弹簧的动量和能量问题

合集下载

动量守恒实验技巧与常见问题解析

动量守恒实验技巧与常见问题解析

动量守恒实验技巧与常见问题解析动量守恒是物理学中一个重要的概念,它描述了在没有外力作用下,系统的总动量维持不变。

为了验证动量守恒定律,实验是必不可少的一个手段。

本文将介绍一些动量守恒实验的技巧,并解析常见问题,帮助读者更好地理解和掌握这一概念。

一、弹球实验弹球实验是最常见的演示动量守恒的实验之一。

一般来说,实验中会使用两个弹性小球,并将它们进行碰撞。

在进行实验前,我们需要注意以下几个技巧:1. 预热:弹性小球需要预热,这可以通过频繁地将它们进行弹跳来实现。

预热后的小球能够更好地发挥它们的弹性,从而减小能量损失。

2. 预留空间:在进行碰撞时,需要确保两个小球之间有足够的空间。

这样,当两个小球碰撞时,它们能够自由地弹开,避免碰撞过程中的干扰。

3. 观察角度:为了更好地观察碰撞过程,我们可以选择一个合适的观察角度。

通常来说,与小球碰撞平面垂直的方向是一个较好的选择。

在实验过程中,我们通常会遇到一些常见问题,下面将对其进行解析。

1. 能量损失:在实际实验中,我们会观察到部分动能的损失。

这是由于实验中存在着各种摩擦力和空气阻尼等非理想因素。

为了减小能量损失,我们可以选择使用较为理想的小球材料,如金属弹球。

2. 弹球的质量和速度:在进行弹球实验时,我们可以调节小球的质量和速度。

当两个小球质量相同并具有相同的速度时,碰撞后它们的速度也将相同。

而当两个小球质量不同或速度不同时,碰撞后会出现不同的速度分布。

二、弹簧实验弹簧实验是实验动量守恒的另一种常见方法。

在弹簧实验中,我们通常会使用一个弹簧和几个小球。

下面是一些技巧和常见问题的解析。

1. 弹簧的弹性系数:在进行弹簧实验时,我们需要选择合适的弹簧。

弹簧的弹性系数越大,它对物体的弹性力就越大,从而更容易观察到碰撞的效果。

2. 弹簧的固定:在使用弹簧时,我们需要确保它被牢固地固定在一个平稳的位置上,以保证实验的可靠性和准确性。

3. 弹簧的伸缩长度:在进行实验时,我们可以改变弹簧的伸缩长度。

高考物理弹簧模型知识点

高考物理弹簧模型知识点

2019高考物理弹簧模型学问点2019高考物理弹簧模型学问点弹簧模型是以轻质弹簧为载体,与详细实际问题相结合,考查运动学、动力学、能量守恒、动量守恒、振动问题、功能关系、物体的平衡等相关问题。

有关弹簧的学问,是高考考查的重点,同时也是高考的难点,几乎每年的高考都会考查该内容,所以备考时要引起足够的重视.轻弹簧是一种志向化的物理模型,分析问题时不须要考虑弹簧本身的质量和重力.处理弹簧模型时,须要驾驭以下学问点:1.弹簧弹力的计算弹簧弹力的大小可以由胡克定律来计算,即弹簧发生形变时,在弹性限度内,弹力的大小与弹簧伸长(或缩短)的长度成正比,数学表达式为,其中是一个比例系数,叫弹簧的劲度系数.弹簧的弹力不是一个恒定的力,而是一个变力,其大小随着弹簧形变量的变更而变更,同时还与弹簧的劲度系数有关。

2.弹簧弹力的特点(1)弹簧弹力的大小与弹簧的形变量有关,当弹簧的劲度系数保持不变时,弹簧的形变量,弹簧的形变量发生变更,弹簧的弹力相应地发生变更;形变量不变,弹力也力也就保持不变,由于弹簧的形变不能发生突变,故弹簧的弹力也不能瞬间发生变更,这与绳子的受力状况不同.(2)当轻弹簧受到外力的作用时,无论弹簧是处于平衡状态还是处于加速运动状态,弹簧各个部分所受的力的大小是相同的.(3)弹簧弹力的方向与弹簧的形变有关,在拉伸和压缩两种状况下,弹力的方向相反.在分析弹簧弹力的方向时,肯定要全面考虑,假如题目没有说明是哪种形变,那么就须要考虑两种状况.(4)依据胡克定律可知,弹力的大小与形变量成正比,方向与形变的方向相反,可以将胡克定律的表达式写成F=kx,即弹簧弹力是一个线性回复力,故在弹力的作用下,物体会做简谐运动.3.弹性势能与弹力的功弹簧能够存储弹性势能,其大小为Ep=kx2/2,在中学阶段不须要驾驭该公式,但要知道形变量越大,弹性势能就越大,在形变量相同的状况下,弹性势能是相等的;一般状况下,通常利用能量守恒定律来求弹簧的弹性势能,由于弹簧弹力是一个变力,弹力的功就是变力的功,可以用平均力来求功,也可以通过功能关系和能量守恒定律来求解.4.常见的弹簧类问题(l)弹簧的平衡与非平衡问题;(2)弹簧的瞬时性问题;(3)弹簧的碰撞问题;(4)弹簧的简谐运动问题;(5)弹簧的功能关系问题;(6)弹簧的临界问题;(7)弹簧的极值问题;(8)弹簧的动量守恒和能量守恒问题;(9)弹簧的综合性问题.5.处理弹簧模型的策略(l)推断弹簧与连接体的位置,分析物体的受力状况;(2)推断弹簧原长的位置,现长的位置,以确定弹簧是哪种形变以及形变量的大小;(3)分析弹簧弹力的变更状况,弹箦弹力不能发生突变,以此来分析计算物体的运动状态;(4)依据相应的物理规律列方程求解,例如,物体处于平衡时,运用平衡条件和胡克定律求解.模型1 考查弹簧的瞬时性问题弹簧弹力的大小与弹簧形变有关,而弹簧的形变在瞬间是不能突变的,即弹簧形变的变更须要肯定的时间,所以弹簧弹力在瞬间不能够突变,这与绳模型是有区分的,不要混淆两者的区分,否则就会出错.模型2 考查弹簧中的碰撞问题弹簧中的碰撞问题是一类综合性很强的题目,一般综合了动量守恒、机械能守恒、功能关系和能量转化等.假如弹簧作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能,能量相互转化.在运动过程中,动能与势能相互转化。

高中物理弹簧模型经典题型汇总

高中物理弹簧模型经典题型汇总

弹簧专题1、弹簧弹力的双向性弹簧可以伸长也可以被压缩,因此弹簧的弹力具有双向性,亦即弹力既可能是推力又可能是拉力,这类问题往往是一题多解.例1、如图3-7-15所示,质量为m的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为0120,已知弹簧a b、对质点的作用力均为F,则弹簧c对质点作用力的大小可能为( )A、0B、F mg+C、F mg-D、mg F-2、轻弹簧高中物理中描述一类物体时常在其前面加上限定词“轻”,如“轻结点”、“轻绳”、“轻弹簧”、“轻杆”、“轻滑轮”等.“轻"主要可以理解为物体质量对所研究的物理问题影响很小,可以忽略不计,它是一种理想化的物理模型。

根据牛顿第二定律F = ma知,由于“轻物体”质量为零,无论其加速度多大,所受合外力必然为零,与物体的运动状态无关.这也是它与常规物体的最大区别.例2、如图4所示,4个完全相同的轻质弹簧都处于水平位置,他们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以L1、L2、L3、L4依次表示4个弹簧的伸长量.则有()3、质量不可忽略的弹簧例3、如图所示,一质量为M、长为L的均质弹簧平放在光滑的水平面上,在弹簧右端施加一水平力F使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.答案解析Fx=FLx图3-7-154、三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是轻质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变,即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变。

例4、如图甲所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.求解下列问题:(1)现将线L2剪断,求剪断L2的瞬间物体的加速度.(2)若将图甲中的细线L1换成长度相同,质量不计的轻弹簧,如图乙所示,其他条件不变,求剪断L2的瞬间物体的加速度.例5、如图所示,一光滑圆环竖直固定在地面上,三个完全相同的质量均为m的小球穿在圆环上,其中小球A位于圆环最高点,小球B、C位于同一高度,小球A与小球B之间、小球A与小球C间用等长的轻质细绳相连,小球B与小球C用轻弹簧相连。

动量守恒和能量守恒联立公式的解

动量守恒和能量守恒联立公式的解

动量守恒和能量守恒联立公式的解动量守恒和能量守恒联立公式的解一、引言在物理学中,动量守恒和能量守恒是两个非常重要的基本原理。

动量守恒指的是系统总动量在任何时刻都保持不变,而能量守恒则是系统总能量在任何时刻也都保持不变。

这两个原理在物理学和工程学中都有着非常广泛的应用,而它们联立的公式的解则能够帮助我们更加深入地理解这两个原理的关系和应用。

二、动量守恒和能量守恒的关系1. 动量守恒的概念和公式让我们先来了解一下动量守恒的概念和公式。

动量守恒是指在一个封闭系统中,如果没有外力作用,系统的动量保持不变。

动量的守恒可以用数学公式来表示:ΣPi = ΣPf,即系统初态总动量等于系统末态总动量。

2. 能量守恒的概念和公式我们再来了解一下能量守恒的概念和公式。

能量守恒是指在一个封闭系统中,能量不会凭空消失,也不会凭空增加,能量只能从一种形式转换为另一种形式。

能量守恒可以用数学公式来表示:ΣEi = ΣEf,即系统初态总能量等于系统末态总能量。

3. 联立公式的解当动量守恒和能量守恒同时发生时,我们可以联立这两个公式来解决问题。

假设有一个系统,在某个过程中既满足动量守恒又满足能量守恒,那么我们可以得到如下的联立公式:ΣPi = ΣPfΣEi = ΣEf这样,我们就可以利用这两个联立公式来解决一些复杂的物理问题,尤其是在动能、动量和碰撞等方面有重要的应用。

三、实例分析为了更好地理解动量守恒和能量守恒联立公式的解,我们来看一个具体的例子:弹簧振子的能量转换。

假设有一个弹簧振子系统,开始时速度为v1,弹簧的劲度系数为k,质量为m。

当振子通过平衡位置时,动能转化为弹性势能;当振子最大位移时,弹性势能转化为动能。

这个过程既满足动量守恒又满足能量守恒。

根据动量守恒和能量守恒的原理,我们可以列出联立动量和能量守恒方程:1/2 * mv1^2 = 1/2 * k * x^2mv1 = mv2其中,v1为振子开始时的速度,x为振子最大位移,v2为振子最大位移时的速度。

弹簧能量转化类问题

弹簧能量转化类问题

1.如图所示,一物体质量m =2 kg ,在倾角θ=37°的斜面上的A 点以初速度v 0=3 m/s 下滑,A 点距弹簧上端B 的距离AB =4 m 。

当物体到达B 点后将弹簧压缩到C 点,最大压缩量BC =0.2 m ,然后物体又被弹簧弹上去,弹到的最高位置为D 点,D 点距A 点的距离AD =3 m 。

挡板及弹簧质量不计,g 取10 m/s 2,sin37°=0.6,求: (1)物体与斜面间的动摩擦因数μ; (2)弹簧的最大弹性势能E pm 。

【解析】(1)物体从开始位置A 点到最后D 点的过程中,弹性势能没有发生变化,动能和重力势能减少,机械能的减少量为ΔE =ΔE k +ΔE p =12mv 20+mgl AD sin37①物体克服摩擦力产生的热量为:Q =F f x ② 其中x 为物体的路程,即x =5.4 m ③ F f =μmg cos37°④由能量守恒定律可得ΔE =Q ⑤ 由①②③④⑤式解得μ=0.52。

(2)由A 到C 的过程中,动能减少ΔE k ′=12mv 20⑥重力势能减少ΔE p ′=mgl AC sin37°⑦ 摩擦生热Q ′=F f l AC =μmg cos37°l AC ⑧由能量守恒定律得弹簧的最大弹性势能为: ΔE pm =ΔE k ′+ΔE p ′-Q ′⑨联立⑥⑦⑧⑨解得ΔE pm =24.5 J 。

【答案】(1)μ=0.52 (2)24.5 J 3.[2017·黄冈调研]如图所示,竖直平面内,长为L =2 m 的水平传送带AB 以v =5 m/s 顺时针传送,其右下方有固定光滑斜面CD ,斜面倾角θ=37°,顶点C 与传送带右端B 点竖直方向高度差h =0.45 m ,下端D 点固定一挡板。

一轻弹簧下端与挡板相连,上端自然伸长至E 点,且C 、E 相距0.4 m 。

现让质量m =2 kg 的小物块以v 0=2 m/s 的水平速度从A 点滑上传送带,小物块传送至B 点后飞出恰好落至斜面顶点C 且与斜面无碰撞,之后向下运动。

高中物理弹簧问题考点大全及常见典型考题

高中物理弹簧问题考点大全及常见典型考题

常见弹簧类问题分析高考要求轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视.弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.一、与物体平衡相关的弹簧问题1.(1999年,全国)如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 - m2g /k2=m l g/k2.此题若求m l移动的距离又当如何求解?参考答案:C2.S1和S2表示劲度系数分别为k1,和k2两根轻质弹簧,k1>k2;A和B表示质量分别为m A和m B的两个小物块,m A>m B,将弹簧与物块按图示方式悬挂起来.现要求两根弹簧的总长度最大则应使( ).A.S1在上,A在上B.S1在上,B在上C.S2在上,A在上D.S2在上,B在上参考答案:D3.一根大弹簧内套一根小弹簧,大弹簧比小弹簧长0.2m,它们的一端固定,另一端自由,如图所示,求这两根弹簧的劲度系数k1(大弹簧)和k2(小弹簧)分别为多少?(参考答案k1=100N/m k2=200N/m)4.(2001年上海高考)如图所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.现将L2线剪断,求剪断瞬时物体的加速度.(1)下面是某同学对该题的一种解法:解设L1线上拉力为T l,L2线上拉力为T2,重力为mg,物体在三力作用下保持平衡T l cosθ=mg,T l sinθ=T2,T2=mgtanθ,剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度.因为mgtanθ=ma,所以加速度a=g tanθ,方向在T2反方向.你认为这个结果正确吗?清对该解法作出评价并说明理由.解答:错.因为L2被剪断的瞬间,L1上的张力大小发生了变化.此瞬间T2=mgcosθ, a=gsinθ(2)若将图中的细线L l改为长度相同、质量不计的轻弹簧,其他条件不变,求解的步骤和结果与(1)完全相同,即a=gtanθ,你认为这个结果正确吗?请说明理由.解答:对,因为L2被剪断的瞬间,弹簧L1的长度未及发生变化,T1大小和方向都不变.二、与动力学相关的弹簧问题5.如图所示,在重力场中,将一只轻质弹簧的上端悬挂在天花板上,下端连接一个质量为M的木板,木板下面再挂一个质量为m的物体.当剪掉m后发现:当木板的速率再次为零时,弹簧恰好能恢复到原长,(不考虑剪断后m、M间的相互作用)则M与m之间的关系必定为 ( )A.M>mB.M=mC.M<mD.不能确定参考答案:B6.如图所示,轻质弹簧上面固定一块质量不计的薄板,在薄板上放重物,用手将重物向下压缩到一定程度后,突然将手撤去,则重物将被弹簧弹射出去,则在弹射过程中(重物与弹簧脱离之前)重物的运动情况是( ) 参考答案:CA.一直加速运动 B.匀加速运动C.先加速运动后减速运动 D.先减速运动后加速运动[解析] 物体的运动状态的改变取决于所受合外力.所以,对物体进行准确的受力分析是解决此题的关键,物体在整个运动过程中受到重力和弹簧弹力的作用.刚放手时,弹力大于重力,合力向上,物体向上加速运动,但随着物体上移,弹簧形变量变小,弹力随之变小,合力减小,加速度减小;当弹力减至与重力相等的瞬间,合力为零,加速度为零,此时物体的速度最大;此后,弹力继续减小,物体受到的合力向下,物体做减速运动,当弹簧恢复原长时,二者分离.7.如图所示,一轻质弹簧竖直放在水平地面上,小球A由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是()参考答案:CA.小球加速度方向始终向上B.小球加速度方向始终向下C.小球加速度方向先向下后向上D.小球加速度方向先向上后向下(试分析小球在最低点的加速度与重力加速度的大小关系)8.如图所示,一轻质弹簧一端系在墙上的O点,自由伸长到B点.今用一小物体m把弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与水平地面间的动摩擦因数恒定,试判断下列说法正确的是 ()A.物体从A到B速度越来越大,从B到C速度越来越小B.物体从A到B速度越来越小,从B到C加速度不变C.物体从A到B先加速后减速,从B一直减速运动D.物体在B点受到的合外力为零参考答案:C9.如图所示,一轻质弹簧一端与墙相连,另一端与一物体接触,当弹簧在O点位置时弹簧没有形变,现用力将物体压缩至A点,然后放手。

动量守恒定律的应用弹簧问题

动量守恒定律的应用弹簧问题

理解:弹簧被压缩至最短时的临界条件。
4.质量分别为3m和m的两个物体, 用一根细线
相连,中间夹着一个被压缩的轻质弹簧,整个系
统原来在光滑水平地面上以速度v0向右匀速运
动,如图所示.后来细线断裂,质量为m的物体离 开弹簧时的速度变为2v0. 求(1)质量为3m的物体离开弹簧时的速度 (2)弹簧的这个过程中做的总功.
1.注意弹簧弹力特点及运动过程。 弹簧弹力不能瞬间变化。 2.弹簧连接两种形式:连接或不连接。
连接:可以表现为拉力和压力。
不连接:只表现为压力。
3.动量问题:动量守恒。
4.能量问题:机械能守恒(弹性碰撞)。
动能和弹性势能之间转化.
题型一、判断动量是否守恒
1.木块a和b用一轻弹簧连接,放在光滑水平面上, a紧靠在墙壁上,在b上施加向左的水平力使弹簧 压缩,当撤去外力后,下列说法正确的是( ) BC A.a尚未离开墙壁前,a和b组成的系统动量守恒 B.a尚未离开墙壁前,a和b组成的系统动量不守恒 C.a离开墙壁后,a和b组成的系统动量守恒 D.a离开墙壁后,a和b组成的系统动量不守恒
mA m, mB m, mC 3m,
求:(1)滑块A与滑块B碰 撞结束瞬间的速度; (2)被压缩弹簧的最大弹 性势能;
例:如图所示,A,B,C三个木块的质量 均为m。置于光滑的水平面上,B,C之间 有一轻质弹簧,弹簧的两端与木块接触而 不固连,将弹簧压紧到不能再压缩时用细 线把B和C紧连,使弹簧不能伸展,以至于 B,C可视为一个整体,现A以初速v0沿B, C的连线方向朝B运动,与B相碰并黏合在 一起,以后细线突然断开,弹簧伸展,从 而使C与A,B分离,已知C离开弹簧后的 速度恰为v0,求弹簧释放的势能。
题型二、两个物体的问题

动量之弹簧类问题

动量之弹簧类问题

动量之弹簧类问题第一部分弹簧类典型问题1.弹簧类模型的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。

1、最大、最小拉力例1. 一个劲度系数为k=600N/m的轻弹簧,两端分别连接着质量均为m=15kg的物体A、B,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F在物体A上,使物体A开始向上做匀加速运动,经0.5s,B物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g=10m/s2)。

求此过程中所加外力的最大和最小值。

图12、最大高度例2. 如图2所示,质量为m的钢板与直立弹簧的上端连接,弹簧下端。

一物体从钢板正上方距离为固定在地面上,平衡时弹簧的压缩量为x3x的A处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,0它们到达最低点后又向上运动,已知物块质量也为m时,它们恰能回到O 点,若物体质量为2m仍从A处自由下落,则物块与钢板回到O点时还有向上的速度,求物块向上运动到达的最高点与O点的距离。

图23、最大速度、最小速度例3. 如图3所示,一个劲度系数为k 的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m 的平板B 相连而处于静止状态。

今有另一质量为m 的物块A 从B 的正上方h 高处自由下落,与B 发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v 。

图3例4. 在光滑水平面内,有A 、B 两个质量相等的木块,mm k g A B==2,中间用轻质弹簧相连。

现对B 施一水平恒力F ,如图4所示,经过一段时间,A 、B 的速度等于5m/s 时恰好一起做匀加速直线运动,此过程恒力做功为100J ,当A 、B 恰好一起做匀加速运动时撤除恒力,在以后的运动过程中求木块A 的最小速度。

动量与能量综合问题归类分析

动量与能量综合问题归类分析

量守恒,故小物块恰能到达圆弧最高点A时,
两者旳共同速度 v共 =0

设弹簧解除锁定前旳弹性势能为EP,上述过程中系 统能量守恒,则有 EP=mgR+μmgL ②
代入数据解得 EP =7.5 J

⑵设小物块第二次经过O′时旳速度大小为vm,此时 平板车旳速度大小为vM ,研究小物块在圆弧面上下 滑过程,由系统动量守恒和机械能守恒有
1 2
Mv 2 2
题目 2页 3页 末页
代入数据可得:v1+3v2=4
v21 +3v22 =10
解得
v1
2
3 2
2 3.12m/s
2 2 v2 2 0.29m/s
以上为A、B碰前瞬间旳速度。

v1
23 2
2 1.12m/s
v2
2 2
2
1.71m/s
此为A、B刚碰后瞬间旳速度。
题目 2页 3页 末页
m
M
若小球只能在下半个圆周内作摆动 1/2m1V22 =m1gh ≤m1gL V2 2gL v0 m M 2gL
类型三:子弹射木块类问题
如图所示,质量为m旳小木块与水平面间旳动摩擦因数
μ=0.1.一颗质量为0.1m、水平速度为v0=33 Rg 旳子弹
打入原来处于静止状态旳小木块(打入小木块旳时间极短, 且子弹留在小木块中),小木块由A向B滑行5R,再 滑上半径为R旳四分之一光滑圆弧BC,在C点正上方有一 离C高度也为R旳旋转平台,平台同一直径上开有两个离轴 心等距旳小孔P和Q,平台旋转时两孔均能经过C点旳正上 方,若要使小木块经过C后穿过P孔,又能从Q孔落下,则平台 旳角速度应满足什么条件?
住一轻弹簧后连接在一起,两车从光滑弧形轨道上旳 某一高度由静止滑下,当两车刚滑入圆环最低点时连 接两车旳挂钩忽然断开,弹簧将两车弹开,其中后车 刚好停下,前车沿圆环轨道运动恰能越过圆弧轨道最 高点,求:

弹簧类动量守恒机械能守恒类习题精练

弹簧类动量守恒机械能守恒类习题精练

弹簧类机械能守恒动量守恒1.如图所示,一轻质弹簧的一端固定在滑块B上,另一端与滑块C接触但不连接,该整体静止在光滑水平地面上,并且C被锁定在地面上.现有一滑块A从光滑曲面上离地面h高处由静止开始下滑,与滑块B发生碰撞并粘连在一起压缩弹簧,当速度减为碰后速度一半时滑块C解除锁定.已知mA=m,mB=2m,mC="3m." 求:被压缩弹簧的最大弹性势能.2.质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上,平衡时,弹簧的压缩量为x,如图所示,一物块从钢板正上方距离为3x的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动,已知物块质量也为m时,它们恰能回到O点,若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度,求物块向上运动到达最高点O点的距离.3.如图所示,在光滑水平面上,质量为m的小球A和质量为m的小球B通过轻弹簧连接并处于静止状态,弹簧处于原长;质量为m的小球C以初速度v沿AB连线向右匀速运动,并与小球A发生弹性碰撞. 在小球B的右侧某位置固定一块弹性挡板(图中未画出),当弹簧恢复原长时,小球B与挡板发生正碰并立刻将挡板撤走. 不计所有碰撞过程中的机械能损失,弹簧始终处于弹性限度内,小球B与挡板的碰撞时间极短,碰后小球B的速度大小不变,但方向相反。

在小球A向右运动过程中,求:(1)小球B与挡板碰撞前,弹簧弹性势能最大值;(2)小球B与挡板碰撞时,小球A、B速度分别多大?(3)小球B与挡板碰撞后弹簧弹性势能最大值。

4..(10分)如图所示,三个可视为质点的滑块质量分别为mA =m,mB=2m,mC=3m,放在光滑水平面上,三滑块均在同一直线上.一轻质弹簧的一端固定在滑块B上,另一端与滑块C接触但未连接,B、C均静止。

现滑块A以速度v=与滑块B发生碰撞(碰撞时间极短)后粘在一起,并压缩弹簧推动滑块C向前运动,经一段时间,滑块C脱离弹簧,继续在水平面上匀速运动,求:①被压缩弹簧的最大弹性势能②滑块C脱离弹簧后A、B、C三者的速度5.如图所示,质量为m=1kg的滑块A从光滑圆弧h=0.9m处由静止开始下滑,轻弹簧的一端固定,另一端与滑块B相连,B静止在水平导轨上,B滑块与A滑块的质量相等,弹簧处在原长状态.滑块从P点进入水平导轨,滑行S=1m后与滑块B相碰,碰撞时间极短,碰后A、B紧贴在一起运动,但互不粘连.已知最后A恰好返回水平导轨的左端P点并停止.滑块A和B与水平导轨的滑动摩擦因数都为μ=0.1,g=10m/s求:(1)滑块A 与滑块B 碰撞前的速度(2)滑块A 与滑块B 碰撞过程的机械能损失 (3)运动过程中弹簧最大形变量 x .6.如图所示,一轻质弹簧的一端固定在滑块B 上,另一端与滑块C 接触但未连接,该整体静止放在离地面高为H=5m 的光滑水平桌面上.现有一滑块A 从光滑曲面上离桌面h=1.8m 高处由静止开始滑下,与滑块B 发生碰撞并粘在一起压缩弹簧推动滑块C 向前运动,经一段时间,滑块C 脱离弹簧,继续在水平桌面上匀速运动一段后从桌面边缘飞出.已知m A =1kg ,m B =2kg ,m C =3kg ,g=10m/s 2,求: (1)滑块A 与滑块B 碰撞结束瞬间的速度; (2)被压缩弹簧的最大弹性势能;(3)滑块C 落地点与桌面边缘的水平距离.7. (II)如图所示,一轻质弹簧的一端固定在滑块B 上,另一端与滑块C 接触但未连接,该整体静置在光滑水平面上.现有一滑块A 从光滑曲面上离水平面h 高处由静止开始滑下,与滑块B 发生碰撞(时间极短)并粘在一起压缩弹簧推动滑块C 向前运动,经过一段时间,滑块C 脱离弹簧,继续在水平面上做匀速运动.已知m A =m B =m ,m C =2m ,求: (1)滑块A 与滑块B 碰撞时的速度v 1大小;(2)滑块A 与滑块B 碰撞结束瞬间它们的速度v 2的大小; (3)滑块C 在水平面上匀速运动的速度的大小.8. 如图,质量为m 1的物体A 经一轻质弹簧与下方地面上的质量为m 2的物体B 相连,弹簧的劲度系数为k ,A 、B 都处于静止状态。

高中物理压轴题04 用动量和能量的观点解题(解析版)

高中物理压轴题04 用动量和能量的观点解题(解析版)

压轴题04用动量和能量的观点解题1.本专题是动量和能量观点的典型题型,包括应用动量定理、动量守恒定律,系统能量守恒定律解决实际问题。

高考中既可以在选择题中命题,更会在计算题中命题。

2024年高考对于动量和能量的考查仍然是热点。

2.通过本专题的复习,不仅利于完善学生的知识体系,也有利于培养学生的物理核心素养。

3.用到的相关知识有:动量定理、动量守恒定律、系统机械能守恒定律、能量守恒定律等。

近几年的高考命题中一直都是以压轴题的形式存在,重点考查类型为弹性碰撞,完全非弹性碰撞,爆炸问题等。

考向一:动量定理处理多过程问题1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F应理解为变力在作用时间内的平均值。

2.动量定理的表达式F·Δt=Δp是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力。

3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt越短,力F就越大,力的作用时间Δt越长,力F就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎。

(2)当作用力F一定时,力的作用时间Δt越长,动量变化量Δp越大,力的作用时间Δt越短,动量变化量Δp越小。

4.应用动量定理解题的一般步骤(1)明确研究对象和研究过程。

研究过程既可以是全过程,也可以是全过程中的某一阶段。

(2)进行受力分析.只分析研究对象以外的物体施加给研究对象的力,不必分析内力。

(3)规定正方向。

(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.考向二:动量守恒定律弹性碰撞问题两球发生弹性碰撞时应满足动量守恒和机械能守恒。

以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有m1v1=m1v′1+m2v′2①12m 1v 21=12m 1v ′21+12m 2v ′22②由①②得v ′1=m 1-m 2v 1m 1+m 2v ′2=2m 1v 1m 1+m 2结论:①当m 1=m 2时,v ′1=0,v ′2=v 1,两球碰撞后交换了速度。

弹簧类问题中动量守恒和能量守恒的综合应用

弹簧类问题中动量守恒和能量守恒的综合应用

弹簧类问题中动量守恒和能量守恒的综合应用河北省鸡泽县第一中学 吴社英邮 编 057350手 机两个或两个以上的物体与弹簧组成的系统相互作用的物理过程,具有以下一些特点:能量变化上,如果只有重力和系统内弹簧弹力做功,系统的机械能守恒;如果系统所受合外力为零,则系统动量守恒;若系统每个物体除弹簧弹力外所受合外力为零,则当弹簧伸长或压缩最大程度时两物体速度相同(如光滑水平面上的弹簧连结体问题),且当弹簧为自然状态时系统内某一端的物体具有最大速度(如弹簧锁定的系统由静止释放)。

例1 如图1所示,物体A 和B 质量相等,它们连在一个轻质弹簧两端,置于左侧有一竖直挡板的光滑水平面上,B 与竖直挡板接触,此时弹簧处于原长,A 此时以速度v 0压缩弹簧,然后反弹回去。

若全过程始终未超过弹簧的弹性限度,对A 、B 和弹簧组成的系统,则(A) 从A 压缩弹簧开始,动量和机械能守恒(B) 弹簧第一次恢复原长开始,动量和机械能都守恒(C) 弹簧第一次拉伸最长时,弹簧的弹性势能与A 、B 此时的动能之和相等(D) 弹簧第二次恢复原长时,A 、B 的动量大小相等分析与解答 从A 开始压缩弹簧开始,至弹簧第一次变为原长,这个过程中挡板对系 统有向右的作用力,故系统动量不守恒,但这个作用力对系统并不作功,故系统机械能守恒,A 选项错。

从弹簧第一次恢复原长开始,挡板对系统不再有力的作用,系统所受合外力为零,除弹簧弹力对A 、B 做功外,无其它力做功,故系统机械能守恒,B 选项正确。

弹簧第一次拉伸最长时,AB 速度相同,设为v ,则mv 0=2mv (1),E P =21mv 02—212mv 2 (2) 由(1) (2) 得 E P =41mv 02此时的动能之和为E K =212mv 2=41mv 02,所以C 选项正确。

当弹簧恢复原长时,即A 、B 相互作用结束时,二者速度应交换,所以必有一个物体的速度为零,D 选项错。

答案 BC点拨:本题一定要注意挡板对系统有向右的作用力时,系统动量不守恒,但因为不做功,所以机械能守恒。

动量和能量观点综合应用的三个模型

动量和能量观点综合应用的三个模型
μ(m0+m)gd=12(m0+m)v21-12(m0+m+M)v22, 联立解得 d=3 m. 答案:(1)1 s (2)3 m
模型三 “滑块—斜面(或曲面)”模型 1.常见模型图
2.“滑块—斜面”模型的解题思路: (1)应用系统在水平方向的动量守恒; (2)应用系统的能量守恒; (3)注意临界条件:滑块沿斜面上升到最高点时,滑块与斜面同 速;
例 2 如图所示,质量 m1=0.3 kg 的小车静止在光滑的水平面 上,车长 L=1.5 m,现有质量 m2=0.2 kg 可视为质点的物块,以水 平向右的速度 v0=2 m/s 从左端滑上小车,最后在车面上某处与小 车保持相对静止.物块与车面间的动摩擦因数 μ=0.5,取 g=10 m/s2,求:
B.m0 的速度不变,M 和 m 的速度变为 v1 和 v2,而且满足 Mv= Mv1+mv2
C.m0 的速度不变,M 和 m 的速度都变为 v′,且满足 Mv=(M +m)v′
D.M、m0、m 速度均发生变化,M、m0 速度都变为 v1,m 的速度 变为 v2,且满足(M+m)v0=(M+m)v1+mv2
联立以上两式解得 v0=m+mM 2gR=31 m/s. (2)由动量守恒定律可知,第 2 颗子弹射入木块后,木块的速度 为0 当第 3 颗子弹射入木块时,由动量守恒定律得 mv0=(3m+M)v3 解得 v3=3mm+v0M=2.4 m/s. 答案:(1)31 m/s (2)2.4 m/s
3.如图所示,质量为 m=245 g 的物块(可视为质点)放在质量 为 M=0.5 kg 的木板左端,足够长的木板静止在光滑水平面上,物 块与木板间的动摩擦因数为 μ=0.4.质量为 m0=5 g 的子弹以速度 v0 =300 m/s 沿水平方向射入物块并留在其中(时间极短),g 取 10 m/s2. 子弹射入后,求:

有关弹簧的动量问题

有关弹簧的动量问题

单击此处添加大标题 内容
如图所示,在足够长的光滑水平轨道上静止三个小木块A,B,C,质量分别为mA=1kg,mB=1kg, mC=2kg,其中B与C用一个轻弹簧固定连接,开始时整个装置处于静止状态;A和B之间有少许塑胶 炸药,A的左边有一个弹性挡板(小木块和弹性挡板碰撞过程没有能量损失)。现在引爆塑胶炸药, 若炸药爆炸产生的能量有E=9J转化为A和B沿轨道方向的动能,A和B分开后,A恰好在BC之间的弹 簧第一次恢复到原长时追上B,并且在碰撞后和B粘到一起。求:
单击添加大标题
E 车 Ep=mgR
2m2gR M2 Mm
四. 质量为M 的小车置于光滑水平面上, 小车的上表面由 光滑的1/4 圆弧和光滑平面组成, 圆弧半径为R , 车的 右端固定有一不计质量的弹簧.现有一质量为m 的滑块 从圆弧最高处无初速下滑(如图) ,与弹簧相接触并压缩 弹簧, 求: 1. 弹簧具有的最大的弹性势能; 2. 当滑块与弹簧分离时小车速度.
恢复到原长时A,B的速度各是多少?
由能量守恒得
1 2m V 0 201 2m V A 21 2m V B 2
2.已知A、B、C质量均为m,C的初速度为v0,碰撞后 B、C粘在一起,地面光滑。求弹簧的最大弹性势能EP
解:C与B碰撞动量守恒 mV0=2mV1
碰后到压缩弹簧到最短达共同速度V2,弹性势能达最大EP.
A
v0
B2 m
⑵设B球与挡板碰撞前瞬间的速度为vB,此时A的速度为vA。
系统动量守恒: m0vmAv2mBv
mAv2mBv3m共 v
B与挡板碰后,以vB向左运动,压缩弹簧,当A、B速度相同 (设为v共)时,弹簧势能最大,为Em,则:
1 2m02v1 23m共 2vEm

弹簧问题中的能量与动量

弹簧问题中的能量与动量

弹簧问题中的能量与动量教学目的:1.学会在物理问题的分析中重视物理情景的分析,明确每一物体的运动情况;2.物理答题规范的培养与指导;3.与弹簧连接类物体的运动情景的分析,动量、能量相关知识在解题中的应用。

教学重难点:1.物理情景的分析方法2.分析过程中突出的物理问题中的“三变”教学方法:讲授、讨论、多媒体演示教学过程:在今年的高考物理试卷中,力学和电学知识所占比例高达85%,越来越突出对物理的主干知识的考查。

在力学主干知识的考查中,能量与动量又永远是考查的重中之重。

一.弹簧基础知识弹簧类弹力:大小:F=kx (在弹性限度以内);方向:沿弹簧轴线而指向弹簧的恢复原状的方向二.弹簧问题中的能量与动量分析请学生看物理教材(必修加选修)第二册第10页“思考与讨论”: 在如图1所示的装置中,木块B 与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后,留在木块内,将弹簧压缩到最短。

若将子弹、木块和弹簧合在一起作为研究对象(系统),此系统从子弹开始射入木块到弹簧压缩到最短的整个过程中,动量是否守恒?机械能是否守恒?说明理由。

例1:如图1所示,若木块的质量为M,子弹的质量为m,弹簧为轻质弹簧,子弹以速度v 0射入木块B 后能在极短时间内达到共同速度。

求弹簧可能具有的最大弹性势能。

分析:学生在分析过程中,最容易怱略的就是的在A 、B 的碰撞过程中存在能量的损失。

运动情景分析:过程一:子弹A 射入木块B 的过程;过程二:子弹A 和木块B 一起压缩弹簧,做加速度越来越大的变减速直线运动。

对子弹A和木块B 构成的系统,在子弹A 射入木块B的过程中,内力远大于外力,系统动量守恒,设子弹射入木块后的共同速度为1v ,由动量守恒定律,有:10)(v m M mv +=①对子弹A、木块B 和弹簧构成的系统,从子弹射入木块后到弹簧压缩到最短的过程中,系统能量守恒,有:()21max 21v m M E P +=②图1联立①②两式得:弹簧具有的最大弹性势能为()m M v m E P +=2202max小结:例2:如图2所示,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态。

有关弹簧问题的例析

有关弹簧问题的例析

可弹簧问题的例析“弹簧”是高中物理学习过程中常见的一种理想模型,在高考物理试卷中频频出现。

2005年高考理综Ⅰ卷又出了一道该类的综合性题目,这类题综合性强、出题方式灵活。

因此,有关弹簧的试题也就成了高考命题的重点、难点、热点。

有关弹簧的考点一共有两个,一个是“形变和弹力、胡克定律”这是一个Ⅱ要求的知识点;另一个是“弹性势能”是一个Ⅰ要求的知识点,高考出题也正是从这两个方面着手的。

(一)考查弹簧弹力的特点,特别是弹簧的弹力和绳子的弹力的区别问题,这类问题实际上也就是胡克定律的定性考查,关健是要理解定律中x是“形变量”一根弹簧只有长度发生了新的变化才会发生弹力的变化,即弹簧弹力大小和方向不能发生“突变”例1、(2001上海)如图A所示,一质量为m的物体系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,物体处于平衡状态。

现将l2线剪断,求剪断瞬时物体的加速度。

(14分)(l)下面是某同学对该题的一种解法:解:设l1线上拉力为T1,l2线上拉力为T2,重力为mg,物体在这三力作用下保持平衡T1cosθ=mg,T1sinθ=T2,T2=mgtgθ剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度。

因为mg tgθ=ma,所以加速度a=g tgθ,方向在T2反方向。

你认为这个结果正确吗?请对该解法作出评价并说明理由。

(2)若将图A中的细线l1改为长度相同、质量不计的轻弹簧,如图B所示,其他条件不变,求解的步骤和结果与(l)完全相同,即a=g tgθ,你认为这个结果正确吗?请说明理由。

解析:该题是一道直接考绳和弹簧的区别的题目。

解:(1)结果错误。

因为L2被剪断的瞬间,L1上的张力大小突然变化为零。

实际上此瞬间应有:沿绳方向上T1=mgcosθ沿绳切线方向上 ma =mgsin θ即 a =gsin θ(2)结果正确。

因为L 2被剪断的瞬间,弹簧l 1的长度末及发生变化,其产生力的大小和方向都不变。

弹簧连接体专题讲解

弹簧连接体专题讲解

1 2
(m3

m1 )v 2

1 2
m1v 2

(m3

m1 ) g ( x1

x2 )

m1 g ( x1

x2 )

E
由③④式得:
1 2 (2m1

m3 )v 2

m1 g ( x1

x2 )
由①②⑤式得: v 2m1 (m1 m2 )g 2 (2m1 m3 )k
综上举例,从中看出弹簧试题的确是培养、训练
1、静力学中的弹簧问题。
2、动力学中的弹簧问题。
3、与动量和能量有关的弹簧问题。
1、静力学中的弹簧问题
(1)单体问题。在水平地面上放一个竖直
轻弹簧,弹簧上端与一个质量为2.0kg的木
板相连。若在木板上再作用一个竖直向下的
力F使木板缓慢向下移动0.1米,力F作功
2.5J,此时木板再次处于平衡,力F的大小为
50N,如图所示,则木板下移0.1米的过程中,
弹性势能增加了多少?
F
解:由于木板压缩弹簧,木板克服弹力做 了多少功,弹簧的弹性势能就增加了多少
即: E弹 W弹(木板克服弹力做功,
就是弹力对木块做负功),
依据动能定理:Ek mgx WF W弹 0
W弹=-mgx-WF=-4.5J 弹性势能增加4.5焦耳
学生物理思维和反映、开发学生的学习潜能的 优秀试题。弹簧与相连物体构成的系统所表现 出来的运动状态的变化,是学生充分运用物理 概念和规律(牛顿第二定律、动能定理、机械 能守恒定律、动量定理、动量守恒定律)巧妙 解决物理问题、施展自身才华的广阔空间,当 然也是区分学生能力强弱、拉大差距、选拔人 才的一种常规题型。因此,弹簧试题也就成为 高考物理的一种重要题型。而且,弹簧试题也 就成为高考物理题中一类独具特色的考题

高中物理 弹簧问题

高中物理 弹簧问题

高中物理弹簧问题弹簧问题是物理学中常见的问题之一。

轻弹簧是指不考虑弹簧本身质量和重力的弹簧,是一个理想模型,可以充分拉伸和压缩。

无论弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向,合力恒等于零。

弹簧读数始终等于任意一端的弹力大小。

弹簧弹力是由弹簧形变产生的,弹力大小和方向时刻与当时形变对应。

一般应从弹簧的形变分析入手,先确定弹簧原长位置和现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。

轻弹簧的性质有三点:1、在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的,其伸长量等于弹簧任意位置受到的力和劲度系数的比值;2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变,具有缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零;3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。

分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。

弹簧问题的题目类型主要包括弹簧问题受力分析、瞬时性问题和动态过程分析。

在受力分析中,需要找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程,并通过弹簧形变量的变化来确定物体位置的变化。

在瞬时性问题中,需要针对不同类型的物体的弹力特点,对物体做受力分析。

在动态过程分析中,可以采用三点分析法,明确接触点、平衡点和最大形变点,来分析物体的运动情况。

除了以上几种题型,弹簧问题还涉及到动量和能量以及简谐振动的问题。

在解决弹簧问题时,需要注意抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向,合力恒等于零的特点求解,同时要灵活运用整体法隔离法,优先对受力少的物体进行隔离分析。

在解决临界极值问题时,需要考虑弹簧连接物体的分离临界条件和最大最小速度、加速度。

对于分离瞬间的分析,需要采用隔离法,并且需要根据具体条件来判断弹簧是否处于原长状态。

在物体做变加速运动时,加速度等于零时速度达到最大值,速度等于零时加速度达到最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹簧的动量和能量问题
弹簧的动量和能量问题
班级__________ 座号_____ 姓名__________ 分数__________
一、知识清单
1.弹性势能的三种处理方法
弹性势能E P=½kx2,高考对此公式不作要求,因此在高中阶段出现弹性势能问题时,除非题目明确告诉了此公式,否则不需要此公式即可解决,其处理方法常有以下三种:①功能法:根据弹簧弹力做的功等于弹性势能的变化量计算;或根据能量守恒定律计算出弹性势能;
②等值法:压缩量和伸长量相同时,弹簧对应的弹性势能相等,在此过程中弹性势能的变化量为零;
③“设而不求”法:如果两次弹簧变化量相同,则这两次弹性势能变化量相同,两次作差即可消去。

二、例题精讲
2.(2006年·天津理综)如图所示,坡道顶端距水平面高度为h,质量为m1的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,一端与质量为m2的档板B相连,弹簧处于原长时,B恰位于滑道的末端O点.A与B碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM段A、B与水平面间的动摩擦因数均为μ,其余
各处的摩擦不计,重力加速度为g,求:
(1)物块A在与挡板B碰撞前瞬间速度v的大小;
(2)弹簧最大压缩量为d时的弹性势能E p(设弹簧处于原
长时弹性势能为零).
3.如图所示,在竖直方向上,A、B两物体通过劲度系数为k=16 N/m的轻质弹簧相连,A放在水平地面上,B、C两物体通过细线绕过轻质定滑轮相连,C放在倾角α=30°的固定光滑斜面上. 用手拿住C,使细线刚刚拉直但无拉力作用,并保证ab段的细线竖直、cd段的细线与斜面平行.已知A、B的质量均为m=0.2 kg,重力加速度取g =10 m/s2,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放C后,C沿斜面下滑,A刚离开地面时,B获得最大速度,求:
(1)从释放C到物体A刚离开地面时,物体C沿斜面下滑的距离;
(2)物体C的质量;
(3)释放C到A刚离开地面的过程中细线的拉力对物体C 做的功.
4.(2014•珠海二模)如图甲,光滑的水平面上有三个滑块a、b、c;a、b的质量均等于1kg;b、c被一根轻质弹簧连接在一起,处于静止状态;在t=0时,滑块a突然以水平向右的速度与b正碰,并瞬间粘合成一个物体(记为d);此后运动过程中弹簧始终处于弹性限度内,d的速度随时间做周期性变化,如图乙.则:
(1)求滑块a的初速度大小以及a、b正碰中损失的机械能△E;
(2)求滑块c的质量;
(3)当滑块c的速度变为v x瞬间,突然向左猛击一下它,
使之突变为﹣v x,求此后弹簧弹性势能最大值E p的表达式,并讨论v x取何值时,E p的最大值E pm.
5.如图所示,劲度系数为k的轻质弹簧上端固定,下端挂一个质量为m的物体。

现用一块木板将物体托起,使弹簧恢复原长,然后让木板由静止开始以加速度a(a<g)向下做匀加速运动。

试求:
(1)木板开始运动时,物体对木板的压力为多少?
(2)木板运动至与物体刚分离时经历的时间为多少?
6. (2016·全国卷Ⅰ) 如图1-,一轻弹簧原长为2R ,其一端固定在倾角为37°的固定直轨道AC 的底端A 处,另一端位于直轨道上B 处,弹簧处于自然状态,直轨道与
一半径为56
R 的光滑圆弧轨道相切于C 点,AC =7R ,A 、B 、C 、D 均在同一竖直平面内.质量为m 的小物块P 自C 点由静止开始下滑,最低到达E 点(未画出),随后P 沿轨道被弹回,最高到达F 点,AF =4R ,已知P 与直轨道间的
动摩擦因数μ=14,重力加速度大小为g .(取sin 37°=35
,cos 37°=45
) (1)求P 第一次运动到B 点时速度的大小.
(2)求P 运动到E 点时弹簧的弹性势能.
(3)改变物块P 的质量,将P 推至E 点,从静止开始释放.已知P 自圆弧轨道的最高点D 处水平飞出后,恰好通过G
点.G 点在C 点左下方,与C 点水平相距72
R 、竖直相距R ,求P 运动到D 点时速度的大小和改变后P 的质量.
37°
R
P
7R/2
G
D
C
F
B
A
图1-
7.如图2所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B点.D点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP,其形状为半径R=0.8 m的圆环剪去了左上角135°的圆弧,MN 为其竖直直径,P点到桌面的竖直距离也是R.用质量m1=0.4 kg的物块a将弹簧缓慢压缩到C点,释放后弹簧恢复原长时物块恰停止在B点.用同种材料、质量为m2=0.2 kg的物块b将弹簧缓慢压缩到C点释放,物块过B点后其位移与时间的关系式为x=6t-2t2,物块飞离桌面后由P点沿切线落入圆弧轨道.g取10 m/s2,求:
图2
(1)B、P间的水平距离;
(2)通过计算,判断物块b能否沿圆弧轨道到达M点;
(3)物块b释放后在桌面上运动的过程中克服摩擦力做的功.
8.如图5-2-9所示,轻弹簧左端固定在竖直墙上,右端点在O位置。

质量为m的物块A(可视为质点)以初速度v0从距O点右方x0的P点处向左运动,与弹簧接触后压缩弹簧,将弹簧右端压到O′点位置后,A又被弹簧弹回。

A离开弹簧后,恰好回到P点。

物块A与水平面间的动摩擦因数为μ。

求:
图5-2-9
(1)物块A从P点出发又回到P点的过程,克服摩擦力所做的功。

(2)O点和O′点间的距离x1。

(3)若将另一个与A完全相同的物块B(可视为质点)与弹簧右端拴接,将A放在B右边,向左压A、B,使弹簧右端压缩到O′点位置,然后从静止释放,A、B共同滑行一段距离后分离。

分离后物块A向右滑行的最大距离x2是多少?
9.(2016·乐山市三诊)利用弹簧弹射和皮带传动装置可以将工件运送至高处。

如图4所示,已知传送轨道平面与水平方向成37°角,倾角也是37°的光滑斜面轨道固定于地面且与传送轨道良好对接,弹簧下端固定在斜面底端,工件与皮带间的动摩擦因数μ=0.25。

皮带传动装置顺时针匀速转动的速度v=4 m/s,两轮轴心相距L=5 m,B、C分别是传送带与两轮的切点,轮缘与传送带之间不打滑。


将质量m=1 kg的工件放在弹簧上,用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到皮带上的B点时速度v0=8 m/s,A、B间的距离x=1 m。

工件可视为质点,g取10 m/s2。

(sin 37°=0.6,cos 37°=0.8)求:
(1)弹簧的最大弹性势能;
(2)工件沿传送带上滑的时间。

图4
10.如图所示,固定斜面的倾角θ=30°,物体A与斜面之间
的动摩擦因数为μ=43,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C点.用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A和B,滑轮右侧绳子与斜面平行,A的质量为m A=4kg,B的质量为m B=2kg,初始时物体A到C点的距离为L=1m.现给A、B一初速度v0=3m/s使A
开始沿斜面向下运动,B向上运动,物体A将弹簧压缩到最短后又恰好能弹到C点.已知重力加速度为g=10m/s2,不计空气阻力,整个过程中,轻绳始终处于伸直状态,求此过程中:
(1)物体A沿斜面向下运动时的加速度大小;
(2)物体A向下运动刚到C点时的速度大小;
(3)弹簧的最大压缩量和弹簧中的最大弹性势能.
11.(2015·江苏卷)一转动装置如图所示,四根轻杆OA、OC、AB和CB与两小球及一小环通过铰链连接,轻杆长均为l,球和环的质量均为m,O端固定在竖直的轻质转
轴上.套在转轴上的轻质弹簧连接在O 与小环之间,原长
为L.装置静止时,弹簧长为32
L.转动该装置并缓慢增大转速,小环缓慢上升.弹簧始终在弹性限度内,忽略一切摩擦和空气阻力,重力加速度为g.求:
(1)弹簧的劲度系数k ;
(2)AB 杆中弹力为零时,装置转动的角速度ω0;
(3)弹簧长度从32L 缓慢缩短为12
L 的过程中,外界对转动装置所做的功W.
12.(05全国Ⅰ)如图,质量为m 1的物体A 经一轻质弹簧与下方地面上的质量为m 2的物体B 相连,弹簧的劲度系数为k ,A .B 都处于静止状态。

一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩。

开始时各段绳
都处于伸直状态,A 上方的一段绳沿竖直方向。

现在挂钩上升一质量为m 3的物体C 并从静止状态释放,已知它恰好能使B 离开地面但不继续上升。

若将C 换成另一个质量为(m 1 +m 3)的物体D ,仍从上述初始位置由静止状态释放,则这次B 刚离地时D 的速度的大小是多少?已知重力加速度为g 。

13.如图所示,A 、B 两个矩形木块用轻弹簧相接静止在水平地面上,弹簧的劲度系数为k ,木块A 和木块B 的质量均为m .
(1)若用力将木块A 缓慢地竖直向上提起,木块A 向上提起多大高度时,木块B 将离开水平地面.
(2)若弹簧的劲度系数k 是未知的,将一物体C 从A 的
A B
m k m 1
正上方某位置处无初速释放,C与A相碰后立即粘在一起(不再分离)向下运动,它们到达最低点后又向上运动.已知C的质量为m时,把它从距A高为H处释放,则最终能使B刚好离开地面.若C的质量为
m,要使B始终不离
2
开地面,则释放时,C距A的高度h不能超过多少?。

相关文档
最新文档