西北工业大学矩阵论复习概要

合集下载

西北工业大学矩阵论课件PPT第二章例题 范数理论

西北工业大学矩阵论课件PPT第二章例题 范数理论

1
则 A0 1 1, x0 1,但是
A0 x0 (n,0,,0)T
从而
A0 x0 n 1 A0 1 x0
故矩阵1-范数与向量的∞-范数不相容。
例 已知
0 Ai
i 1
1i ,
x
1 0
(i 1)
1 i 0
1
则 A ( 3 ), A 2 (1 2 ), Ax 1 ( 4 )。
第二章 范数理论
§1 向量的范数
例1 对 x (x1, x2,, xn )T Cn,规定
n
x 2
xi 2 xH x
i 1
则它是一种向量范数,称为向量2-范数。
注 直接证明第三条公理时要用到Cauchy
-Schwarz不等式
n
n
n
( xi yi )2
xi 2
yi 2
x
2 2
y
2 2
A F 1 4 2 9 25 11 4 111 4 16
70
A m 45 20, A 1 max6, 8, 5, 5 2 8, A max3 2, 9, 4, 8 9
例 判断矩阵1-范数与向量的∞-范数是否相容?
解取
1
A0
0
1 0
1
0

x0
1 1
0 0 0
U使得
U H AU diag(1,2,,n ) (i 0,i 1,2,,n)
于是
A U diag(1,2,,n )U H
U diag( 1, 2 ,, n ) diag( 1, 2 ,, n )U H PHP
其中 P diag( 1, 2 ,, n )U H是可逆矩阵。
从而

西北工业大学矩阵论课件PPT第一章例题矩阵的相似变换

西北工业大学矩阵论课件PPT第一章例题矩阵的相似变换

2100 3100 2100 3100
2100
例 求解一阶线性常系数微分方程组
ddt x1 2x1 x2 x3
ddt x2 x1 2x2 x3
d dt
x3
x1
x2
2 x3
解令
x
x1 x2 x3

dx dt
d dt
d dt
d dt
x1 x2 x3
, A
2 1 1
一次因式方幂的乘积, 并分别写出这些方幂
(相同的按出现的次数计数),称之为A的初等因子,
本题中A的初等因子为
2 和 ( 2)2 第三步:对每个初等因子( i )ri 作出 ri 阶
Jordan块
i
1
i
1
i
ri
ri
所有初等因子对应的Jordan块构成的Jordan矩阵 J
即是A的Jordan标准形。本题中A的Jordan标准形为
1 1
10
1 0 0,
1 0
3 0 ( 3)( 2), 1 2
3
1
1 2,
1
1 1
0 ( 2), 2
1 1 ( 2), 1 0 2,
11
1 2
1 0 ( 1)( 2)
1 2
所以
D2() 2
又 det(I A) ( 2)3,故
D3() ( 2)3

1 1 2
解 第一步:对 I A 用初等变换化为Smith
标准形:
3
I A 1
1
3
1
1
1
0
c2 ( 1) c1
1 0
1 2 2 4 4
0
r1( 3) r2

西北工业大学《线性代数》课件-第二章 矩阵

西北工业大学《线性代数》课件-第二章 矩阵

y1 x1,
y2 x2,
yn xn
对应
1 0 0
0
1 0
0
0 1
单位阵
我们把这样的线性变换称之为恒等变换。
矩阵的基本运算
一、矩阵的相等
同型矩阵:两个矩阵行数和列数都相等
矩阵相等:设两个矩阵 Amn 和 Bmn是同型矩阵, 且对应元素相等,即 aij bij (i 1,2,, m; j 1,2,, n)
则称矩阵A和B相等,记做 A B。
例如:
x 0
1 y
48
3 0
1 2
z 4
可得
x 3 y 2 z 8
判断正误:零矩阵相等。 ( )
二、矩阵的线性运算
⒈ 矩阵的加法
设有两个同型矩阵 A aij mn , B bij mn ,那末矩阵A
与B的和记作A B,规定为
A B (aij bij )mn
y Bz
则 z 到 x 变换为
x Ay A(Bz) ( AB)z
求出AB即可。
四、方阵的幂
设A为n阶方阵,则规k 定A的k次方为 Ak A A A
可以看出:只有方阵才有幂运算。
规定:
A0 E
A1 A
Ak1 Ak A
(k 1,2,)
运算规律: Ak Al Akl
( Ak )l Akl
k,l为任意正整数
注意:当 AB BA时,某些关于数字幂运算的规律 不再成立,例如
( AB)k Ak Bk
( AB)k (AB)(AB)( AB) ( AB AB)( AB)( AB) k ( A2B2 )( AB)( AB)
所以
( AB)k Ak Bk
⒉ 线性变换

矩阵论同步学习辅导 张凯院 西北工业大学出版社

矩阵论同步学习辅导 张凯院 西北工业大学出版社

矩阵论同步学习辅导(习题与试题精解)张凯院徐仲编西北工业大学出版社图书在版编目(CIP) 数据矩阵论同步学习辅导/ 张凯院,徐仲编. —西安: 西北工业大学出版社,2002. 8ISBN7-5612-1542-8Ⅰ. 矩⋯Ⅱ. ①张⋯②徐⋯Ⅲ. 矩阵-理论-高等学校-教学参考资料Ⅳ. 0151. 21中国版本图书馆CIP数据核字( 2002 )第062114 号出版发行: 西北工业大学出版社通信地址: 西安市友谊西路127 号邮编: 710072 电话: 029 - 8493844网址: ht tp: / / www. nwpup. com印刷者: 印刷厂开本: 850×1 168mm1/32印张:字数:版次: 2002 年8 月第1 版2002 年8 月第1 次印刷印数: 1~定价: 元【内容简介】本书由两部分内容组成。

第一部分按照程云鹏等编的研究生教材《矩阵论》(第2 版)的自然章节,对矩阵论课程的基本概念、主要结论和常用方法做了简明扼要的分类总结, 对各章节的课后习题做了详细的解答; 第二部分收编了近年来研究生矩阵论课程的考试试题12 套和博士入学考试试题3 套,并做了详细的解答。

本书叙述简明,概括性强。

可作为理、工科研究生和本科高年级学生学习矩阵论课程的辅导书,也可供从事矩阵论教学工作的教师和有关科技工作者参考。

—Ⅳ—前言矩阵论是高等学校和研究院、所面向研究生开设的一门数学基础课。

作为数学的一个重要分支,矩阵理论具有极为丰富的内容;作为一种基本工具,矩阵理论在数学学科以及其他科学技术领域都有非常广泛的应用。

因此,学习和掌握矩阵的基本理论与方法, 对于研究生来说是必不可少的。

矩阵论课程的理论性强,概念比较抽象,而且有独特的思维方式和解题技巧。

读者在学习矩阵论课程时,往往感到概念多、结论多、算法多, 对教学内容的全面理解也感到困难。

为了配合课堂教学, 使研究生更好地掌握该门课程的教学内容,我们编写了这本同步学习辅导书。

矩阵论复习大纲

矩阵论复习大纲

第一章1 线性空间概念(封闭性)2线性空间的基与维数 (教材P3例6) 3坐标概念、及求解(教材P3例8) 4 坐标在不同基下的过渡矩阵及坐标变换5 子空间、列空间、和空间概念,维数定理以及求法(例1);直和, 直和补空间6 内积空间概念,标准正交基及标准正交化过程7 线性变换概念、线性变换的矩阵(概念:教材P22定义1.13,性 质:教材P22定理1.13),计算、过渡矩阵以及不同基下的矩阵(例2, 3)8 不变子空间,正交变换,酉交变化例1 设112{,}W L αα=,212{,}W L ββ=,其中T )0121(1=α,T )1111(1-=α,T )1012(1-=β,T )7311(1-=β,求12W W +与12W W ⋂的维数,并求出12W W ⋂解 [][][]2121212121,,,,ββααββααL L L W W =++=+()⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==711022-203-5-30121-17110301111121211,,,2121行变换ββααA B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000310040101-001000031007110121-1得r(A)=r(B)=3,dim(W 1+W 2)=3. 又因为dim W 1=2, dim W 2=2,由维数定理 dim (W 1 W 2)= dim W 1+ dim W 2-dim (W 1+W 2)=4-3=1 设,,4433221121ββααααx x x x W W +=+=∈ 化为齐次线性方程组0),,,(142121=--⨯X ββαα.即0711*******121211=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------X解得()(){}.4,3,2,5,4,3,2,54,,3,4,21214321TTk W W k k k k x k x k x k x -==-=+-==-==-=αααα 即例2 设3R 上线性变换T 为,)2())((3132321213T T x x x x x x x x x x T +-++=求T 在基TT T)111(,)110(,)101(321-===ααα下的矩阵B.解 在自然基321,,e e e 下,线性变换T 的坐标关系式为:,10111012123213132321⎥⎥⎦⎤⎢⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡+-++=x x x x x x x x x x Y 根据由变换的坐标式 Y=AX 得T 在自然基下矩阵,101110121⎥⎥⎦⎤⎢⎢⎣⎡-又从C e e e )()(321321=ααα 得过渡矩阵,111101112,1111101011⎥⎥⎦⎤⎢⎢⎣⎡----=⎥⎥⎦⎤⎢⎢⎣⎡-=-C C所以.4212204511⎥⎥⎦⎤⎢⎢⎣⎡--==-AC C B3.设3R 中,线性变换T 为:.3,2,1,==i T i i βα其,)1,1,1(,)1,1,2(,)1,0,1(321T T T ==-=ααα与.)1,2,1(,)0,1,1(,)1,1,0(321T T T =-==βββ求(1)T 在基321,,ααα下的矩阵。

西北工业大学矩阵论课件PPT第四章例题矩阵分解

西北工业大学矩阵论课件PPT第四章例题矩阵分解

u1
a3 e~1 a3 e~1 2
1 2
1 0 1
于是
0 0 1
H~1
I
2u1u1T
0
1
0
1 0 0

H1
1 0
0T H~1
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
2 1 0 0

H1AH1
1 0
1 3
3 1
4 2
0 4 2 1
对 a2 (3,4)T,取 2 a2 2 5,则
1
0
0 0 0 2

试求矩阵
A
0 0
3 4
1 2
的QR分解。
2 1 2

将列向量
a1
0
0
,a2
3 4 ,a3
1 2
正交化得
2
1
2
p1
a1
0
0

p2
2
a2
2 4
p1
3 4
,p3
0
a3
4 4
p1
5 25
p2
8 5
6 5
0
单位化得
0
q1
1 2
p1
0 , 1
证 因为
I O A B I O A B B I I B A I I O A B 取行列式即得。
例 设A, B, C, D为同阶方阵,A可逆, 且AC = CA。
证明 证 因为
det A C
B det(AD CB) D
I CA1
O A I C
B A D O
(2 )4
4!
A4

矩阵论——讲稿

矩阵论——讲稿

(Ⅱ) 定义的数乘运算封闭, 即
∀ x ∈V , ∀ k ∈ K , 对应唯一 元素(kx)∈V , 且满足 (5) 数对元素分配律: k( x + y) = kx + ky (∀y ∈V ) (6) 元素对数分配律: (k + l )x = kx + lx (∀l ∈ K ) (7) 数因子结合律: k(lx) = (kl )x (∀l ∈ K ) (8) 有单位数:单位数1∈ K , 使得 1x = x . 则称V 为 K 上的线性空间.
例 3 K = R 时, R n —向量空间;
R m×n —矩阵空间
第一章 线性空间与线性变换(第 1 节)
3
Pn[t]—多项式空间; C[a,b] —函数空间 K = C 时, Cn —复向量空间; Cm×n —复矩阵空间 例 4 集合 R + = {m m是正实数 } ,数域 R = {k k是实数 } .
0
a 12
a
22
ai
j1
I
S 2
=
{A
=
a11
0
0
a
22
a 11
, a22

R}
S 1
U
S 2
=
{A
=
a11 a21
a 12
a
22
aa 12 21
=
0,
ai
j

R}
S 1
+
S 2
=
{A
=
a11 a21
a 12
a 22
ai j ∈ R}
2.数域:关于四则运算封闭的数的集合.
2.减法运算:线性空间V 中, x − y = x + (− y) .

西北工业大学《线性代数》课件-第三章 矩阵的初等变换 (1)

西北工业大学《线性代数》课件-第三章 矩阵的初等变换 (1)

可化为单位矩阵
A 可表为若干初等方阵乘积 A 没有零特征值
…… 有零特征值
A* 可逆 AT 可逆
A* 不可逆 AT 不可逆
Байду номын сангаас
§3.3 求解线性方程组的消元法

2 4
x1 x1
x2 2 x2
3x3 5x3
1 4
① ②
x1
x3 3 ③


2①
1 2

2
x1
x2
4x2
1 2
x2
3x3 1
注意:rank A rank B rank H
同理
A 初等列变换
初等列变换
B(列阶梯形)
H(列最简形)
例2
用初等列变换化
A
3 1
1 1
0 2
21为列阶梯形
1 3 4 4
和列最简形。

3 1
A 1 1
0 2
2 1
c1 c2
1 1
3 1
0 2
2 1
1 3 4 4
3 1 4 4
1 2
3 5
1 4
x1
x3 3 ③
1 0 1 3


2①
1 2

2
x1
x2
4x2
1 2
x2
3x3 1
x3 2
1 2
x3
5 2
①′ ②′ ③′
r2 2r1
r3
1 2
r1
2 0 0
1
4
1 2
3
1
1 2
1
2
5 2
③'

西北工业大学矩阵论PPT课件

西北工业大学矩阵论PPT课件

矩阵论讲稿讲稿编者:张凯院使用教材:《矩阵论》(第2版)西北工业大学出版社程云鹏等编辅助教材:《矩阵论导教导学导考》《矩阵论典型题解析及自测试题》西北工业大学出版社张凯院等编课时分配:第一章 17学时第四章8学时第二章5学时第五章8学时第三章8学时第六章8学时第一章 线性空间与线性变换§1.1 线性空间 一、集合与映射1.集合:能够作为整体看待的一堆东西. 列举法:},,,{321L a a a S =性质法:}{所具有的性质a a S = 相等(:指下面二式同时成立)21S S =2121,S S S a S a ⊆∈⇒∈∀即 1212,S S S b S b ⊆∈⇒∈∀即交:}{2121S a S a a S S ∈∈=且I 并:}{2121S a S a a S S ∈∈=或U 和:},{22112121S a S a a a a S S ∈∈+==+例1 R}0{2221111∈==j i a a a a A S R}0{2212112∈==j i a a a aA S ,21S S ≠ R},00{2211221121∈==a a a a A S S I R},0{21122221121121∈===j i a a a a a a a A S S U R}{2221121121∈==+j i a a a a a A S S 2.数域:关于四则运算封闭的数的集合.例如:实数域R ,复数域C ,有理数域,等等.Q 3.映射:设集合与,若对任意的1S 2S 1S a ∈,按照法则σ,对应唯一的.)(,2b a S b =∈σ记作 称σ为由到的映射;称为的象, 1S 2S b a a 2为b 的象源.变换:当1S S =时,称映射σ为上的变换. 1S 例2 )2(R})({≥∈==×n a a A S j i nn j i .映射1σ:A A det )(1=σ (R)→S 变换2σ:n I A A )det ()(2=σ ()S S → 二、线性空间及其性质1.线性空间:集合V 非空,给定数域K ,若在V 中(Ⅰ) 定义的加法运算封闭, 即V y x V y x ∈+∈∀)(,,元素对应唯一, 且满足(1) 结合律:)()()(V z z y x z y x ∈∀++=++(2) 交换律:x y y x +=+ (3) 有零元:)(,V x xx V ∈∀=+∈∃θθ使得(4) 有负元:θ=−+∈−∃∈∀)(,)(,x x V x V x 使得.(Ⅱ) 定义的数乘运算封闭, 即V kx K k V x ∈∈∀∈∀)(,,元素对应唯一, 且满足(5) 数对元素分配律:)()(V y ky kx y x k ∈∀+=+ (6) 元素对数分配律:)()(K l lx kx x l k ∈∀+=+(7) 数因子结合律:)()()(K l xkl lx k ∈∀=(8) 有单位数:单位数x x K =∈1,使得1. 则称V 为K 上的线性空间.例3 R =K 时,n R —向量空间; n m ×R —矩阵空间][t P n —多项式空间;—函数空间],[b a CC =K 时,—复向量空间; C —复矩阵空间n C n m ×例4 集合}{是正实数m m =+R ,数域}{R 是实数k k =.加法: mn n m n m =⊕∈+,R ,数乘: k m m k k m =⊗∈∈+R,,R 验证+R 是R 上的线性空间.证 加法封闭,且(1)~(2)成立. (3) 1=⇒=⇒=⊕θθθm m m m(4) m m m m m 1)(1)()(m =−⇒=−⇒=−⊕θ 数乘封闭,(5)~(8)成立.故+R 是R 上的线性空间.例5 集合R}),({212∈==i ξξξαR ,数域R .设R ),,(21∈=k ηηβ.运算方式1 加法: ),(2211ηξηξβα++=+数乘: ),(21ξξαk k k =运算方式2 加法: ),(112211ηξηξηξβα+++=⊕数乘: ))1(21,(2121ξξξα−+=k k k k k o 可以验证与都是)(R 2⋅+)(R 2o ⊕R 上的线性空间.[注] 在R 中, )(2o ⊕)0,0(=θ, . ),(2121ξξξα+−−=−Th1 线性空间V 中的零元素唯一,负元素也唯一.证 设与2θ都是V 的零元素, 则212211θθθθθθ=+=+=1θ设与都是的负元素, 则由1x 2x x θ=+1x x 及θ=+2x x 可得212111)()(x x x x x x x x ++=++=+=θ 22221)(x x x x x x =+=+=++=θθ例6 在线性空间V 中,下列结论成立.θ=x 0:θ=⇒=+=+x x x x x 01)01(01θθ=k :θθθθ=⇒=+=+k kx x k k )(kx)()1(x x −=−:()()(]1)1[()]([)1()1x x x x x x x x −=−++−=−++−=−2.减法运算:线性空间V 中,)(y x y x −+=−.3.线性组合:K c V x x i i ∈∈若存在,,, 使m m x c x c x ++=L 11, 则称x 是的线性组合,或者可由线性表示.m x x ,,1L x m x x ,,1L 4.线性相关:若有不全为零,使得m c c ,,1L θ=++m m x c x c L 11,则称m x x ,,1L 线性相关.5.线性无关:仅当全为零时,才有m c c ,,1L θ=++m m x c x c L 11,则称m x x ,,1L 线性无关.[注] 在R 中, )(2o ⊕)1,1(1=α, )2,2(2=α线性无关;)1,1(1=α, )3,2(2=α线性相关.(自证)三、基与坐标1.基与维数:线性空间V 中,若元素组满足 n x x ,,1L (1) 线性无关;n x x ,,1L (2) V x ∈∀都可由线性表示.n x x ,,1L 称为n x x ,,1L V 的一个基, 为n V 的维数, 记作n V =dim ,或者V . n 例7 矩阵空间n m ×R 中, 易见(1) ),,2,1;,,2,1(n j m i E j i L L ==线性无关;(2) .∑∑==×==mi nj j i j i n m j i E a a A 11)(故),,2,1;,,2,1(n j m i E j i L L ==是n m ×R 的一个基, .mn n m =×dimR2.坐标:给定线性空间V 的基,当时,有n n x x ,,1L n V x ∈n n x x x ξξ++=L 11.称n ξξ,,1L 为在给定基下的x n x ,,1L x 2坐标,记作列向量.Τ1),,(n ξξαL =例8 矩阵空间2R ×中,设22)(×=j i a A .(1) 取基 ,22211211,,,E E E E 2222212112121111E a E a E a E a A +++=坐标为Τ22211211),,,(a a a a =α(2) 取基 , , , =11111B =11102B =11003B=10004B 422432132122111)()()(B a B B a B B a B B a A +−+−+−= 421223122121112111)()()(B a a B a a B a a B a −+−+−+=坐标为Τ21221221111211),,,(a a a a a a a −−−=β[注] 一个元素在两个不同的基下的坐标可能相同,也可能不同. 例如:在上述两个基下的坐标都是;22n n E A =Τ)1,0,0,0(11E A =在上述两个基下的坐标不同.Th2 线性空间V 中,元素在给定基下的坐标唯一. 证 设V 的基为,对于,若 n x x ,,1L n V x ∈ n n x x x ξξ++=L 11n n x x ηη++=L 11则有 θηξηξ=−++−n n n x x )()(111L因为线性无关, 所以n x x ,,1L 0=−i i ηξ, 即),,2,1(n i i i L ==ηξ.故的坐标唯一.x n 例9 设线性空间V 的基为, 元素在该基下的坐标为n x x ,,1L j y ),,2,1(m j j L =α, 则元素组线性相关(线性无关)m y y ,,1L ⇔向量组m αα,,1L 线性相关(线性无关).证 对于数组, 因为m k k ,,1L θαα=++=++))(,,(11111m m n m m k k x x y k y k L L L 等价于θαα=++m m k L 11k , 所以结论成立. 四、基变换与坐标变换1.基变换:设线性空间V 的基(Ⅰ)为, 基(Ⅱ)为, 则n n x x ,,1L n y ,,1L y+++=+++=+++=n nn n n nn n nn x c x c x c y xc x c x c y x c x c x c y L L L L L L 22112222112212211111 C=nn n n n n c c c c c c c c c L M M M L L 212222111211写成矩阵乘法形式为 (C x x y y n n ),,(),,11L L =称上式为基变换公式,C 为由基(Ⅰ)改变为基(Ⅱ)的过渡矩阵.[注] 过渡矩阵C 一定可逆. 否则C 的个列向量线性相关, 从而n n y ,,1L y 1−线性相关(例9).矛盾!由此可得111),,(),,(−=C y y x x n n L L称C 为由基(Ⅱ)改变为基(Ⅰ)的过渡矩阵.2.坐标变换:设在两个基下的坐标分别为n V x ∈α和β,则有 =++=n n x x x ξξL 11α),,(1n x x Ln n y y x ηη++=L 11β),,(1n y y L =βC x x n ),,(1L =由定理2可得βαC =,或者,称为坐标变换公式. αβ1−=C 例10 矩阵空间22R ×中,取基(Ⅰ) , , ,=10011A −=10012A =01103A−=01104A (Ⅱ) , , , =11111B =01112B =00113B=00014B(1) 求由基(Ⅰ)改变为基(Ⅱ)的过渡矩阵; (2) 求由基(Ⅱ)改变为基(Ⅰ)的坐标变换公式. 解 采用中介法求过渡矩阵.基(0):, , ,=000111E =001012E =010021E=100022E (0)→(Ⅰ):1222112114321),,,(),,,(C E E E E A A A A = (0)→(Ⅱ):2222112114321),,,(),,,(C E E E E B B B B =,−−=00111100110000111C=00010011011111112C (Ⅰ)(Ⅱ):→=),,,4321B B B B (2114321),,,(C C A A A A −=−−==−0100012211101112210110011010011001212211C C C C+++++++==332143243214321432122221ηηηηηηηηηηηηηηηξξξξC五、线性子空间1.定义:线性空间V 中,若子集V 非空,且对1V 中的线性运算封闭,即 (1) 11,V y x V y x ∈+⇒∈∀ (2) 11,V kx K k V x ∈⇒∈∀∈∀称V 为1V 的线性子空间,简称为子空间.1[注] (1) 子空间V 也是线性空间, 而且V V dim dim 1≤.(2) }{θ是V 的线性子空间, 规定dim{0}=θ. (3) 子空间V 的零元素就是1V 的零元素. 例11 线性空间V 中,子集V 是1V 的子空间⇔对11,,,,V ly kx K l k V y x ∈+∈∀∈∀.有证 充分性. :1==l k 11,V y x V y x ∈+⇒∈∀0=l :110 ,V y kx kx K k V x ∈+=⇒∈∀∈∀故V 是1V 的子空间.必要性. 11 ,V kx K k V x ∈⇒∈∀∈∀ (数乘封闭)11 ,V ly K l V y ∈⇒∈∀∈∀ (数乘封闭)故 (加法封闭)1V y l x k ∈+例12 在线性空间V 中,设),,2,1(m i V x i L =∈,则 }{111K k x k x k x i mm ∈++==L V是V 的子空间,称V 为由生成的子空间.1m x x ,,1L 证 m m x k x k x V x ++=⇒∈L 111∀m m x l x l y V y ++=⇒∈∀L 111:1111)()(V x l l kk x l l kk y l kx m m m ,K l k ∈∀ ∈++++=+L根据例11知,V 是1V 的子空间.[注] (1) 将V 记作span 或者.1},,{1m x x L ),,(1m x x L L (2) 元素组的最大无关组是的基; m x x ,,1L ),,(1m x x L L (3) 若线性空间V 的基为,则V . n n x x ,,1L ),,(1n n x x L L = 2.矩阵的值域(列空间):划分(),n m n n m j i a A ××∈==C ),,()(1ββL m j C ∈β称),,()(1n L A R ββL =为矩阵的值域(列空间). A 易见A A R rank )(=dim . 例13 矩阵A 的值域}C {)(n x AxA R ∈==β.证 ∈∀β左, 有 右∈= =++=Ax k k k k n n n n M L L 1111),,(βββββ∈∀β右, 有左∈++===n n n n k k k k Ax βββββL M L 1111),,( 3.矩阵的零空间:设,称n m A ×∈C }C ,0{)(n x Ax xA N ∈==为矩阵A 的零空间.易见A n A N rank )(−=dim .Th3 线性空间V 中, 设子空间V 的基为n 1)(,,1n m x x m <L , 则存在n n m V x x ∈+,,1L , 使得为V 的基.n m m x x x x ,,,,,11L L +n 证线性表示不能由m n m x x V x n m ,,11L ∈∃⇒<+ ,,,11线性无关+⇒m m x x x L若,则是V 的基;n n m =+111,,,+m m x x x L n 否则,mn <+1线性表示不能由112,,,++∈∃⇒m m n m x x x V x L ,,,,211线性无关++⇒m m m x x x x L若,则是V 的基;m =+2211,,,,++m m m x x x x L n 否则,m . L L ⇒<+n 2依此类推, 即得所证.六、子空间的交与和1.子空间的交:}{2121V x V x x V ∈∈=且I VTh4 设V 是线性空间21,V V 的子空间,则V 是21V I V 的子空间. 证 212121,V V V V V V I I ⇒∈⇒∈∈θθθ非空∈+⇒∈∈+⇒∈⇒∈∀221121,,,V y x V y x V y x V y x V V y x I 21V V y x I ∈+⇒∈⇒∈∈⇒∈⇒∈∀∈∀221121,V kx V x V kx V x V V x K k I 21V V kx I ∈⇒ 所以V 是21V I V 的子空间.2.子空间的和: },{22112121V x V x x x x V V ∈∈+==+ Th5 设V 是线性空间21,V V 的子空间,则V 21V +是V 的子空间. 证 212121,V V V V V V +⇒+∈+=⇒∈∈θθθθθ非空∈∈+=∈∈+=⇒+∈∀22112122112121,,,,,V y V y y y y V x V x x x x V V y x )()(2211y x y x y x +++=+⇒,222111,V y x V y x ∈+∈+ 21V V y x +∈+⇒22112121,,,V x V x x x x V V x K k ∈∈+=⇒+∈∀∈∀221121,,V kx V kx kx kx kx ∈∈+=⇒ 21V V kx +∈⇒所以V 是21V +V 的子空间. [注] 不一定是21V V U V 的子空间.例如:在2R 中,V )()(2211e L V e L ==与的并集为}R ,0),({212121∈=⋅==i V V ξξξξξαU易见21212121)1,1(,,V V e e V V e e U U ∉=+∈但, 故加法运算不封闭.2Th6 设V 是线性空间1,V V 的有限维子空间,则)(dim dim dim )(dim 212121V V V V V V I −+=+ 证 记 ,dim 11dim n V =22n V =,m V V =21I dim 欲证 m n n V V −+=+2121)(dim (1) :(1n m =121121)V V V V V V =⇒⊂I I22121221)(V V V V V V V V =+⇒⊂⇒⊂Im n n n V V V −+===+212221dim )(dim (2) :(2n m =221221)V V V V V V =⇒⊂I I12112121)(V V V V V V V V =+⇒⊂⇒⊂Im n n n V V V −+===+211121dim )(dim(3) :设V 的基为,那么212L 1,n m n m <<21V I m x x ,,1L 扩充为V 的基: (Ⅰ) m n m y y x x −1,,,,,11L L 扩充为V 的基: (Ⅱ) m n m z z x x −2,,,,,11L L 考虑元素组: (Ⅲ)m n m n m z z y y x x −−21,,,,,,,,111L L L 因为 (Ⅰ),V (Ⅱ) ,所以 V V =1L =2L V =+21(Ⅲ) (自证). 下面证明元素组(Ⅲ)线性无关:设数组k 使得m n m n m q q p p k −−21,,,,,,,,111L L L m n m n m m y p y p x k x k −−+++++111111L L θ=+++−−m n m n z q z q 2211L由 (*)∈++−∈+++++=−−−−21111111)(2211V z q z q V y p y p x k x k x m n m n m n m n m m L L L 得 m m x l x l x V V x ++=⇒∈L I 1121 结合(*)中第二式得θ=+++++−−m n m n m m z q z q x l x l 221111L L(Ⅱ)线性无关0,0211======−m n m q q l l L L ⇒结合(*)中第一式得θ=+++++−−m n m n m m y p y p x k x k 111111L L(Ⅰ)线性无关0,0111======−m n m p p k k L L ⇒故元素组(Ⅲ)线性无关,从而是V 21V +的一个基. 因此 m n n V V −+=+2121)(dim . 3.子空间的直和:},{22112121V x V x x x x V V ∈∈+==+唯一唯一记作:V2121V V V ⊕=+Th7 设V 是线性空间21,V V 的子空间,则V 21V +是直和⇔}{21θ=V I V . 证 充分性.已知}{21θ=V I V :对于21V V z +∈∀,若∈∈+=∈∈+=221121221121,,,,V y V y y y z V x V x x x z 则有 2221112211,,)()(V y x V y x y x y x ∈−∈−=−+−θ22112211212211,,)(y x y x y x y x V V y x y x ==⇒=−=−⇒∈−−=−⇒θθI 故的分解式唯一, 从而V 21V V z +∈2121V V V ⊕=+.必要性.若}{21θ≠V I V ,则有21V V x I ∈≠θ.对于21V V +∈θ,有2121)(,),(,,V x V x x x V V ∈−∈−+=∈∈+=θθθθθθ即21V V +∈θ有两种不同的分解式.这与V 21V +是直和矛盾. 故}{21θ=V I V .2推论1 V 是直和1V +2121dim dim )(dim V V V V +=+⇔推论2 设V 是直和,V 的基为,V 的基为,221V +1k x x ,,1L 2l y y ,,1L 则V 的基为.1V +l k y y x x ,,,,,11L L 证 因为 ,且 2),,,,,(11l k y y x x L L L =1V V + l k V V V V +=+=+2121dim dim )(dim所以线性无关, 故是V 的基. l k y y x x ,,,,,11L L l k y y x x ,,,,,11L L 21V +§1.2 线性变换及其矩阵 一、线性变换1.定义 线性空间V ,数域K ,T 是V 中的变换.若对V y x ∈∀,,∀,K l k ∈,都有 )()()(Ty l Tx k ly kx T +=+, 称T 是V 中的线性变换. 性质 (1) θθ=+=+=)(0)(0)00(Ty Tx y x T T(2) T )()(0))(1()0)1(()(Tx Ty Tx y x T x −=+−=+−=− (3) 线性相关⇒线性相关V x x m ∈,,1L m Tx Tx ,,1L (4) 线性无关时,不能推出Tx 线性无关.V x x m ∈,,1L m Tx ,,1L (5) 是线性变换T y T Tx y x T +=+⇔)(,)()(Tx k kx T =(V y x ∈∀,,K k ∈∀)例1 矩阵空间nn ×R ,给定矩阵,则变换TX = BX +XB (n n B ×n n X ×∈∀R )是n n ×R 的线性变换.2.线性变换的值域:},{)(V x Tx y y T R ∈==3.线性变换的核: },{)(V x Tx x T N ∈==θTh8 设T 是线性空间V 的线性变换,则R (T )和N (T )都是V 的子空间. 证 (1)V 非空⇒非空. )(T R 1111st ,)(Tx y V x T R y =∈∃⇒∈∀ 2222st ,)(Tx y V x T R y =∈∃⇒∈∀)()(212121T R x x T Tx Tx y y ∈+=+=+ )21V x x ∈+Q ( )()()(111T R x k T Tx k y k ∈== (),1V kx K k ∈∈∀Q 故R (T )是V 的子空间.(2) )(,T N T V ∈⇒=∈θθθθ,即非空.)(T Nθ=+=+⇒∈∀Ty Tx y x T T N y x )()(,,即)(T N y x ∈+. θ==⇒∈∀∈∀)()(),(Tx k kx T K k T N x ,即kx )(T N ∈.故N (T )是V 的子空间.[注] 定义:T 的秩 =dim R (T ),T 的亏 = dim N (T ) 例2 设线性空间V 的基为, T 是V 的线性变换,则 n n x x ,,1L n ,),,()(1n Tx Tx L T R L =n T N T R =+)(dim )(dim证 (1) 先证:∀),,()(1n Tx Tx L T R L ⊂Tx y V x T R y n =∈∃⇒∈st ,)(∈++=⇒++=)()(1111n n n n Tx c Tx c y x c x c x L L L ),,(1n Tx Tx L 再证R :),,()(1n Tx Tx L T L ⊃ )()(st ,,,),,( 1111n n n n Tx c Tx c y c c Tx Tx L y ++=∃⇒∈∀L L L n )()()()(11T R Tx c Tx c y T R Tx n n i i V x ∈∈++=⇒∈⇒L(2) 设dim , 且的基为, 扩充为V 的基:m T N =)()(T N m y y ,,1L n n m m y y y y ,,,,,11L L +则 ),,(),,,,,()(111n m n m m Ty Ty L Ty Ty Ty Ty L T R L L L ++==设数组k 使得n m k ,,1L +θ=++++)()(11n n m m Ty k Ty k L , 则 θ=++++)(11n n m m y k y k T L因为T 是线性变换, 所以)(11T N y k y k n n m m ∈++++L , 故m m n n m m y l y l y k y k ++=++++L L 1111即 θ=+++−++−++n n m m m m y k y k y l y l L L 1111)()( 因为线性无关, 所以n m m y y y y ,,,,,11L L +0,,01==+n m k k L .因此 线性无关, 从而n m Ty Ty ,,1L +m n T R −=)(dim , 即dim . n m T R =+)( 例3 向量空间4R 中,),,,(4321ξξξξ=x ,线性变换T 为)0,0,433,3(43214321ξξξξξξξξ+−−−−+=Tx 求和的基与维数. )4(T R )(T N 解 (1) 取R 的简单基, 计算4321,,,e e e e Te ,)0,0,3,1(1=)0011(2,,,−=Te ,)0,0,3,3(3−−=Te ,Te )0,0,4,1(4−= 该基象组的一个最大线性无关组为. 21,Te Te 故dim R (T ) = 2,且R (T )的一个基为Te .21,Te (2) 记, 则 −−−−=43131311A }0{}{)(41====ξξθM A x Tx x T N 的基础解系为,.041=ξξM A 0233−4073 故dim N (T ) = 2,且N (T )的一个基为(3, 3, 2, 0),(-3, 7, 0, 4). 4.单位变换:线性空间V 中,定义变换T 为Tx )(V x x ∈∀=, 则T 是线性变换,记作T . e 5.零变换:线性空间V 中,定义变换T 为 )(V x Tx ∈∀=θ,则T 是线性变换,记作T .0 6.线性变换的运算:线性空间V ,数域K ,线性变换T 与T . 12 (1) 相等:若T )(21V x x T x ∈∀=,称T =T . 12 (2) 加法:定义变换T 为 )(21V x x T x T Tx ∈∀+=,则T 是线性变换,记作T 21T T +=.负变换:定义变换T 为 )()(1V x x T Tx ∈∀−=, 则T 是线性变换, 记作T 1T −=.(3) 数乘:给定,定义变换T 为 K k ∈)()(1V x x T k Tx ∈∀=,则T 是线性变换, 记作T 1kT =.[注] 集合Hom(V ,V )}{def的线性变换上的线性空间是数域V K T T =按照线性运算(2)和(3)构成数域K 上的线性空间,称为V 的同态.(4) 乘法:定义变换T 为 )()(21V x x T T Tx ∈∀=,则T 是线性变换, 记作T 21T T =.7.逆变换:设T 是线性空间V 的线性变换,若V 的线性变换满足 S T n)()()(V x x x TS x ST ∈∀== 则称T 为可逆变换,且S 为T 的逆变换,记作 . S =−1 8.幂变换:设T 是线性空间V 的线性变换, 则也是V 的线性变换.),3,2(1defL ==−m T T Tm m9.多项式变换:设T 是线性空间V 的线性变换,多项式)()(10K a t a t a a t f i mm ∈+++=L 则也是V 的线性变换. m m e T a T a T a T f +++=L 10)(二、线性变换的矩阵表示1.线性变换在给定基下的矩阵设线性空间V 的基为,T 是V 的线性变换,则Tx ,且有n x x ,,1L n n i V ∈+++=+++=+++=n nn n n nnn nn x a x a x a Tx xa x a x a Tx x a x a x a Tx L L L L L 22112222112212211111=nn n n n n a a a a a a a a a A L M M M L L 212222111211 写成矩阵乘法形式 TA x x Tx Tx x x n n n ),,(),,(),,(11def1L L L ==称A 为线性变换T 在基下的矩阵.n x x ,,1Ln n [注] (1) 给定V 的基和线性变换T 时,矩阵A 唯一. n x x ,,1L (2) 给定V 的基和矩阵A 时,基象组Tx 确定.n x x ,,1L n Tx ,,1L n V x ∈∀n n x c x c x ++=⇒L 11,定义变换()()n n Tx c Tx c Tx ++=L 11则T 是线性变换.因此线性变换T 与方阵A 是一一对应关系.例4 线性空间的线性变换为 ][t P n ()()()()][t P t f t f t f T n ∈∀′= .基(I):!,,!2,,12210n t f t f t f f nn ====L基(II):n n t g t g t g g ====,,,,12210L 记T 在基(I)下的矩阵为,T 在基(II)下的矩阵为.因为 1A 2A 112010,,,,0−====n n f Tf f Tf f Tf Tf L 112010,,2,,0−====n n ng Tg g Tg g Tg Tg L 所以 ,=010********M O O L L A=0002000102n A M O O L L 易见.21A A ≠)2(≥n 例5 线性空间V 中,设线性变换T 在基下的矩阵为A ,则n n x x ,,1L dim R (T ) = rank A ,dim N (T ) = n - rank A .证 rank A = m ⇔A 的列向量组n ββ,,1L 中最大无关组含m 个向量元素组Tx 中最大无关组含m 个向量 ⇔n Tx ,,1L dim R (T ) = dim ⇔m Tx Tx L n =),,(1L由例2知另一结论成立.2.线性运算的矩阵表示(将线性变换运算转化为矩阵运算)T Th9 设线性空间V 的基为,线性变换T 与的矩阵n n x x ,,1L 12A 与,则 B (1) T 1+T 2在该基下的矩阵为B A +. (2) kT 1在该基下的矩阵为. kA (3) T 1T 2在该基下的矩阵为AB . (4) T 在该基下的矩阵为11−1−A .证 ()()()()B x x x x T A x x x x n n n n ,,,,,,,,,112111L L L L T == (1) 略.(2) 略.(3) 先证:()()[]()[]C x x T C x x T c C n n m n ij ,,,,,11L L ==×∀左=[]()()[]∑∑∑∑=iimii i im i i Tx c Tx c x c x c,,,,11L L T=()=C Tx Tx n ,,1L 右由此可得 ()()()[]()[]B x x T x x T T x x T T n n n ,,,,,,11121121L L L ==()[]()AB x x B x x T n n ,,,,111L L ==(4) 记T,则 211T =−()131221−=⇒==⇒==A B I BA AB T T T T T e .3.象与原象坐标间的关系Th10 线性空间V 的基为线性变换T 在该基下的矩阵为A ,n ,,,1n x x L 的坐标为 ,T x 的坐标为,则 .nV x ∈n ξξM 1n ηηM 1 =n n A ξξηηM M 11 证 n n x x x ξξ++=L 11()()()() ==++=n n n n n n A x x Tx Tx Tx Tx Tx ξξξξξξM L M L L 111111,,,,由定理2知 .= n n A ξξηηM M 11 4.线性变换在不同基下矩阵之间的关系n Th11 线性空间V 的基(I):,基(II):n x x ,,1L n y y ,,1L 线性变换T :()()A x x x x n n ,,,,11L L T =()()B y y y y T n n ,,,,11L L = 由基(I)到基(II)的过渡矩阵为C ,则.AC C B 1−= 证 因为 ()()()()AC C y y AC x x C x x T y y T n n n n 11111,,,,,,−===L L L L ()()B y y y y T n n ,,,,11L L = 所以 . AC C B 1−=三、线性变换的特征值与特征向量1.定义 线性空间V ,线性变换T ,若K ∈0λ及V x ∈≠θ满足Tx x 0λ=, 称0λ为T 的特征值,x 为T 的对应于0λ的特征向量(元素). 2.算法 设线性空间V 的基为,线性变换T 的矩阵为. n n x x ,,1L n n ×A T 的特征值为0λ,对应的特征向量为x .x 的坐标为,T x 的坐标为=n ξξαM 1αA ,x 0λ的坐标为α.λ0 因为 αλαλ00=⇔=A x Tx ,所以T 的特征值与A 的特征值相同; 的对应于T 0λ的特征向量的坐标就是A 的对应于0λ的特征向量.例6 设,线性空间=1011B (){}R ,0221122∈=+==×ij ij x x x x X V , 线性变换为()V X B X X B ∈−=T T TX ,求T 的特征值与特征向量.解+ + −= −=⇒∈000000002112111111211211x x x x x x x xX V X+ + −=010000101001211211x x x 可得V 的简单基为= = −=0100,0010,1001321X X X 由公式求得 TX−= −= −=0110,0110,0110321TX TX 故T 在简单基下的矩阵为−−−=111111000A A 的特征值与线性无关的特征向量为;====110,011,02121ααλλ −==110,233αλ T 的特征值与线性无关的特征向量为()−====1011,,,01321121αλλX X X Y Y ()==0110,,23212αX X X ()−===0110,,,2332133αλX X X Y 例7 线性空间V ,线性变换T ,{}V x x Tx x ∈==,00λλV 是V 的子空间. 证 ∈⇒=∈θθλθθ0,T V 0λV , 即V 非空.0λ 0(),λV y x ∈∀()y x y x Ty Tx y x T +=+=+=+⇒000λλλ0λV y x ∈+⇒()()()()kx x k Tx k kx T V x K k 000,λλλ===⇒∈∀∈∀⇒0λV kx ∈0λ0 故V 是V 的子空间.[注] 若λ是线性变换的特征值,则称V 为T 的特征子空间.0λ 3.矩阵的迹:.()∑=×==ni ii nn ija A a A 1tr ,∆Th12 ()()BA AB B A m n n m tr tr ,=⇒××.证 ()()m n ij n m ij b B a A ××==,,()m m ij u AB ×=∆,()n n ij v BA ×=∆:,v()∑===nk ki ik ni i in i ii b a b b a a u 111,,M L ()∑== =m i ik ki mk k km k kk a b a a b b 111,,M L()()BA v a b b a u AB nk kk n k m i ik ki mi n k ki ik mi ii tr tr 111111=== ==∑∑∑∑∑∑====== Th13 若A 相似于B ,则tr B A tr = .证 由AP P B 1−=可得 ()()A P AP AP PB tr )(tr tr tr 11===−− [注] 因为相似矩阵有相同的特征值(Th14 -- 线性代数课程结论)所以线性变换的特征值与线性空间中基的选取无关4.三角相似Th17 相似于上三角矩阵.n n A × 证 归纳法.n =1时,()11a A =是上三角矩阵⇒A 相似于上三角矩阵. 假设n = k -1时定理成立,下证n = k 时定理也成立.的特征值为k k A ×k λλλ,,,21L ,对应1λ的特征向量为1x 111x Ax λ=⇒. 扩充为C 的基:(列向量)1x k k x x x ,,,21L ()k x x x P ,,,211L =可逆,()k Ax Ax Ax AP ,,,211L = ()k j x b x b x b Ax Ax kkj j j j k j ,,2C 2211L L =+++=⇒∈()=kk k k k k b b b b b b x x x AP L M MM L L L 222211212110,,,λ=−011121111A b b AP P k M L λ 的特征值为1A k λλ,,2L ,由假设知,存在1−k 阶可逆矩阵Q 使得,=−k Q A Q λλM O L *211=000012Q P M L ∆==⇒=−k AP P P P P λλλ∆***21121O M O LL 由归纳法原理,对任意n ,定理成立. 5.Hamilton-Cayley 定理Th18 设,则()()n n n n n n a a a A I A ++++=−=−−×λλλλλϕ∆111det ,L ()n n n n n n O I a A a A a A A ×−−=++++=111L ∆ϕ证 A 的特征值为()()()()n n λλλλλλλϕλλλ−−−=⇒L L 2121,,,.由Th17知,存在可逆矩阵,使得. n n P ×=−n AP P λλM O L *11 ()()()()I AP P I AP P I AP P AP P n λλλϕ−−−=−−−−121111LL O M OLO M OL−−−−=221112*0*****0λλλλλλλλn n−−−0***11n n n λλλλM O O LL OM O L LO M M M O L L−−−=33231*0******00**00**00**00λλλλλλn O n n n =−−−0***11λλλλM O O L 即 ()()O A O P A P =⇒=−ϕϕ1. [注] (1) ()I a A a A a A a A a A n n n n nn 1221111,00−−−−−++++−=≠⇒≠L (2) {}I A A A n n ,,,span 1L −∈例8 ,计算−−=210111111A 501002A A +. 解 ()()()21det )(,2)(250100−−=−=+=λλλλϕλλλA I fϕ除f : ()2210)()()(λλλλϕλb b b g f +++=()λλλϕλ212])()([)(b b g f ++′=′ 由 可得5110022)2(,200)1(,3)1(+==′=f f f−+=+−−=−+=⇒ +=++=+=++2032260622400222242 2002 35110025210115110005110021021210b b b b b b b b b b b()()2210A b A b I b A f O A ++=⇒=ϕ 6.最小多项式:以为根,且次数最低的首1多项式,记作n n A ×()λm . ()()()11≥∂⇒≠=⇒=λλm O I A f f()()()()n m O A A I ≤∂⇒=⇒−=λϕλλϕ18Th ,det例9 ()()()42,0312512332−−=−−−−=λλλϕA ()()()()1:R 11>∂⇒≠+=∈∀+=λλλm O kI A A f k k f()()()()()()()()λλλλλ22242:42f m O I A I A A f f =⇒=−−=−−= Th19 (1) 多项式()λf 满足()()()λλf m O A f ⇒=;(2) ()λm 唯一.证 (1) 反证法.()()()()()()λλλλλλr g m f f m +=⇒/| ()0≡/λr 且()()λλm r ∂<∂ ()()()()A r A g A m A f +=⇒ ()()()λλm r O A r O A m O A f ∂<∂=⇒==,)(,)(()λm ⇒不是A 的最小多项式,矛盾!(2) 设()λm 与()λm~都是A 的最小多项式,则 ()()()()()()()()λλλλλλm m m m O A m m m O A m ~|~~|~1=⇒⇒=⇒=首 Th20 ()λm 与()λϕ的零点相同(不计重数).) 证 Th19(λm ⇒的零点是()λϕ的零点.再设0λ是()λϕ的零点,则有()()()x m x A m x x Ax 000λλ=⇒≠=()()()0000=⇒=⇒=λλm x m O A m , 故也是0λ()λm 的零点.[注] ()()的全部单因式一定含λϕλm ⇒20Th . 但()λm 不一定是()λϕ的全部单因式的乘积. 例如:. ()()()()1,1,10112−≠−= =λλλλϕm A 7.最小多项式求法Th21 对,设n n A ×A I −λ的第i 行第j 列元素的余子式为()λij M ,则 ())(det )(λλλd A I −=m ([])(max )(,λλij j i M d =)例10 设,求−−−−=031251233A )(λm . 解 ,−−−−=−λλλλ31251233A I ()()()42det )(2−−=−=λλλλϕA I , 65211+−=λλM ()2321−=λM , ()2231−=λM212−=λM , , 23222+−=λλM ()2232−=λM()213−−=λM , ()2323−−=λM , 128233+−=λλM ()()8642)()()(,2)(2+−=−−==−=λλλλλλϕλλλd m d 例11 相似于n n A ×()()λλB A n n m m B =⇒×.证11−−=⇒=PBP A AP P B 取)()(λλA m f =, 则()O A m A f A ==)(, 从而有 ()()O P A f P AP P f B f ===−−11)(①()()() |),(|19Th λλλλA B B m m f m 即⇒ 取)()(λλB m g =, 则O B m B g B ==)()(, 从而有 ()()O P B g P PBP g A g ===−−11)(② ()()() |),(|19Th λλλλB A A m m g m 即⇒ ①+②得:()()λλB A m =m .四、对角矩阵Th24 在线性空间V 中,线性变换T 在某基下的矩阵为对角矩阵 n T 有n 个线性无关的特征向量(元素).⇔证 必要性.设V 的基为,且n n x x ,,1L ()()Λn n x x x x ,,,,11L L T =,),,diag(1n λλΛL =,则有()()(n n n n n x x x x Tx Tx λλλλ,,,,,,11111L O L L ==) ),,2,1(n j x Tx j j j L ==⇒λ是T 的n 个线性无关的特征向量 n x x ,,1L ⇒ 充分性.设T 有n 个线性无关的特征向量,即 n y y ,,1L T n j y y j j j ,,2,1,L ==λ取y 为V 的基,则有n y ,,1L n ()()()n n n n y y Ty Ty y y T λλ,,,,,,1111L L L === ()n n y y λλO L 11,, Th25 相似于对角矩阵n n A ×⇔A 有n 个线性无关的特征向量(列向量). 证 A 相似于),,diag(1n λλΛL =()n x x P ,,1L =⇔存在可逆矩阵,使得Λ=−AP P 1 ()()Λn n x x x x A ,,,,11L L =⇔n j x Ax j j j ,,2,1,L ==⇔λ A 有n 个线性无关的特征向量 ⇔n x x ,,1L Th26 有n 个互异的特征值A 相似于对角矩阵.n n A ×⇒ 算法:线性空间V 的基,线性变换T 在该基下的矩阵A 相似于n n x x ,,1L),,diag(1n λλΛL =,确定V 的新基,使得T 在新基下的 n n y y ,,1L 矩阵为Λ.求P 使Λ=−AP P 1,令()()P x x y y n n ,,,,11L L =,则有 ()()()AP x x P x x T y y T n n n ,,,,,,111L L L ==()()Λn n y y AP P y y ,,,,111L L ==−例12 在22R ×中, 给定, 线性变换为=0410B XB TX = , )2R 22×∈∀X (求2R ×的一个基, 使线性变换T 在该基下的矩阵为对角矩阵.解 取22R ×的简单基, 求得T 在该基下的矩阵为22211211,,,E E E E=0100400000010040A 求P 使得Λ=−AP P 1:,−−=2222Λ−−=1010202001010202P 由可得P E E E E B B B B ),,,(),,,(222112114321= −= −= = =1200,0012,1200,00124321B B B B 故在基下的矩阵为T 4321,,,B B B B Λ. 五、不变子空间线性空间V ,子空间V ,线性变换T .1 若对∀,有Tx ,称V 是T 的不变子空间. 11V x ∈1V ∈1[注] V 是T 的不变子空间时,可将T 看作V 中的线性变换.1例 ① 子空间{V x x Tx x ∈==,00λλ}V 是T 的不变子空间.000λλλV x Tx V x ∈=⇒∈∀Q ② 子空间R (T )是T 的不变子空间. ()()T R Tx V T R x ∈⇒⊂∈∀Q ③ 子空间N (T )是T 的不变子空间. ()()T N Tx T N x ∈=⇒∈∀θQ④ 与V 1V 2是T 的不变子空间2121,V V V V +⇒I 亦是T 的不变子空间.1°21221121,,V V Tx V Tx V x V Tx V x V V x I I ∈⇒∈∈∈∈⇒∈∀ 2°22112121,,V x V x x x x V V x ∈∈+=⇒+∈∀ 221121,,V Tx V Tx Tx Tx Tx ∈∈+=⇒ 21V V Tx +∈⇒Th27 线性空间V ,线性变换T ,V 与V 是T 的不变子空间,且n 1221V V V n ⊕=.T 在V 1的基下的矩阵为A 1,,1n x x L 1,T 在V 2的 基下的矩阵为A 2,,1n y y L 2.则T 在V 的基n 21,,,,,11n n y y x x L L 下的矩阵为 .=21A OO AA 证 因为 ()()11111,,,,A x x Tx Tx n n L L =,()()21122,,,,A y y Ty Ty n n L L =所以 ()21,,,,,11n n y y x x T L L ()()[]21,,,,,11n n Ty Ty Tx Tx L L = ()()[]211121,,,,,A y y A x x n n L L =()()[]=211121,,,,,A O O A y y x x n n L L ()A y y x x n n 21,,,,,11L L =[注] 若T 在V 的基下的矩阵,则 n 21,,,,,11n n y y x x L L=21A OO AA ()1,,11n x x L V L ∆=与()2,,12n y y L L ∆=V 都是T 的不变子空间,且V . 2−1V V n ⊕=六、Jordan 标准形1.λ矩阵:()()()()λλλij n n ij a a A ,×=是λ的多项式. (A 的秩:()λA 中不恒等于零的子式的最高阶数.)λ−λ矩阵的初等变换: 行变换 列变换(1) 对调: r j i r ↔ c j i c ↔ (2) 数乘()0≠k : kc i kr i (3) 倍加(多项式是 )(λp ): ()j i r p r λ+ ()j i c p c λ+ 2.行列式因子:()=λk D 最大公因式(){}阶子式的所有k A λ 不变因子: ()()()()()n k D D D d k k k ,,2,1,101L ===−λλλλ初等因子: ()λk d 的不可约因式[注] 考虑−λ矩阵A I −λ可得A 的最小多项式()()()λλλλ1)(−==n n n D D d m例13 ,求−−=201034011A A I −λ的全体初等因子. 解()1,2010340111=−−−−+=−λλλλλD A I 因为(24210430134−=−−−=−−λλλλ与) 互质,所以 ()()()()()23212det ,1−−=−==λλλλλA I D D .不变因子为 ()()()()()21,1,12321−−===λλλλλd d d .全体初等因子为 .()2,12−−λλ 3.初等变换法求初等因子()()多项式是首1)()()(1λλλλk n f f f A→O)(λk f 的不可约因式为()λA 的初等因子例如:在例13中−−−+−→−−−−+=−↔21004301120103401121λλλλλλλc c A I−−−→−−−+−→−+−−+2100)1(00012100)1(00112)1()1(2)3(11212λλλλλλλc c c r r ()()()()−−−−→−−−→−+↔21002100101021000121222332λλλλλλr r r r−−→−−−)2()1(000100012)1()2(223λλλc c c 于是 ()()()()()21,1,12321−−===λλλλλf f f .故A I −λ的全体初等因子为()2,12−−λλ.[注] 设()n n ij a A ×=,称A I −λ的行列式因子(不变因子,初等因子) 为A 的行列式因子(不变因子,初等因子).4.Jordan 标准形设()n n ij a A ×=的全体初等因子为()()()s i ms mi mλλλλλλ−−−,,,,11L L则有 ()()L ===−=−)()()(det 1λλλλλϕn n n d D D A I()()()s i ms mi mn d d D λλλλλλλλλ−−−==L L L 1110)()()(而且 m n m m s i =++++L L 1对于第i 个初等因子构造阶Jordan 块矩阵,以及准对角(i mi λλ−)J J J i m i 矩阵如下:ii m m i ii i J ×=λλλ11O O ,=s J J J J O21称为矩阵A 的Jordan 标准形.Th29 设矩阵A 的Jordan 标准形为J ,则存在可逆矩阵P ,使得 .J AP P =−1例如:在例13中,A 的Jordan 标准形为=2111J . [注] 若A 的全体互异特征值为l λλ,,1L ,表示A 的Jordan 标准形中i m 含i λ的Jordan 块的最高阶数,则()()l ml mm λλλλλ−−=L 11)(.5.特征向量分析法求初等因子设()()A I −=λλϕdet 的一个不可约因式为()r0λλ−,则是A 的k 个初等因子的乘积(r0λλ−) ()00=−⇔x A I λ的基础解系含k 个解向量(证明略去) ⇔ 对应特征值0λ有k 个线性无关的特征向量 ⇔ ()A I n k −−=0rank λ例14 求的Jordan 标准形.=1132231121A) 解2()1()det()(3−−=−=λλλλϕA I 由rank 知,(是A 的2)1(=−A I 3)1−λ224=−个初等因子的乘积,即2)1(−λ和()1−λ的乘积, 故A 的全体初等因子为. 2,1,)12−−−λλλ(A 的Jordan 标准形为.=21111J [注] 在例14中,将,233=a 143=a 改作133=a ,043=a 时,此法失效.6.相似变换矩阵的求法仅适用于初等因子组中()j i j i ≠≠λλ的情形.()()()()i m i i s iX X P P P P ,,,,,11L L == s i J P AP PJ AP i i i ,,2,1,L ==⇔=()()()()()()()()()()i m i i m i i i i i i m i i ii i X X X X X AX AX AX λλλ++=−121121,,,,,,L L ()()()()()()()()()()()()()()()()−=−−=−−=−−=−=−=−−−0 011121211的一个解是的一个解是的非零解是i m i i m i m i m i i i i i i i i i i i i i i i X X A I X X X A I X X A I X X X A I X A I X X A I λλλλλλL L L L L L可以证明:()()()i m i i iX X X ,,,21L 线性无关. 在例13中,2,111==m λ,求()()1211,X X :()−=−−−−=−121,101024012111X A I λ()[]()−=−−−−−−=−−110,110120241012,12111X X A I λ 1,222==m λ, 求()21X :()=−−−=−100,001014013212X A I λ.故.−−=111012001P 例15 解线性微分方程组 ()()()+=′+−=′+−=′3132122112 34ξξξξξξξξξt t t . 解 ()()()()()()()()()()t Ax t x A t t t t x t t t t x =′ −−=′′′=′=:201034011,,321321ξξξξξξ已求得,使得−−=111012001P J AP P =−1 2111=,则有 ()()()[]()[]t x P J t x P t x APP P t x P 11111−−−−−=′⇒=′()()()()()==−t t t t x P t y 3211ηηη∆()()t y J t y =′⇒()()()=′=′+=′33222112 ηηηηηηηt t t ()()()() =+=⇒+=′=⇒t t t t t ec t e t c e c t e c t e c t 23321121122ηηηηη ()()+−−+==3212112ηηηηηηt y P t x ()()()()() ++−−=++=+=⇒tt tt t t e c t c e c t e t c e c t e t c e c t 232132122111122ξξξ (c 为任意常数) 321,,c c [注]})({)(0211∫−+=ttd e c e t ττηητ求线性变换在给定基下的矩阵——方法总结:n 给定线性空间V 的基,设线性变换在该基下的矩阵为n x x ,,1L T A . 一、直接法(1) 计算基象组T ,并求出T 在基下的坐标 )(,),(1n x T x L )(j x n x x ,,1L (列向量)),,2,1(n j j L =β;(2) 写出T 在给定基下的矩阵n x x ,,1L ),,(1n A ββL =. 二、中介法(1) 选取V 的简单基,记作n n εε,,1L ;(要求V 中元素在该基下的坐标能够直接写出)n (2) 写出由简单基改变为给定基的过渡矩阵C (采用直接法); (3) 计算基象组T )(,),(1n T εεL ,并写出T )(j ε在简单基n εε,,1L 下的坐标 (列向量)),,2,1(n j j L =β,以及T 在简单基下的矩阵),,(1n B ββL =;(4) 计算T 在给定基下的矩阵. n x x ,,1L BC C A 1−=三、混合法(1) 选取V 的简单基,记作n n εε,,1L ;(2) 写出由简单基改变为给定基的过渡矩阵C (采用直接法),则有 =),,(1n x x L C n ),,(1εεL(3) 计算基象组T ,并写出T 在在简单基)(,),(1n x T x L )(j x n εε,,1L 下的坐标(列向量)),,2,1(n j j L =β,以及矩阵),,(1n B ββL =,则有))(,),((),,(11n n x T x T x x T L L =B n ),,(1εεL =BC x x n 11),,(−L =(4) 计算T 在给定基下的矩阵.n x x ,,1L B C A 1−=§1.3 欧氏空间与酉空间 一、欧氏空间1.内积:线性空间V ,数域R ,对V y x ∈∀,,定义实数()y x ,,且满足⑴ 交换律 ()()x y y x ,,=⑵ 分配律 ()()()V z z x y x z y x ∈∀+=+,,,, ⑶ 齐次性 ()()R ,,,∈∀=k y x k y kx ⑷ 非负性 ()()θ=⇔=≥x x x x x 0,,0, 称实数(为x 与y 的内积.)y x , 例 ① 线性空间n R 中:()()n n y x ηηξξ,,,,,11L L ==内积1:()n n y x ηξηξ∆++=L 11, 内积2:() ()0,,11>++=h h y x n n h ηξηξ∆L ② 线性空间n m ×R 中:()()n m ij n m ij b B a A ××==, 内积:()()∑∑====mi nj ij ij AB b a B A 1T 1tr ,∆ ③ 线性空间C 中:[b a ,]()()t g t f ,是区间[]b a ,上的连续函数 内积:(()())()()∫=badt t g t f t g t f ∆,2.欧氏空间:定义了内积运算的实线性空间. 设欧氏空间V 的基为有n n n V y x x x ∈∀,,,,1对L()()∑==⇒++=++=n j i j i j i n n n n x x y x x x y x x x 1,1111,,ηξηηξξL L 令 ()j i ij x x ,=a (i )n j ,,2,1,L =则称为基的度量矩阵(Gram Matrix ),此时有n n ij a A ×=)(n x x ,,1L。

北邮矩阵论 1. 第一讲 线性空间与线性变换

北邮矩阵论 1. 第一讲 线性空间与线性变换

矩阵分析与应用
v
参考书:
›《矩阵论》第二版 程云鹏主编 西北工业大学
出版社 2004年8月 ›《矩阵分析与应用》 张贤达 清华大学出版社 2004年9月 ›“Matrix Analysis”, Roger A. Horn 机械工业出版 社影印版 ›《矩阵计算》,G.H.戈卢布等,科学出版社
v
编程工具
就是二维的,数1 与i 就是一组基.
基变换与坐标变换
n
设 x1 , x2 ,L , xn 是Vn 的旧基, y1 , y2 ,L , yn 是新基。新基可以用旧基表示出来
cn1 xc y1 = c11 x1 + c21 x2 + L+ n c11 L c1n 12 y = c x + c x + L+ c x 2 12 1 22 2 2 n n c c L c 21 22 2n , x ( y1 , y2 ,L , yn ) = ( x1 , x2 ,L n) M M M M + c x y x x L c c = + + n 1n 1 2 n 2 cn1 nn cnn 2 L cnn ( x1 , x2 ,L, xn ) C
线性空间
n
线性空间 线性变换与矩阵 线性子空间指一些对象的总体 元素:这些对象称为集合的元素
n整数集 n线性方程组的解集 n由某个平面上所有的点构成的点集
用S表示集合,a是S的元素
a∈S
a不是S的元素
a∉S
集合的表示
1.列举全部元素
如 N = {1,3,5, 7,9}
2.给出集合中的元素的性质
›Matlab、C
矩阵分析与应用

西安交大西工大 考研备考期末复习 线性代数 矩阵及其运算

西安交大西工大 考研备考期末复习 线性代数 矩阵及其运算

甲 200 180 190
乙 100 120 100
第一次
产品
发到各商场的数量
ABC
甲 220 185 200
乙 105 120 110
第二次
两次累计:
产品
发到各商场的数量
ABC
甲 420 365 390
乙 205 240
第一章 矩阵
一、矩阵的加法 1. 引例
§1.2 矩阵的基本运算
产品
发到各商场的数量
(3) 二次曲线的矩阵
二次曲线的一般方程为 ax2 + 2bxy + cy2 + 2dx + 2ey + f = 0 . (II) (II) 的左端可以用表
xy1 xa b d ybc e
1def
来表示,其中每一个数就是它所在的行和列所对应
的 x , y 或 1 的乘积的系数,而 (II) 的左端就是按这 样的约定所形成的项的和. 换句话说,只要规定了 x , y , 1 的次序,二次方程 (II) 的左端就可以简单地 用矩阵
B = ( bij )m×n , 如果对应元素相等, 即 aij = bij , i = 1,2, ···, m , j = 1, 2, ···, n ,
则称矩阵 A 和矩阵 B 相等, 记为 A = B . 例如
3 4
1 2

5 6
a b c d e f
当 a=3, b=-1, c=4, d=2, e=-5, f=6 时, 它们相等.
元素, aij 叫做矩阵 A 的第 i 行第 j 列元素.
元素是实数的矩阵称为实矩阵,元素是复数
的矩阵称为复矩阵.(1)式也可简记为
A = ( aij )mn 或 A = ( aij ) .

矩阵论同步学习辅导 张凯院 西北工业大学出版社

矩阵论同步学习辅导 张凯院 西北工业大学出版社

矩阵论同步学习辅导(习题与试题精解)张凯院徐仲编西北工业大学出版社图书在版编目(CIP) 数据矩阵论同步学习辅导/ 张凯院,徐仲编. —西安: 西北工业大学出版社,2002. 8ISBN7-5612-1542-8Ⅰ. 矩⋯Ⅱ. ①张⋯②徐⋯Ⅲ. 矩阵-理论-高等学校-教学参考资料Ⅳ. 0151. 21中国版本图书馆CIP数据核字( 2002 )第062114 号出版发行: 西北工业大学出版社通信地址: 西安市友谊西路127 号邮编: 710072 电话: 029 - 8493844网址: ht tp: / / www. nwpup. com印刷者: 印刷厂开本: 850×1 168mm1/32印张:字数:版次: 2002 年8 月第1 版2002 年8 月第1 次印刷印数: 1~定价: 元【内容简介】本书由两部分内容组成。

第一部分按照程云鹏等编的研究生教材《矩阵论》(第2 版)的自然章节,对矩阵论课程的基本概念、主要结论和常用方法做了简明扼要的分类总结, 对各章节的课后习题做了详细的解答; 第二部分收编了近年来研究生矩阵论课程的考试试题12 套和博士入学考试试题3 套,并做了详细的解答。

本书叙述简明,概括性强。

可作为理、工科研究生和本科高年级学生学习矩阵论课程的辅导书,也可供从事矩阵论教学工作的教师和有关科技工作者参考。

—Ⅳ—前言矩阵论是高等学校和研究院、所面向研究生开设的一门数学基础课。

作为数学的一个重要分支,矩阵理论具有极为丰富的内容;作为一种基本工具,矩阵理论在数学学科以及其他科学技术领域都有非常广泛的应用。

因此,学习和掌握矩阵的基本理论与方法, 对于研究生来说是必不可少的。

矩阵论课程的理论性强,概念比较抽象,而且有独特的思维方式和解题技巧。

读者在学习矩阵论课程时,往往感到概念多、结论多、算法多, 对教学内容的全面理解也感到困难。

为了配合课堂教学, 使研究生更好地掌握该门课程的教学内容,我们编写了这本同步学习辅导书。

《高等工程数学(矩阵论)》复习提纲与习题选讲(PDF)

《高等工程数学(矩阵论)》复习提纲与习题选讲(PDF)

《矩阵论》复习提纲与习题选讲chapter1 线性空间和内积空间内容总结:z 线性空间的定义、基和维数;z 一个向量在一组基下的坐标;z 同一线性空间不同基之间的过度矩阵;z 线性子空间的定义与判断;z 子空间的交;z 内积的定义;z 内积空间的定义;z 向量的长度、距离和正交的概念;z Gram-Schmidt 标准正交化过程;z 标准正交基。

习题选讲:1、设表示实数域3]x [R R 上次数小于3的多项式再添上零多项式构成的线性空间(按通常多项式的加法和数与多项式的乘法)。

(1) 求的维数;并写出的一组基;3]x [R 3]x [R (2) 求在所取基下的坐标;221x x ++ (3) 写出(1)所取基到的另一组基的过渡矩阵;3]x [R 2)1(),1(,1−−x x (4) 在中定义3]x [R , ∫−=11)()(),(dx x g x f g f n x R x g x f ][)(),(∈ 证明上述代数运算是内积;求出的一组标准正交基;3][x R (5)求与之间的距离。

221x x ++2x 2x 1+−二、 设22R ×是实数域R 上全体22×实矩阵构成的线性空间(按通常矩阵的加 法和数与矩阵的乘法)。

(1) 求22R ×的维数,并写出其一组基;(2) 在(1)所取基下的坐标; ⎥⎦⎤⎢⎣⎡−−3111(3) 设W 是实数域R 上全体22×实对称矩阵构成的线性空间(按通常矩阵的加法和数与矩阵的乘法)。

证明:W 是22R ×的子空间;并写出W 的维数和一组基;(4) 在W 中定义内积, )A B (tr )B ,A (T =W B ,A ∈求出W 的一组标准正交基;(5)求与之间的距离; ⎥⎦⎤⎢⎣⎡0331⎥⎦⎤⎢⎣⎡−1221 (6)设V 是实数域R 上全体22×实上三角矩阵构成的线性空间(按通常矩阵的加法和数与矩阵的乘法)。

矩阵论知识要点

矩阵论知识要点
阵 ATA = O .
证明 必要性显然,下面证明充分性.
设 A = ( aij )m n ,把 A 用列向量表示为
A ( a1 , a 2 , , a n ) ,
a1T a1Ta1 a1Ta2 a1Tan T T T T a2 a2 a1 a2 a2 a2 an T A A (a1, a2 ,, an ) , aT a T a aT a a T a n n n n 1 n 2
序言 • 矩阵论是一门经典的数学学科,也是一门繁 琐的、但有广泛应用价值的数学课程。 • 矩阵理论和方法是现代科技领域中处理有限 维空间形式与数量关系的强有力的不可缺少 的工具。 • 尤其是计算机的普及,更为矩阵论的应用提 供了广阔的应用舞台,如系统工程、控制工 程、最优化方法、管理工程等。
问题一 线性方程组的求解
4) 行列式 |A| 的各元素的代数余子式 Aij 所 构成的方阵
A11 A21 A12 A22 * A A A 2n 1n
叫做方阵 A 的伴随矩阵.
An1 An 2 , Ann
伴随矩阵具有重要性质: AA* = A*A =|A|E.
(1)
( A B) A B ;
H H H
(2) (A)
H
A ;
H
(3)
(4)
( AB) B A ;
H H H
(A ) A
H H
3)设 A (aij ) Cnn ,如果 AH A ,则称 是Hermite矩阵,如果 A 是反Hermite矩阵。
H
A
A ,则称 A
(iii) (A-1)-1 = A; (A)-1 = 1/ A-1 ( 0 );

西北工业大学矩阵论PPT课件

西北工业大学矩阵论PPT课件

矩阵论讲稿讲稿编者:张凯院使用教材:《矩阵论》(第2版)西北工业大学出版社程云鹏等编辅助教材:《矩阵论导教导学导考》《矩阵论典型题解析及自测试题》西北工业大学出版社张凯院等编课时分配:第一章 17学时第四章8学时第二章5学时第五章8学时第三章8学时第六章8学时第一章 线性空间与线性变换§1.1 线性空间 一、集合与映射1.集合:能够作为整体看待的一堆东西. 列举法:},,,{321L a a a S =性质法:}{所具有的性质a a S = 相等(:指下面二式同时成立)21S S =2121,S S S a S a ⊆∈⇒∈∀即 1212,S S S b S b ⊆∈⇒∈∀即交:}{2121S a S a a S S ∈∈=且I 并:}{2121S a S a a S S ∈∈=或U 和:},{22112121S a S a a a a S S ∈∈+==+例1 R}0{2221111∈==j i a a a a A S R}0{2212112∈==j i a a a aA S ,21S S ≠ R},00{2211221121∈==a a a a A S S I R},0{21122221121121∈===j i a a a a a a a A S S U R}{2221121121∈==+j i a a a a a A S S 2.数域:关于四则运算封闭的数的集合.例如:实数域R ,复数域C ,有理数域,等等.Q 3.映射:设集合与,若对任意的1S 2S 1S a ∈,按照法则σ,对应唯一的.)(,2b a S b =∈σ记作 称σ为由到的映射;称为的象, 1S 2S b a a 2为b 的象源.变换:当1S S =时,称映射σ为上的变换. 1S 例2 )2(R})({≥∈==×n a a A S j i nn j i .映射1σ:A A det )(1=σ (R)→S 变换2σ:n I A A )det ()(2=σ ()S S → 二、线性空间及其性质1.线性空间:集合V 非空,给定数域K ,若在V 中(Ⅰ) 定义的加法运算封闭, 即V y x V y x ∈+∈∀)(,,元素对应唯一, 且满足(1) 结合律:)()()(V z z y x z y x ∈∀++=++(2) 交换律:x y y x +=+ (3) 有零元:)(,V x xx V ∈∀=+∈∃θθ使得(4) 有负元:θ=−+∈−∃∈∀)(,)(,x x V x V x 使得.(Ⅱ) 定义的数乘运算封闭, 即V kx K k V x ∈∈∀∈∀)(,,元素对应唯一, 且满足(5) 数对元素分配律:)()(V y ky kx y x k ∈∀+=+ (6) 元素对数分配律:)()(K l lx kx x l k ∈∀+=+(7) 数因子结合律:)()()(K l xkl lx k ∈∀=(8) 有单位数:单位数x x K =∈1,使得1. 则称V 为K 上的线性空间.例3 R =K 时,n R —向量空间; n m ×R —矩阵空间][t P n —多项式空间;—函数空间],[b a CC =K 时,—复向量空间; C —复矩阵空间n C n m ×例4 集合}{是正实数m m =+R ,数域}{R 是实数k k =.加法: mn n m n m =⊕∈+,R ,数乘: k m m k k m =⊗∈∈+R,,R 验证+R 是R 上的线性空间.证 加法封闭,且(1)~(2)成立. (3) 1=⇒=⇒=⊕θθθm m m m(4) m m m m m 1)(1)()(m =−⇒=−⇒=−⊕θ 数乘封闭,(5)~(8)成立.故+R 是R 上的线性空间.例5 集合R}),({212∈==i ξξξαR ,数域R .设R ),,(21∈=k ηηβ.运算方式1 加法: ),(2211ηξηξβα++=+数乘: ),(21ξξαk k k =运算方式2 加法: ),(112211ηξηξηξβα+++=⊕数乘: ))1(21,(2121ξξξα−+=k k k k k o 可以验证与都是)(R 2⋅+)(R 2o ⊕R 上的线性空间.[注] 在R 中, )(2o ⊕)0,0(=θ, . ),(2121ξξξα+−−=−Th1 线性空间V 中的零元素唯一,负元素也唯一.证 设与2θ都是V 的零元素, 则212211θθθθθθ=+=+=1θ设与都是的负元素, 则由1x 2x x θ=+1x x 及θ=+2x x 可得212111)()(x x x x x x x x ++=++=+=θ 22221)(x x x x x x =+=+=++=θθ例6 在线性空间V 中,下列结论成立.θ=x 0:θ=⇒=+=+x x x x x 01)01(01θθ=k :θθθθ=⇒=+=+k kx x k k )(kx)()1(x x −=−:()()(]1)1[()]([)1()1x x x x x x x x −=−++−=−++−=−2.减法运算:线性空间V 中,)(y x y x −+=−.3.线性组合:K c V x x i i ∈∈若存在,,, 使m m x c x c x ++=L 11, 则称x 是的线性组合,或者可由线性表示.m x x ,,1L x m x x ,,1L 4.线性相关:若有不全为零,使得m c c ,,1L θ=++m m x c x c L 11,则称m x x ,,1L 线性相关.5.线性无关:仅当全为零时,才有m c c ,,1L θ=++m m x c x c L 11,则称m x x ,,1L 线性无关.[注] 在R 中, )(2o ⊕)1,1(1=α, )2,2(2=α线性无关;)1,1(1=α, )3,2(2=α线性相关.(自证)三、基与坐标1.基与维数:线性空间V 中,若元素组满足 n x x ,,1L (1) 线性无关;n x x ,,1L (2) V x ∈∀都可由线性表示.n x x ,,1L 称为n x x ,,1L V 的一个基, 为n V 的维数, 记作n V =dim ,或者V . n 例7 矩阵空间n m ×R 中, 易见(1) ),,2,1;,,2,1(n j m i E j i L L ==线性无关;(2) .∑∑==×==mi nj j i j i n m j i E a a A 11)(故),,2,1;,,2,1(n j m i E j i L L ==是n m ×R 的一个基, .mn n m =×dimR2.坐标:给定线性空间V 的基,当时,有n n x x ,,1L n V x ∈n n x x x ξξ++=L 11.称n ξξ,,1L 为在给定基下的x n x ,,1L x 2坐标,记作列向量.Τ1),,(n ξξαL =例8 矩阵空间2R ×中,设22)(×=j i a A .(1) 取基 ,22211211,,,E E E E 2222212112121111E a E a E a E a A +++=坐标为Τ22211211),,,(a a a a =α(2) 取基 , , , =11111B =11102B =11003B=10004B 422432132122111)()()(B a B B a B B a B B a A +−+−+−= 421223122121112111)()()(B a a B a a B a a B a −+−+−+=坐标为Τ21221221111211),,,(a a a a a a a −−−=β[注] 一个元素在两个不同的基下的坐标可能相同,也可能不同. 例如:在上述两个基下的坐标都是;22n n E A =Τ)1,0,0,0(11E A =在上述两个基下的坐标不同.Th2 线性空间V 中,元素在给定基下的坐标唯一. 证 设V 的基为,对于,若 n x x ,,1L n V x ∈ n n x x x ξξ++=L 11n n x x ηη++=L 11则有 θηξηξ=−++−n n n x x )()(111L因为线性无关, 所以n x x ,,1L 0=−i i ηξ, 即),,2,1(n i i i L ==ηξ.故的坐标唯一.x n 例9 设线性空间V 的基为, 元素在该基下的坐标为n x x ,,1L j y ),,2,1(m j j L =α, 则元素组线性相关(线性无关)m y y ,,1L ⇔向量组m αα,,1L 线性相关(线性无关).证 对于数组, 因为m k k ,,1L θαα=++=++))(,,(11111m m n m m k k x x y k y k L L L 等价于θαα=++m m k L 11k , 所以结论成立. 四、基变换与坐标变换1.基变换:设线性空间V 的基(Ⅰ)为, 基(Ⅱ)为, 则n n x x ,,1L n y ,,1L y+++=+++=+++=n nn n n nn n nn x c x c x c y xc x c x c y x c x c x c y L L L L L L 22112222112212211111 C=nn n n n n c c c c c c c c c L M M M L L 212222111211写成矩阵乘法形式为 (C x x y y n n ),,(),,11L L =称上式为基变换公式,C 为由基(Ⅰ)改变为基(Ⅱ)的过渡矩阵.[注] 过渡矩阵C 一定可逆. 否则C 的个列向量线性相关, 从而n n y ,,1L y 1−线性相关(例9).矛盾!由此可得111),,(),,(−=C y y x x n n L L称C 为由基(Ⅱ)改变为基(Ⅰ)的过渡矩阵.2.坐标变换:设在两个基下的坐标分别为n V x ∈α和β,则有 =++=n n x x x ξξL 11α),,(1n x x Ln n y y x ηη++=L 11β),,(1n y y L =βC x x n ),,(1L =由定理2可得βαC =,或者,称为坐标变换公式. αβ1−=C 例10 矩阵空间22R ×中,取基(Ⅰ) , , ,=10011A −=10012A =01103A−=01104A (Ⅱ) , , , =11111B =01112B =00113B=00014B(1) 求由基(Ⅰ)改变为基(Ⅱ)的过渡矩阵; (2) 求由基(Ⅱ)改变为基(Ⅰ)的坐标变换公式. 解 采用中介法求过渡矩阵.基(0):, , ,=000111E =001012E =010021E=100022E (0)→(Ⅰ):1222112114321),,,(),,,(C E E E E A A A A = (0)→(Ⅱ):2222112114321),,,(),,,(C E E E E B B B B =,−−=00111100110000111C=00010011011111112C (Ⅰ)(Ⅱ):→=),,,4321B B B B (2114321),,,(C C A A A A −=−−==−0100012211101112210110011010011001212211C C C C+++++++==332143243214321432122221ηηηηηηηηηηηηηηηξξξξC五、线性子空间1.定义:线性空间V 中,若子集V 非空,且对1V 中的线性运算封闭,即 (1) 11,V y x V y x ∈+⇒∈∀ (2) 11,V kx K k V x ∈⇒∈∀∈∀称V 为1V 的线性子空间,简称为子空间.1[注] (1) 子空间V 也是线性空间, 而且V V dim dim 1≤.(2) }{θ是V 的线性子空间, 规定dim{0}=θ. (3) 子空间V 的零元素就是1V 的零元素. 例11 线性空间V 中,子集V 是1V 的子空间⇔对11,,,,V ly kx K l k V y x ∈+∈∀∈∀.有证 充分性. :1==l k 11,V y x V y x ∈+⇒∈∀0=l :110 ,V y kx kx K k V x ∈+=⇒∈∀∈∀故V 是1V 的子空间.必要性. 11 ,V kx K k V x ∈⇒∈∀∈∀ (数乘封闭)11 ,V ly K l V y ∈⇒∈∀∈∀ (数乘封闭)故 (加法封闭)1V y l x k ∈+例12 在线性空间V 中,设),,2,1(m i V x i L =∈,则 }{111K k x k x k x i mm ∈++==L V是V 的子空间,称V 为由生成的子空间.1m x x ,,1L 证 m m x k x k x V x ++=⇒∈L 111∀m m x l x l y V y ++=⇒∈∀L 111:1111)()(V x l l kk x l l kk y l kx m m m ,K l k ∈∀ ∈++++=+L根据例11知,V 是1V 的子空间.[注] (1) 将V 记作span 或者.1},,{1m x x L ),,(1m x x L L (2) 元素组的最大无关组是的基; m x x ,,1L ),,(1m x x L L (3) 若线性空间V 的基为,则V . n n x x ,,1L ),,(1n n x x L L = 2.矩阵的值域(列空间):划分(),n m n n m j i a A ××∈==C ),,()(1ββL m j C ∈β称),,()(1n L A R ββL =为矩阵的值域(列空间). A 易见A A R rank )(=dim . 例13 矩阵A 的值域}C {)(n x AxA R ∈==β.证 ∈∀β左, 有 右∈= =++=Ax k k k k n n n n M L L 1111),,(βββββ∈∀β右, 有左∈++===n n n n k k k k Ax βββββL M L 1111),,( 3.矩阵的零空间:设,称n m A ×∈C }C ,0{)(n x Ax xA N ∈==为矩阵A 的零空间.易见A n A N rank )(−=dim .Th3 线性空间V 中, 设子空间V 的基为n 1)(,,1n m x x m <L , 则存在n n m V x x ∈+,,1L , 使得为V 的基.n m m x x x x ,,,,,11L L +n 证线性表示不能由m n m x x V x n m ,,11L ∈∃⇒<+ ,,,11线性无关+⇒m m x x x L若,则是V 的基;n n m =+111,,,+m m x x x L n 否则,mn <+1线性表示不能由112,,,++∈∃⇒m m n m x x x V x L ,,,,211线性无关++⇒m m m x x x x L若,则是V 的基;m =+2211,,,,++m m m x x x x L n 否则,m . L L ⇒<+n 2依此类推, 即得所证.六、子空间的交与和1.子空间的交:}{2121V x V x x V ∈∈=且I VTh4 设V 是线性空间21,V V 的子空间,则V 是21V I V 的子空间. 证 212121,V V V V V V I I ⇒∈⇒∈∈θθθ非空∈+⇒∈∈+⇒∈⇒∈∀221121,,,V y x V y x V y x V y x V V y x I 21V V y x I ∈+⇒∈⇒∈∈⇒∈⇒∈∀∈∀221121,V kx V x V kx V x V V x K k I 21V V kx I ∈⇒ 所以V 是21V I V 的子空间.2.子空间的和: },{22112121V x V x x x x V V ∈∈+==+ Th5 设V 是线性空间21,V V 的子空间,则V 21V +是V 的子空间. 证 212121,V V V V V V +⇒+∈+=⇒∈∈θθθθθ非空∈∈+=∈∈+=⇒+∈∀22112122112121,,,,,V y V y y y y V x V x x x x V V y x )()(2211y x y x y x +++=+⇒,222111,V y x V y x ∈+∈+ 21V V y x +∈+⇒22112121,,,V x V x x x x V V x K k ∈∈+=⇒+∈∀∈∀221121,,V kx V kx kx kx kx ∈∈+=⇒ 21V V kx +∈⇒所以V 是21V +V 的子空间. [注] 不一定是21V V U V 的子空间.例如:在2R 中,V )()(2211e L V e L ==与的并集为}R ,0),({212121∈=⋅==i V V ξξξξξαU易见21212121)1,1(,,V V e e V V e e U U ∉=+∈但, 故加法运算不封闭.2Th6 设V 是线性空间1,V V 的有限维子空间,则)(dim dim dim )(dim 212121V V V V V V I −+=+ 证 记 ,dim 11dim n V =22n V =,m V V =21I dim 欲证 m n n V V −+=+2121)(dim (1) :(1n m =121121)V V V V V V =⇒⊂I I22121221)(V V V V V V V V =+⇒⊂⇒⊂Im n n n V V V −+===+212221dim )(dim (2) :(2n m =221221)V V V V V V =⇒⊂I I12112121)(V V V V V V V V =+⇒⊂⇒⊂Im n n n V V V −+===+211121dim )(dim(3) :设V 的基为,那么212L 1,n m n m <<21V I m x x ,,1L 扩充为V 的基: (Ⅰ) m n m y y x x −1,,,,,11L L 扩充为V 的基: (Ⅱ) m n m z z x x −2,,,,,11L L 考虑元素组: (Ⅲ)m n m n m z z y y x x −−21,,,,,,,,111L L L 因为 (Ⅰ),V (Ⅱ) ,所以 V V =1L =2L V =+21(Ⅲ) (自证). 下面证明元素组(Ⅲ)线性无关:设数组k 使得m n m n m q q p p k −−21,,,,,,,,111L L L m n m n m m y p y p x k x k −−+++++111111L L θ=+++−−m n m n z q z q 2211L由 (*)∈++−∈+++++=−−−−21111111)(2211V z q z q V y p y p x k x k x m n m n m n m n m m L L L 得 m m x l x l x V V x ++=⇒∈L I 1121 结合(*)中第二式得θ=+++++−−m n m n m m z q z q x l x l 221111L L(Ⅱ)线性无关0,0211======−m n m q q l l L L ⇒结合(*)中第一式得θ=+++++−−m n m n m m y p y p x k x k 111111L L(Ⅰ)线性无关0,0111======−m n m p p k k L L ⇒故元素组(Ⅲ)线性无关,从而是V 21V +的一个基. 因此 m n n V V −+=+2121)(dim . 3.子空间的直和:},{22112121V x V x x x x V V ∈∈+==+唯一唯一记作:V2121V V V ⊕=+Th7 设V 是线性空间21,V V 的子空间,则V 21V +是直和⇔}{21θ=V I V . 证 充分性.已知}{21θ=V I V :对于21V V z +∈∀,若∈∈+=∈∈+=221121221121,,,,V y V y y y z V x V x x x z 则有 2221112211,,)()(V y x V y x y x y x ∈−∈−=−+−θ22112211212211,,)(y x y x y x y x V V y x y x ==⇒=−=−⇒∈−−=−⇒θθI 故的分解式唯一, 从而V 21V V z +∈2121V V V ⊕=+.必要性.若}{21θ≠V I V ,则有21V V x I ∈≠θ.对于21V V +∈θ,有2121)(,),(,,V x V x x x V V ∈−∈−+=∈∈+=θθθθθθ即21V V +∈θ有两种不同的分解式.这与V 21V +是直和矛盾. 故}{21θ=V I V .2推论1 V 是直和1V +2121dim dim )(dim V V V V +=+⇔推论2 设V 是直和,V 的基为,V 的基为,221V +1k x x ,,1L 2l y y ,,1L 则V 的基为.1V +l k y y x x ,,,,,11L L 证 因为 ,且 2),,,,,(11l k y y x x L L L =1V V + l k V V V V +=+=+2121dim dim )(dim所以线性无关, 故是V 的基. l k y y x x ,,,,,11L L l k y y x x ,,,,,11L L 21V +§1.2 线性变换及其矩阵 一、线性变换1.定义 线性空间V ,数域K ,T 是V 中的变换.若对V y x ∈∀,,∀,K l k ∈,都有 )()()(Ty l Tx k ly kx T +=+, 称T 是V 中的线性变换. 性质 (1) θθ=+=+=)(0)(0)00(Ty Tx y x T T(2) T )()(0))(1()0)1(()(Tx Ty Tx y x T x −=+−=+−=− (3) 线性相关⇒线性相关V x x m ∈,,1L m Tx Tx ,,1L (4) 线性无关时,不能推出Tx 线性无关.V x x m ∈,,1L m Tx ,,1L (5) 是线性变换T y T Tx y x T +=+⇔)(,)()(Tx k kx T =(V y x ∈∀,,K k ∈∀)例1 矩阵空间nn ×R ,给定矩阵,则变换TX = BX +XB (n n B ×n n X ×∈∀R )是n n ×R 的线性变换.2.线性变换的值域:},{)(V x Tx y y T R ∈==3.线性变换的核: },{)(V x Tx x T N ∈==θTh8 设T 是线性空间V 的线性变换,则R (T )和N (T )都是V 的子空间. 证 (1)V 非空⇒非空. )(T R 1111st ,)(Tx y V x T R y =∈∃⇒∈∀ 2222st ,)(Tx y V x T R y =∈∃⇒∈∀)()(212121T R x x T Tx Tx y y ∈+=+=+ )21V x x ∈+Q ( )()()(111T R x k T Tx k y k ∈== (),1V kx K k ∈∈∀Q 故R (T )是V 的子空间.(2) )(,T N T V ∈⇒=∈θθθθ,即非空.)(T Nθ=+=+⇒∈∀Ty Tx y x T T N y x )()(,,即)(T N y x ∈+. θ==⇒∈∀∈∀)()(),(Tx k kx T K k T N x ,即kx )(T N ∈.故N (T )是V 的子空间.[注] 定义:T 的秩 =dim R (T ),T 的亏 = dim N (T ) 例2 设线性空间V 的基为, T 是V 的线性变换,则 n n x x ,,1L n ,),,()(1n Tx Tx L T R L =n T N T R =+)(dim )(dim证 (1) 先证:∀),,()(1n Tx Tx L T R L ⊂Tx y V x T R y n =∈∃⇒∈st ,)(∈++=⇒++=)()(1111n n n n Tx c Tx c y x c x c x L L L ),,(1n Tx Tx L 再证R :),,()(1n Tx Tx L T L ⊃ )()(st ,,,),,( 1111n n n n Tx c Tx c y c c Tx Tx L y ++=∃⇒∈∀L L L n )()()()(11T R Tx c Tx c y T R Tx n n i i V x ∈∈++=⇒∈⇒L(2) 设dim , 且的基为, 扩充为V 的基:m T N =)()(T N m y y ,,1L n n m m y y y y ,,,,,11L L +则 ),,(),,,,,()(111n m n m m Ty Ty L Ty Ty Ty Ty L T R L L L ++==设数组k 使得n m k ,,1L +θ=++++)()(11n n m m Ty k Ty k L , 则 θ=++++)(11n n m m y k y k T L因为T 是线性变换, 所以)(11T N y k y k n n m m ∈++++L , 故m m n n m m y l y l y k y k ++=++++L L 1111即 θ=+++−++−++n n m m m m y k y k y l y l L L 1111)()( 因为线性无关, 所以n m m y y y y ,,,,,11L L +0,,01==+n m k k L .因此 线性无关, 从而n m Ty Ty ,,1L +m n T R −=)(dim , 即dim . n m T R =+)( 例3 向量空间4R 中,),,,(4321ξξξξ=x ,线性变换T 为)0,0,433,3(43214321ξξξξξξξξ+−−−−+=Tx 求和的基与维数. )4(T R )(T N 解 (1) 取R 的简单基, 计算4321,,,e e e e Te ,)0,0,3,1(1=)0011(2,,,−=Te ,)0,0,3,3(3−−=Te ,Te )0,0,4,1(4−= 该基象组的一个最大线性无关组为. 21,Te Te 故dim R (T ) = 2,且R (T )的一个基为Te .21,Te (2) 记, 则 −−−−=43131311A }0{}{)(41====ξξθM A x Tx x T N 的基础解系为,.041=ξξM A 0233−4073 故dim N (T ) = 2,且N (T )的一个基为(3, 3, 2, 0),(-3, 7, 0, 4). 4.单位变换:线性空间V 中,定义变换T 为Tx )(V x x ∈∀=, 则T 是线性变换,记作T . e 5.零变换:线性空间V 中,定义变换T 为 )(V x Tx ∈∀=θ,则T 是线性变换,记作T .0 6.线性变换的运算:线性空间V ,数域K ,线性变换T 与T . 12 (1) 相等:若T )(21V x x T x ∈∀=,称T =T . 12 (2) 加法:定义变换T 为 )(21V x x T x T Tx ∈∀+=,则T 是线性变换,记作T 21T T +=.负变换:定义变换T 为 )()(1V x x T Tx ∈∀−=, 则T 是线性变换, 记作T 1T −=.(3) 数乘:给定,定义变换T 为 K k ∈)()(1V x x T k Tx ∈∀=,则T 是线性变换, 记作T 1kT =.[注] 集合Hom(V ,V )}{def的线性变换上的线性空间是数域V K T T =按照线性运算(2)和(3)构成数域K 上的线性空间,称为V 的同态.(4) 乘法:定义变换T 为 )()(21V x x T T Tx ∈∀=,则T 是线性变换, 记作T 21T T =.7.逆变换:设T 是线性空间V 的线性变换,若V 的线性变换满足 S T n)()()(V x x x TS x ST ∈∀== 则称T 为可逆变换,且S 为T 的逆变换,记作 . S =−1 8.幂变换:设T 是线性空间V 的线性变换, 则也是V 的线性变换.),3,2(1defL ==−m T T Tm m9.多项式变换:设T 是线性空间V 的线性变换,多项式)()(10K a t a t a a t f i mm ∈+++=L 则也是V 的线性变换. m m e T a T a T a T f +++=L 10)(二、线性变换的矩阵表示1.线性变换在给定基下的矩阵设线性空间V 的基为,T 是V 的线性变换,则Tx ,且有n x x ,,1L n n i V ∈+++=+++=+++=n nn n n nnn nn x a x a x a Tx xa x a x a Tx x a x a x a Tx L L L L L 22112222112212211111=nn n n n n a a a a a a a a a A L M M M L L 212222111211 写成矩阵乘法形式 TA x x Tx Tx x x n n n ),,(),,(),,(11def1L L L ==称A 为线性变换T 在基下的矩阵.n x x ,,1Ln n [注] (1) 给定V 的基和线性变换T 时,矩阵A 唯一. n x x ,,1L (2) 给定V 的基和矩阵A 时,基象组Tx 确定.n x x ,,1L n Tx ,,1L n V x ∈∀n n x c x c x ++=⇒L 11,定义变换()()n n Tx c Tx c Tx ++=L 11则T 是线性变换.因此线性变换T 与方阵A 是一一对应关系.例4 线性空间的线性变换为 ][t P n ()()()()][t P t f t f t f T n ∈∀′= .基(I):!,,!2,,12210n t f t f t f f nn ====L基(II):n n t g t g t g g ====,,,,12210L 记T 在基(I)下的矩阵为,T 在基(II)下的矩阵为.因为 1A 2A 112010,,,,0−====n n f Tf f Tf f Tf Tf L 112010,,2,,0−====n n ng Tg g Tg g Tg Tg L 所以 ,=010********M O O L L A=0002000102n A M O O L L 易见.21A A ≠)2(≥n 例5 线性空间V 中,设线性变换T 在基下的矩阵为A ,则n n x x ,,1L dim R (T ) = rank A ,dim N (T ) = n - rank A .证 rank A = m ⇔A 的列向量组n ββ,,1L 中最大无关组含m 个向量元素组Tx 中最大无关组含m 个向量 ⇔n Tx ,,1L dim R (T ) = dim ⇔m Tx Tx L n =),,(1L由例2知另一结论成立.2.线性运算的矩阵表示(将线性变换运算转化为矩阵运算)T Th9 设线性空间V 的基为,线性变换T 与的矩阵n n x x ,,1L 12A 与,则 B (1) T 1+T 2在该基下的矩阵为B A +. (2) kT 1在该基下的矩阵为. kA (3) T 1T 2在该基下的矩阵为AB . (4) T 在该基下的矩阵为11−1−A .证 ()()()()B x x x x T A x x x x n n n n ,,,,,,,,,112111L L L L T == (1) 略.(2) 略.(3) 先证:()()[]()[]C x x T C x x T c C n n m n ij ,,,,,11L L ==×∀左=[]()()[]∑∑∑∑=iimii i im i i Tx c Tx c x c x c,,,,11L L T=()=C Tx Tx n ,,1L 右由此可得 ()()()[]()[]B x x T x x T T x x T T n n n ,,,,,,11121121L L L ==()[]()AB x x B x x T n n ,,,,111L L ==(4) 记T,则 211T =−()131221−=⇒==⇒==A B I BA AB T T T T T e .3.象与原象坐标间的关系Th10 线性空间V 的基为线性变换T 在该基下的矩阵为A ,n ,,,1n x x L 的坐标为 ,T x 的坐标为,则 .nV x ∈n ξξM 1n ηηM 1 =n n A ξξηηM M 11 证 n n x x x ξξ++=L 11()()()() ==++=n n n n n n A x x Tx Tx Tx Tx Tx ξξξξξξM L M L L 111111,,,,由定理2知 .= n n A ξξηηM M 11 4.线性变换在不同基下矩阵之间的关系n Th11 线性空间V 的基(I):,基(II):n x x ,,1L n y y ,,1L 线性变换T :()()A x x x x n n ,,,,11L L T =()()B y y y y T n n ,,,,11L L = 由基(I)到基(II)的过渡矩阵为C ,则.AC C B 1−= 证 因为 ()()()()AC C y y AC x x C x x T y y T n n n n 11111,,,,,,−===L L L L ()()B y y y y T n n ,,,,11L L = 所以 . AC C B 1−=三、线性变换的特征值与特征向量1.定义 线性空间V ,线性变换T ,若K ∈0λ及V x ∈≠θ满足Tx x 0λ=, 称0λ为T 的特征值,x 为T 的对应于0λ的特征向量(元素). 2.算法 设线性空间V 的基为,线性变换T 的矩阵为. n n x x ,,1L n n ×A T 的特征值为0λ,对应的特征向量为x .x 的坐标为,T x 的坐标为=n ξξαM 1αA ,x 0λ的坐标为α.λ0 因为 αλαλ00=⇔=A x Tx ,所以T 的特征值与A 的特征值相同; 的对应于T 0λ的特征向量的坐标就是A 的对应于0λ的特征向量.例6 设,线性空间=1011B (){}R ,0221122∈=+==×ij ij x x x x X V , 线性变换为()V X B X X B ∈−=T T TX ,求T 的特征值与特征向量.解+ + −= −=⇒∈000000002112111111211211x x x x x x x xX V X+ + −=010000101001211211x x x 可得V 的简单基为= = −=0100,0010,1001321X X X 由公式求得 TX−= −= −=0110,0110,0110321TX TX 故T 在简单基下的矩阵为−−−=111111000A A 的特征值与线性无关的特征向量为;====110,011,02121ααλλ −==110,233αλ T 的特征值与线性无关的特征向量为()−====1011,,,01321121αλλX X X Y Y ()==0110,,23212αX X X ()−===0110,,,2332133αλX X X Y 例7 线性空间V ,线性变换T ,{}V x x Tx x ∈==,00λλV 是V 的子空间. 证 ∈⇒=∈θθλθθ0,T V 0λV , 即V 非空.0λ 0(),λV y x ∈∀()y x y x Ty Tx y x T +=+=+=+⇒000λλλ0λV y x ∈+⇒()()()()kx x k Tx k kx T V x K k 000,λλλ===⇒∈∀∈∀⇒0λV kx ∈0λ0 故V 是V 的子空间.[注] 若λ是线性变换的特征值,则称V 为T 的特征子空间.0λ 3.矩阵的迹:.()∑=×==ni ii nn ija A a A 1tr ,∆Th12 ()()BA AB B A m n n m tr tr ,=⇒××.证 ()()m n ij n m ij b B a A ××==,,()m m ij u AB ×=∆,()n n ij v BA ×=∆:,v()∑===nk ki ik ni i in i ii b a b b a a u 111,,M L ()∑== =m i ik ki mk k km k kk a b a a b b 111,,M L()()BA v a b b a u AB nk kk n k m i ik ki mi n k ki ik mi ii tr tr 111111=== ==∑∑∑∑∑∑====== Th13 若A 相似于B ,则tr B A tr = .证 由AP P B 1−=可得 ()()A P AP AP PB tr )(tr tr tr 11===−− [注] 因为相似矩阵有相同的特征值(Th14 -- 线性代数课程结论)所以线性变换的特征值与线性空间中基的选取无关4.三角相似Th17 相似于上三角矩阵.n n A × 证 归纳法.n =1时,()11a A =是上三角矩阵⇒A 相似于上三角矩阵. 假设n = k -1时定理成立,下证n = k 时定理也成立.的特征值为k k A ×k λλλ,,,21L ,对应1λ的特征向量为1x 111x Ax λ=⇒. 扩充为C 的基:(列向量)1x k k x x x ,,,21L ()k x x x P ,,,211L =可逆,()k Ax Ax Ax AP ,,,211L = ()k j x b x b x b Ax Ax kkj j j j k j ,,2C 2211L L =+++=⇒∈()=kk k k k k b b b b b b x x x AP L M MM L L L 222211212110,,,λ=−011121111A b b AP P k M L λ 的特征值为1A k λλ,,2L ,由假设知,存在1−k 阶可逆矩阵Q 使得,=−k Q A Q λλM O L *211=000012Q P M L ∆==⇒=−k AP P P P P λλλ∆***21121O M O LL 由归纳法原理,对任意n ,定理成立. 5.Hamilton-Cayley 定理Th18 设,则()()n n n n n n a a a A I A ++++=−=−−×λλλλλϕ∆111det ,L ()n n n n n n O I a A a A a A A ×−−=++++=111L ∆ϕ证 A 的特征值为()()()()n n λλλλλλλϕλλλ−−−=⇒L L 2121,,,.由Th17知,存在可逆矩阵,使得. n n P ×=−n AP P λλM O L *11 ()()()()I AP P I AP P I AP P AP P n λλλϕ−−−=−−−−121111LL O M OLO M OL−−−−=221112*0*****0λλλλλλλλn n−−−0***11n n n λλλλM O O LL OM O L LO M M M O L L−−−=33231*0******00**00**00**00λλλλλλn O n n n =−−−0***11λλλλM O O L 即 ()()O A O P A P =⇒=−ϕϕ1. [注] (1) ()I a A a A a A a A a A n n n n nn 1221111,00−−−−−++++−=≠⇒≠L (2) {}I A A A n n ,,,span 1L −∈例8 ,计算−−=210111111A 501002A A +. 解 ()()()21det )(,2)(250100−−=−=+=λλλλϕλλλA I fϕ除f : ()2210)()()(λλλλϕλb b b g f +++=()λλλϕλ212])()([)(b b g f ++′=′ 由 可得5110022)2(,200)1(,3)1(+==′=f f f−+=+−−=−+=⇒ +=++=+=++2032260622400222242 2002 35110025210115110005110021021210b b b b b b b b b b b()()2210A b A b I b A f O A ++=⇒=ϕ 6.最小多项式:以为根,且次数最低的首1多项式,记作n n A ×()λm . ()()()11≥∂⇒≠=⇒=λλm O I A f f()()()()n m O A A I ≤∂⇒=⇒−=λϕλλϕ18Th ,det例9 ()()()42,0312512332−−=−−−−=λλλϕA ()()()()1:R 11>∂⇒≠+=∈∀+=λλλm O kI A A f k k f()()()()()()()()λλλλλ22242:42f m O I A I A A f f =⇒=−−=−−= Th19 (1) 多项式()λf 满足()()()λλf m O A f ⇒=;(2) ()λm 唯一.证 (1) 反证法.()()()()()()λλλλλλr g m f f m +=⇒/| ()0≡/λr 且()()λλm r ∂<∂ ()()()()A r A g A m A f +=⇒ ()()()λλm r O A r O A m O A f ∂<∂=⇒==,)(,)(()λm ⇒不是A 的最小多项式,矛盾!(2) 设()λm 与()λm~都是A 的最小多项式,则 ()()()()()()()()λλλλλλm m m m O A m m m O A m ~|~~|~1=⇒⇒=⇒=首 Th20 ()λm 与()λϕ的零点相同(不计重数).) 证 Th19(λm ⇒的零点是()λϕ的零点.再设0λ是()λϕ的零点,则有()()()x m x A m x x Ax 000λλ=⇒≠=()()()0000=⇒=⇒=λλm x m O A m , 故也是0λ()λm 的零点.[注] ()()的全部单因式一定含λϕλm ⇒20Th . 但()λm 不一定是()λϕ的全部单因式的乘积. 例如:. ()()()()1,1,10112−≠−= =λλλλϕm A 7.最小多项式求法Th21 对,设n n A ×A I −λ的第i 行第j 列元素的余子式为()λij M ,则 ())(det )(λλλd A I −=m ([])(max )(,λλij j i M d =)例10 设,求−−−−=031251233A )(λm . 解 ,−−−−=−λλλλ31251233A I ()()()42det )(2−−=−=λλλλϕA I , 65211+−=λλM ()2321−=λM , ()2231−=λM212−=λM , , 23222+−=λλM ()2232−=λM()213−−=λM , ()2323−−=λM , 128233+−=λλM ()()8642)()()(,2)(2+−=−−==−=λλλλλλϕλλλd m d 例11 相似于n n A ×()()λλB A n n m m B =⇒×.证11−−=⇒=PBP A AP P B 取)()(λλA m f =, 则()O A m A f A ==)(, 从而有 ()()O P A f P AP P f B f ===−−11)(①()()() |),(|19Th λλλλA B B m m f m 即⇒ 取)()(λλB m g =, 则O B m B g B ==)()(, 从而有 ()()O P B g P PBP g A g ===−−11)(② ()()() |),(|19Th λλλλB A A m m g m 即⇒ ①+②得:()()λλB A m =m .四、对角矩阵Th24 在线性空间V 中,线性变换T 在某基下的矩阵为对角矩阵 n T 有n 个线性无关的特征向量(元素).⇔证 必要性.设V 的基为,且n n x x ,,1L ()()Λn n x x x x ,,,,11L L T =,),,diag(1n λλΛL =,则有()()(n n n n n x x x x Tx Tx λλλλ,,,,,,11111L O L L ==) ),,2,1(n j x Tx j j j L ==⇒λ是T 的n 个线性无关的特征向量 n x x ,,1L ⇒ 充分性.设T 有n 个线性无关的特征向量,即 n y y ,,1L T n j y y j j j ,,2,1,L ==λ取y 为V 的基,则有n y ,,1L n ()()()n n n n y y Ty Ty y y T λλ,,,,,,1111L L L === ()n n y y λλO L 11,, Th25 相似于对角矩阵n n A ×⇔A 有n 个线性无关的特征向量(列向量). 证 A 相似于),,diag(1n λλΛL =()n x x P ,,1L =⇔存在可逆矩阵,使得Λ=−AP P 1 ()()Λn n x x x x A ,,,,11L L =⇔n j x Ax j j j ,,2,1,L ==⇔λ A 有n 个线性无关的特征向量 ⇔n x x ,,1L Th26 有n 个互异的特征值A 相似于对角矩阵.n n A ×⇒ 算法:线性空间V 的基,线性变换T 在该基下的矩阵A 相似于n n x x ,,1L),,diag(1n λλΛL =,确定V 的新基,使得T 在新基下的 n n y y ,,1L 矩阵为Λ.求P 使Λ=−AP P 1,令()()P x x y y n n ,,,,11L L =,则有 ()()()AP x x P x x T y y T n n n ,,,,,,111L L L ==()()Λn n y y AP P y y ,,,,111L L ==−例12 在22R ×中, 给定, 线性变换为=0410B XB TX = , )2R 22×∈∀X (求2R ×的一个基, 使线性变换T 在该基下的矩阵为对角矩阵.解 取22R ×的简单基, 求得T 在该基下的矩阵为22211211,,,E E E E=0100400000010040A 求P 使得Λ=−AP P 1:,−−=2222Λ−−=1010202001010202P 由可得P E E E E B B B B ),,,(),,,(222112114321= −= −= = =1200,0012,1200,00124321B B B B 故在基下的矩阵为T 4321,,,B B B B Λ. 五、不变子空间线性空间V ,子空间V ,线性变换T .1 若对∀,有Tx ,称V 是T 的不变子空间. 11V x ∈1V ∈1[注] V 是T 的不变子空间时,可将T 看作V 中的线性变换.1例 ① 子空间{V x x Tx x ∈==,00λλ}V 是T 的不变子空间.000λλλV x Tx V x ∈=⇒∈∀Q ② 子空间R (T )是T 的不变子空间. ()()T R Tx V T R x ∈⇒⊂∈∀Q ③ 子空间N (T )是T 的不变子空间. ()()T N Tx T N x ∈=⇒∈∀θQ④ 与V 1V 2是T 的不变子空间2121,V V V V +⇒I 亦是T 的不变子空间.1°21221121,,V V Tx V Tx V x V Tx V x V V x I I ∈⇒∈∈∈∈⇒∈∀ 2°22112121,,V x V x x x x V V x ∈∈+=⇒+∈∀ 221121,,V Tx V Tx Tx Tx Tx ∈∈+=⇒ 21V V Tx +∈⇒Th27 线性空间V ,线性变换T ,V 与V 是T 的不变子空间,且n 1221V V V n ⊕=.T 在V 1的基下的矩阵为A 1,,1n x x L 1,T 在V 2的 基下的矩阵为A 2,,1n y y L 2.则T 在V 的基n 21,,,,,11n n y y x x L L 下的矩阵为 .=21A OO AA 证 因为 ()()11111,,,,A x x Tx Tx n n L L =,()()21122,,,,A y y Ty Ty n n L L =所以 ()21,,,,,11n n y y x x T L L ()()[]21,,,,,11n n Ty Ty Tx Tx L L = ()()[]211121,,,,,A y y A x x n n L L =()()[]=211121,,,,,A O O A y y x x n n L L ()A y y x x n n 21,,,,,11L L =[注] 若T 在V 的基下的矩阵,则 n 21,,,,,11n n y y x x L L=21A OO AA ()1,,11n x x L V L ∆=与()2,,12n y y L L ∆=V 都是T 的不变子空间,且V . 2−1V V n ⊕=六、Jordan 标准形1.λ矩阵:()()()()λλλij n n ij a a A ,×=是λ的多项式. (A 的秩:()λA 中不恒等于零的子式的最高阶数.)λ−λ矩阵的初等变换: 行变换 列变换(1) 对调: r j i r ↔ c j i c ↔ (2) 数乘()0≠k : kc i kr i (3) 倍加(多项式是 )(λp ): ()j i r p r λ+ ()j i c p c λ+ 2.行列式因子:()=λk D 最大公因式(){}阶子式的所有k A λ 不变因子: ()()()()()n k D D D d k k k ,,2,1,101L ===−λλλλ初等因子: ()λk d 的不可约因式[注] 考虑−λ矩阵A I −λ可得A 的最小多项式()()()λλλλ1)(−==n n n D D d m例13 ,求−−=201034011A A I −λ的全体初等因子. 解()1,2010340111=−−−−+=−λλλλλD A I 因为(24210430134−=−−−=−−λλλλ与) 互质,所以 ()()()()()23212det ,1−−=−==λλλλλA I D D .不变因子为 ()()()()()21,1,12321−−===λλλλλd d d .全体初等因子为 .()2,12−−λλ 3.初等变换法求初等因子()()多项式是首1)()()(1λλλλk n f f f A→O)(λk f 的不可约因式为()λA 的初等因子例如:在例13中−−−+−→−−−−+=−↔21004301120103401121λλλλλλλc c A I−−−→−−−+−→−+−−+2100)1(00012100)1(00112)1()1(2)3(11212λλλλλλλc c c r r ()()()()−−−−→−−−→−+↔21002100101021000121222332λλλλλλr r r r−−→−−−)2()1(000100012)1()2(223λλλc c c 于是 ()()()()()21,1,12321−−===λλλλλf f f .故A I −λ的全体初等因子为()2,12−−λλ.[注] 设()n n ij a A ×=,称A I −λ的行列式因子(不变因子,初等因子) 为A 的行列式因子(不变因子,初等因子).4.Jordan 标准形设()n n ij a A ×=的全体初等因子为()()()s i ms mi mλλλλλλ−−−,,,,11L L则有 ()()L ===−=−)()()(det 1λλλλλϕn n n d D D A I()()()s i ms mi mn d d D λλλλλλλλλ−−−==L L L 1110)()()(而且 m n m m s i =++++L L 1对于第i 个初等因子构造阶Jordan 块矩阵,以及准对角(i mi λλ−)J J J i m i 矩阵如下:ii m m i ii i J ×=λλλ11O O ,=s J J J J O21称为矩阵A 的Jordan 标准形.Th29 设矩阵A 的Jordan 标准形为J ,则存在可逆矩阵P ,使得 .J AP P =−1例如:在例13中,A 的Jordan 标准形为=2111J . [注] 若A 的全体互异特征值为l λλ,,1L ,表示A 的Jordan 标准形中i m 含i λ的Jordan 块的最高阶数,则()()l ml mm λλλλλ−−=L 11)(.5.特征向量分析法求初等因子设()()A I −=λλϕdet 的一个不可约因式为()r0λλ−,则是A 的k 个初等因子的乘积(r0λλ−) ()00=−⇔x A I λ的基础解系含k 个解向量(证明略去) ⇔ 对应特征值0λ有k 个线性无关的特征向量 ⇔ ()A I n k −−=0rank λ例14 求的Jordan 标准形.=1132231121A) 解2()1()det()(3−−=−=λλλλϕA I 由rank 知,(是A 的2)1(=−A I 3)1−λ224=−个初等因子的乘积,即2)1(−λ和()1−λ的乘积, 故A 的全体初等因子为. 2,1,)12−−−λλλ(A 的Jordan 标准形为.=21111J [注] 在例14中,将,233=a 143=a 改作133=a ,043=a 时,此法失效.6.相似变换矩阵的求法仅适用于初等因子组中()j i j i ≠≠λλ的情形.()()()()i m i i s iX X P P P P ,,,,,11L L == s i J P AP PJ AP i i i ,,2,1,L ==⇔=()()()()()()()()()()i m i i m i i i i i i m i i ii i X X X X X AX AX AX λλλ++=−121121,,,,,,L L ()()()()()()()()()()()()()()()()−=−−=−−=−−=−=−=−−−0 011121211的一个解是的一个解是的非零解是i m i i m i m i m i i i i i i i i i i i i i i i X X A I X X X A I X X A I X X X A I X A I X X A I λλλλλλL L L L L L可以证明:()()()i m i i iX X X ,,,21L 线性无关. 在例13中,2,111==m λ,求()()1211,X X :()−=−−−−=−121,101024012111X A I λ()[]()−=−−−−−−=−−110,110120241012,12111X X A I λ 1,222==m λ, 求()21X :()=−−−=−100,001014013212X A I λ.故.−−=111012001P 例15 解线性微分方程组 ()()()+=′+−=′+−=′3132122112 34ξξξξξξξξξt t t . 解 ()()()()()()()()()()t Ax t x A t t t t x t t t t x =′ −−=′′′=′=:201034011,,321321ξξξξξξ已求得,使得−−=111012001P J AP P =−1 2111=,则有 ()()()[]()[]t x P J t x P t x APP P t x P 11111−−−−−=′⇒=′()()()()()==−t t t t x P t y 3211ηηη∆()()t y J t y =′⇒()()()=′=′+=′33222112 ηηηηηηηt t t ()()()() =+=⇒+=′=⇒t t t t t ec t e t c e c t e c t e c t 23321121122ηηηηη ()()+−−+==3212112ηηηηηηt y P t x ()()()()() ++−−=++=+=⇒tt tt t t e c t c e c t e t c e c t e t c e c t 232132122111122ξξξ (c 为任意常数) 321,,c c [注]})({)(0211∫−+=ttd e c e t ττηητ求线性变换在给定基下的矩阵——方法总结:n 给定线性空间V 的基,设线性变换在该基下的矩阵为n x x ,,1L T A . 一、直接法(1) 计算基象组T ,并求出T 在基下的坐标 )(,),(1n x T x L )(j x n x x ,,1L (列向量)),,2,1(n j j L =β;(2) 写出T 在给定基下的矩阵n x x ,,1L ),,(1n A ββL =. 二、中介法(1) 选取V 的简单基,记作n n εε,,1L ;(要求V 中元素在该基下的坐标能够直接写出)n (2) 写出由简单基改变为给定基的过渡矩阵C (采用直接法); (3) 计算基象组T )(,),(1n T εεL ,并写出T )(j ε在简单基n εε,,1L 下的坐标 (列向量)),,2,1(n j j L =β,以及T 在简单基下的矩阵),,(1n B ββL =;(4) 计算T 在给定基下的矩阵. n x x ,,1L BC C A 1−=三、混合法(1) 选取V 的简单基,记作n n εε,,1L ;(2) 写出由简单基改变为给定基的过渡矩阵C (采用直接法),则有 =),,(1n x x L C n ),,(1εεL(3) 计算基象组T ,并写出T 在在简单基)(,),(1n x T x L )(j x n εε,,1L 下的坐标(列向量)),,2,1(n j j L =β,以及矩阵),,(1n B ββL =,则有))(,),((),,(11n n x T x T x x T L L =B n ),,(1εεL =BC x x n 11),,(−L =(4) 计算T 在给定基下的矩阵.n x x ,,1L B C A 1−=§1.3 欧氏空间与酉空间 一、欧氏空间1.内积:线性空间V ,数域R ,对V y x ∈∀,,定义实数()y x ,,且满足⑴ 交换律 ()()x y y x ,,=⑵ 分配律 ()()()V z z x y x z y x ∈∀+=+,,,, ⑶ 齐次性 ()()R ,,,∈∀=k y x k y kx ⑷ 非负性 ()()θ=⇔=≥x x x x x 0,,0, 称实数(为x 与y 的内积.)y x , 例 ① 线性空间n R 中:()()n n y x ηηξξ,,,,,11L L ==内积1:()n n y x ηξηξ∆++=L 11, 内积2:() ()0,,11>++=h h y x n n h ηξηξ∆L ② 线性空间n m ×R 中:()()n m ij n m ij b B a A ××==, 内积:()()∑∑====mi nj ij ij AB b a B A 1T 1tr ,∆ ③ 线性空间C 中:[b a ,]()()t g t f ,是区间[]b a ,上的连续函数 内积:(()())()()∫=badt t g t f t g t f ∆,2.欧氏空间:定义了内积运算的实线性空间. 设欧氏空间V 的基为有n n n V y x x x ∈∀,,,,1对L()()∑==⇒++=++=n j i j i j i n n n n x x y x x x y x x x 1,1111,,ηξηηξξL L 令 ()j i ij x x ,=a (i )n j ,,2,1,L =则称为基的度量矩阵(Gram Matrix ),此时有n n ij a A ×=)(n x x ,,1L。

线性代数总结(西工大徐仲老师总结精华)

线性代数总结(西工大徐仲老师总结精华)

线性代数总结一、课程特点特点一:知识点比较细碎。

如矩阵部分涉及到了各种类型的性质和关系,记忆量大而且容易混淆的地方较多。

特点二:知识点间的联系性很强。

这种联系不仅仅是指在后面几章中用到前两章行列式和矩阵的相关知识,更重要的是在于不同章节中各种性质、定理、判定法则之间有着相互推导和前后印证的关系。

复习线代时,要做到“融会贯通”。

“融会”——设法找到不同知识点之间的内在相通之处;“贯通”——掌握前后知识点之间的顺承关系。

二、行列式与矩阵第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。

行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算,其中具体行列式的计算又有低阶和阶两种类型;主要方法是应用行列式的性质及按行\列展开定理化为上下三角行列式求解。

对于抽象行列式的求值,考点不在求行列式,而在于、、等的相关性质,及性质(其中为矩阵的特征值)。

矩阵部分出题很灵活,频繁出现的知识点包括矩阵运算的运算规律、、、的性质、矩阵可逆的判定及求逆、矩阵的秩的性质、初等矩阵的性质等。

三、向量与线性方程组向量与线性方程组是整个线性代数部分的核心内容。

相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节;后两章特征值、特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。

向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。

复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。

解线性方程组可以看作是出发点和目标。

线性方程组(一般式)还具有两种形式:(Ⅰ)矩阵形式,其中,,(Ⅱ)向量形式,其中,向量就这样被引入了。

1)齐次线性方程组与线性相关、无关的联系齐次线性方程组可以直接看出一定有解,因为当时等式一定成立;印证了向量部分的一条性质“零向量可由任何向量线性表示”。

西安交大西工大 考研备考期末复习 线性代数 行列式和矩阵运算

西安交大西工大 考研备考期末复习 线性代数 行列式和矩阵运算

例1 设 A 1 1, B 1 2 1 2, 1 1 1 2 1 2
AB BA E, B是A的一个逆矩阵.
例2
设 A 2 1
1 , 0
求A的逆阵.


B a c
b d
是 A 的逆矩阵,
则 AB 2 1 a b 1 0 1 0 c d 0 1
2a c 2b d 1 0 a b 0 1
|
1 P
|
P*
10 6
0 0 0
1 0 1
0 A11 0 A21 0 A31
A12 A22 A32
A13 A23 A33
5 3
A12 0 A12
A22 0 A22
A32 0 A32

12
1 1
1 1
A12
1
1 3 , A22 1
1 0, A32 1
3, 2
于是
1 0 1
1 0
0 2n
1 2
4 1
12
1 2
11
2n1 2n2
4 1
12
1 2
4 4
2n1 2n2
2n1 2n2
2 2
2 2n 2 2n1
22nn111 .
三、矩阵多项式
1. 定义
设 (x) = a0 + a1x + ···+ amxm 为 x 的 m 次多
项式,A 为 n 阶方阵,记
(A) = a0 E + a1 A + ···+ am A m ,
0 0 1 1 2 0 0 1 0
2 0 11 0 0 1 4 3 0 0 1
1 2 0 0 1 0
2 1 0 1 3 4.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 A 1
0 0
2. 设T,S 是V 的线性变换,T2=T, S2=S , ST=TS, 证明
3. 设T, S 是V 上线性变换,且T2=T, S2=S ,证明
(1) R(T)=R(S)TS=S, ST=T
(2) N(T)=N(S)TS=T, ST=S 4. 设P[x]2的线性变换T T(a+bx+cx2)=(4a+6b)+(-3a-5b)x+(-3a-6b+c)x2 求P[x]2的一个基,使T 在该基下的矩阵为对角矩阵.
1 i j ( i , j ) 0 i j
3. 设1,2;1, 2是欧式空间V2两个基, 又
1=1-22, 2=1-2,
(1,1)=1, (1,2)=-1 ,(2,1)=2,(2,2)=0
分别求基1,2与1,2的度量矩阵. 4. 设实线性空间Vn的基1,2,,n,设,Vn
6. 设线性空间V3的线性变换T 在基1,2,3下的 矩阵
1 A 2 2 2 1 2 2 2 1
证明:W=L(2-1, 3-1)是T 的不变子空间.
7. 求下列矩阵的Jordan标准形
1 A 3 2 1 3 2 3 1 4 3 , B 7 2 7 1 1 1 6 0 0 2 1 0 0 1 0
在该基下的矩阵为对角阵 T有n个线性无关的特征
向量。
(5) Hamilton 定理与矩阵的最小多项式
6. 不变子空间
定义: W是V的子空间,T是V的线性变换,如果
对W, 有T()W,则W是T 的不变子空间.
1. 求K22上的线性变换 T:T(X)=AX的值域R(T)与核
N(T)的基与维数, 其中 (S+T)2=S+TST=O.
5. 设V 是C 上的n维线性空间,T是V上的线性变换,
0 T (1 , 2 ,, n ) (1 , 2 ,, n ) 1
0

1 0
其中1,2,,n是V 的一个基. 证明:V 的包含n的T 的不变子空间只有V.
练习题
2 2
1. 在欧式空间R22中的内积为
1 A1 0 1 0 , A2 0 1
( A, B ) aij bij
i 1 j 1

1 ,W L( A1 , A2 ) 1
(1)求W的一个基;
(2)利用W与W的基求R22的一个标准正交基.
2. 已知欧式空间Vn的基1,2,,n的度量矩阵为A, 证明在Vn中存在基1,2,,n,使满足
矩阵论复习
一. 线性空间
1. 线性空间的概念
2. 线性空间的基,维数与坐标(基变换与与坐 标变换) 3. 线性子空间的概念与运算
(1)定义 (2) 运算(交与和,直和)
1. 判断 1,sinx, cosx 的线性相关性.
2. 若1, 2, …, r线性无关,则向量组1= 1+k1r ,
在该基下的坐标分别为(1,,n)T,(1,,n)T; 定义
(1,2,,n 为 线性空间V 的一个基)
4. 线性变换的运算 加法,数乘,乘法,逆,多项式.
5. 化简线性变换的矩阵 (1) 线性变换的特征值与特征向量 (2) 在不同基下的矩阵相似
(3) C上的线性空间V上的T ,一定存在V的一个基使
得T在该基下的矩阵是Jordan矩阵
(4) C 上的线性空间Vn上的T,存在V的一个基使得T
二. 线性变换 1.定பைடு நூலகம் T:VV且T( k+l )=kT( )+lT( )
2. 线性变换的值域与核
R(T)=L(T(1),T(2),T(n)),N(T)={T()=,V}
3.线性变换的矩阵 T (1,2,,n)=(1,2,,n)A
rankT=rankA, nullT=n-rankA
9.设A 是一个6阶方阵,其特征多项式为
()=(+2)2(-1)4, 最小多项式为mA()=(+2)(-1)3,
求出A的若当标准形.
10.对于n 阶方阵A,如果使Am=O成立的最小正整数
为m,则称A是m次幂零矩阵,证明所有n阶n-1次幂
零矩阵彼此相似,并求其若当标准形.
三.欧式空间与酉空间
8. 求下列矩阵的最小多项式
1 A 1 1 2 0 1 a 6 3 , B 3 b a b b a b a
a 1 1 1
a 1 1 a 1
a
V1 ( x1 , x2 , xn ) x1 x2 xn 0, xi K V2 ( x1 , x2 , xn ) xi xi 1 0, xi K
证明 Kn=V1V2
5. 设 S,A,T分别为Knn中对称,反对称,上三角方
阵构成的子空间,证明: Knn=S A , Knn=T A .
1. 定义 ,度量矩阵((,)=xTAy,A是某基的度量矩阵,x
和y分别是 和 在该基下的坐标)
2. 正交基与规范正交基(sthmidt 正交化)
3. 正交补
4. 对称变换与正交变换
(T,)=(,T)T在规范正交基下的矩阵为实对称矩阵. (T,T)=(,) T 在规范正交基下的矩阵为正交矩阵. 5. n阶方阵酉相似于上三角矩阵 n 阶方阵A 酉相似对角矩阵A是正规矩阵.
2= 2+k2r , , r= r (kiK)也线性无关.
3. 求向量组
1 (1,2,1,0) 1 ( 2,1,0,1) 2 ( 1,1,1,1) 2 (1,1,3,7)
分别生成的子空间的交的基和维数.
4. 设 V1, V2 分别是
相关文档
最新文档