅ ()()()2232AD DE BD DE AD BD DE AD BD DE BD DE DE =+⋅+=⋅+⋅++=+⋅+ =233322t t -+ ()01t ≤≤ 所以当14t =时,上式取最大值2116,故选A.5.【2018·北京卷 】设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】222222699+63333-=+-=⇔⇔-++⋅=⋅+a a b a b a b a b a b b a a b b ,因为a ,b 均为单位向量,所以2222699+6=0-⋅+=⋅+⇔⋅⇔a a b b a a b b a b a ⊥b ,即“33-=+a b a b ”是“a ⊥b ”的充分必要条件.故选C.6.【2018·全国III 卷 】已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=___________. 【答案】12【解析】由题可得()24,2+=a b ,()2∥c a +b ,()=1,λc ,420λ∴-=,即12λ=,故答案为12.7.【2018·上海卷】在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且||2EF =,则AE BF ⋅的最小值为___________. 【答案】-3【解析】根据题意,设E (0,a ),F (0,b ); ∴2EF a b =-=; ∴a =b +2,或b =a +2; 且()()1,2,AE a BF b ==-,; ∴2AE BF ab ⋅=-+;当a =b +2时,()22222AE BF b b b b ⋅=-++⋅=+-; ∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅的最小值为﹣3,同理求出b =a +2时,AE BF ⋅的最小值为﹣3. 故答案为:﹣3.8.【2018·江苏卷】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为___________. 【答案】3【解析】设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭,由0AB CD ⋅=得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-, 因为0a >,所以 3.a =【2017年】1.【2017·全国III 卷 】在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为 A .3B .22C .5D .2【答案】A【解析】如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y , 易得圆的半径5r =C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=,若满足AP AB AD λμ=+,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+,设12x z y =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上, 所以圆心(20),到直线102xy z -+-=的距离d r ≤21514z -≤+,解得13z ≤≤, 所以z 的最大值是3,即λμ+的最大值是3,故选A .2.【2017·全国II 卷 】已知ABC △是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是 A .2-B .32-C .43-D .1-【答案】B【解析】如图,以BC 为x 轴,BC 的垂直平分线DA 为y 轴,D 为坐标原点建立平面直角坐标系,则3)A ,(1,0)B -,(1,0)C ,设(,)P x y ,所以(3)PA x y =-,(1,)PB x y =---,(1,)PC x y =--,所以(2,2)PB PC x y +=--,22()22(3)22(PA PB PC x y y x y ⋅+=-=+-2333)22-≥-,当3P 时,所求的最小值为32-,故选B .3.【2017·北京卷 】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】若0λ∃<,使λ=m n ,则两向量,m n 反向,夹角是180︒,那么cos180⋅=︒=m n m n0-<m n ;若0⋅<m n ,那么两向量的夹角为(]90,180︒︒,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分而不必要条件,故选A.4.【2017·全国I 卷 】已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |=___________. 【答案】23【解析】方法一:222|2|||44||4421cos60412+=+⋅+=+⨯⨯⨯+=a b a a b b , 所以|2|1223+==a b 方法二:利用如下图形,可以判断出2+a b 的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为235.【2017·江苏卷】如图,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1,2,OA 与OC 的夹角为α,且tan α=7,OB 与OC 的夹角为45°.若OC mOA nOB =+(,)m n ∈R ,则m n +=___________.【答案】3【解析】由tan 7α=可得72sin α=2cos α= 易得cos 45cos 2sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩2222720210n m ⎧=⎪⎪-=⎪⎩,即510570n m n m +=⎧⎨-=⎩,即得57,44m n ==,所以3m n +=.6.【2017·天津卷】在ABC △中,60A =︒∠,3AB =,2AC =.若2BD DC =,AE AC λ=-()AB λ∈R ,且4AD AE ⋅=-,则λ的值为___________.【答案】311【解析】由题可得1232cos 603,33AB AC AD AB AC ⋅=⨯⨯︒==+, 则12()33AD AE AB AC ⋅=+2123()34934333311AC AB λλλλ-=⨯+⨯-⨯-⨯=-⇒=. 7.【2017·山东卷 】已知12,e e 123-e e 与12λ+e e 的夹角为60︒,则实数λ的值是___________.【解析】∵221212112122)()λλλλ-⋅+=⋅-⋅-e e e e e e e ,12|2-==e ,12||λ+===e e ,cos60λ=︒=λ=. 8.【2017·浙江卷】已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是________,最大值是___________.【答案】4,【解析】设向量,a b 的夹角为θ,则-==a b+==a b则++-=a b a b令y =[]21016,20y =+,据此可得:()()maxmin 4++-==++-==a b a ba b a b ,即++-a b a b 的最小值是4,最大值是 【2016年】1.【2016高考山东理数】已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为( ) (A )4 (B )–4 (C )94(D )–94【答案】B【解析】由43=m n ,可设3,4(0)k k k ==>m n ,又()t ⊥+n m n , 所以22221()cos ,34(4)41603t t n n t t k k k tk k ⋅+=⋅+⋅=⋅+=⨯⨯⨯+=+=n m n n m m n m n n , 所以4t =-,故选B.2.【2016高考新课标2理数】已知向量(1,)(3,2)a m a =-,=,且()a b b ⊥+,则m =( ) (A )-8 (B )-6 (C )6 (D )8 【答案】D【解析】向量a b (4,m 2)+=-,由(a b)b +⊥得43(m 2)(2)0⨯+-⨯-=,解得m 8=,故选D.3.【2016高考新课标3理数】已知向量1(2BA = ,31()2BC = ,则ABC ∠=( ) (A)30︒ (B)45︒ (C)60︒ (D)120︒【答案】A【解析】由题意,得112222cos 11||||BA BC ABC BA BC ⋅∠===⨯,所以30ABC ∠=︒,故选A . 4.【2016年高考北京理数】设a ,b 是向量,则“||||a b =”是“||||a b a b +=-”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 【答案】D【解析】由22||||()()0a b a b a b a b a b a b +=-⇔+=-⇔⋅=⇔⊥,故是既不充分也不必要条件,故选D.5.【2016高考天津理数】已知△ABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则BC AF ⋅的值为( ) (A )85-(B )81 (C )41 (D )811【答案】B【解析】设BA a =,BC b =,∴11()22DE AC b a ==-,33()24DF DE b a ==-, 1353()2444AF AD DF a b a a b =+=-+-=-+,∴25353144848AF BC a b b ⋅=-⋅+=-+=,故选 B.6.【2016年高考四川理数】在平面内,定点A ,B ,C ,D 满足DA=DB =DC ,DA ⋅DB =DB ⋅DC =DC ⋅DA =-2,动点P ,M 满足AP =1,PM =MC ,则2BM 的最大值是( ) (A )434 (B )494 (C )37634+ (D )372334+ 【答案】B【解析】甴已知易得1220,DA ADC ADB D D BDC B C ∠=∠====∠=︒.以D 为原点,直线DA 为x 轴建立平面直角坐标系,如图所示,则()()()2,0,1,3,1,3.A B C ---设(),,P x y 由已知1AP =,得()2221x y -+=,又13133,,,,,2222x y x y PM MC M BM ⎛⎫⎛⎫-+++=∴∴= ⎪ ⎪⎝⎭⎝⎭()()222+1334x y BM ++∴=,它表示圆()2221x y -+=上的点()x y ,与点()1,33--的距离的平方的14,()()2222max149333144BM⎛⎫∴=++= ⎪⎝⎭,故选B.7.【2016高考新课标1卷】设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m = . 【答案】-2【解析】由222||||||+=+a b a b ,得⊥a b ,所以1120m ⨯+⨯=,解得2m =-.8.【2016高考江苏卷】如图,在ABC ∆中,D 是BC 的中点,,E F 是,A D 上的两个三等分点,4BC CA ⋅=,1BF CF ⋅=- ,则BE CE ⋅ 的值是 ▲ .【答案】78【解析】因为222211436=42244AD BC FD BC BA CA BC AD BC AD --⋅=-⋅--==()(), 2211114123234FD BCBF CF BC AD BC AD -⋅=-⋅--==-()(),因此22513,82FD BC ==,2222114167.22448ED BC FD BC BE CE BC ED BC ED --⋅=-⋅--===()() 9.【2016高考浙江理数】已知向量a 、b , |a | =1,|b | =2,若对任意单位向量e ,均有 |a ·e |+|b ·e |≤,则a ·b 的最大值是 . 【答案】12【解析】221|(a b)||a ||b |6|a b |6|a ||b |2a b 6a b 2e e e +⋅≤⋅+⋅≤⇒+≤⇒++⋅≤⇒⋅≤,即最大值为12。

平面向量-高考真题文科数学分项汇编(原卷版)

平面向量-高考真题文科数学分项汇编(原卷版)

专题 11平面向量1.【2020年高考全国Ⅱ卷文数】已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是A .a+2bB .2a+bC .a –2bD .2a – b2.【2020年高考全国Ⅲ卷文数】在平面内,A ,B 是两个定点,C 是动点,若 AC BC=1,则点 C 的轨迹为A .圆B .椭圆C .抛物线D .直线3.【2020年新高考全国Ⅰ卷】已知 P 是边长为 2的正六边形 ABCDEF 内的一点,则 AP AB 的取值范围是A .(2,6) C .(2,4)B .(6,2) D .(4,6)4.【2019年高考全国 I 卷文数】已知非零向量 a ,b 满足|a | 2|b|,且(a b) b ,则 a 与 b 的夹角为πB . πA .C . 6 2π 3 5πD .365.【2019年高考全国 II 卷文数】已知向量 a=(2,3),b=(3,2),则|a-b|= A . 2 B .2 C .5 2D .506.【2018年高考全国 I 卷文数】在△ABC 中, AD 为 BC 边上的中线, E 为 AD 的中点,则 EB1A . AB1 AC3 B . AB3 AC4 3 44 1 4C .AB 1 AC D .AB 3 AC 4 44 47.【2018年高考全国 II 卷文数】已知向量 a ,b 满足|a | 1, a b 1,则 a (2a b)A .4 C .2B .3 D .08.【2018年高考浙江卷】已知 a ,b ,e 是平面向量,e 是单位向量.若非零向量 a 与 e 的夹角为 π3,向量 b 满足 b −4e·b+3=0,则|a −b|的最小值是2A . 3 −1 C .2B . 3 +1 D .2− 39.【 2018年高考天津卷文数】在如图的平面图形中,已知BC·OM的值为OM 1,ON 2,MON 120,BM 2MA,CN 2NA,则A .15C . 6B .9D.010.【2020年高考全国Ⅰ卷文数】设向量a (1,1),b (m 1,2m 4),若a b,则m11.【2020年高考天津】如图,在四边形ABCD 中, B 60, AB 3,BC 6,且.AD BC, AD AB 3,则实数的值为_________,若M,N是线段BC上的动点,且| MN2则DM DN的最小值为_________.12.【2020年高考北京】已知正方形ABCD的边长为2,点P满足AP 1 (AB AC),则| PD |_________;2PB PD _________.13.【2020年高考浙江】已知平面单位向量e1,e2满足| 2e 1 e2 | 2.设a e 1 e2,b 3e 1 e2,向量a,b 的夹角为,则cos的最小值是_______.14.【2020年高考江苏】在△ABC中,AB 4,AC 3,∠BAC=90,D在边BC上,延长AD到P,使得AP 2若PA mPB (3 m)PC(m为常数),则CD的长度是▲.215.【2019年高考北京卷文数】已知向量=(–4,3),=(6,m),且a b,则m=__________.a b16.【2019年高考全国III卷文数】已知向量a (2,2),b (8,6),则cos a,b___________.17.【2019年高考天津卷文数】在四边形ABCD中,AD∥BC, AB 2 3, AD 5, A 30,点E 在线段CB 的延长线上,且 AEBE ,则 BD AE _____________.18.【2019年高考江苏卷】如图,在△ABC 中,D 是 BC 的中点,E 在边 AB 上,BE=2EA ,AD 与 CE 交于点O .若 AB AC6AO EC ,则ABAC 的值是_____. 19.【2019年高考浙江卷】已知正方形 ABCD 的边长为 1,当每个i(i 1,2,3,4,5,6)取遍时,|1AB 2BC 3CD 4DA 5AC 6BD|的最小值是________;最大值是_______.20.【2018年高考全国 III 卷文数】已知向量a=1,2,b=2,2,c=1,λ.若c ∥2a + b ,则________.21.【2018年高考北京卷文数】设向量 a=(1,0),b=(−1,m ),若 a (mab),则 m=_________.22.【2018年高考上海卷】在平面直角坐标系中,已知点 A 1,0、 B2,0, E 、 F 是 y 轴上的两个动点,且|EF| 2 ,则 AE BF 的最小值为___________.23.【2018年高考江苏卷】在平面直角坐标系 xOy 中, A 为直线l : y 2x 上在第一象限内的点,B 5,0,以 AB 为直径的圆C 与直线l 交于另一点 D .若 AB CD0,则点 A 的横坐标为___________.。

2019年高考数学试题分项版—平面向量(原卷版)

2019年高考数学试题分项版—平面向量(原卷版)

2019年高考数学试题分项版——平面向量(原卷版)一、选择题1.(2019·全国Ⅰ文,8)已知非零向量a,b满足|a|=2|b|,且(a-b)⊥b,则a与b的夹角为()A. B. C. D.2.(2019·全国Ⅱ文,3)已知向量a=(2,3),b=(3,2),则|a-b|等于()A.B.2 C.5D.503.(2019·全国Ⅰ理,7)已知非零向量a,b满足|a|=2|b|,且(a-b)⊥b,则a与b的夹角为()A. B. C. D.4.(2019·全国Ⅱ理,3)已知=(2,3),=(3,t),||=1,则·等于() A.-3 B.-2 C.2 D.35.(2019·北京理,7)设点A,B,C不共线,则“AB与AC的夹角为锐角”是“||||+>”AB AC BC 的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件二、填空题1.(2019·全国Ⅲ文,13)已知向量a=(2,2),b=(-8,6),则cos〈a,b〉=________. 2.(2019·北京文,9)已知向量a=(-4,3),b=(6,m),且a⊥b,则m=________. 3.(2019·浙江,17)已知正方形ABCD的边长为1.当每个λi(i=1,2,3,4,5,6)取遍±1时,|λ1+λ2+λ3+λ4+λ5+λ6|的最小值是________,最大值是________.4.(2019·江苏,12)如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若·=6·,则的值是_________.5.(2019·全国Ⅲ理,13)已知a,b为单位向量,且a·b=0,若c=2a-b,则cos〈a,c〉=________.6.(2019·天津理,14)在四边形ABCD中,AD∥BC,AB=2,AD=5,∠A=30°,点E在线段CB的延长线上,且AE=BE,则·=________.。

专题07 平面向量-备战2019高考高中文数6年高考真题分项版精解精析(原卷版)

专题07 平面向量-备战2019高考高中文数6年高考真题分项版精解精析(原卷版)

专题7 平面向量1. 【2019高考安徽卷文第10题】设,a b 为非零向量,2b a =,两组向量1234,,,x x x x 和1234,,,y y y y 均由2个a 和2个b 排列而成,若11223344x y x y x y x y ⋅+⋅+⋅+⋅所有可能取值中的最小值为24a ,则a 与b 的夹角为( ) A.23π B.3π C.6π D.0 2. 【2019高考北京卷文第3题】已知向量()2,4a =,()1,1b =-,则2a b -=( )A.()5,7B.()5,9C.()3,7D.()3,93. 【2019高考大纲卷文第6题】已知a 、b 为单位向量,其夹角为60︒,则(2a -b )·b =( )A. -1B. 0C. 1D.24. 【2019高考福建卷文第10题】设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA OB OC OD +++等于 ( )..2.3.4A OM B OM C OM D OM5. 【2019高考广东卷文第3题】已知向量()1,2a =,()3,1b =,则b a -=( )A.()2,1-B.()2,1-C.()2,0D.()4,36. 【2019高考湖北卷文第12题】12.若向量)3,1(-=OA ,||||OB OA =,0OA OB ⋅=,则=||________.7. 【2019高考湖南卷文第10题】在平面直角坐标系中,O 为原点,()1,0A -,(0B ,()30C ,,动点D 满足1CD =,则OA OB OD ++的取值范围是( )A.[]46,B.⎤⎦C.⎡⎣D.⎤⎦【2019高考江苏卷第12题】如图在平行四边形ABCD 中,已知8,5A B A D ==,3,2CP PD AP BP =⋅=,则AB AD ⋅的值是.9.【2019高考江西卷文第12题】已知单位向量=-==||,23,31cos ,,2121a e e a e e 则若向量且的夹角为αα_______.10. 【2019高考辽宁卷文第5题】设,,a b c 是非零向量,已知命题P :若0a b ⋅=,0b c ⋅=,则0a c ⋅=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝11. 【2019高考全国1卷文第6题】6.设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EB A. B.AD 21 C. BC 21 D. 12. 【2019高考全国2卷文第4题】设向量b a ,满足10||=+b a ,6||=-b a ,则=⋅b a ( )A. 1B. 2C. 3D. 513.【2019高考山东卷文第7题】已知向量()1,3a =,()3,b m =.若向量,a b 的夹角为π6,则实数m =( )(A )(B(C )0 (D )cos 6π=m =B14.【2019高考四川卷文第14题】平面向量(1,2)a =,(4,2)b =,c ma b =+(m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m = .15. 【2019高考天津卷卷文第13题】已知菱形ABCD 的边长为2,120BAD ∠=︒,点E ,F 分别在边BC 、DC 上,3BC BE =,DC DF λ=.若1,AE AF ⋅=,则λ的值为________. 16.【2019高考浙江卷文第9题】设θ为两个非零向量a 、b 的夹角,已知对任意实数t ,||t a b +的最小值为1( )A.若θ确定,则 ||a 唯一确定B.若θ确定,则 ||b 唯一确定C.若||a 确定,则 θ唯一确定D.若||b 确定,则 θ唯一确定17.【2019高考重庆卷文第12题】已知向量=⋅=--=b a b a b a 则,且的夹角为与,10||),6,2(60_________.18.【2019高考上海卷文第14题】已知曲线C :x =直线l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=,则m 的取值范围为 .19.【2019高考上海卷文第17题】如图,四个边长为1的正方形排成一个大正方形,AB 是在正方形的一条边,(1,2,,7)i P i =是小正方形的其余各个顶点,则的不同值的个数为( )(A )7 (B )5 (C )3 (D )120.【2019高考陕西文第18题】在直角坐标系xOy 中,已知点(1,1),(2,3),(3,2)A B C ,点(,)P x y 在ABC ∆三边围成的区域(含边界)上,且(,)OP mAB nAC m n R =+∈.(1)若23m n ==,求||OP ; (2)用,x y 表示m n -,并求m n -的最大值.(2013·新课标Ⅰ文)(13)已知两个单位向量a ,b 的夹角为60,(1)=+-c ta t b ,若0⋅=b c ,则t =_____。

2019年度-2020年度高考数学小题集训平面向量(含解析)

2019年度-2020年度高考数学小题集训平面向量(含解析)

,.2019-2020年高考数学小题集训——平面向量(一)一、选择题uuur uuur(uuur uuur uuur0, n 0) ,若 m n[1,2] ,则1.已知向量OA(3,1) , OB1,3) , OC mOA nOB (muuur| OC | 的取值范围是()A.[ 5, 25] B .[5, 210) C .(5, 10) D .[ 5,210]r r r r rr r r r a2.已知a,b为平面向量,若a b 与 a 的夹角为, a b 与 b 的夹角为,则 r()34bA .3B .6C .5D .6 3433 r r r r rr r3.设a(1,2) , b(1,1) , c a kb .若 b c,则实数k的值等于()A .5B .5C .3D .3 33224.已知△ABC 中, AB2, AC 4 ,BAC 60ouuur uuur ,P 为线段 AC 上随意一点,则PB PC的范围是()A .[1,4]B .[0,4]C.[-2,4]9D .[ ,4]45.在实数集R 中,我们定义的大小关系“”为全体实数排了一个“序”,近似的,我们这D r r(x, y), x R, y R 上也能够定义一个称为“序”的关系,记为平面向量会合 a | aur uur ur uur“>” .定义以下:对于任意两个向量 a1( x1 , y1) , a2( x2 , y2 ) , a1a2当且仅当“ x1x2”或“ x1x2且 y1y2”,按上述定义的关系“ ”,给出以下四个命题:ur uur r ur uur r①若 e1(1,0), e2(0,1) ,0(0,0) ,则e1e20 ;ur uur uur uur ur uur②若 a1a2, a2a3,则 a1a3;,.ur uur r ur r uur r③若 a1a2,则对于随意的a D ,a1 a a2 a ;r r r ur uur r ur r uur④对于随意的向量 a 0 ,此中 0 (0,0) ,若a1a2,则 a a1 a a2.此中正确的命题的个数为()A .4B.3C. 2 D .16.如图,在OMN 中,A、B 分别是 OM 、ONuuur uuur uuur的中点,若OP xOA yOB ( x ,y R ),且点P落在四边形ABNM内(含界限),则y1的取值范围是()x y2A.1,2B.1,3C.1,3D.1,2 333444437. 在△ABC中,BAC 60, AB3, ACuuur uuur uuur uuur uuurR ),且2 .若BD2DC , AE AC AB (uuur uuur的值为()AD AE4,则A .3B.4C.5D .6 111111118.设 P 是△ABC 内随意一点, S△ABC表示△ABC 的面积,λ1=SPBC,λ2=SPCA,λ3=SABC SABCS S PABABC,定义f()=(1,2,3) ,若 G 是△ABC 的重心,(Q)=(1,1,1),则(P f236)A .点 Q 在△GAB 内B.点 Q 在△GBC 内C.点 Q 在△GCA 内D.点 Q 与点 G 重合9.在直角梯形 ABCD中,AB2AD4,同一平面内的两个动点P,M知足,.|CP | 1,PMMA,则| BM |的取值范围为()A .[ 10 1,10 1]B .[10 1 , 101]2 2C. [ 1,3]D . [21 37 ]2,2ABC uuur uuur uuur uuur uuuruuur2,且 B , 2uuur uuur10. 在△ 中, BC CA CA AB , BABC 33 ,则 BA BC 的取值范围是()A .[-2,1)B .2,1C . 2,2D . 2,23 33r rr r r r11. 已知向量 a 与 b 的夹角为 120 °,a1,0 , b 2 ,则 2a b ()A . 3B .2C .2 3D .42 2PA PB12. 在直角三角形 ABC 中,点 D 是斜边 AB 的中点 ,点 P 为线段 CD 的中点 ,A .2B .4C .5D .102( )PC13. 在平面直角坐标系 xOy 中,已知点 A ,B 分别为 x 轴, y 轴上一点,且 AB 1,若点uuur uuur uuurP 1, 3 ,则 AP BP OP 的取值范围是()A .[5,6]B .[6,7] C.[6,9]D .[5,7]uuuruuur uuur10 ,则△ABC 是钝角三角形的概率是(14. 已知 k R, AB k,1 , AC2,4 ,若 AB)A .1B .1C.2D .56 3 3 6,.15.生于瑞士的数学巨星欧拉在1765 年发布的《三角形的几何学》一书中有这样一个定理:“三角形的外心、垂心和重心都在同向来线上。

专题07 平面向量-2019年高考真题和模拟题分项汇编数学(理) Word版含解析

专题07 平面向量-2019年高考真题和模拟题分项汇编数学(理) Word版含解析

专题07 平面向量1.【2019年高考全国I 卷理数】已知非零向量a ,b 满足,且b ,则a 与b 的夹角为||2||=a b ()-a b ⊥A .B .π6π3C . D .2π35π6【答案】B【解析】因为b ,所以=0,所以,所以=()-a b ⊥2()-⋅=⋅-a b b a b b 2⋅=a b b cos θ22||12||2⋅==⋅a b b a b b ,所以a 与b 的夹角为,故选B .π3【名师点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为.[0,]π2.【2019年高考全国II 卷理数】已知=(2,3),=(3,t ),=1,则=ABAC BC AB BC ⋅A .−3B .−2C .2D .3【答案】C【解析】由,,得,则,(1,3)BC AC AB t =-=- 1BC == 3t =(1,0)BC = .故选C .(2,3)(1,0)21302AB BC ==⨯+⨯=【名师点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.3.【2019年高考北京卷理数】设点A ,B ,C 不共线,则“与的夹角为锐角”是“”AB AC||||AB AC BC +> 的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】与的夹角为锐角,所以,即ABAC2222||||2||||2AB AC AB AC AB AC AB AC ++⋅>+-⋅,因为,所以|+|>||;22||||AB AC AC AB +>- AC AB BC -= AB AC BC当|+|>||成立时,|+|2>|-|2•>0,又因为点A ,B ,C 不共线,所以AB AC BC AB AC AB AC AB ⇒ AC与的夹角为锐角.故“与的夹角为锐角”是“|+|>||”的充分必要条件,故选C .AB AC AB AC AB AC BC【名师点睛】本题考查充要条件的概念与判断、平面向量的模、夹角与数量积,同时考查了转化与化归数学思想.4.【2019年高考全国III 卷理数】已知a ,b 为单位向量,且a ·b =0,若,则___________.2=c a cos ,=a c 【答案】23【解析】因为,,2=-c a 0⋅=a b所以,22⋅=⋅a c a b 2=,所以,222||4||5||9=-⋅+=c a b b ||3=c 所以 .cos ,=a c 22133⋅==⨯⋅a c a c 【名师点睛】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.5.【2019年高考天津卷理数】在四边形中,,点ABCD ,5,30AD BC AB AD A ==∠=︒∥E 在线段的延长线上,且,则_____________.CB AE BE =BD AE ⋅=【答案】1-【解析】建立如图所示的直角坐标系,∠DAB =30°,则,.5,AB AD ==B 5)2D 因为∥,,所以,AD BC 30BAD ∠=︒30ABE ∠=︒因为,所以,AE BE =30BAE ∠=︒所以直线,其方程为,BEy x =-直线的斜率为.AE y x =由得,yx y x ⎧=-⎪⎪⎨⎪=⎪⎩x =1y =-所以.1)E -所以.5)1)12BD AE =-=- 【名师点睛】平面向量问题有两大类解法:基向量法和坐标法,在便于建立坐标系的问题中使用坐标方法更为方便.6.【2019年高考江苏卷】如图,在中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于ABC △点.若,则的值是_____.O 6AB AC AO EC⋅=⋅ABAC【解析】如图,过点D 作DF //CE ,交AB 于点F,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD .,()()()3632AO EC AD AC AE AB AC AC AE =-=+-()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭,22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭得即2213,22AB AC = AB = ABAC=【名师点睛】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题.7.【2019年高考浙江卷】已知正方形的边长为1,当每个取遍时,ABCD (1,2,3,4,5,6)i i λ=±1的最小值是________;最大值是_______.123456||AB BC CD DA AC BD λλλλλλ+++++【答案】0;所以当时,有最大值1256341,1λλλλλλ======-max y ===故答案为0;【名师点睛】对于此题需充分利用转化与化归思想,从“基向量”入手,最后求不等式最值,是一道向量和不等式的综合题.8.【山东省烟台市2019届高三3月诊断性测试(一模)数学试题】在矩形中,,ABCD 4AB =u u u r 2AD =.若点,分别是,的中点,则M N CD BC AM MN ⋅=A .4B .3C .2D .1【答案】C【解析】由题意作出图形,如图所示:由图及题意,可得:,12AM AD DM AD AB =+=+ .1122MN CN CM CB CD =-=- 11112222BC DC AD AB =-+=-+ ∴.111222AM MN AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-+ ⎪ ⎪⎝⎭⎝⎭221111||||41622424AD AB =-⋅+⋅=-⋅+⋅= 故选:C .【名师点睛】本题主要考查基底向量的设立,以及向量数量积的运算,属基础题.9.【福建省漳州市2019届高三下学期第二次教学质量监测数学试题】已知向量,满足,a b ||1=a ||=b 且与的夹角为,则a b 6π()(2)+⋅-=a b a b A .B .1232-C .D .12-32【答案】A【解析】.()()221222312+-=-+⋅=-+=a b a b a b a b 故选A.【名师点睛】本题考查了平面向量数量积的性质及其运算,属基础题.10.【安徽省江淮十校2019届高三年级5月考前最后一卷数学试题】已知向量,,(1,2)=a (2,3)=-b ,若,则实数(4,5)=c ()λ+⊥a b c λ=A .B .12-12C .D .2-2【答案】C【解析】因为,,(1,2)=a (2,3)=-b 所以,()12,23λλλ-+a +b =又,所以,()λ+⊥a b c ()0λ+⋅=a b c 即,解得.()()4125230+=λλ-+2λ-= 故选C.【名师点睛】本题主要考查向量数量积的坐标运算,熟记运算法则即可,属于常考题型.11.【2019届北京市通州区三模数学试题】设,均为单位向量,则“与夹角为”是“”a b a b 2π3||+=a b 的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】D【解析】因为,均为单位向量,a b 若与夹角为,a b 2π3则,||1+===a b因此,由“与夹角为”不能推出“”;a b 2π3||+=a b若,则||+=a b ||+===a b 解得,即与夹角为,1cos ,2=a b a b π3所以,由“”不能推出“与夹角为”||+a b a b 2π3因此,“与夹角为”是“”的既不充分也不必要条件.a b 2π3||+=a b 故选D【名师点睛】本题主要考查充分条件与必要条件的判断,以及向量的数量积运算,熟记充分条件与必要条件的概念,以及向量的数量积运算法则即可,属于常考题型.12.【辽宁省丹东市2019届高三总复习质量测试数学(二)】在中,,ABC △2AB AC AD += AE DE +=0,若,则EB xAB y AC =+A .B .3y x=3x y=C .D .3y x =-3x y=-【答案】D【解析】因为,所以点是的中点,又因为,所以点是的2AB AC AD += D BC AE DE +=0E AD 中点,所以有:,因此11131()22244BE BA AE AB AD AB AB AC AB AC =+=-+=-+⨯+=-+,故题选D.31,344x y x y =-=⇒=-【名师点睛】本题考查了向量加法的几何意义、平面向量基本定理.解题的关键是对向量式的理解、对向量加法的几何意义的理解.13.【2019年辽宁省大连市高三5月双基考试数学试题】已知直线y =x +m 和圆x 2+y 2=1交于A 、B 两点,O为坐标原点,若,则实数m =32AO AB ⋅=A .B .1±C .D .12±【答案】C【解析】联立 ,得2x 2+2mx +m 2−1=0,221y x mx y =+⎧⎨+=⎩∵直线y =x +m 和圆x 2+y 2=1交于A 、B 两点,O 为坐标原点,∴=-2m 2+8>0,解得,∆x <<设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=−m ,,21221-=m x x y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2,=(-x 1,-y 1),=(x 2-x 1,y 2-y 1),AOAB∵+y 12-y 1y 2=1+m 2-m 2=2-m 2=,21123,2AO AB AO AB x x x ⋅=∴⋅=- 221122m m ----23解得m =.±故选:C .【名师点睛】本题考查根的判别式、根与系数的关系、向量的数量积的应用,考查了运算能力,是中档题.14.【天津市和平区2018-2019学年度第二学期高三年级第三次质量调查数学试题】已知菱形的边长ABCD 为2,,点,分别在边,上,,,若,120BAD ∠=︒E F BC DC 3BC BE =DC DF λ=1AE AF ⋅=则的值为λA .3B .2C .D .2352【答案】B【解析】由题意可得:()()113AE AF AB BE AD DF AB BC BC AB λ⎛⎫⎛⎫⋅=+⋅+=+⋅+ ⎪ ⎪⎝⎭⎝⎭,22111133AB BC AB BC λλ⎛⎫=+++⋅ ⎪⎝⎭且:,224,22cos1202AB BC AB BC ==⋅=⨯⨯=-故,解得:.()44112133λλ⎛⎫+++⨯-= ⎪⎝⎭2λ=故选:B.【名师点睛】本题主要考查平面向量数量积的定义与运算法则,平面向量基本定理及其应用等知识,意在考查学生的转化能力和计算求解能力.15.【江西省新八校2019届高三第二次联考数学试题】在矩形中,与相ABCD 3,4,AB AD AC ==BD 交于点,过点作,垂足为,则O A AE BD ⊥E AE EC ⋅=A .B .57214425C .D .1252512【答案】B【解析】如图:由,得:,3AB =4=AD 5BD ==125AB AD AE BD ⋅==又()AE EC AE EO OC AE EO AE OC AE EO AE AO ⋅=⋅+=⋅+⋅=⋅+⋅ ,,AE BD ⊥ 0AE EO ∴⋅= 又2144cos 25AE AE AO AE AO EAO AE AO AE AO⋅=∠=⋅== .14425AE EC ∴⋅= 故选B.【名师点睛】本题考查向量数量积的求解问题,关键是能够通过线性运算将问题转化为模长和夹角已知的向量之间的数量积问题.16.【湖师范大学附属中学2019届高三数学试题】如图所示,在正方形ABCD 中,E 为AB 的中点,F 为CE的中点,则AF =A .B .3144AB AD + 1344AB AD + C .D . 12AB AD + 3142AB AD + 【答案】D 【解析】根据题意得:,又,,所以1()2AF AC AE =+ AC AB AD =+ 12AE AB = .故选D.1131()2242AF AB AD AB AB AD =++=+ 【名师点睛】本题主要考查了平面向量的基本定理的简单应用,属于基础试题.17.【2019年北京市高考数学试卷】已知向量=(-4,3),=(6,m ),且,则m =__________.a b ⊥a b 【答案】8.【解析】向量4,36,m =-=⊥(),(),,a b a b 则.046308m m ⋅=-⨯+==,,a b 【名师点睛】本题考查平面向量的坐标运算、平面向量的数量积、平面向量的垂直以及转化与化归思想的应用.属于容易题.18.【山东省烟台市2019届高三3月诊断性测试(一模)数学试题】已知圆的弦的22450x y x ++-=AB 中点为,直线交轴于点,则的值为__________.(1,1)-AB x P PA PB ⋅ 【答案】8.【答案】5-【解析】设,圆心,(1,1)M -(2,0)C -∵,10112MC k -==-+根据圆的性质可知,,1AB k =-∴所在直线方程为,即,AB 1(1)y x -=-+0x y +=联立方程可得,,224500x y x x y ⎧++-=⎨+=⎩22450x x +-=设,,则,11(,)A x y 22(,)B x y 1252x x =-令可得,0y =(0,0)P ,12121225PA PB x x y y x x ⋅=+==- 故答案为:5.-【名师点睛】本题主要考查了向量的数量积的坐标表示及直线与圆相交性质的简单应用,属于常考题型.。

《备战2020年高考》专题07平面向量-2019年高考真题和模拟题分项汇编数学(文)(解析版)

《备战2020年高考》专题07平面向量-2019年高考真题和模拟题分项汇编数学(文)(解析版)

专题07平面向量1.【2019年高考全国I卷文数】已知非零向量a,b满足|a |2|b|,且(a b)b,则a与b的夹角为A.C.π62π3B.D.π35π6【答案】B【解析】因为(a b)b ,所以(a b)b ab b2=0,所以a b b2,所以cos=a b|b|21a b2|b|22,所以a与b的夹角为π3,故选B.【名师点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,].2.【2019年高考全国II A.2卷文数】已知向量a=(2,3),b=(3,2),则|a-b|=B.2C.52D.50【答案】A【解析】由已知,a b (2,3)(3,2)(1,1),所以|a b |(1)2122,故选A.【名师点睛】本题主要考查平面向量模长的计算,容易题,注重了基础知识、基本计算能力的考查.由于对平面向量的坐标运算存在理解错误,从而导致计算有误;也有可能在计算模的过程中出错.3.【2019年高考北京卷文数】已知向量a=(–4,3),b=(6,m),且a b【答案】8,则m=__________.【解析】向量a (4,3),b (6,m),a b,则a b0,463m 0,m 8.1属于容易题.【名师点睛】本题考查平面向量的坐标运算、平面向量的数量积、平面向量的垂直以及转化与化归思想的应用.4.【2019年高考全国III卷文数】已知向量2【答案】10a (2,2),b (8,6),则c os a,b ___________.【解析】cos a,bab|a|b|22282622(8)262210.【名师点睛】本题考查了向量夹角的运算,牢记平面向量的夹角公式是破解问题的关键.5.【2019年高考天津卷文数】在四边形ABCD中,A D∥B C,AB 23,AD 5,A 30,点E 在线段CB的延长线上,且AE BE ,则BD AE _____________.【答案】1【解析】建立如图所示的直角坐标系,∠DAB=30°,AB 23,AD 5,则B(2 3,0),D(535,).22因为AD∥BC,BAD 30,所以因为AE BE,所以BAE 30,ABE30,所以直线BE的斜率为33,其方程为y (x 23),3333直线AE的斜率为,其方程为y x.333y (x 23),3由y x3得x 3,y1,所以E( 3,1).所以BD AE (35,)(3,1)1.2232【名师点睛】平面向量问题有两大类解法:基向量法和坐标法,在便于建立坐标系的问题中使用坐标方 法更为方便.6.【2019 年高考江苏卷】如图, △在ABC 中,D 是 BC 的中点,E 在边 AB 上,BE =2EA ,AD 与 CE 交于点 O .若 AB AC 6 A O EC ,则AB AC的值是_____.【答案】 3 .【解析】如图,过点 D 作 DF //CE ,交 AB 于点 F ,由 BE =2EA ,D 为 BC 的中点,知 BF =FE =EA ,AO =OD .6 A O EC 3 A D AC AEAB AC2AC AE,3 2AB AC AC AB AB AC AB AC AB AC3 2 3 3AB AC AB ACAB AC ABACAB AC 2 3 32 2,331312213 21 2 2 1 2 32得13 AB ABAC , 即 AB 3 AC , 故22AC3【名师点睛】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养. 采取几何法,利用数形结合和方程思想解题.7.【2019 年高考浙江卷】已知正方形 ABCD 的边长为 1,当每个i(i 1,2,3, 4,5,6)取遍时,|ABBCCDDAACBD | 123456的最小值是________;最大值是_______.【答案】0; 2 5 .【解析】以 AB , AD分别为 x 轴、y 轴建立平面直角坐标系,如图.则 AB (1,0), BC (0,1), CD ( 1,0), DA (0, 1), AC (1,1),BD ( 1,1)令,y ABBCCDDAACBD1234561356 22456 20.又因为i(i 1,2,3, 4,5,6)可取遍1,所以当1, 134 5612时,有最小值 ymin.因为1 35和2 45的取值不相关,61或61,所以当135和245分别取得最大值时,y 有最大值,所以当1,1 125634时,有最大值ymax2 2 4220 2 5.故答案为 0; 2 5 .【名师点睛】对于此题需充分利用转化与化归思想,从“基向量”入手,最后求不等式最值,是一道向量22和不等式的综合题. 48.【山东省烟台市2019届高三3月诊断性测试(一模)数学试题】在矩形ABCDuu r中,AB=4,AD 2.若点M,N分别是CD,BC的中点,则AM MNA.4C.2【答案】C【解析】由题意作出图形,如图所示:B.3 D.1由图及题意,可得:AM AD DM AD 12 AB,111111 MN CN CM CB CD BC DC AD AB222222.∴1111111AM MN AD AB AD AB |A D|2|A B|24162 2222424.故选:C.【名师点睛】本题主要考查基底向量的设立,以及向量数量积的运算,属基础题.9.【福建省漳州市2019届高三下学期第二次教学质量监测数学试题】已知向量a,b满足|a|1,|b|3,且与b的夹角为6,则(a b)(2a b)A.12B.32C.12D.32【答案】A【解析】a b2a b2a 2b2a b231331.22故选A. 5a【名师点睛】本题考查了平面向量数量积的性质及其运算,属基础题.10.【安徽省江淮十校2019届高三年级5月考前最后一卷数学试题】已知向量a (1,2),b (2,3),c (4,5),若(a b)c,则实数A.12B.12C.2【答案】C【解析】因为a (1,2),b (2,3)D.2,所以a+b=12,23,又(a b)c,所以(a b)c0,即412+523=0,解得=2.故选C.【名师点睛】本题主要考查向量数量积的坐标运算,熟记运算法则即可,属于常考题型.11.【2019 届北京市通州区三模数学试题】设a,b均为单位向量,则“a与b夹角为2π3”是“|a b|3”的A.充分而不必要条件C.充分必要条件【答案】D B.必要而不充分条件D.既不充分也不必要条件【解析】因为,b均为单位向量,若a与b夹角为2π3,则|a b||a||b|22a b11211cos 231,因此,由“a与b夹角为2π3”不能推出“|a b|3”;若|a b|3,则|a b||a||b|2a b11211cos a,b 3,解得cos a,b 1π,即a与b夹角为,23所以,由“|a b|3”不能推出“与b夹角为2π3”a222a6因此,“ 与 b夹角为2π”是“ 3| a b | 3 ”的既不充分也不必要条件. 故选 D【名师点睛】本题主要考查充分条件与必要条件的判断,以及向量的数量积运算,熟记充分条件与必 要条件的概念,以及向量的数量积运算法则即可,属于常考题型.12.【辽宁省丹东市 2019 届高三总复习质量测试数学(二)】在△ABC 中,ABAC 2 A D ,AE DE 0 ,若 EBxAB y AC ,则A .C .y 3xy3xB .D .x 3 yx3y【答案】D【解析】因为 AB AC 2 A D ,所以点 D 是 BC 的中点,又因为 AE DE 0 ,所以点 E 是 AD 的中点,所以有:BE BA AEAB1 1 13 1 ADAB ( A B AC )AB AC 22 24 4,因此 3 1x, y x 3y 4 4,故题选 D.【名师点睛】本题考查了向量加法的几何意义、平面向量基本定理. 向量加法的几何意义的理解.解题的关键是对向量式的理解、对13.【2019 年辽宁省大连市高三 5 月双基考试数学试题】已知直线 y =x +m 和圆 x +y =1 交于 A 、B 两点,O为坐标原点,若AO AB3 2,则实数 m =A .1B .32C .2 2D .1 2【答案】C【解析】联立y x m x 2 y 2 1,得 2x +2mx +m−1=0,∵直线 y =x +m 和圆 x +y =1 交于 A 、B 两点,O 为坐标原点,∴ =-2m +8>0,解得2 x2 ,7a 2 222222设A(x,y),B(x,y),则x+x=m,x x 1 12212m21 2,y y=(x+m)(x+m)=x x+m(x+x)+m,AO=(-x,-y),AB=(x-x,y-y),2121∵3AO AB ,AO AB x2x x112m21m21+y-y y=122+m-m=2-m3=,2解得m=22.故选:C.【名师点睛】本题考查根的判别式、根与系数的关系、向量的数量积的应用,考查了运算能力,是中档题.14.【天津市和平区2018-2019学年度第二学期高三年级第三次质量调查数学试题】已知菱形ABCD的边长为2,BAD120,点E,F分别在边BC,DC上,BC 3BE,DC DF,若AE AF 1,则的值为A.3B.2C.32D.52【答案】B【解析】由题意可得:AE AF AB BE AD DF AB BC BC ABAB BC 1AB BC33,且:AB BC 4,AB BC 22cos1202,故44112133,解得:2.故选:B.【名师点睛】本题主要考查平面向量数量积的定义与运算法则,平面向量基本定理及其应用等知识,意在考查学生的转化能力和计算求解能力.15.【江西省新八校2019届高三第二次联考数学试题】在矩形ABCD中,AB 3,AD 4, 8AC与BD相1221212121211221122221131212122交于点 O,过点 A作 AEBD ,垂足为 E ,则 AE ECA .C .72 5 12 5B .D .144 2512 25【答案】B【解析】如图:由 AB 3 , AD 4 得: B D9 16 5 ,AEAB AD 12BD 5又AE ECAE EO OCAE EO AE OCAE EO AE AOAEBD ,AE EO 0 ,又AE AOAE AO cos EAO AEAOA EA OA E2144 25AE EC144 25.故选 B.【名师点睛】本题考查向量数量积的求解问题,关键是能够通过线性运算将问题转化为模长和夹角已 知的向量之间的数量积问题.16.【湖师范大学附属中学 2019 届高三数学试题】如图所示,在正方形 ABCD 中,E 为 AB 的中点,F 为CE 的中点,则 AFA .3 1AB4 4A DB . 1 3AB4 4AD9C.12AB AD D.31AB AD42【答案】D【解析】根据题意得:11AF (A C AE),又AC AB AD,AE AB,所以22AF 1131(A B AD AB)AB AD2242.故选D.【名师点睛】本题主要考查了平面向量的基本定理的简单应用,属于基础试题.17.【2019年北京市高考数学试卷】已知向量a=(-4,3),b=(6,m),且a b,则m=__________.【答案】8.【解析】向量a (4,3),b (6,m),a b,则a b0,463m 0,m 8.【名师点睛】本题考查平面向量的坐标运算、平面向量的数量积、平面向量的垂直以及转化与化归思想的应用.属于容易题.18.【山东省烟台市2019届高三3月诊断性测试(一模)数学试题】已知圆x2y24x 50的弦AB的中点为(1,1),直线AB交x轴于点P,则PA PB的值为__________.【答案】8.【答案】5【解析】设M(1,1),圆心C(2,0),∵kMC 101 12,根据圆的性质可知,k1AB,∴AB所在直线方程为y 1(x 1),即x y 0,联立方程x2y24x 5 0x y 0可得,2x24x 50,设A(x,y),B(x,y)1122,则x x125 2,令y 0可得P(0,0),PA PB x x y y 2x x5121212故答案为:5.,10【名师点睛】本题主要考查了向量的数量积的坐标表示及直线与圆相交性质的简单应用,属于常考题型.11。

专题7 平面向量--2020届高三理科数学3年高考真题分类汇编含解析答案

专题7 平面向量--2020届高三理科数学3年高考真题分类汇编含解析答案

专题7平面向量1.【2019年全国新课标2理科03】已知(2,3),(3,t),||=1,则•()A.﹣3 B.﹣2 C.2 D.3【解答】解:∵(2,3),(3,t),∴(1,t﹣3),∵||=1,∴t﹣3=0即(1,0),则• 2故选:C.2.【2019年新课标1理科07】已知非零向量,满足||=2||,且()⊥,则与的夹角为()A.B.C.D.【解答】解:∵()⊥,∴,∴,∵,∴.故选:B.3.【2019年北京理科07】设点A,B,C不共线,则“与的夹角为锐角”是“||>||”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:点A,B,C不共线,“与的夹角为锐角”⇒“||>||”,“||>||”⇒“与的夹角为锐角”,∴设点A,B,C不共线,则“与的夹角为锐角”是“||>||”的充分必要条件.故选:C.4.【2018年新课标1理科06】在△ABC中,AD为BC边上的中线,E为AD的中点,则()A.B.C.D.【解答】解:在△ABC中,AD为BC边上的中线,E为AD的中点,(),故选:A.5.【2018年新课标2理科04】已知向量,满足||=1,1,则•(2)=()A.4 B.3 C.2 D.0【解答】解:向量,满足||=1,1,则•(2)=22+1=3,故选:B.6.【2018年浙江09】已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足4•3=0,则||的最小值是()A. 1 B. 1 C.2 D.2【解答】解:由4•3=0,得,∴()⊥(),如图,不妨设,则的终点在以(2,0)为圆心,以1为半径的圆周上,又非零向量与的夹角为,则的终点在不含端点O的两条射线y(x>0)上.不妨以y为例,则||的最小值是(2,0)到直线的距离减1.即.故选:A.7.【2018年北京理科06】设,均为单位向量,则“|3|=|3|”是“⊥”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:∵“|3|=|3|”∴平方得||2+9||2﹣6•9||2+||2+6•,即1+9﹣6•9+1+6•,即12•0,则•0,即⊥,则“|3|=|3|”是“⊥”的充要条件,故选:C.8.【2018年天津理科08】如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若点E为边CD上的动点,则的最小值为()A.B.C.D.3【解答】解:如图所示,以D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,过点B做BN⊥x轴,过点B做BM⊥y轴,∵AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1,∴AN=AB cos60°,BN=AB sin60°,∴DN=1,∴BM,∴CM=MB tan30°,∴DC=DM+MC,∴A(1,0),B(,),C(0,),设E(0,m),∴(﹣1,m),(,m),0≤m,∴m2m=(m)2(m)2,当m时,取得最小值为.故选:A.9.【2017年新课标2理科12】已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•()的最小值是()A.﹣2 B.C.D.﹣1【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P(x,y),则(﹣x,y),(﹣1﹣x,﹣y),(1﹣x,﹣y),则•()=2x2﹣2y+2y2=2[x2+(y)2]∴当x=0,y时,取得最小值2×(),故选:B.10.【2017年新课标3理科12】在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若λμ,则λ+μ的最大值为()A.3 B.2C.D.2【解答】解:如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,则A(0,0),B(1,0),D(0,2),C(1,2),∵动点P在以点C为圆心且与BD相切的圆上,设圆的半径为r,∵BC=2,CD=1,∴BD∴BC•CD BD•r,∴r,∴圆的方程为(x﹣1)2+(y﹣2)2,设点P的坐标为(cosθ+1,sinθ+2),∵λμ,∴(cosθ+1,sinθ+2)=λ(1,0)+μ(0,2)=(λ,2μ),∴cosθ+1=λ,sinθ+2=2μ,∴λ+μcosθsinθ+2=sin(θ+φ)+2,其中tanφ=2,∵﹣1≤sin(θ+φ)≤1,∴1≤λ+μ≤3,故λ+μ的最大值为3,故选:A.11.【2017年浙江10】如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1•,I2•,I3•,则()A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3【解答】解:∵AB⊥BC,AB=BC=AD=2,CD=3,∴AC=2,∴∠AOB=∠COD>90°,由图象知OA<OC,OB<OD,∴0••,•0,即I3<I1<I2,故选:C.12.【2017年北京理科06】设,为非零向量,则“存在负数λ,使得λ”是“•0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:,为非零向量,存在负数λ,使得λ,则向量,共线且方向相反,可得•0.反之不成立,非零向量,的夹角为钝角,满足•0,而λ不成立.∴,为非零向量,则“存在负数λ,使得λ”是•0”的充分不必要条件.故选:A.13.【2019年天津理科14】在四边形ABCD中,AD∥BC,AB=2,AD=5,∠A=30°,点E在线段CB 的延长线上,且AE=BE,则•.【解答】解:∵AE=BE,AD∥BC,∠A=30°,∴在等腰三角形ABE中,∠BEA=120°,又AB=2,∴AE=2,∴,∵,∴又,∴•=﹣125×2=﹣1故答案为:﹣1.14.【2019年新课标3理科13】已知,为单位向量,且•0,若2,则cos,.【解答】解:22,∵(2)2=4459,∴||=3,∴cos,.故答案为:15.【2019年江苏12】如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若•6•,则的值是.【解答】解:设λ(),μμ()=(1﹣μ)μμ∴,∴,∴(),,6•6()×()(),∵•,∴,∴3,∴.故答案为:16.【2019年浙江17】已知正方形ABCD的边长为1.当每个λi(i=1,2,3,4,5,6)取遍±1时,|λ1λ2λ3λ4λ5λ6|的最小值是,最大值是.【解答】解:正方形ABCD的边长为1,可得,,•0,|λ1λ2λ3λ4λ5λ6|=|λ1λ2λ3λ4λ5λ5λ6λ6|=|(λ1﹣λ3+λ5﹣λ6)(λ2﹣λ4+λ5+λ6)|,由于λi(i=1,2,3,4,5,6)取遍±1,可得λ1﹣λ3+λ5﹣λ6=0,λ2﹣λ4+λ5+λ6=0,可取λ5=λ6=1,λ1=λ3=1,λ2=﹣1,λ4=1,可得所求最小值为0;由λ1﹣λ3+λ5﹣λ6,λ2﹣λ4+λ5+λ6的最大值为4,可取λ2=1,λ4=﹣1,λ5=λ6=1,λ1=1,λ3=﹣1,可得所求最大值为2.故答案为:0,2.17.【2018年江苏12】在平面直角坐标系xOy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若0,则点A的横坐标为.【解答】解:设A(a,2a),a>0,∵B(5,0),∴C(,a),则圆C的方程为(x﹣5)(x﹣a)+y(y﹣2a)=0.联立,解得D(1,2).∴.解得:a=3或a=﹣1.又a>0,∴a=3.即A的横坐标为3.故答案为:3.18.【2018年新课标3理科13】已知向量(1,2),(2,﹣2),(1,λ).若∥(2),则λ=.【解答】解:∵向量(1,2),(2,﹣2),∴(4,2),∵(1,λ),∥(2),∴,解得λ.故答案为:.19.【2018年上海08】在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为.【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且;∴;当a=b+2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出b=a+2时,的最小值为﹣3.故答案为:﹣3.20.【2017年江苏12】如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若m n(m,n∈R),则m+n=.【解答】解:如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.∴cosα,sinα.∴C.cos(α+45°)(cosα﹣sinα).sin(α+45°)(sinα+cosα).∴B.∵m n(m,n∈R),∴m n,0n,解得n,m.则m+n=3.故答案为:3.21.【2017年新课标1理科13】已知向量,的夹角为60°,||=2,||=1,则|2|=.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴4•4=22+4×2×1×cos60°+4×12=12,∴|2|=2.【解法二】根据题意画出图形,如图所示;结合图形2;在△OAC中,由余弦定理得||2,即|2|=2.故答案为:2.22.【2017年浙江15】已知向量、满足||=1,||=2,则||+||的最小值是,最大值是.【解答】解:记∠AOB=α,则0≤α≤π,如图,由余弦定理可得:||,||,令x,y,则x2+y2=10(x、y≥1),其图象为一段圆弧MN,如图,令z=x+y,则y=﹣x+z,则直线y=﹣x+z过M、N时z最小为z min=1+3=3+1=4,当直线y=﹣x+z与圆弧MN相切时z最大,由平面几何知识易知z max即为原点到切线的距离的倍,也就是圆弧MN所在圆的半径的倍,所以z max.综上所述,||+||的最小值是4,最大值是.故答案为:4、.23.【2017年天津理科13】在△ABC中,∠A=60°,AB=3,AC=2.若2,λ(λ∈R),且4,则λ的值为.【解答】解:如图所示,△ABC中,∠A=60°,AB=3,AC=2,2,∴(),又λ(λ∈R),∴()•(λ)=(λ)•λ=(λ)×3×2×cos60°32λ×22=﹣4,∴λ=1,解得λ.故答案为:.。

高考数学压轴专题2020-2021备战高考《平面向量》分类汇编含答案解析

高考数学压轴专题2020-2021备战高考《平面向量》分类汇编含答案解析

新数学《平面向量》高考复习知识点一、选择题1.已知ABC V 中,2,3,60,2,AB BC ABC BD DC AE EC ==∠=︒==,则AD BE ⋅=u u u r u u u r( )A .1B .2-C .12D .12-【答案】C 【解析】 【分析】以,BA BC u u u r u u u r为基底,将,AD BE u u u r u u u r 用基底表示,根据向量数量积的运算律,即可求解.【详解】222,,33BD DC BD BC AD BD BA BC BA ===-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r,11,22AE EC BE BC BA =∴=+u u u r u u u r u u u r,211()()322AD BE BC BA BC BA ⋅=-⋅+u u u r u u u r u u ur u u u r u u u r u u u r22111362BC BC BA BA =-⋅-u u ur u u u r u u u r u u u r 111123622=-⨯⨯⨯=.故选:C. 【点睛】本题考查向量的线性运算以及向量的基本定理,考查向量数量积运算,属于中档题.2.已知在平面直角坐标系xOy 中,O 为坐标原点,()0,2A ,2220OB OA +=,若平面内点P 满足3PB PA =u u u r u u u r,则PO 的最大值为( )A .7B .6C .5D .4【答案】C 【解析】 【分析】设(),P x y ,(),B m n ,根据3PB PA =u u u r u u u r 可得262m x n y=-⎧⎨=-⎩,再根据2220OB OA +=可得点P 的轨迹,它一个圆,从而可求PO 的最大值. 【详解】设(),P x y ,(),B m n ,故(),PB m x n y =--u u u r ,(),2PA x y =--u u u r. 由3PB PA =u u u r u u u r可得363m x x n y y-=-⎧⎨-=-⎩,故262m x n y=-⎧⎨=-⎩,因为2220OB OA +=,故()22443420x y +-+=,整理得到()2234x y +-=,故点P 的轨迹为圆,其圆心为()0,3,半径为2,故PO 的最大值为325+=, 故选:C. 【点睛】本题考查坐标平面中动点的轨迹以及圆中与距离有关的最值问题,一般地,求轨迹方程,可以动点转移法,也可以用几何法,而圆外定点与圆上动点的连线段长的最值问题,常转化为定点到圆心的距离与半径的和或差,本题属于中档题.3.已知,a r b r 是平面向量,满足||4a =r,||1b ≤r 且|3|2b a -≤rr,则cos ,a b 〈〉rr 的最小值是( )A .1116B .78C D 【答案】B 【解析】 【分析】设OA a =u u u r r ,3OB b =u u u r r,利用几何意义知B 既在以O 为圆心,半径为3的圆上及圆的内部,又在以A 为圆心,半径为2的圆上及圆的内部,结合图象即可得到答案. 【详解】设OA a =u u u r r ,3OB b =u u u r r,由题意,知B 在以O 为圆心,半径为3的圆上及圆的内部,由|3|2b a -≤r r,知B 在以A 为圆心,半径为2的圆上及圆的内部,如图所示则B 只能在阴影部分区域,要cos ,a b 〈〉rr 最小,则,a b <>r r 应最大,此时()222222min4327cos ,cos 22438OA OB AB a b BOA OA OB +-+-〈〉=∠===⋅⨯⨯rr .故选:B. 【点睛】本题考查向量夹角的最值问题,本题采用数形结合的办法处理,更直观,是一道中档题.4.已知向量a r 与向量b r 满足||2a =r ,||2b =r ||||5a b a b +⋅-=r r r r ,则向量a r与向量b r的夹角为( )A .4π或34π B .6π或56πC .3π或23πD .2π 【答案】A 【解析】 【分析】设向量a r ,b r的夹角为θ,则2||1282a b θ+=+r r ,2||1282a b θ-=-r r ,即可求出2cos θ,从而得到向量的夹角; 【详解】解:设向量a r ,b r的夹角为θ,222||||||2||||cos 4882a b a b a b θθ+=++=++r r r r r r1282θ=+,222||||||2||||cos 48821282a b a b a b θθθ-=+-=+-=-r r r r r r,所以2222||||144128cos (45)80a b a b θ+⋅-=-==r r r r ,21cos 2θ∴=,因为[0,)θπ∈,故4πθ=或34π,故选:A. 【点睛】本题考查平面向量的数量积的运算律,及夹角的计算,属于中档题.5.如图,在梯形ABCD 中, 2DC AB =u u u r u u u r, P 为线段CD 上一点,且12DP PC =,E 为BC 的中点, 若EP AB AD λμ=+u u u r u u u r u u u r(λ, R μ∈),则λμ+的值为( )A .13B .13-C .0D .12【答案】B 【解析】 【分析】直接利用向量的线性运算,化简求得1526EP AD AB =-u u u v u u u v u u u v,求得,λμ的值,即可得到答案.【详解】由题意,根据向量的运算法则,可得: ()1214111232326EP EC CP BC CD AC AB AB AC AB u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v =+=+=--=-()1111522626AD AB AB AD AB =+-=-u u uv u u u v u u u v u u u v u u u v 又因为EP AB AD λμ=+u u u v u u u v u u u v ,所以51,62λμ=-=,所以511623λμ+=-+=-,故选B. 【点睛】本题主要考查了向量的线性运算及其应用,其中解答中熟记向量的线性运算法则,合理应用向量的三角形法则化简向量EP u u u v是解答的关键,着重考查了运算与求解能力,属于基础题.6.已知向量a v ,b v 满足a b a b +=-r rv v ,且||3a =v ||1b =r ,则向量b v 与a b -v v 的夹角为( ) A .3πB .23π C .6π D .56π 【答案】B 【解析】 【分析】对a b a b +=-v v v v 两边平方,求得0a b ⋅=v v ,所以a b ⊥v v .画出图像,根据图像确定b v 与a b -vv 的夹角,并根据它补角的正切值求得对应的角的大小.【详解】因为a b a b +=-v v v v ,所以222222a a b b a a b b +⋅+=-⋅+v v v v v v v v ,即0a b ⋅=v v ,所以a b ⊥v v .如图,设AB a =u u u vv,AD b =u u u v v ,则向量b v与a b -vv 的夹角为BDE ∠,因为tan 3BDA ∠=,所以3BDA π∠=,23BDE π∠=.故选B.【点睛】本题考查平面向量的模以及夹角问题,考查运算求解能力,考查数形结合的数学思想方法.属于中档题.7.在平行四边形OABC 中,2OA =,3OC =6AOC π∠=,动点P 在以点B 为圆心且与AC 相切的圆上,若OP OA OC λμ=+u u u r u u u r u u u r,则43λμ+的最大值为( )A .223+B .33+C .543+D .723+【答案】D 【解析】 【分析】先通过计算证明圆B 与AC 相切于点A ,再求出43OB OA BP OA λμ+=⋅+⋅u u u r u u u r u u u r u u u r,再求出7OB OA ⋅=u u u r u u u r ,BP OA ⋅u u u r u u u r的最大值为3.【详解】如图所示,由2OA =,6AOC π∠=,由余弦定理得234+32231,1AC AC =-⨯=∴=, ∴90OCA BAC ∠=∠=o , ∴圆B 与AC 相切于点A ,又OP OA OC λμ=+u u u r u u u r u u u r , ∴243OP OA OA OC OA λμλμ⋅=+⋅=+u u u r u u u r u u u r u u u r u u u r;∴()43OP OA OB BP OA OB OA BP OA λμ+=⋅=+⋅=⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r;如图,过点B 作,BD OA ⊥连接,OB 由题得6BAD π∠=,所以22333333,(2)()13222AD DB OB ===∴=++=,所以72cos13213BOA∠==,所以1327213OB OA⋅=⨯⨯=u u u r u u u r,因为BP OA⋅u u u r u u u r的最大值为32cos023⨯⨯=o,∴43λμ+的最大值是723+.故选:D.【点睛】本题主要考查三角函数和余弦定理解三角形,考查平面向量的数量积运算和范围的求解,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.已知A,B,C是抛物线24y x=上不同的三点,且//AB y轴,90ACB∠=︒,点C 在AB边上的射影为D,则CD=()A.4 B.2C.2 D2【答案】A【解析】【分析】画出图像,设222112112,,,,,444y y yA yB yC y⎛⎫⎛⎫⎛⎫-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12y y>,由90ACB∠=︒可求221216y y-=,结合221244y yCD=-即可求解【详解】如图:设222112112,,,,,444y y yA yB yC y⎛⎫⎛⎫⎛⎫-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12y y>,由90ACB∠=︒可得0CA CB⋅=u u u r u u u r,222212121212,,,44y y y yCA y y CB y y⎛⎫⎛⎫--=-=--⎪ ⎪⎝⎭⎝⎭u u u r u u u r,()222221212004y y CA CB y y ⎛⎫-⋅=⇔--= ⎪⎝⎭u u u r u u u r ,即()()222122212016y y y y ---= 解得221216y y -=(0舍去),所以222212124444y y y y CD -=-==故选:A 【点睛】本题考查抛物线的几何性质与向量的综合应用,计算能力,逻辑推理能力,属于中档题9.在△ABC 中,D 是BC 中点,E 是AD 中点,CE 的延长线交AB 于点,F 则( )A .1162DF AB AC =--u u u r u u u r u u u r B .1134DF AB AC =--u u u r u u u r u u u rC .3142DF AB AC =-+u u u r u u u r u u u rD .1126DF AB AC =--u u u r u u u r u u u r【答案】A 【解析】 【分析】设AB AF λ=u u u r u u u r,由平行四边形法则得出144AE AF AC λ=+u u u r u u u r u u u r ,再根据平面向量共线定理得出得出=3λ,由DF AF AD =-u u u r u u u r u u u r,即可得出答案. 【详解】设AB AF λ=u u u r u u u r ,111124444AE AB A A C A AC D F λ==+=+u u u r u u u u u ur u u u r r u u u r u u u r因为C E F 、、三点共线,则1=144λ+,=3λ所以1111132262DF AF AD AB AB AC AB AC =-=--=--u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r故选:A【点睛】本题主要考查了用基底表示向量,属于中档题.10.已知向量(1,2)a =v ,(3,4)b =-v ,则a v 在b v方向上的投影为A 13B .22C .1D .655【答案】C 【解析】 【分析】 根据a v 在b v方向上的投影定义求解.【详解】a v 在b v 方向上的投影为(1,2)(3,4)381(3,4)5a b b⋅⋅--+===-rr r , 选C. 【点睛】本题考查a v在b v方向上的投影定义,考查基本求解能力.11.在ABC V 中,AD AB ⊥,3,BC BD =u u u r u u u r ||1AD =u u u r ,则AC AD ⋅u u u r u u u r的值为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】由题意转化(3)AC AD AB BD AD ⋅=+⋅u u u r u u u r u u u r u u u r u u u r,利用数量积的分配律即得解. 【详解】AD AB ⊥Q ,3,BC BD =u u u r u u u r ||1AD =u u u r, ()(3)AC AD AB BC AD AB BD AD ∴⋅=+⋅=+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2333AB AD BD AD AD =⋅+⋅==u u u r u u u r u u u r u u u r u u u r故选:C 【点睛】本题考查了平面向量基本定理和向量数量积综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题.12.已知椭圆C :2212x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C于点B ,若3FA FB =u u u v u u u v,则AF u u u v =( )A .2B .2C .3D .3【答案】A 【解析】 【分析】设点()2,A n ,()00,B x y ,易知F (1,0),根据3FA FB =u u u v u u u v,得043x =,013y n =,根据点B 在椭圆上,求得n=1,进而可求得2AF =u u u v【详解】 根据题意作图:设点()2,A n ,()00,B x y .由椭圆C :2212x y += ,知22a =,21b =,21c =,即1c =,所以右焦点F (1,0).由3FA FB =u u u v u u u v,得()()001,31,n x y =-. 所以()0131x =-,且03n y =. 所以043x =,013y n =. 将x 0,y 0代入2212x y +=,得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =,所以()2212112AF n u u u v =-+=+=.故选A 【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.13.在边长为2的等边三角形ABC 中,若1,3AE AC BF FC ==u u u v u u u v u u u v u u u v ,则BE AF ⋅=u u u v u u u v( )A .23-B .43-C .83-D .2-【答案】D 【解析】 【分析】运用向量的加减运算和向量数量积的定义计算可得所求值. 【详解】在边长为2的等边三角形ABC 中,若13AE AC =u u u r u u u r,则BE AF ⋅=u u u r u u u v (AE AB -u u u r u u u r )•12(AC AB +u u ur u u u r )=(13AC AB -u u u r u u u r )•12(AC AB +u u ur u u u r )1123AC =u u u r (2AB -u u u r 223AB -u u u r •AC =u u u r )142142222332⎛⎫--⨯⨯⨯=- ⎪⎝⎭故选:D 【点睛】本题考查向量的加减运算和向量数量积的定义和性质,向量的平方即为模的平方,考查运算能力,属于基础题.14.已知AB 是圆22:(1)1C x y -+=的直径,点P 为直线10x y -+=上任意一点,则PA PB ⋅u u u v u u u v的最小值是( )A .21-B .2C .0D .1【答案】D 【解析】试题分析:由题意得,设,,,又因为,所以,所以PA PB ⋅u u u r u u u r的最小值为1,故答案选D.考点:1.圆的性质;2.平面向量的数量积的运算.15.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v ( )A .-16B .0C .16D .32【答案】B【解析】【分析】 先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r,再利用平面向量的数量积求解.【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点. 由24y x y x ⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r ,∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r .故选B【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.16.若O 为ABC ∆所在平面内任一点,且满足()()0OB OC OC OA CA AB -⋅-++=u u u r u u u r u u u r u u u r u u r u u u r ,则ABC ∆的形状为( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形 【答案】A【解析】【分析】利用平面向量加法和减法的三角形法则以及向量数量积的性质即可进行判断.【详解】 由()()0OB OC OC OA CA AB -⋅-++=u u u r u u u r u u u r u u u r u u u r u u u r ,即()0CB AC CB CB AB ⋅+=⋅=u u u r u u u r u u u r u u u r u u u r , 所以,CB AB ⊥,即2B π∠=,故ABC ∆为直角三角形.故选:A.【点睛】 本题主要考查了平面向量加法和减法的三角形法则以及向量数量积的性质的简单应用,属于基础题.17.如图,向量a b -r r 等于A .1224e e --u r u u rB .1242e e --u r u u rC .123e e -r u u rD .123e e -+r u u r 【答案】D【解析】【分析】【详解】 由向量减法的运算法则可得123a e b e -=-+r r r u u r ,18.已知向量(sin ,cos )a αα=r ,(1,2)b =r ,则以下说法不正确的是( )A .若//a b r r ,则1tan 2α=B .若a b ⊥r r ,则1tan 2α= C .若()f a b α=⋅r r 取得最大值,则1tan 2α= D .||a b -r r 51 【答案】B【解析】【分析】A 选项利用向量平行的坐标表示来判断正确性.B 选项利用向量垂直的坐标表示来判断正确性.C 选项求得()f α的表达式,结合三角函数最值的求法,判断C 选项的正确性.D 选项利用向量模的运算来判断正确性.【详解】A 选项,若//a b r r ,则2sin cos αα=,即1tan 2α=,A 正确.B 选项,若a b ⊥r r ,则sin 2cos 0αα+=,则tan 2α=-,B 不正确.C 选项,si (n )52cos in()f a b ααααϕ+==⋅=+r r ,其中tan 2ϕ=.取得最大值时,22k παϕπ+=+,22k πϕπα=+-,tan 2tan 2k πϕπα=+-⎛⎫ ⎪⎝⎭1tan 22tan παα⎛⎫=== ⎪⎝⎭-,则1tan 2α=,则C 正确.D 选项,由向量减法、模的几何意义可知||a b -r r 1,此时a =r,,a b r r 反向.故选项D 正确.故选:B【点睛】 本小题主要考查向量平行、垂直的坐标表示,考查向量数量积的运算,考查向量减法的模的几何意义,属于中档题.19.已知向量()1,3a =-v ,()3,b m =v ,若a b ⊥v v ,则2a b +v v 等于( )A .10B .16C .D .【答案】C【解析】【分析】 先利用向量垂直的坐标表示求出实数m 的值,得出向量b r 的坐标,并计算出向量2a b +r r ,最后利用向量模的坐标运算得出结果.【详解】 ()1,3a =-r Q ,()3,b m =r ,a b ⊥r r ,则1330a b m ⋅=⨯-=r r ,得1m =,()3,1b ∴=r ,则()()()221,33,15,5a b +=-+=-r r ,因此,2a b +==r r C.【点睛】本题考查向量垂直的坐标表示以及向量模的坐标运算,意在考查学生对这些公式的理解掌握情况,考查运算求解能力,属于中等题.20.在ABC V 中,AD 为BC 边上的中线,E 为AD 的中点,且||1,||2AB AC ==u u u r u u u r ,120BAC ∠=︒,则||EB =u u u r ( )A .4BC .2D .4【答案】A 【解析】【分析】根据向量的线性运算可得3144EB AB AC =-u u u r u u u r u u u r ,利用22||B EB E =u u r u u u r u 及||1,||2AB AC ==u u u r u u u r ,120BAC ∠=︒计算即可.【详解】因为11131()22244EB EA AB AD AB AB AC AB AB AC =+=-+=-⨯++=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 所以22229311216441||6EB AB AB B AC AC E =-⨯=⨯⋅+u u u r u u u r u u u r u u u r u u r u u u r u 229311112()2168216=⨯-⨯⨯⨯-+⨯ 1916=,所以||EB =u u u r , 故选:A【点睛】 本题主要考查了向量的线性运算,向量数量积的运算,向量数量积的性质,属于中档题.。

专题07 平面向量-2019年高考真题和模拟题分项汇编数学(文)(解析版)(1)

专题07 平面向量-2019年高考真题和模拟题分项汇编数学(文)(解析版)(1)

A、B 两点,O 为坐标原点,若 AO AB = 3 ,则实数 m=( ) 2
A. 1
B. 3 2
C. 2 2
D. 1 2
【答案】C
y=x+m
【解析】联立
x2
+
y2
=1
,得 2x2+2mx+m2−1=0,
∵直线 y=x+m 和圆 x2+y2=1 交于 A、B 两点,O 为坐标原点,
∴ =-2m2+8>0,解得 − 2 x 2 ,
DC = DF ,若 AE AF = 1,则 的值为( )
A.3
B.2
C. 3 2
D. 5 2
【答案】B
【解析】由题意可得:
( ) ( ) AE AF =
AB + BE
AD + DF
=
AB
+
1 3
BC
BC
+
1
AB
=
1
2
AB
+
1 3
2
BC
+
1 3
+1
AB BC

且:
2
AB
=
2
BC
b = (−2,3) , c = (4,5) ,若 (a + b) ⊥ c ,则实数 = ( )
A. − 1 2
B. 1 2
C. −2
D. 2
【答案】C
【解析】因为 a = (1, 2) , b = (−2,3) ,
所以 a + b = (1− 2, 2 + 3 ) ,
又 (a + b) ⊥ c ,所以 (a + b) c = 0,

2019年高考真题文科数学汇编7:平面向量

2019年高考真题文科数学汇编7:平面向量

2019年⾼考真题⽂科数学汇编7:平⾯向量2019⾼考⽂科试题解析分类汇编:平⾯向量⼀、选择题1.【2019⾼考全国⽂9】ABC ?中,AB 边的⾼为CD ,若CB a =,CA b =,0a b ?=,||1a =,||2b =,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b - 【答案】D【命题意图】本试题主要考查了正四棱柱的性质的运⽤,以及点到⾯的距离的求解。

体现了转换与化归的思想的运⽤,以及线⾯平⾏的距离,转化为点到⾯的距离即可。

【解析】因为底⾯的边长为2,⾼为,AC BD ,得到交点为O ,连接EO ,1//EO AC ,则点1C 到平⾯BDE 的距离等于C 到平⾯BDE 的距离,过点C 作CH OE ⊥,则CH 即为所求,在三⾓形OCE 中,利⽤等⾯积法,可得1CH =,故选答案D 。

2.【2019⾼考重庆⽂6】设x R ∈,向量(,1), (1,2),a x b ==-且a b ⊥,则||a b +=(A (B (C )(D )10 【答案】B3.【2019⾼考浙江⽂7】设a ,b 是两个⾮零向量。

A.若|a+b|=|a|-|b|,则a ⊥b B.若a ⊥b ,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λ aD.若存在实数λ,使得b=λa ,则|a+b|=|a|-|b| 【答案】C【命题意图】本题考查的是平⾯向量,主要考查向量加法运算,向量的共线含义,向量的垂直关系。

【解析】利⽤排除法可得选项C 是正确的,∵|a +b |=|a |-|b |,则a ,b 共线,即存在实数λ,使得a =λb .如选项A :|a +b |=|a |-|b |时,a ,b 可为异向的共线向量;选项B :若a ⊥b ,由正⽅形得|a +b |=|a |-|b |不成⽴;选项D :若存在实数λ,使得a =λb ,a ,b 可为同向的共线向量,此时显然|a +b |=|a |-|b |不成⽴.4.【2019⾼考四川⽂7】设a 、b 都是⾮零向量,下列四个条件中,使||||a ba b =成⽴的充分条件是()A 、||||a b =且//a bB 、a b =-C 、//a bD 、2a b = 【答案】D [解析]若使||||a ba b =成⽴,则⽅向相同,与选项中只有D 能保证,故选D. [点评]本题考查的是向量相等条件?模相等且⽅向相同.学习向量知识时需注意易考易错零向量,其模为0且⽅向任意.5.【2019⾼考陕西⽂7】设向量a =(1.cos θ)与b =(-1, 2cos θ)垂直,则cos2θ等于()A2 B 12C .0 D.-1 【答案】C.【解析】∵向量a 与b 垂直,∴0a b ?=,即()11cos 2cos 0θθ?-+?=,∴22cos 1θ=.∴2cos 22cos 10θθ=-=.故选C .6.【2019⾼考辽宁⽂1】已知向量a = (1,—1),b = (2,x).若a ·b = 1,则x = (A) —1 (B) —12 (C) 12(D)1 【答案】D【命题意图】本题主要考查向量的数量积,属于容易题。

专题07 平面向量-2019年高考理数母题题源系列(全国Ⅰ专版)(解析版)

专题07 平面向量-2019年高考理数母题题源系列(全国Ⅰ专版)(解析版)

专题07 平面向量【母题来源一】【2019年高考全国I 卷理数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6 B .π3 C .2π3D .5π6【答案】B【解析】因为()-a b ⊥b ,所以2()-⋅=⋅-a b b a b b =0,所以2⋅=a b b ,所以cos θ=22||12||2⋅==⋅a b b a b b ,所以a 与b 的夹角为π3, 故选B .【名师点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.【母题来源二】【2018年高考全国I 卷理数】在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC -C .3144AB AC +D .1344AB AC +【答案】A【解析】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++ 1113124444BA BA AC BA AC =++=+, 所以3144EB AB AC =-.故选A.【名师点睛】该题考查的是有关平面向量的基本问题,涉及的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.【母题来源三】【2017年高考全国I 卷理数】已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |=___________. 【答案】3【解析】方法一:222|2|||44||4421cos 60412+=+⋅+=+⨯⨯⨯+=a b a a b b , 所以|2|1223+==a b .方法二:利用如下图形,可以判断出2+a b 的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为3【名师点睛】平面向量中涉及有关模长的问题时,常用到的通法是将模长进行平方,利用向量数量积的知识进行解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.【命题意图】高考对本部分的考查主要涉及平面向量的数量积和向量的线性运算,以运算求解和数形结合为主,重点掌握数量积的坐标表达式,会进行平面向量数量积的运算,能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系,掌握向量加法、减法、数乘的运算及其几何意义等,注重转化与化归思想的应用. 【命题规律】1.平面向量的数量积一直是高考的一个热点,尤其是平面向量的数量积,主要考查平面向量的数量积的运算、向量的几何意义、模与夹角、两向量的垂直等问题.题型一般以选择题、填空题为主.2.平面向量的基本定理及坐标表示是高考中的一个热点内容,尤其是用坐标表示的向量共线的条件是高考考查的重点内容,一般是通过向量的坐标表示,将几何问题转化为代数问题来解决,多以选择题或填空题的形式呈现,有时也作为解答题中的条件,应用向量的平行或垂直关系进行转换. 【方法总结】(一)平面向量线性运算问题的求解策略:(1)进行向量运算时,要尽可能地将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量,三角形的中位线及相似三角形对应边成比例等性质,把未知向量用已知向量表示出来.(2)向量的线性运算类似于代数多项式的运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在线性运算中同样适用.(3)用几个基本向量表示某个向量问题的基本技巧: ①观察各向量的位置; ②寻找相应的三角形或多边形; ③运用法则找关系; ④化简结果.(二)用平面向量基本定理解决问题的一般思路:(1)先选择一组基底,并运用平面向量基本定理将条件和结论表示成该基底的线性组合,再进行向量的运算.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便,另外,要熟练运用线段中点的向量表达式.(三)平面向量数量积的类型及求法:(1)平面向量数量积有两种计算公式:一是夹角公式⋅=a b ||||cos θa b ;二是坐标公式⋅=a b1212x x y y +.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简. (3)两个应用:①求夹角的大小:若a ,b 为非零向量,则由平面向量的数量积公式得cos θ=||||⋅a ba b (夹角公式),所以平面向量的数量积可以用来解决有关角度的问题.②确定夹角的范围:数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角. (四)平面向量的模及其应用的类型与解题策略:(1)求向量的模.解决此类问题应注意模的计算公式2||==⋅a a a a ,或坐标公式22||x y =+a 的应用,另外也可以运用向量数量积的运算公式列方程求解. (2)求模的最值或取值范围.解决此类问题通常有以下两种方法:①几何法:利用向量加减法的平行四边形法则或三角形法则,结合模的几何意义求模的最值或取值范围;②代数法:利用向量的数量积及运算法则转化为不等式或函数求模的最值或取值范围. (3)由向量的模求夹角.对于此类问题的求解,其实质是求向量模方法的逆运用. (五)向量与平面几何综合问题的解法:(1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决. (2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程来进行求解.1.【山东省安丘市、诸城市、五莲县、兰山区2019届高三5月校际联合考试数学试题】已知1=a ,2=b ,且()⊥-a a b ,则向量a 在b 方向上的投影的数量为 A .1B 2C .12D .2【答案】D【解析】由()⊥-a a b 得()0⋅-=a a b ,所以1⋅=⋅=a b a a , 所以向量a 在b 方向上的投影的数量为2cos ,22⋅===a b a a b b , 故选D.【名师点睛】本题主要考查向量的投影,熟记向量数量积的几何意义即可,属于常考题型.求解时,先由()⊥-a a b 求出⋅a b ,再由cos ,a a b 即可求出结果.2.【河北省保定市2019年高三第二次模拟考试数学试题】把点()3,2A 按向量()1,4=a 移到点B ,若2OB BC =-(O 为坐标原点),则C 点坐标为A .()1,1-B .1,12⎛⎫⎪⎝⎭ C .()2,3D .11,2⎛⎫- ⎪⎝⎭【答案】C【解析】因为点()3,2A 按向量()1,4=a 移动后得到点()4,6, 所以()4,6B ,设(),C x y ,则()4,6OB =,()4,6BC x y =--,又2OB BC =-,所以()()424626x y ⎧=--⎪⎨=--⎪⎩,解得:23x y =⎧⎨=⎩,所以()2,3C . 故选C.【名师点睛】本题主要考查了平移知识,还考查了向量数乘的坐标运算,考查计算能力及方程思想,属于较易题.求解时,点()3,2A 按向量()1,4=a 移动后得到点()4,6,设(),C x y ,求得OB ,BC ,再利用2OB BC =-列方程组可得:()()424626x y ⎧=--⎪⎨=--⎪⎩,解方程组即可.3.【广东省东莞市2019届高三第二学期高考冲刺试题(最后一卷)数学试题】已知非零向量,m n 满足4=n m ,且()2⊥+m m n ,则,m n 的夹角为A .π6B .π3 C .π2D .2π3【答案】D【解析】∵4=n m ,且()2⊥+m m n ,∴()22222||cos ,0⋅+=+⋅=+=m m n m m n m m n m n ,且0,0≠≠m n , ∴2||cos ,0+=m n m n ,∴21cos ,2=-=-mm n n , 又0,π≤…m n ,∴2π,3=m n .故选D .【名师点睛】本题考查向量垂直的充要条件,向量数量积的运算及计算公式,以及向量夹角的范围,属于基础题.求解时,根据()2⊥+m m n ,得()20⋅+=m m n ,再根据4=n m 进行数量积的运算即可求出cos ,m n 的值,根据向量夹角的范围即可求出夹角.4.【湖南师范大学附属中学2019届高三数学试题】如图所示,在正方形ABCD 中,E 为AB 的中点,F 为CE 的中点,则AF =A .3144AB AD + B .1344AB AD + C .12AB AD +D .3142AB AD +【答案】D【解析】连接AC ,根据题意得:1()2AF AC AE =+,又AC AB AD =+,12AE AB =, 所以1131()2242AF AB AD AB AB AD =++=+.故选D.【名师点睛】本题主要考查了平面向量的基本定理的简单应用,属于基础试题.解答本题时,根据题意得:1()2AF AC AE =+,结合向量加法的四边形法则及平面向量的基本定理可求.5.【山西名师联盟2019届高三5月内部特供卷数学试题】已知向量,a b 满足2(1,2),(1,)m m +==a b b ,且a 在b 25,则实数m = A .2± B .2 C .5±D 5【答案】A【解析】因为向量,a b 满足2(1,2),(1,)m m +==a b b ,22(0,)m =+-=a a b b ,所以20,,22m m ⎛⎫=⋅= ⎪⎝⎭a ab ,设向量,a b 的夹角为θ,则2225||(||cos )12mm =+=⋅=θb a a b , 所以42516160m m --=,即()()225440m m +-=,解得2m =±. 故选A.【名师点睛】本题主要考查向量的投影及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是cos ⋅=θa b a b ,二是1212x x y y ⋅=+a b ,主要应用以下几个方面: (1)求向量的夹角,cos ⋅=⋅θa ba b(此时⋅a b 往往用坐标形式求解); (2)求投影,a 在b 上的投影是⋅a bb; (3)若向量,a b 垂直,则0⋅=a b ;(4)求向量m n +a b 的模(平方后需求⋅a b ).6.【福建省宁德市2019届高三毕业班第二次(5月)质量检查考试数学试题】若已知向量()1,2=-a ,()1,m =-b ,若//a b ,则⋅a b 的值为A .5B .4C .4-D .5-【答案】D【解析】∵向量()1,2=-a ,()1,m =-b ,且//a b , ∴20m -=,即()1,2=-b , ∴145⋅=--=-a b , 故选D.【名师点睛】本题考查平面向量的坐标运算,涉及向量平行的充要条件,数量积坐标运算,考查计算能力,属于基础题.求解时,利用向量平行的充要条件得到m ,进而利用数量积的坐标运算得到结果. 7.【广东省2019届高三适应性考试数学试题】已知ABC △中,点M 是边BC 的中点,若点O 满足23OA OB OC ++=0,则A .0OM BC ⋅=B .0OM AB ⋅=C .OM BC ∥D .OM AB ∥【答案】D【解析】由点M 是边BC 的中点,可得2OM OB OC =+, 由23OA OB OC ++=0,可得OA OC ++2(OB OC +)23OA OBOA +=-+4OM =0, 即2(OA OB -)+12OM =0, 可得AB =6OM ,即OM ∥AB , 故选D .【名师点睛】本题考查向量的中点表示,以及向量的加减运算和向量共线定理的运用,考查化简运算能力,属于基础题.解答时,由向量的中点表示和加减运算、以及向量的共线定理,即可得到结论. 8.【安徽省江淮十校2019届高三年级5月考前最后一卷数学试题】已知向量(1,2)=a ,(2,3)=-b ,(4,5)=c ,若()+⊥λa b c ,则实数=λA .12-B .12C .2-D .2【答案】C【解析】因为(1,2)=a ,(2,3)=-b ,所以()12,23-+λλλa +b =,又()+⊥λa b c ,所以()0+⋅=λa b c ,即()()412+523=0-+λλ,解得= 2-λ. 故选C.【名师点睛】本题主要考查向量数量积的坐标运算,熟记运算法则即可,属于常考题型.求解时,由,a b 的坐标,表示出λa +b ,再由()+⊥λa b c ,得到()()412+523=0-+λλ,进而可求出结果. 9.【安徽省合肥市2019届高三第三次教学质量检测数学试题】若向量,a b 的夹角为120︒,1=a ,27-=a b ,则=bA .12B 7C .1D .2【答案】C【解析】因为222244cos ,-=+-a b a b a b a b , 又,120=︒a b ,1=a ,27-a b , 所以27=142++b b ,解得32=-b (舍去)或1=b . 故选C.【名师点睛】本题考查求平面向量的模,常用方法是用数量积或22=a a 求解.求解时,先对27-=a b 两边同时平方,代入已知条件,即可解得b .10.【湖南省师范大学附属中学2019届高三下学期模拟(三)数学试题】已知向量a ,b 满足2=a ,且()40+=>λλa b a ,则当λ变化时,⋅a b 的取值范围是A .(,0)-∞B .(,1)-∞-C .(0,)+∞D .(1,)-+∞【答案】D【解析】由已知,(1)4-=λa b ,得2(1)4-=⋅λa a b ,因为||2,0=>λa ,所以11⋅=->-λa b , 故选D.【名师点睛】本题考查向量数量积,向量的线性运算,是基础题.求解时,由向量数量积得1⋅=-λa b 即可求解.11.【福建省泉州市2019届高三第二次(5月)质检数学试题】已知向量,a b 满足1=a ,(),2t t =-b ,-a b与a 垂直,则-a b 的最小值为A .22B .1C 2D .2【答案】B【解析】由题意知-a b 与a 垂直,则()0-⋅=a b a ,可得21⋅==a b a . 又由222+-=-⋅a b a a b b ()22=12+[2]t t -+-()2=211t -+ 所以当1t =时,-a b 取得最小值1. 故选B .【名师点睛】本题主要考查了向量的数量积的运算及其应用,以及向量的垂直条件和向量的模的计算,其中解答中熟记向量的模、数量积和向量的坐标运算,合理准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.求解时,根据向量的模与数量积的运算,求得()2211t -=-+a b 根据二次函数的性质,即可求解.12.【山东省淄博市部分学校2019届高三5月阶段性检测(三模)数学试题】如图,已知等腰梯形ABCD 中,24,5,AB DC AD BC E ====是DC 的中点,P 是线段BC 上的动点,则EP BP ⋅的最小值是A .95- B .0 C .45-D .1【答案】A【解析】由等腰梯形的知识可知cos B =, 设BP x =,则5CP x =, ∴2565()1()(5)(1)EP BP EC CP BP EC BP CP BP x x x x ⋅=+⋅=⋅+⋅=⋅⋅+⋅⋅-=-, 05x 剟,∴当355x =时,EP BP ⋅取得最小值95-. 故选A .【名师点睛】本题考查了平面向量的数量积运算,属于中档题.求解时,计算cos B ,设BP x =,把EP EC CP =+代入得出关于x 的函数,根据x 的范围得出最小值.13.【江西省临川一中2019届高三年级考前模拟考试数学试题】已知向量()3,4=a ,()1,k =-b ,且⊥a b ,则4+a b 与a 的夹角为________.【答案】4π 【解析】因为⊥a b ,故0⋅=a b ,所以340k -+=,故34k =,故()41,7+=-a b , 设4+a b 与a 的夹角为θ, 则2cos 5025525θ===⨯⨯, 因为[]0,π∈θ,故π4=θ, 故填4π. 【名师点睛】解答时,先计算出k ,再求出4+a b 与a 的坐标,计算出它们的夹角的余弦后可求夹角的大小.向量的数量积有两个应用:(1)计算长度或模长,通过用=⋅a a a ;(2)计算角,cos ,⋅=a b a b a b.特别地,两个非零向量,a b 垂直的等价条件是0⋅=a b . 14.【河南省八市重点高中联盟“领军考试”2019届高三压轴数学试题】已知向量()cos ,sin =θθa ,向量(1,=-b ,则3-a b 的最大值是______.【答案】6【解析】由题意,向量()cos ,sin =θθa ,则()33cos ,3sin =θθa ,所以向量3a 的终点在以原点为圆心,3为半径的圆上,又由||3=b ,则其终点也在此圆上,当3a 与b 反向时,3-a b 最大,最大值为6.【名师点睛】本题主要考查了向量的坐标运算,以及向量的坐标表示的应用,其中解答中熟练应用向量的几何意义和向量的坐标表示是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.求解时,由向量()cos ,sin =θθa ,得到向量3a 的终点在以原点为圆心,3为半径的圆上,又由||3=b ,则其终点也在此圆上,当3a 与b 反向时,即可求解,得到答案.15.【湖南省郴州市2019届高三第三次质量检测数学试题】在ABC △中,D 为BC 的中点,且33BC AD ==,则AB AC ⋅=_______. 【答案】54- 【解析】()()22AD DB A AB A D DC C AD BD =++=-⋅⋅95144=-=-. 【名师点睛】本题主要考查向量的基向量表示及向量运算,选择已知信息较多的向量作为基底,是求解这类问题的重要策略.求解时,用AD 表示出所求向量,利用数量积相乘可得结果.。

2019年高考理科数学分类汇编:平面向量(解析版)

2019年高考理科数学分类汇编:平面向量(解析版)
∴ =-2 m2+8> 0,解得 2 x 2 ,
设 A(x1 ,y1 ), B( x2, y2),则 x1+x2=- m, x1x2
m2 1

2
y1y2=( x1+m)( x2+m) =x1x2+m( x1 +x2)+m2, AO =( -x1, -y1), AB =( x2-x1, y2-y1),
专题 07 平面向量
1.【 2019 年高考全国 I 卷理数】已知非零向量 a,b 满足 | a | 2 | b | ,且 (a b) b,则 a 与 b 的夹角为
π
A.
6 2π
C.
3
【答案】 B
π
B.
3 5π
D.
6
【解析】因为 (a b)
b,所以 ( a b) b a b b2 =0,所以 a b b2 ,所以 cos = a b ab
为坐标原点,若 AO AB
3
,则实数 m=
2
A. 1
3
B.
2
y=x+m 和圆 x2+y2=1 交于 A、 B 两点, O
2
C.
2
1
D.
2
【答案】 C
【解析】联立
y x2
x y2
m 1
,得 2x2+2mx+m2- 1=0,
7
∵直线 y=x+m 和圆 x2+y2=1 交于 A、 B 两点, O 为坐标原点,
6 AO EC 3 AD AC AE
3
1
AB AC AC AB
2
3
3 AB AC AC AE ,
2
3

2019年高考数学理试题分类汇编:平面向量(含答案)

2019年高考数学理试题分类汇编:平面向量(含答案)

2019年高考数学理试题分类汇编平面向量一、选择题1、(2019年北京高考)设a ,b 是向量,则“||||a b =”是“||||a b a b +=-”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】D2、(2019年山东高考)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为(A )4(B )–4 (C )94 (D )–94 【答案】B3、(2019年四川高考)在平面内,定点A ,B ,C ,D 满足DA =DB =DC ,DA ﹒DB =DB ﹒DC =DC ﹒DA =-2,动点P ,M 满足AP =1,PM =MC ,则2BM 的最大值是(A )434 (B )494 (C )37634+ (D )372334+ 【答案】B4、(2019年天津高考)已知△ABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则AF BC 的值为( )(A )85-(B )81 (C )41 (D )811【答案】B5、(2019年全国II 高考)已知向量(1,)(3,2)a m a =-,=,且()a b b ⊥+,则m =( )(A )-8 (B )-6 (C )6 (D )8【答案】D 6、(2019年全国III 高考)已知向量13(,)22BA =uu v ,31(,),22BC =uu u v 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200【答案】A二、填空题1、(2019年上海高考)在平面直角坐标系中,已知A (1,0),B (0,-1),P 是曲线21x y -=上一个动点,则BA BP ⋅的取值范围是 .【答案】[0,12]+2、(2019年上海高考)如图,在平面直角坐标系xOy 中,O 为正八边形821A A A 的中心,()0,11A .任取不同的两点j i A A ,,点P 满足0=++j i OA OA OP ,则点P 落在第一象限的概率是.【答案】5283、(2019年全国I 高考)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m = .【答案】2-4、(2019年浙江高考)已知向量a 、b , |a | =1,|b | =2,若对任意单位向量e ,均有 |a ·e |+|b ·e |≤6 ,则a ·b 的最大值是 . 【答案】125、(2019江苏省高考)如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,4BA CA ⋅=,1BF CF ⋅=- ,则BE CE ⋅ 的值是 ▲ .【答案】7 8。

2020高考复习选讲《平面向量》【含2019高考原题及部分地区月考题】

2020高考复习选讲《平面向量》【含2019高考原题及部分地区月考题】

2020复习1.〖2019·山东师大附中月考〗如图,在梯形ABCD 中,AB ∥CD ,且AB =2CD ,对角线AC ,DB 相交于点O .若AD →=a ,AB →=b ,则OC →=( )A .-a 3-b 3B .a 3+b 6C .2a 3+b 3D .2a 3-b 32.〖2019·江西赣吉抚七校监测〗在正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点(靠近点B ),那么EF →=( )A .12AB →-13AD → B .14AB →+12AD →C .13AB →+12AD → D .12AB →-23AD →3.〖2019·衡水中学调研〗在△ABC 中,AN →=14NC →,P 是直线BN 上的一点.若AP →=mAB →+25AC →,则实数m 的值为( ) A .-4 B .-1 C .1 D .44.〖2019·沧州七校联考〗如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=( )A .a -12bB .12a -bC .a +12bD .12a +b5.〖2019·四川成都七中一诊〗已知点O ,A ,B 不在同一条直线上,点P 为该平面上一点,且2OP →=2OA →+BA →,则( )A .点P 在线段AB 上 B .点P 在线段AB 的反向延长线上C .点P 在线段AB 的延长线上D .点P 不在直线AB 上 6.〖2019·北京东城〗在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →,则μ的取值范围是( )A .[0,1]B .[0,3]C .[0,12]D .[12,2]7.〖2019·郑州一模〗设向量a =(x ,1),b =(4,x ),若a ,b 方向相反,则实数x 的值是( ) A .0 B .±2 C .2 D .-28.〖2019·河北献县一中月考〗已知点A (-1,5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为( ) A .(7,4) B .(7,14) C .(5,4) D .(5,14) 9.〖2019·衡水中学调研卷〗设向量a ,b 满足|a |=25,b =(2,1),则“a =(4,2)”是“a ∥b ”成立的是( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件10.〖2019·河北唐山一模〗在△ABC 中,∠B =90°,AB →=(1,-2),AC →=(3,λ),则λ=( )A .-1B .1C .32D .411.〖2019·福建泉州模拟〗在平面直角坐标系中,点O (0,0),P (6,8),将向量OP →绕点O 按逆时针方向旋转3π4后得向量OQ →,则点Q 的坐标是( ) A .(-72,-2) B .(-72,2) C .(-46,-2) D .(-46,2) 12.〖2019·安徽合肥一模〗已知a =(1,3),b =(-2,k ),且(a +2b )∥(3a -b ),则实数k =____.13.〖2019·河北联盟二模〗已知点A (1,0),B (1,3),点C 在第二象限,且∠AOC =150°,OC →=-4OA →+λOB →,则λ=____. 14.〖2019·西安一模〗已知向量a =(m -1,2),b =(3,m +4),若a ∥b ,且方向相反,则|b |=____.15.〖2019·湖南长沙一模〗在矩形ABCD 中,AB =3,AD =2,P 是矩形内部一点(不含边界),且AP =1.若AP →=xAB →+yAD →,则3x +2y 的取值范围是____.16.〖2019·潍坊二模〗已知向量AB →=(6,1),BC →=(x ,y ),CD →=(-2,-3).(1)若BC →∥DA →,求x 与y 之间的关系式;(2)在(1)的条件下,若AC →⊥BD →,求x ,y 的值及四边形ABCD 的面积. 17.〖2019·黑龙江大庆第一次质检〗已知向量a =(1,2),b =(-2,m ),若a ∥b ,则|2a +3b |=( ) A .70 B .4 5 C .3 5 D .2 518.〖2019·保定模拟〗若向量a ,b 满足|a |=|b |=1,(a +b )·b =32,则向量a ,b 的夹角为( )A .30°B .45°C .60°D .90° 19.〖2019·江南十校联考〗已知平面向量a ,b ,|a |=1,|b |=3,且|2a +b |=7,则向量a 与向量a +b 的夹角为( )A .π2B .π3C .π6D .π20.〖2019·人大附中模拟〗已知a ,b 是非零向量,且向量a ,b 的夹角为π3,若向量p =a |a |+b|b |,则|p |=( )A .2+ 3B .2+ 3C .3D . 321.〖2019·沧州七校联考〗已知P 是边长为2的正三角形ABC 的边BC 上的动点,则AP →·(AB →+AC →)( ) A .有最大值为8 B .是定值6 C .有最小值为2 D .与点的位置有关22.〖2019·河南鹤壁高级中学段考〗如图,BC ,DE 是半径为1的圆O 的两条直径,BF →=2FO →,则FD →·FE →等于( )A .-34B .-89C .-14D .-4923.〖2019·河南豫北名校联盟对抗赛〗已知△ABC 的外接圆的半径为1,圆心为点O ,且3OA →+4OB →+5OC →=0,则OC →·AB →=( )A .85B .75C .-15D .4524.〖2019·江西上饶一模〗在边长为1的正方形ABCD 中,2AE →=EB →,BC 的中点为F ,EF →=2FG →,则EG →·BD →=____. 25.〖2019·潍坊二模〗设a ,b 是非零向量,若函数f (x )=(xa +b )·(a -xb )的图像是一条直线,则必有( ) A .a ⊥b B .a ∥b C .|a |=|b | D .|a |≠|b |26.〖2019·保定模拟〗若O 是△ABC 所在平面内一点,且满足|OB →-OC →|=|OB →+OC →-2OA →|,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形27.〖2019·银川调研〗若平面四边形ABCD 满足AB →+CD →=0,(AB →-AD →)·AC →=0,则该四边形一定是( ) A .直角梯形 B .矩形 C .菱形 D .正方形28.〖2019·福州四校联考〗已知向量a ,b 为单位向量,且a ·b =-12,向量c 与a +b 共线,则|a +c |的最小值为( )A .1B .12C .34D .3229.〖2019·郑州质检〗在平面直角坐标系中,若定点A (1,2)与动点P (x ,y )满足向量OP →在向量OA →上的投影为-5,则点P 的轨迹方程是( ) A .x -2y +5=0 B .x +2y -5=0 C .x +2y +5=0 D .x -2y -5=030.〖2019·河北辛集中学月考〗若复数2-bi1+2i(b ∈R )的实部与虚部互为相反数,则b 等于( )A . 2B .23C .-23D .231.〖2019·唐山二模〗若复数z =1+ia -i(i 是虚数单位,a ∈R )是纯虚数,则z 的虚部为( )A .1B .iC .2D .2i 32.〖2019·安徽江南十校3月联考题〗若复数z 满足z (1-i )=|1-i |+i ,则z 的实部为( )A .2-12B .2-1C .1D .2+1233.〖2019·湖北高中联考〗已知复数z =1+i (i 是虚数单位),则2z-z 2的共轭复数是( )A .-1+3iB .1+3iC .1-3iD .-1-3i34.〖2019·山西四校联考〗i 是虚数单位,若2+i1+i=a +bi (a ,b ∈R ),则lg (a +b )的值是( )A .-2B .-1C .0D .1235.〖2019·湖北黄冈期末〗复数z 1,z 2在复平面内分别对应点A ,B ,z 1=3+4i ,将点A 绕原点O 逆时针旋转90°得到点B ,则z 2=( )A .3-4iB .-4-3iC .-4+3iD .-3-4i36.〖2019·邯郸二模〗复数z 在复平面内表示的点Z 如图所示,则使得z 2·z 1是纯虚数的一个z 1是( )A .3-4iB .4+3iC .3+4iD .4-3i37.〖2019·江苏阜宁中学调研〗若复数z =i +i 2020,则z +10z的模等于____.38.〖2019·河南许昌高中联考〗给出下列四个命题:①满足:z =1z的复数有±1,±i ;②若a ,b ∈R 且a =b ,则(a -b )+(a +b )i 是纯虚数; ③复数z ∈R 的充要条件是z =z ;④在复平面内,实轴上的点都表示实数,虚轴上的点都表示纯虚数. 其中正确的命题是____.。

2019-2020年高考数学 5年高考真题精选与最新模拟 专题07 平面向量 文

2019-2020年高考数学 5年高考真题精选与最新模拟 专题07 平面向量 文

2019-2020年高考数学 5年高考真题精选与最新模拟专题07 平面向量文1.(xx高考全国文9)中,边的高为,若,,,,,则(A)(B)(C)(D)2.(xx高考重庆文6)设,向量且,则(A)(B)(C)(D)【答案】B【解析】因为,所以有,解得,即,所以,,选B.3.(xx高考浙江文7)设a,b是两个非零向量。

A.若|a+b|=|a|-|b|,则a⊥bB.若a⊥b,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λaD.若存在实数λ,使得b=λa,则|a+b|=|a|-|b|4.(xx高考四川文7】设、都是非零向量,下列四个条件中,使成立的充分条件是()A、且B、C、D、5.(xx高考陕西文7)设向量=(1.)与=(-1,2)垂直,则等于()A B C .0 D.-1【答案】C.【解析】,故选C.6.(xx高考辽宁文1)已知向量a = (1,—1),b = (2,x).若a ·b = 1,则x =(A) —1 (B) —(C) (D)1【答案】D【解析】,故选D7.(xx高考广东文3)若向量,,则A. B. C. D.【答案】A【解析】.8.(xx高考广东文10)对任意两个非零的平面向量和,定义. 若两个非零的平面向量,满足与的夹角,且和都在集合中,则A. B. C. 1 D.【答案】D9.(xx高考福建文3)已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是A.x=-B.x-1C.x=5D.x=010.(xx高考天津文科8)在△ABC中,A=90°,AB=1,设点P,Q满足=,=(1-),R。

若=-2,则=(A)(B)C)(D)211.(xx 高考新课标文15)已知向量夹角为 ,且;则 【答案】【解析】因为,所以,即,所以 ,整理得,解得或(舍去).12.(xx 高考安徽文11)设向量,,,若,则______. 【答案】【解析】1(3,3),()3(1)3022a c m a c b m m m a +=+=++=⇔=-⇒=13.(xx 高考湖南文15)如图4,在平行四边形ABCD 中 ,AP ⊥BD ,垂足为P ,且= .【答案】18【解析】设,则,= .14.(xx 高考浙江文15)在△ABC 中,M 是BC 的中点,AM=3,BC=10,则=________. 【答案】-16【解析】由余弦定理222222cos 53253cos AB AM BM AM BM AMB AMB =+-⋅∠=+-⨯⨯∠,222222cos 35253cos AC AM CM AM CM AMC AMC =+-⋅∠=+-⨯⨯∠,,两式子相加为222222222(35)68AC AB AM CM +=+=⨯+=,2222221068100cos 222AB AC BC AB AC BAC AB AC AB AC AB AC +-+--∠===⨯⨯⨯⨯⨯⨯,68100cos 162AB AC AB AC BAC AB AC AB AC -⋅=∠=⋅=-⨯⨯.15.(xx高考山东文16)如图,在平面直角坐标系中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,的坐标为___【答案】【解析】因为圆心移动的距离为2,所以劣弧,即圆心角, ,则,所以,,所以,,所以.16.(xx高考江西文12)设单位向量m=(x,y),b=(2,-1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 专题07 平面向量
1.【2019年高考全国I 卷文数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为
A .
π
6 B .
π3
C .2π3
D .5π6
2.【2019年高考全国II 卷文数】已知向量a =(2,3),b =(3,2),则|a -b |= A
B .2
C .
D .50
3.【2019年高考北京卷文数】已知向量a =(–4,3),b =(6,m ),且⊥a b ,则m =__________.
4.【2019年高考全国III 卷文数】已知向量(2,2),(8,6)==-a b ,则cos ,=a b ___________.
5.【2019年高考天津卷文数】在四边形ABCD
中,,
5,30AD BC AB AD A ==∠=︒∥,点E
在线段CB 的延长线上,且AE BE =,则BD AE ⋅=_____________.
6.【2019年高考江苏卷】如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则
AB
AC
的值是_____.
7.【2019年高考浙江卷】已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,
123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______.
8.【山东省烟台市2019届高三3月诊断性测试(一模)数学试题】在矩形ABCD 中,4AB =uu u r ,2AD =.若
点M ,N 分别是CD ,BC 的中点,则AM MN ⋅= A .4 B .3
C .2
D .1
9.【福建省漳州市2019届高三下学期第二次教学质量监测数学试题】已知向量a ,b 满足||1=a
,||=
b
2
且a 与b 的夹角为
6
π
,则()(2)+⋅-=a b a b A .
12 B .32
-
C .12
-
D .
32
10.【安徽省江淮十校2019届高三年级5月考前最后一卷数学试题】已知向量(1,2)=a ,(2,3)=-b ,
(4,5)=c ,若()λ+⊥a b c ,则实数λ=
A .1
2
-
B .
12
C .2-
D .2
11.【2019届北京市通州区三模数学试题】设a ,b 均为单位向量,则“a 与b 夹角为

3
”是
“||+=a b ”的
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
12.【辽宁省丹东市2019届高三总复习质量测试数学(二)】在ABC △中,2AB AC AD +=,AE DE +=0,
若EB xAB y AC =+,则 A .3y x = B .3x y =
C .3y x =-
D .3x y =-
13.【2019年辽宁省大连市高三5月双基考试数学试题】已知直线y =x +m 和圆x 2+y 2=1交于A 、B 两点,O
为坐标原点,若3
2
AO AB ⋅=
,则实数m = A .1±
B
.2
±
C
.2
±
D .12
±
14.【天津市和平区2018-2019学年度第二学期高三年级第三次质量调查数学试题】已知菱形ABCD 的边长
为2,120BAD ∠=︒,点E ,F 分别在边BC ,DC 上,3BC BE =,DC DF λ=,若1A E A F ⋅=,则λ的值为 A .3
B .2
3 C .
2
3 D .
52
15.【江西省新八校2019届高三第二次联考数学试题】在矩形ABCD 中,3,4,
AB AD AC ==与BD 相
交于点O ,过点A 作AE BD ⊥,垂足为E ,则AE EC ⋅=
A .
572
B .
144
25
C .125
D .25
12
16.【湖师范大学附属中学2019届高三数学试题】如图所示,在正方形ABCD 中,E 为AB 的中点,F 为
CE 的中点,则AF =
A .
31
44AB AD + B .
13
44AB AD + C .1
2
AB AD +
D .31
42
AB AD +
17.【2019年北京市高考数学试卷】已知向量a =(-4,3),b =(6,m ),且⊥a b ,则m =__________.
18.【山东省烟台市2019届高三3月诊断性测试(一模)数学试题】已知圆22450x y x ++-=的弦AB 的
中点为(1,1)-,直线AB 交x 轴于点P ,则PA PB ⋅的值为__________.。

相关文档
最新文档