2020年安徽省中考模拟数学试题(含答案).
2020年安徽省中考数学模拟试卷(三)
![2020年安徽省中考数学模拟试卷(三)](https://img.taocdn.com/s3/m/3cc62a3b27284b73f3425030.png)
2020年安徽省中考数学模拟试卷(三)一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)6-的绝对值的相反数是()A.6-B.6C.16D.16-2.(4分)计算3a a÷,结果是()A.a B.2a C.3a D.4a3.(4分)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是( )A.B.C.D.4.(4分)设a为正整数,且371a a<<+,则a的值为()A.5B.6C.7D.85.(4分)已知:如图,////AB CD EF,50ABC∠=︒,150CEF∠=︒,则BCE∠的值为( )A.50︒B.30︒C.20︒D.60︒6.(4分)计算222211111a a a aa a a-+-÷-+-+的正确结果为()A.11a+B.1C.2D.1a-7.(4分)我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.“如果设矩形田地的长为x步,那么同学们列出的下列方程中正确的是()A.(12)864x x+=B.(12)864x x-=C.212864x x+=D.2128640x x+-=8.(4分)如图,ABCD 中,AC BC ⊥,3BC =,4AC =,则B ,D 两点间的距离是()A .213B .62C .10D .559.(4分)二次函数2y ax bx c =++的图象如图所示,反比例函数ay x=与正比例函数y bx =在同一坐标系中的大致图象可能是( )A .B .C .D .10.(4分)如图1,已知平行四边形ABCD 中,点E 是AB 边上的一动点(与点A 不重合),设AE x =,DE 的延长线交CB 的延长线于点F ,设BF y =,且y 与x 之间的函数关系图象如图2所示,则下面的结论中不正确的是( )A .2AD =B .当1x =时,6y =C .若AD DE =,则1BF EF ==D .若2BF BC =,则43AE =二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)港珠澳大桥是世界最长的跨海大桥,其中主体工程“海中桥隧”长达35.578公里,整个大桥造价超过720亿元人民币.720亿用科学记数法可表示为 元.12.(5分)二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是 .13.(5分)如图,已知四边形ABCD 内接于O ,AD 是直径,120ABC ∠=︒,3CD =,则弦AC = .14.(5分)如图,抛物线2286y x x =-+-与x 轴交于点A ,B ,把抛物线在x 轴及其上方的部分记作1C ,将1C 向右平移得2C ,2C 与x 轴交于点B ,D ,若直线y x m =+与1C ,2C 共有3个不同的交点,则m 的取值范围是 .三、(本大题共2小题,每小题8分,满分16分) 15.(8分)计算:201()|22|2cos45(3)2π-----︒+-16.(8分)定义一种新运算:观察下列式: 131437=⨯+=3(1)34111-=⨯-= 5454424=⨯+=4(3)44313-=⨯-=(1)请你想一想:a b = ; (2)若a b ≠,那么a b ba (填入“=”或“≠” )(3)若(2)3ab -=,请计算()(2)a b a b -+的值.四、(本大题共2小题,每小题8分,满分16分)17.(8分)2019年2月24日,华为发布旗下最新款折叠屏手机MateX ,如图是这款手机的示意图,当两块折叠屏的夹角为30︒时(即30)ABC ∠=︒,测得AC 之间的距离为40mm ,此时45CAB ∠=︒.求这款手机完全折叠后的宽度AB 长是多少?(结果保留整数,参考数据:2 1.414≈,3 1.732≈,6 2.449)≈18.(8分)已知:在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为(5,4)A ,(0,3)B ,(2,1)C .(1)画出ABC ∆关于原点成中心对称的△111A B C ,并写出点1C 的坐标; (2)画出将111A B C 绕点1C 按顺时针旋转90︒所得的△221A B C .五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,在圆O中,弦8AB=,点C在圆O上(C与A,B不重合),连接CA、⊥,垂足分别是点D、E.CB,过点O分别作OD AC⊥,OE BC(1)求线段DE的长;(2)点O到AB的距离为3,求圆O的半径.20.(10分)为了增强学生体质,某校对学生设置了体操、球类、跑步、游泳等课外体育活动,为了了解学生对这些项目的喜爱情况,在全校范围内随机抽取了若干名学生,对他们最喜爱的体育项目(每人只选一项)进行了问卷调查,将数据进行了统计并绘制成了如图所示的频数分布直方图和扇形统计图(均不完整).(1)在这次问卷调查中,一共抽查了多少名学生?(2)补全频数分布直方图,求出扇形统计图中“体操”所对应的圆心角度数;(3)估计该校1200名学生中有多少人喜爱跑步项目.六、(本题满分12分)21.(12分)如图,一次函数的图象与y 轴交于(0,8)C ,且与反比例函数(0)k y x x=>的图象在第一象限内交于(3,)A a ,(1,)B b 两点. (1)求AOC ∆的面积;(2)若2224a ab b -+=,求反比例函数和一次函数的解析式.七、(本题满分12分)22.(12分)攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/千克,且不超过40元/千克.根据销售情况,发现该芒果在一天内的销售量y (千克)与该天的售价x (元/千克)之间的数量满足如下表所示的一次函数关系. 销售量y (千克) ⋯32.5 35 35.5 38⋯售价x (元/千克)⋯27.5 25 24.5 22⋯(1)某天这种芒果的售价为28元/千克,求当天该芒果的销售量.(2)设某天销售这种芒果获利m 元,写出m 与售价x 之间的函数关系式,如果水果店该天获利400元,那么这天芒果的售价为多少元? 八、(本题满分14分)23.(14分)如图1,在锐角ABC ∆中,D 、E 分别是AB 、BC 的中点,点F 在AC 上,且满足AFE A ∠=∠,//DM EF 交AC 于点M . (1)证明:DM DA =;(2)如图2,点G 在BE 上,且BDG C ∠=∠,求证:DEG ECF ∆∆∽; (3)在图2中,取CE 上一点H ,使得CFH B ∠=∠,若3BG =,求EH 的长.2020年安徽省中考数学模拟试卷(三)参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)6-的绝对值的相反数是()A.6-B.6C.16D.16-【解答】解:6-的绝对值为6,6的相反数为6-,6∴-的绝对值的相反数是6-.故选:A.2.(4分)计算3a a÷,结果是()A.a B.2a C.3a D.4a【解答】解:32a a a÷=.故选:B.3.(4分)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是( )A.B.C.D.【解答】解:A、左视图第一层两个小正方形,俯视图第一层一个小正方形,故A不符合题意;B、左视图和俯视图相同,故B符合题意;C、左视图第一层两个小正方形,俯视图第一层一个小正方形,故C不符合题意;D、左视图是一列两个小正方形,俯视图一层三个小正方形,故D不符合题意;故选:B.4.(4分)设a为正整数,且371a a<+,则a的值为()A.5B.6C.7D.8【解答】解:363749∴6377<<,a 为正整数,且371a a <<+,6a ∴=.故选:B .5.(4分)已知:如图,////AB CD EF ,50ABC ∠=︒,150CEF ∠=︒,则BCE ∠的值为()A .50︒B .30︒C .20︒D .60︒【解答】解:////AB CD EF ,50ABC BCD ∴∠=∠=︒,180CEF ECD ∠+∠=︒; 18030ECD CEF ∴∠=︒-∠=︒, 20BCE BCD ECD ∴∠=∠-∠=︒.故选:C .6.(4分)计算222211111a a a a a a a-+-÷-+-+的正确结果为( )A .11a + B .1 C .2D .1a-【解答】解:原式2(1)(1)111111(1)(1)(1)a a a a a a a a a-+=⨯-+=-+=+--.故选:B .7.(4分)我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.“如果设矩形田地的长为x 步,那么同学们列出的下列方程中正确的是( ) A .(12)864x x +=B .(12)864x x -=C .212864x x +=D .2128640x x +-=【解答】解:设矩形田地的长为x 步,那么宽就应该是(12)x -步. 根据矩形面积=长⨯宽,得:(12)864x x -=. 故选:B .8.(4分)如图,ABCD 中,AC BC ⊥,3BC =,4AC =,则B ,D 两点间的距离是()A .213B .62C .10D .55【解答】解:过D 作DE BC ⊥,ABCD 中,AC BC ⊥, //AD CE ∴, DE BC ⊥, //AC DE ∴,∴四边形ACED 是平行四边形,3CE AD BC ∴===,连接BD ,在Rt BDE ∆中,222264213BD BE DE =+=+=, 故选:A .9.(4分)二次函数2y ax bx c =++的图象如图所示,反比例函数ay x=与正比例函数y bx =在同一坐标系中的大致图象可能是( )A .B .C .D .【解答】解:二次函数2y ax bx c =++的图象开口方向向下, 0a ∴<,对称轴在y 轴的右边, a ∴、b 异号,即0b >.∴反比例函数ay x=的图象位于第二、四象限, 正比例函数y bx =的图象位于第一、三象限. 观察选项,C 选项符合题意. 故选:C .10.(4分)如图1,已知平行四边形ABCD 中,点E 是AB 边上的一动点(与点A 不重合),设AE x =,DE 的延长线交CB 的延长线于点F ,设BF y =,且y 与x 之间的函数关系图象如图2所示,则下面的结论中不正确的是( )A .2AD =B .当1x =时,6y =C .若AD DE =,则1BF EF == D .若2BF BC =,则43AE =【解答】解:ABCD 为平行四边形//AD BC ∴,//AB DCF ADF ∴∠=∠,FBE A ∠=∠ BFE ADE ∴∆∆∽∴BF BEAD AE=设AB a =,AD b = 则BE AB AE a x =-=-∴y a xb x -=aby b x∴=- 图象过点(2,2),(4,0) 4a ∴=,2b =故A 正确; 4a =,2b =82y x∴=- ∴当1x =时,6y =,故B 正确;若AD DE =,则A AED ∠=∠A FBE ∠=∠,AED FEB ∠=∠ FBE FEB ∴∠=∠ BF EF ∴=∴若AD DE =,则总有BF EF =,它们并不总等于1,故C 不正确;若2BF BC =, BF BEAD AE=∴24BC AEBC AE-=解得43AE =故D 正确. 故选:C .二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)港珠澳大桥是世界最长的跨海大桥,其中主体工程“海中桥隧”长达35.578公里,整个大桥造价超过720亿元人民币.720亿用科学记数法可表示为 107.210⨯ 元. 【解答】解:720亿10720000000007.210==⨯. 故答案为:107.210⨯.12.(5分)二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是18.【解答】解:如图,此转盘被平分成了24等份,其中惊蛰、春分、清明有3份,∴指针落在惊蛰、春分、清明的概率是:31248=. 故答案为:1813.(5分)如图,已知四边形ABCD 内接于O ,AD 是直径,120ABC ∠=︒,3CD =,则弦AC = 33 .【解答】解:四边形ABCD 内接于O , 18060D B ∴∠=︒-∠=︒,AD 是直径,90ACD ∴∠=︒, tan 33AC CD D ∴==故答案为:3314.(5分)如图,抛物线2286y x x =-+-与x 轴交于点A ,B ,把抛物线在x 轴及其上方的部分记作1C ,将1C 向右平移得2C ,2C 与x 轴交于点B ,D ,若直线y x m =+与1C ,2C 共有3个不同的交点,则m 的取值范围是1538m -<<-.【解答】解:令22860y x x =-+-=, 即2430x x -+=, 解得1x =或3, 则点(1,0)A ,(3,0)B ,由于将1C 向右平移2个长度单位得2C , 则2C 解析式为22(4)2(35)y x x =--+, 当1y x m =+与2C 相切时, 令212(4)2y x m y x =+==--+, 即21215300x x m -++=, △18150m =--=, 解得1158m =-, 当2y x m =+过点B 时, 即203m =+,23m =-,当1538m -<<-时直线y x m =+与1C 、2C 共有3个不同的交点, 故答案是:1538m -<<-.三、(本大题共2小题,每小题8分,满分16分) 15.(8分)计算:201()22|2cos45(3)2π----︒+-【解答】解:原式422213=-+=.16.(8分)定义一种新运算:观察下列式: 131437=⨯+=3(1)34111-=⨯-= 5454424=⨯+=4(3)44313-=⨯-=(1)请你想一想:a b = 4a b + ; (2)若a b ≠,那么a b ba (填入“=”或“≠” )(3)若(2)3ab -=,请计算()(2)a b a b -+的值. 【解答】解:(1)根据定义可知:4a b a b =+;(2)4a b a b =+,4b a b a =+,a b ≠,ab ba ∴≠;(3)(2)3a b -=,423a b ∴-=, 2 1.5a b ∴-=,()(2)a b a b ∴-+4()(2)a b a b =-++ 63a b =-3(2)a b =- 4.5=.故答案为:4a b +;≠.四、(本大题共2小题,每小题8分,满分16分)17.(8分)2019年2月24日,华为发布旗下最新款折叠屏手机MateX ,如图是这款手机的示意图,当两块折叠屏的夹角为30︒时(即30)ABC ∠=︒,测得AC 之间的距离为40mm ,此时45CAB ∠=︒.求这款手机完全折叠后的宽度AB 长是多少?(结果保留整数,参考数据:2 1.414≈,3 1.732≈,6 2.449)≈【解答】解:过点C 作CD AB ⊥于点D , 40AC mm =,45A ∠=︒,40202()2CD AD mm ∴===,30B ∠=︒,2402()BC CD mm ∴==,∴由勾股定理可知:206()BD mm =,AB AD BD ∴=+202206=+77()mm ≈,18.(8分)已知:在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为(5,4)A ,(0,3)B ,(2,1)C .(1)画出ABC ∆关于原点成中心对称的△111A B C ,并写出点1C 的坐标; (2)画出将111A B C 绕点1C 按顺时针旋转90︒所得的△221A B C .【解答】解:(1)如图所示,△111A B C 即为所求,其中点1C 的坐标为(2,1)--.(2)如图所示,△221A B C 即为所求.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,在圆O 中,弦8AB =,点C 在圆O 上(C 与A ,B 不重合),连接CA 、CB ,过点O 分别作OD AC ⊥,OE BC ⊥,垂足分别是点D 、E .(1)求线段DE 的长;(2)点O 到AB 的距离为3,求圆O 的半径.【解答】解:(1)OD 经过圆心O ,OD AC ⊥, AD DC ∴=,同理:CE EB =,DE ∴是ABC ∆的中位线,12DE AB ∴=, 8AB =,4DE ∴=.(2)过点O 作OH AB ⊥,垂足为点H ,3OH =,连接OA ,OH 经过圆心O ,12AH BH AB ∴==, 8AB =,4AH ∴=,在Rt AHO ∆中,222AH OH AO +=, 5AO ∴=,即圆O 的半径为5.20.(10分)为了增强学生体质,某校对学生设置了体操、球类、跑步、游泳等课外体育活动,为了了解学生对这些项目的喜爱情况,在全校范围内随机抽取了若干名学生,对他们最喜爱的体育项目(每人只选一项)进行了问卷调查,将数据进行了统计并绘制成了如图所示的频数分布直方图和扇形统计图(均不完整).(1)在这次问卷调查中,一共抽查了多少名学生?(2)补全频数分布直方图,求出扇形统计图中“体操”所对应的圆心角度数; (3)估计该校1200名学生中有多少人喜爱跑步项目. 【解答】解:(1)45%80÷=,即在这次问卷调查中,一共抽查了80名学生; (2)喜爱游泳的学生有:8025%20⨯=(人), 补全的频数分布直方图如右图所示,扇形统计图中“体操”所对应的圆心角度数是:103604580︒⨯=︒;(3)10120015080⨯=(人), 答:该校1200名学生中有150人喜爱跑步项目.六、(本题满分12分)21.(12分)如图,一次函数的图象与y 轴交于(0,8)C ,且与反比例函数(0)k y x x=>的图象在第一象限内交于(3,)A a ,(1,)B b 两点. (1)求AOC ∆的面积;(2)若2224a ab b -+=,求反比例函数和一次函数的解析式.【解答】解:(1)作AD y ⊥轴于D ,(3,)A a , 3AD ∴=,一次函数的图象与y 轴交于(0,8)C , 8OC ∴=,11831222AOC S OC AD ∆∴==⨯⨯=;(2)(3,)A a ,(1,)B b 两点在反比例函数(0)ky x x=>的图象上,3a b ∴=,4, 22216a ab b ∴-+=,2223(3)16a a a a ∴-+=, 整理得,24a =, 0a >, 2a ∴=,(3,2)A ∴, 326k ∴=⨯=,设直线的解析式为y mx n =+,∴832n m n =⎧⎨+=⎩,解得:28m n =-⎧⎨=⎩,∴一次函数的解析式为28y x =-+, ∴反比例函数和一次函数的解析式分别为6y x=和28y x =-+. 七、(本题满分12分)22.(12分)攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/千克,且不超过40元/千克.根据销售情况,发现该芒果在一天内的销售量y (千克)与该天的售价x (元/千克)之间的数量满足如下表所示的一次函数关系.(1)某天这种芒果的售价为28元/千克,求当天该芒果的销售量.(2)设某天销售这种芒果获利m 元,写出m 与售价x 之间的函数关系式,如果水果店该天第21页(共23页)获利400元,那么这天芒果的售价为多少元?【解答】解:(1)设该一次函数解析式为(0)y kx b k =+≠,则 25352238k b k b +=⎧⎨+=⎩, 解得160k b =-⎧⎨=⎩, 60(1540)y x x ∴=-+,∴当28x =时,32y =,答:芒果售价为28元/千克时,当天该芒果的销售量为32千克;(2)由题易知2(10)(60)(10)70600m y x x x x x =-=-+-=-+-, 当400m =时,则270600400x x -+-=,解得,120x =,250x =,1540x ,20x ∴=,答:这天芒果的售价为20元.八、(本题满分14分)23.(14分)如图1,在锐角ABC ∆中,D 、E 分别是AB 、BC 的中点,点F 在AC 上,且满足AFE A ∠=∠,//DM EF 交AC 于点M .(1)证明:DM DA =;(2)如图2,点G 在BE 上,且BDG C ∠=∠,求证:DEG ECF ∆∆∽;(3)在图2中,取CE 上一点H ,使得CFH B ∠=∠,若3BG =,求EH 的长.【解答】(1)证明:如图1所示,//DM EF,∴∠=∠,AMD AFE∠=∠,AFE AAMD A∴∠=∠,∴=.DM DA(其他解法酌情给分)(2)证明:如图2所示,D、E分别是AB、BC的中点,∴,//DE AC∴∠=∠,DEG CBDE A∠=∠,∠=∠,AFE A∴∠=∠,BDE AFEBDG GDE C FEC∴∠+∠=∠+∠,∠=∠,BDG CGDE FEC∴∠=∠,∽.∴∆∆DEG ECF(3)如图3所示,第22页(共23页)BDG C DEB∠=∠=∠,B B∠=∠,BDG BED∴∆∆∽,∴BD BGBE BD=,2BD BG BE∴=,AFE A∠=∠,CFH B∠=∠,180180C A B AFE CFH EFH∴∠=︒-∠-∠=︒-∠-∠=∠,又FEH CEF∠=∠,EFH ECF∴∆∆∽,∴EH EFEF EC=,2EF EH EC∴=,//DE AC,//DM EF,∴四边形DEFM是平行四边形,EF DM DA BD∴===,BG BE EH EC∴=,BE EC=,3EH BG∴==.第23页(共23页)。
(安徽卷) 2020年中考数学第二次模拟考试(参考答案)
![(安徽卷) 2020年中考数学第二次模拟考试(参考答案)](https://img.taocdn.com/s3/m/b6ce54e71eb91a37f0115c12.png)
2
4
∴3b=5c,∴ b 5 . c3
数学 第 6页(共 6页) 6
2
∴AE=b﹣CE=b﹣ 1 (b+c)= 1 (b﹣c),
2
2
11
1
∴EF=AF﹣AE= b﹣ (b﹣c)= c,
22
2
∴DF=EF;
②过点 A 作 AP⊥BG 于 P,如图 1 所示:
∵DF 是△CAB 的中位线, ∴DF∥AB, ∴∠DFC=∠BAC, ∵∠DFC=∠DEF+∠EDF,EF=DF, ∴∠DEF=∠EDF, ∴∠BAP+∠PAC=2∠DEF, ∵ED⊥BG,AP⊥BG, ∴DE∥AP, ∴∠PAC=∠DEF, ∴∠BAP=∠DEF=∠PAC, ∵AP⊥BG, ∴AB=AG=4, ∴CG=AC﹣AG=6﹣4=2; (2)连接 BE、DG,如图 2 所示:
1
∴S△AOC= 2 ×OC×AD= 2 ×8×3=12;
(2)∵A(3,a),B(1,b)两点在反比例函数 y k (x>0)的图象上, x
∴3a=b.
∵ a2 2ab b2 =4,
∴|a-b|=4.
∵由图象可知 a<b,
∴a-b=-4.
数学 第 3页(共 6页) 3
a b 4
a 2
∴ 3a b ,解得 b 6
∴A(3,2),B(1,6).
把 A 点的坐标代入 y k (x>0)得, 2 k ,
x
3
∴k=6.
∴反比例函数的解析式为 y 6 (x>0); x
设一次函数的解析式为 y=mx+n,
∵一次函数的图象经过点 A,B,
m n 6 ∴ 3m n 2 .
m 2 解得 n 8 .
安徽省2020年数学中考模拟试题(含详细答案)
![安徽省2020年数学中考模拟试题(含详细答案)](https://img.taocdn.com/s3/m/1972959676a20029bc642d32.png)
45°30°1CABD安徽省2020年九年级中考数学模拟试卷一、选择题(本题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的.1. 2a=,则实数a的值是A. -2B. 12-C. ±2 D. 22.如图是由五个相同的小正方块搭成的几何体,其俯视图是3.下列运算正确的是A.235a b ab+= B. 23626()a a-=- C.236a a a⋅= D.21224()aa--=4.一副三角板如图放置,若AB∥CD,则∠1的度数为A. 75°B. 70°C. 65°D. 60°5.一元二次方程2232=+x x的根的情况是A. 无实数根B. 有两个不相等的实数根C. 有唯一实数根D. 有两个相等的实数根6.不等式组⎩⎪⎨⎪⎧2x-1≥1,x-2<0的解集在数轴上表示为()7. 用总长10m的铝合金型材做一个如图所示的窗框(不计损耗),窗框的外围是矩形,上部是两个全等的正方形,窗框的总面积为3.52m2(材料的厚度忽略不计).若设小正方形的边长为x m,下列方程符合题意的是A.2(107) 3.52x x-=B.1072 3.522xx-⋅=C.1072() 3.522xx x-+=D.222(109) 3.52x x x+-=8. 如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC=3,则CD的长是A. 2B. 2.5C. 2 2D.3229. 二次函数2y ax bx c=++的图象如图所示,则一次函数y bx a=+与反比例函数a b cyx++=在同一坐标系内的图象大致为第4题图第8题图第7题图NMD 10. 已知,平面直角坐标系中,直线13y x =+与抛物线22122y x x =-+的图象如图,点P 是2y 上的一个动点,则点P 到直线1y 的最短距离为A.322 B. 524C. 2D.324二、填空题(本大题共4小题,每小题5分,满分20分) 11.64的立方根是 ;12.若37x =264x x -+的值是 ;13. 如图,AB 与⊙O 相切于点A ,BO 与⊙O 相交于点C CDA =27°,则∠B 的大小是 ;14.如图,点M 是正方形ABCD 内一点,△MBC 是等边三角形,连接AM 、MD ,对角线BD 交CM 于点N ,现有以下结论: ①∠AMD =150° ;②2MA MN MC =⋅;③∆∆-=23ADM BMC S S 3DN BN =其中正确的结论有 (填写序号).三、(本大题共2小题,每小题8分,满分16分)15.计算:13123tan 308sin 602-︒-︒.16.先化简,再求值:21142()111aa a a +-÷-+-,其中22a =-四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长均为1的正方形网格中有一个△ABC ,顶点A 、B 、C 及点O 均在格点上,请按要求完成以下操作或运算:(1)将△ABC 向上平移4个单位,得到△A 1B 1C 1(不写作法,但要标出字母); (2)将△ABC 绕点O 旋转180°,得到△A 2B 2C 2(不写作法,但要标出字母); (3)求点A 绕着点O 旋转到点A 2所经过的路径长l .xyy 1=x+3y 2=-12x 2+2x–1–2–3–41234–1–2–3–41234OP第13题图第14题图第17题图18.如图(1)是一个晾衣架的实物图,支架的基本图形是菱形,MN 是晾衣架的一个滑槽,点P 在滑槽MN 上、下移动时,晾衣架可以伸缩,其示意图如图(2)所示,已知每个菱形的边长均为20cm ,且AB =CD =CP =DM =20cm ,当点P 向下滑至点N 处时,测得∠DCE =60°时,求滑槽MN 的长度和此时点A 到直线DP 的距离(精确到0.1cm ,参考数值:2 1.414,3 1.732==).五、(本大题共2小题,每小题10分,满分20分)19.图①是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图①倒置后与原图①拼成图②的形状,这样我们可以算出图①中所有圆圈的个数为1+2+3+…+n =n (n +1)2.如果图③和图④中的圆圈都有13层.(1)我们自上往下,在图③的每个圆圈中填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在图④的每个圆圈中填上一串连续的整数-23,-22,-21,-20,…,则最底层最右边这个圆圈中的数是 ;(3)求图④中所有圆圈中各数之和(写出计算过程).20. 如图,已知⊙O 中,AC 为直径,MA 、MB 分别切⊙O 于点A 、B . (1)如图①,若∠BAC =23º,求∠AMB 的大小; (2)如图②,过点B 作BD ∥MA ,交AC 于点E ,交⊙O 于点D ,若BD =MA ,求∠AMB 的大小.第18题图第20题图六、(本题满分12分)21.张老师为了解本校九年级学生完成数学作业的具体情况,随机选择部分学生进行了跟踪调查,并将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)C类中女生有______名,D类中男生有______名,将下面条形统计图补充完整;(2)若该校九年级共有女生180名,则九年级女生完成数学作业达到很好和较好的共约多少人?(3)为了共同进步,张老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好性别相同的概率.七、(本题满分12分)22.随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择.小李从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E 中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x地铁站 A B C D Ex(千米)891011.513y1(分钟)1820222528(1)求y1关于x的函数关系式;(2)若小李骑单车的时间y2(单位:分钟)与x满足关系式2278=++y ax bx,且此函数图象的对称轴为直线x=11,当小李选择在C站出地铁时,还需骑单车18分钟才能到家.试求y2与x的函数关系式;(3)试求小李应选择在哪一站出地铁,才能使他从文化宫回到家所需的总时间最短?并求出最短时间(其它环节时间忽略不计).八、(本题满分14分)23.如图1,在△ABC中,以线段AB为边作△ABD,使得AD=BD,连接DC,再以DC为边作△CDE,使得DC=DE,∠CDE=∠ADB.过E作EF∥BC,且EF=BC,连接AE、AF.(1)求证:AE=BC;(2)如图2,若∠ADB=90°,求∠F AE的度数;(3)在(2)的条件下,若AB=2,AD∶CD=1∶2,S△AEF=3S△CDE,求AF的长.图2第23题图图1安徽省2019年数学中考模拟试卷参考答案和评分标准一、二、 11、4; 12、2; 13、36°;14、①②④(只写出一个正确结论得1分,两个得3分,填了错误的序号不得分)三、15.解:原式=1331+322322⨯-+-……………………………4分=312-……………………………8分16. 解:原式=11(1)(1)()112(2)a a a a a +--⋅-++………………4分 =112(2)2(2)a a a a +--++=212(2)2a a =++ 当x =-2+2时,原式=1-2+2+2=22.…………8分四、17.解:(1)△A 1B 1C 1如图所示. ……3分(2)△A 2B 2C 2如图所示.……6分(3)l =180π×4180=4π. …………8分18.解:当点P 向下滑至点N 处时,如图中,作于H .,,,即,,,.滑槽MN 的长度为.…………5分(说明:未按要求取近似值一律扣1分)..题号 1 2 3 4 5 6 7 8 9 10 答案CDDABCBCDB根据题意,此时点A到直线DP的距离是.…………8分五、19.解:(1)79…………3分(2)67…………6分(3)图④中共有91个数,分别为-23,-22,-21,…,66,67,所以图④中所有圆圈中各数的和为(-23)+(-22)+…+(-1)+0+1+2+…+67=-(1+2+3+…+23)+(1+2+3+…+67)=-23×242+67×682=2002.…………10分说明:方法不唯一,正确即得分.20、解:、MB分别切于A、B,,,.…………4分连接,,四边形BMAD是平行四边形,,切于A,,,,过O,,,、MB分别切于A、B,,,是等边三角形,.…………10分21、解:(1)类中女生有:名,D类中男生有人,条形统计图补充完整如图所示;…………4分(每项1分)(2)根据题意得:618010810⨯=名答:九年级女生完成数学作业达到很好和较好的共约108人;…………7分(3)根据题意画图如下:由树状图可得共有6种可能的结果,其中两名同学性别相同的结果有3种,所以所选两位同学恰好性别相同的概率是3162=…………12分七、22、解:(1)设y1=kx+b,将(8,18),(9,20)代入得⎩⎪⎨⎪⎧8k+b=18,9k+b=20,解得⎩⎪⎨⎪⎧k=2,b=2.故y1关于x的函数解析式为y1=2x+2. …………………………4分(2)由题意得:112100107818baa b⎧-=⎪⎨⎪++=⎩,解得,1211ab⎧=⎪⎨⎪=-⎩,∴22111782y x x=-+…………………………8分(3)设小李从文化宫回到家所需的时间为y分钟,则y=y1+y2=2x+2+12x2-11x+78=12x2-9x+80=12(x-9)2+39.5,∵12a=>0,∴当x=9时,y有最小值,y最小=39.5,故小李应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.…………………………12分八、23、(1)证明:∵∠ADB=∠CDE,∴∠ADB+∠BDE=∠CDE+∠BDE,即∠ADE=∠BDC,∵AD =BD ,CD =DE , ∴△ADE ≌△BDC ,∴AE =BC ;………………4分(2)解:设AE 交BC 于点G ,DE 交BC 于点H , 由(1)得△ADE ≌△BDC ,∴∠AED =∠BCD ,AE =BC , ∴AE =EF ,∵∠DHC =∠GHE , ∴∠HGE =∠HDC , ∵EF ∥BC ,∴∠GEF =∠EGH ,∴∠AEF =∠EDC =∠ADB =90°,∴△AEF 是等腰直角三角形,∠FAE =45°;………………9分 (3)由(2)知∠AEF =∠ADB =∠CDE =90°, 在△ABD 和△CED 中,AD =BD ,CD =DE ,∠ADB =∠CDE , ∴△ABD ∽△CED , ∴AB CE =AD CD =12, ∵AB =2,∴CE =4, 在△AEF 和△CDE 中, ∵∠AEF =∠CDE ,AE CD =EFDE ,∴△AEF ∽△CDE , ∴S △AEF S △CDE=(AF CE )2,即(AF4)2=3,解得AF =4 3.………………14分说明:方法不唯一,正确即得分.。
2020年安徽省中考数学一模试卷(含答案解析)
![2020年安徽省中考数学一模试卷(含答案解析)](https://img.taocdn.com/s3/m/667aca90a8956bec0875e353.png)
2020年安徽省中考数学一模试卷一、选择题(本大题共9小题,共36.0分)1.下列四个选项中,既是轴对称又是中心对称的图形是()A. 矩形B. 等边三角形C. 正五边形D. 正七边形2.在有理数2,0,−1,−1中,最小的是()2A. 2B. 0C. −1D. −123.改革开放40年,中国教育呈现历史性变化.其中,全国高校年毕业生人数从16.5万增长到820万,40年间增加了近50倍.把数据“820万”用科学记数法可表示为()A. 82×104B. 82×105C. 8.2×105D. 8.2×1064.已知x=1是关于x的一元一次方程2x−a=0的解,则a的值为()A. −1B. −2C. 1D. 25.如图,直线a//b,等边三角形ABC的顶点B在直线b上,∠CBF=20°,则∠ADG的度数为()A. 20°B. 30°C. 40°D. 50°6.二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc>0;②2a+b=0;③9a+3b+c<0;④b2−4ac<0⑤当m≠1时,a+b>am2+bm;其中正确的有()A. 2个B. 3个C. 4个D. 5个7.9.某县以“重点整治环境卫生”为抓手,加强对各乡镇环保建设的投入,计划从2017年起到2019年累计投入4250万元,已知2017年投入1500万元,设投入经费的年平均增长率为x,根据题意,下列所列方程正确的是()A. 1500(1+x)2=4250B. 1500(1+2x)=4250C. 1500+1500x+1500x2=4250D. 1500(1+x)+1500(1+x)2=4250−15008.如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE,则EF等于()A. b3a2B. a3b2C. b4a3D. a4b39.如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ//BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是()A. B.C. D.二、填空题(本大题共5小题,共24.0分)10.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=4,点P是线段AB上一动点.将△ABC绕点C按顺时针方向旋转,得到△A1B1C.点E是A1C上一点,且A1E=2,则PE长度的最小值为______,最大值为______.11.分解因式:xy−x=______.12.不等式组{3x+4≥0,12x−24≤1的所有整数解的积为________.13.一抛物线和抛物线y=−2x2的形状相同、开口方向相反,顶点坐标是(1,3),则该抛物线的解析式为_______.14.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB的距离的最小值是___________三、计算题(本大题共1小题,共8.0分)15.计算:|√3−2|+(π−2019)0−(−13)−1+3tan30°四、解答题(本大题共8小题,共82.0分)16.《九章算术》是我国古代第一部数学专著,成于公元一世纪左右.此专著中有这样一道题:今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价几何?这道题的意思是:今有若干人共买一头羊.若每人出5文钱,则还差45文钱;若每人出7文钱,则仍然差3文钱.求买羊的人数和这头羊的价格.17.如图,在平面直角坐标系中,△OAB的三个顶点的坐标分别为A(6,3),B(0,5).(1)画出△OAB绕原点O逆时针方向旋转90°后得到的△OA1B1;(2)画出△OAB关于原点O的中心对称图形△OA2B2;(3)直接写出∠OAB的度数.18.如图,是由边长相等的小正方形组成的几何图形,S n(n≥1)表示第n个图形中小正方形的个数.(1)观察下列图形与等式得关系,并填空:(2)根据(1)中的两个结论填空:S12=______,S n=______(用含有n的代数式表示)19.图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度ℎ(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)20.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为点E,连接DE,点F为线段DE上一点,且∠AFE=∠B.(1)判断△ADF_________△DEC(填“相似”、“不相似”或“无法判断”);(2)若AB=4,AD=3√3,AE=3.求AF的长.21.如图,在△ABC中,AD⊥BC,AE平分∠BAC交BC于点E.(1)∠B=30°,∠C=70°,求∠EAD的大小;(2)若∠B<∠C,则2∠EAD与∠C−∠B是否相等?若相等,请说明理由.22.某饮料厂生产一种饮料,经测算,用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.(1)根据表中提供的数据,求y与x的函数关系式;当水价为每吨10元时,1吨水生产出的饮料所获的利润是多少?(2)为节约用水,这个市规定:该厂日用水量不超过20吨时,水价为每吨4元;日用水量超过20吨时,超过部分按每吨40元收费.设该厂日用水量为t吨,当日所获利润为W元,求W与t 的函数关系式;已知该厂原来日用水量不少于20吨,后来该厂加强管理,积极节水,使日用水量不超过30吨,但仍不少于20吨,求该厂的日利润的取值范围.23.22.如图,已知四边形ABCD是菱形,点E是对角线AC上一点,连接BE并延长交AD于点F,交CD的延长线于点G,连接DE.(1)ΔABE≌ΔADE;(2)EB2=EF⋅EG;(3)若菱形ABCD的边长为4,∠ABC=60∘,AE:EC=1:3,求BG的长.【答案与解析】1.答案:A解析:解:A、矩形是轴对称图形,也是中心对称图形,故此选项正确;B、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;C、正五边形是轴对称图形,不是中心对称图形,故此选项错误;D、正七边形是轴对称图形,不是中心对称图形,故此选项错误.故选:A.根据轴对称图形与中心对称图形的概念求解.本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.答案:C解析:此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.解:根据有理数比较大小的方法,可得−1<−1<0<2,2故最小的有理数是−1.故选:C.3.答案:D解析:解:820万=8200000=8.2×106故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.答案:D解析:本题考查了一元一次方程的解,解一元一次方程,解题的关键是:熟记解一元一次方程的一般步骤.将x=1代入方程2x+a=3,然后解关于a的一元一次方程即可.解:∵x=1是关于x的方程2x−a=0的解,∴2×1−a=0,解得a=2.故选D.5.答案:C解析:解:∵△ABC是等边三角形,∴∠ACB=60°,过C作CM//直线a,∵直线a//直线b,∴直线a//直线b//CM,∵∠ACB=60°,∠1=20°,∴∠1=∠MCB=20°,∴∠2=∠ACM=∠ACB−∠MCB=60°−20°=40°,∴∠ADG=∠2=40°.故选C.过C作CM//直线a,根据等边三角形性质求出∠ACB=60°,根据平行线的性质求出∠1=∠MCB,∠2=∠ACM,即可求出答案.本题考查了平行线的性质,等边三角形的性质的应用,解此题的关键是能正确作出辅助线,注意:两直线平行,内错角相等.6.答案:B解析:【试题解析】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y 轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y 轴交点.抛物线与y轴交于(0,c).=1及函数的最大值逐一判断可根据抛物线的开口方向、x=0、x=3时的函数值、对称轴x=−b2a得.解:∵抛物线开口向下,∴a<0,>0,∵−b2a∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,∴结论①错误;=1,∵x=−b2a∴b=−2a,即2a+b=0∴结论②正确;∵当x=−1和x=3时,函数值小于0,∴y=9a+3b+c<0,∴结论③正确;∵二次函数与x轴有两个不同交点,则Δ>0,即b2−4ac>0∴④错误;由图象知当x=1时函数取得最大值,∴当m≠1时,am2+bm+c<a+b+c,即a+b>m(am+b),故⑤正确;故选:B.7.答案:D解析:本题考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.解:设2017−2019年投入经费的年平均增长率为x,则2018年投入1500(1+x)万元,2019年投入1500(1+x)2万元,根据题意得1500(1+x)+1500(1+x)2=4250−1500.故选D.8.答案:C解析:本题考查了相似三角形的判定与性质,本题中相似三角形比较容易找到,难点在于根据对应边成比例求解线段的长度,注意仔细对应,不要出错.依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.解:∵AB=AC,∴∠ABC=∠ACB,又∵∠CBD=∠A,∴△ABC∽△BDC,又∵∠DCE=∠CBD,∴△BCD∽△CDE,又∵∠EDF=∠DCE,∴△CDE∽△DFE,∴ACBC =BCDC,CDBD=DECD,EFDE=DECE,且易知BC=BD=b,EC=DC,∴CD=b2a ,DE=b3a2,EF=b4a3,故选C.9.答案:C解析:本题考查了动点问题的函数图象,等腰直角三角形的判定与性质,三角形的面积,二次函数图象,求出点Q到AD的距离,从而列出y与x的关系式是解题的关键.判断出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出AE,BE,然后表示出PE,QE,再求出点Q到AD的距离,然后根据三角形的面积公式表示出y与x的关系式,再根据二次函数图象解答.解:∵∠ABE=45°,∠A=90°,∴△ABE是等腰直角三角形,∴AE=AB=2,BE=√2AB=2√2,∵BE=DE,PD=x,∴PE=DE−PD=2√2−x,∵PQ//BD,BE=DE,∴QE=PE=2√2−x,又∵△ABE是等腰直角三角形,∴点Q到AD的距离=√22(2√2−x)=2−√22x,∴△PQD的面积y=12x(2−√22x)=−√24(x−√2)2+√22,纵观各选项,只有C选项符合.故选C.10.答案:2√3−24√3+2解析:解:∵∠C=90°,∠ABC=30°,AC=4,∴BC=4√3∵将△ABC绕点C按顺时针方向旋转,得到△A1B1C∴AC=A1C=4,且A1E=2∴CE=2∴点E在以C为圆心,CE为半径的圆上,如图,当点C,点E,点P共线,且PC⊥AB时,PE长度最小,∵PC⊥AB,∠ABC=30°∴PC=12BC=2√3∴PE最小值为2√3−2当点P与点B重合,且点E在PC的延长线上时,PE长度最大,∴PE最大值为:4√3+2故答案为:2√3−2,4√3+2由直角三角形的性质可得BC=4√3,由旋转的性质可得AC=A1C=4,可得CE=2,即点E在以C 为圆心,CE为半径的圆上,则当点C,点E,点P共线,且PC⊥AB时,PE长度最小,当点P与点B重合,且点E在PC的延长线上时,PE长度最大.本题考查了旋转的性质,直角三角形的性质,确定点E的轨迹是本题的关键.11.答案:x(y−1)解析:解:xy−x=x(y−1).故答案为:x(y−1).直接提取公因式x,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.答案:0解析:本题考查解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相乘即可求解.解:{3x+4≥0①12x−24≤1②,解不等式①得:x≥−43,解不等式②得:x≤50,∴不等式组的整数解为−1,0,1, (50)所以所有整数解的积为0,故答案为0.13.答案:y=2(x−1)2+3解析:本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.直接利用顶点式写出抛物线解析式.解:抛物线解析式为y=2(x−1)2+3.故答案为y=2(x−1)2+3.14.答案:1.2解析:本题考查翻折变换、最短问题、相似三角形的判定和性质、勾股定理.垂线段最短等知识,解题的关键是正确找到点P位置,属于中考常考题型.延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到AFAB =FMBC求出FM即可解决问题.解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.(点P在以F为圆心CF为半径的圆上,当FP⊥AB时,点P到AB的距离最小)∵∠A=∠A,∠AMF=∠C=90°,∴△AFM∽△ABC,∴AFAB =FMBC,∵CF=2,AC=6,BC=8,∴AF=4,AB=√AC2+BC2=10,∴410=FM8,∴FM=3.2,∵PF=CF=2,∴PM=1.2∴点P到边AB距离的最小值是1.2.故答案为1.2.15.答案:解:原式=2−√3+1−(−3)+3×√3=2−√3+1+3+√3=6.3解析:直接利用绝对值的性质、零指数幂、负整数指数幂的性质以及特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.16.答案:解:设买羊的人数为x人,则这头羊的价格是(5x+45)文,也可表示为(7x+3)文,所以根据题意得:5x+45=7x+3,解得:x=21,所以7x+3=150,经检验,符合题意,答:买羊的人数为21人,这头羊的价格是150文.解析:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.设买羊的人数为x人,则这头羊的价格是(5x+45)文,也可表示为(7x+3)文,根据羊的价格不变,即可得出关于x的一元一次方程,解之即可得出结论.17.答案:解:(1)△OA1B1如图所示;(2)△OA2B2如图所示;(3)如图,∠OAB为等腰直角三角形的一个锐角,所以,∠OAB=45°.解析:(1)根据网格结构找出点A、B绕原点O逆时针方向旋转90°后的对应点A1、B1的位置,然后与点O顺次连接即可;(2)根据网格结构找出点A、B关于原点O的中心对称点A2、B2的位置,然后与点O顺次连接即可;(3)根据网格结构可以作出以∠OAB为锐角的等腰直角三角形,然后根据等腰直角三角形的性质解答.本题考查了利用旋转变换作图,等腰直角三角形的性质,熟练掌握网格结构准确找出对应点的位置是解题的关键.18.答案:(1)n,n2;(2)78;n2+n.2解析:解:(1)S n−S n−1=n,S n+S n−1=n2,故答案为n,n2;(2)由S n−S n−1=n,S n+S n−1=n2,S12−S11=12,S12+S11=122,2S12=12+122=156,∴S12=78;∵S n−S n−1=n,S n+S n−1=n2,∴2S n=n2+n,S n=n2+n,2.故答案为78;n2+n2(1)观察规律发现S n−S n−1=n,S n+S n+1=n2;(2)由(1)可得S12−S11=12,S12+S11=122,将两式相加,可得S12=78,同理将S n−S n−1=n,S n+S n+1=n2两式相加求出S n.此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.19.答案:解:过C点作FG⊥AB于F,交DE于G.∵CD与地面DE的夹角∠CDE为12°,∠ACD为80°,∴∠ACF=∠FCD−∠ACD=∠CGD+∠CDE−∠ACD=90°+12°−80°=22°,∴∠CAF=68°,在Rt△ACF中,CF=AC⋅sin∠CAF=0.8×0.93≈0.744m,在Rt△CDG中,CG=CD⋅sin∠CDE=1.6×0.21≈0.336m,∴FG=FC+CG=0.744+0.336≈1.1m.答:故跑步机手柄的一端A的高度约为1.1m.解析:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是用数学知识解决实际问题.过C点作FG⊥AB于F,交DE于G.在Rt△ACF中,根据三角函数可求CF,在Rt△CDG 中,根据三角函数可求CG,再根据FG=FC+CG即可求解.20.答案:解:(1)相似;(2)∵四边形ABCD是平行四边形,∴AD//BC CD=AB=4又∵AE⊥BC,∴AE⊥AD;在Rt△ADE中,DE=√AD2+AE2=√(3√3)2+32=6,∵△ADF∽△DEC,∴ADDE =AFCD;∴3√36=AF4,∴AF=2√3.解析:本题主要考查的是平行四边形的性质及相似三角形的判定和性质.(1)△ADF和△DEC中,易知∠ADF=∠CED(平行线的内错角),而∠AFD=∠C,由此可判定两个三角形相似;(2)在Rt△ADE中,即可求出DE的值;从而根据相似三角形得出的成比例线段求出AF的长.解:(1)∵四边形ABCD是平行四边形,∴AD//BC,AB//CD,∴∠ADF=∠CED,∵∠AFD+∠AFE=180°,∠ABC+∠BCD=180°,∠AFE=∠B,∴∠AFD=∠BCD,∴△ADF∽△DEC.故答案为相似;(2)见答案.21.答案:解:(1)∵∠B=30°,∠C=70°,∴∠BAC=180°−∠B−∠C=80°,∵AE平分∠BAC,∴∠EAC=12∠BAC=40°,∵AD是高,∠C=70°,∴∠DAC=90°−∠C=20°,∴∠EAD=∠EAC−∠DAC=40°−20°=20°;(2)由(1)知,∠EAD=∠EAC−∠DAC=12∠BAC−(90°−∠C)①把∠BAC=180°−∠B−∠C代入①,整理得,∠EAD=12∠C−12∠B,∴2∠EAD =∠C −∠B .解析:本题利用了三角形内角和定理、角的平分线的定义、直角三角形的性质求解.(1)由三角形内角和定理可求得∠BAC 的度数,在Rt △ADC 中,可求得∠DAC 的度数,AE 是角平分线,有∠EAC =12∠BAC ,故∠EAD =∠EAC −∠DAC ;(2)由(1)知,用∠C 和∠B 表示出∠EAD ,即可知2∠EAD 与∠C −∠B 的关系.22.答案:解:(1)设用1吨水生产的饮料所获利润y(元)与1吨水的价格x(元)的一次函数式为y =kx +b ,(k ≠0)根据题意得:一次函数y =kx +b 过(4,200)和(6,198),∴{198=6k +b 200=4k +b , 解得{k =−1b =204, ∴所求一次函数式是y =−x +204,当x =10时,y =−10+204=194(元);答:y 与x 的函数关系式为y =−x +204,当水价为每吨10元时,1吨水生产出的饮料所获的利润是194元.(2)当1吨水的价格为40元时,所获利润是:y =−40+204=164(元).∴日利润W 与t 的函数关系式是W =200×20+(t −20)×164,即W =164t +720,∵20≤t ≤30, 当t =20时,W =164t +720=4000;当t =30时,W =164t +720=5640;∴4000≤w ≤5640.解析:本题考查的是用一次函数解决实际问题,注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y 随x 的变化,结合自变量的取值范围确定最值.(1)用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.可以设出一次函数关系式,然后根据表中所给的条件(4,200),(6,198)可求出解析式,即可求出结果;(2)根据函数式可求出一吨水价是40元的利润,然后根据题意可得W =200×20+164(t −20),把t =20与t =30代入计算即可求出日利润的取值范围.23.答案:(1)证明见解析;(2)证明见解析;(3)BG =4√13.解析:(1)用SAS证明即可;(2)先证明△EDF∽△EGD,得到ED2=EF⋅EG,代换ED=EB即可;(3)根据已知先求出BE和EF值,再根据EB2=EF⋅EG求出EG值,最后用BG=BE+EG计算即可.【详解】解:(1)∵ABCD是菱形,∴AB=AD,∠BAC=∠DAC,∵AE=AE,∴ΔABE≌ΔADE;(2)∵AB//CG,∴∠ABG=∠EGD,由(1)得ΔABE≌ΔADE,∴∠ABG=∠ADE,∴EGD=∠ADE,∵∠FED=∠DEG,∴ΔEDF∽ΔEGD,∴EDEG =EFED,∴ED2=EF⋅EG,由ΔABE≌ΔADE得ED=EB,∴EB2=EF⋅EG;(3)∵菱形ABCD,∴AB=BC,∵∠ABC=60∘,∴ΔABC为等边三角形,∴AC=AB=4.连接BD交AC于点O,则AC⊥BD,OA=OC=2,OB=2√3,∵AE:EC=1:3,∴AE=OE=1,∴BE=√(2√3)2+12=√13,∵AD//BC,∴AEEC =EFBE=13,∴EF=13BE=√133,由(2)得EB2=EF⋅EG,∴EG=EB2EF =√13)2√133=3√13,∴BG=BE+EG=4√13.本题主要考查相似三角形的判定和性质,全等三角形的判定和性质、等边三角形的性质.线段间的转化是解题的关键.。
【2020年】安徽省中考数学模拟试题(含答案)
![【2020年】安徽省中考数学模拟试题(含答案)](https://img.taocdn.com/s3/m/ef0d9a4b9ec3d5bbfd0a7490.png)
2020年安徽省中考数学模拟试题含答案一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+22.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα4.已知向量和都是单位向量,则下列等式成立的是()A. B.C. D.||﹣||=05.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣36.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.50 2.01.22.4?绝对宽度 2.00 1.52.53.6?A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .8.化简: = .9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= .10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)f(5)(填“>”或“<”)11.求值:sin60°•tan30°=.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.13.两个相似三角形的相似比为2:3,则它们的面积之比为.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是米.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC 上,使得△ADP与△ABC相似,则线段AP的长为.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN 的面积是菱形ABCD面积的,则cosA= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A 与点B重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C (4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.数学试题含答案解析一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+2【考点】二次函数的性质.【分析】根据对称轴方程分别确定各个抛物线的对称轴后即可作出判断.【解答】解:抛物线y=x2﹣2x+4的对称轴为x=1;A、y=4x2+2x+1的对称轴为x=﹣,不符合题意;B、y=2x2﹣4x+1的对称轴为x=1,符合题意;C、y=2x2﹣x+4的对称轴为x=,不符合题意;D、y=x2﹣4x+2的对称轴为x=2,不符合题意,故选B.【点评】此题考查了二次函数的性质,牢记对称轴方程公式是解答本题的关键,难度不大.2.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE【考点】平行线分线段成比例.【分析】根据选项选出能推出对应线段成比例的即可.【解答】解:∵AD•CE=AE•BD,∴,∴DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题的关键.3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比的定义:斜坡垂直高度与水平宽度的比值,即坡角的正弦值,据此即可判断.【解答】解:i=tanα.故选C.【点评】本题考查了坡比的定义,理解坡比是斜坡垂直高度与水平宽度的比值,即坡角的正弦值,是关键.4.已知向量和都是单位向量,则下列等式成立的是()A. B.C. D.||﹣||=0【考点】*平面向量.【专题】推理填空题.【分析】根据向量和都是单位向量,可知||=||=1,由此即可判断.【解答】解:∵已知向量和都是单位向量,∴||=||=1,∴||﹣||=0,故选D.【点评】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.5.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】直接根据“上加下减、左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,二次函数y=x2的图象向左平移个单位得到y=(x+2)2,由“上加下减”的原则可知,将二次函数y=(x+2)2的图象向上平移3个单位可得到函数y=(x+2)2+3,故选:A.【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.6.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.50 2.01.22.4?绝对宽度 2.00 1.52.53.6?A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质,勾股定理可求AB,即图⑤绝对宽度,再根据三角形面积公式可求图⑤绝对高度.【解答】解:图④,过A点作AD⊥BC于D,BD=3.60÷2=1.80,在Rt△ABD中,AB==3,图⑤绝对宽度为3;图⑤绝对高度为:2.40×3.60÷2×2÷3=4.32×2÷3=2.88.故选:D.【点评】此题考查了勾股定理,等腰三角形的性质,解题的关键是熟练掌握图形的绝对高度和绝对宽度的定义.二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .【考点】比例线段.【分析】根据比例中项的定义可得b2=ac,从而易求c.【解答】解:∵线段a是线段b、c的比例中项,∴a2=bc,即32=2×c,∴c=.故答案是:.【点评】本题考查了比例线段,解题的关键是理解比例中项的定义.8.化简: = ﹣﹣7.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解: =2﹣4﹣3﹣3=﹣﹣7.故答案为:.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= 2﹣4 .【考点】黄金分割.【分析】根据黄金分割的概念、黄金比值计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=AB=﹣1,则BP=2﹣AP=3﹣,∴AP﹣BP=(﹣1)﹣(3﹣)=2﹣4,故答案为:2﹣4.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)>f(5)(填“>”或“<”)【考点】二次函数的性质.【分析】根据对称轴及开口方向确定其增减性即可确定答案.【解答】解:∵二次函数y=f(x)的图象开口向上,对称轴为直线x=4,∴当x的取值越靠近4函数值就越小,反之越大,∴f(1)>f(5),故答案为:>.【点评】考查了二次函数的性质,解题的关键是根据对称轴及开口方向确定其增减性,难度不大.11.求值:sin60°•tan30°=.【考点】特殊角的三角函数值.【专题】计算题.【分析】先根据特殊角的三角函数值计算出各数,再根据二次根式的乘法进行计算即可.【解答】解:原式=×=.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.【考点】三角形的重心;等腰直角三角形.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=2,∴CG=,故答案为:【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.13.两个相似三角形的相似比为2:3,则它们的面积之比为4:9 .【考点】相似三角形的性质.【专题】探究型.【分析】直接根据相似三角形的性质进行解答即可.【解答】解:∵两个相似三角形的相似比为2:3,∴它们的面积之比为4:9.故答案为:4:9【点评】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为S=C2.【考点】根据实际问题列二次函数关系式.【分析】直接利用等边三角形的性质得出AD的长,再利用三角形面积求法得出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵等边三角形的周长为C,∴AB=BC=AC=,∴DC=BD=,∴AD==C,∴S=×C×=C2.故答案为:S=×C×=C2.【点评】此题主要考查了等边三角形的性质以及三角形面积求法,正确表示出三角形的高是解题关键.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为 4 .【考点】相似三角形的判定与性质;正方形的性质.【分析】由DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:作AH⊥BC于H,交DG于P,如图所示:∵△ABC的面积=BC•AH=9,BC=6,∴AH=3,设正方形DEFG的边长为x.由正方形DEFG得,DG∥EF,即DG∥BC,∵AH⊥BC,∴AP⊥DG.由DG∥BC得△ADG∽△ABC∴.∵PH⊥BC,DE⊥BC∴PH=ED,AP=AH﹣PH,即,由BC=6,AH=3,DE=DG=x,得,解得x=2.故正方形DEFG的面积=22=4;故答案为:4.【点评】本题考查了相似三角形的判定与性质、正方形的性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是27 米.【考点】解直角三角形的应用-仰角俯角问题.【分析】作PE⊥AB于点E,在直角△AEP中,利用三角函数求得AE的长,根据AB=2AE即可求解.【解答】解:作PE⊥AB于点E,在直角△AEP中,∠APE=∠α,则AE=PE•tan∠APE=30×0.45=13.5(米),则AB=2AE=27(米).故答案是:27.【点评】本题考查解直角三角形、仰角、俯角的定义,解题的关键是记住特殊三角形的边之间关系,学会把问题转化为方程解决,属于中考常考题型.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC 上,使得△ADP与△ABC相似,则线段AP的长为4或.【考点】相似三角形的判定.【分析】先根据勾股定理求出AB的长,再分△ADP∽△ABC与△ADP∽△ACB两种情况进行讨论即可.【解答】解:∵在△ABC中,∠C=90°,AC=8,BC=6,∴AB==10.∵D是边AB的中点,∴AD=5.当△ADP∽△ABC时, =,即=,解得AP=4;当△ADP∽△ACB时, =,即=,解得AP=.故答案为:4或.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN 的面积是菱形ABCD面积的,则cosA= .【考点】菱形的性质;解直角三角形.【分析】如图,连接AN、CM,延长BM交AD于H.AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,因为四边形BMDN的面积是菱形ABCD 面积的,所以S△AMB=S△AMD=S△CNB=S△CND=4a,推出AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,由△ABO∽△BNO,推出OB2=OA•ON=5k2,推出OB=k,AB=AD==k,由AD•BH=•BD•AO,推出BH==,再利用勾股定理求出AH即可解决问题.【解答】解:如图,连接AN、CM,延长BM交AD于H.∵AB⊥BN,AD⊥DN,∴∠ABN=∠ADN=90°,在Rt△ANB和Rt△AND中,,∴△ABN≌△ADN,∴∠BAN=∠DAN,∴AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,∵四边形BMDN的面积是菱形ABCD面积的,∴S△AMB=S△AMD=S△CNB=S△CND=4a,∴AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,∵△ABO∽△BNO,∴OB2=OA•ON=5k2,∴OB=k,AB=AD==k,∵AD•BH=•BD•AO,∴BH==,∴AH===k,∴cosA===.故答案为【点评】本题考查菱形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,学会利用面积法求线段,所以中考常考题型.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.【考点】二次函数的三种形式.【分析】利用配方法把一般式化为顶点式,根据二次函数的性质解答即可.【解答】解:y=x2﹣4x+5=(x﹣4)2﹣3,∴抛物线开口向上,对称轴x=4,顶点(4,﹣3).【点评】本题考查的是二次根式的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.【考点】*平面向量;梯形.【专题】计算题.【分析】(1)作BM∥CD交AD、EF于M、N两点,将问题转化到△ABM中,利用相似三角形的判定与性质求EN,由EF=EN+NF=EN+AD进行求解;(2)由=、=得BC=AD,EB=AB,根据=可得答案.【解答】解:(1)作BM∥CD交AD、EF于M、N两点,又AD∥BC,EF∥AD,∴四边形BCFN与MNFD均为平行四边形.∴BC=NF=MD=2,∴AM=AD﹣MD=1.又=2,∴=,∵EF∥AD,∴△BEN∽△BAM,∴,即,∴EN=,则EF=EN+NF=;(2)∵=, =,∴BC=AD,EB=AB,∴==, ==,则==+.【点评】本题主要考查了平行四边形的判定与性质、相似三角形的判定与性质及向量的运算,熟练掌握相似三角形的判定与性质得出对应边的长度之比和向量的基本运算是解题的关键.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A 与点B重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.【考点】翻折变换(折叠问题).【分析】(1)根据∠A的正切用BC表示出AC,再利用勾股定理列方程求出BC,再求出AC,然后根据直角三角形的面积公式列式计算即可得解;(2)设CE=x,表示出AE,再根据翻折变换的性质可得BE=AE,然后列方程求出x,再利用锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:(1)∵∠ACB=90°,tanA=,∴=,∴AC=2BC,在Rt△ABC中,BC2+AC2=AB2,即BC2+4BC2=25,解得BC=,所以,AC=2,△ABC的面积=AC•BC=××2=5;(2)设CE=x,则AE=AC﹣CE=2﹣x,∵△ABC沿直线l翻折点A与点B重合,∴BE=AE=2﹣x,在Rt△BCE中,BC2+CE2=BE2,即2+x2=(2﹣x)2,解得x=,所以,CE=,BE=2﹣x=2﹣=,所以,sin∠CBE===.【点评】本题考查了翻折变换的性质,锐角三角函数的定义,此类题目,利用勾股定理列出方程求出相关的线段的长度是解题的关键.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)【考点】解直角三角形的应用-坡度坡角问题.【分析】作BE⊥AD于点E,设AB=x米,在直角△ABE中,根据三角函数,利用x表示出AE 和BE的长,则在直角△BED中,利用勾股定理表示出BD的长,在直角△ABC中利用勾股定理表示出BC,根据BC=BD即可列方程求解.【解答】解:作BE⊥AD于点E,设AB=x米,在直角△ABE中,∠BAE=90°﹣∠DAH=90°﹣30°=60°,则AE=AB•cos∠BAE=xcos60°=x(米),BE=AB•sin∠BAE=xsin60°=x(米).则DE=AD﹣AE=12﹣x,在直角△BED中,BD2=BE2+DE2=(x)2+(12﹣x)2=144+x2﹣12x,在直角△ABC中,BC2=AC2+AB2=72+x2=49+x2.∵BC=BD,∴144+x2﹣12x=49+x2.解得x=≈7.9答:电线杆AB的高度约是7.9米.【点评】本题考查了解直角三角形的应用,坡度坡角问题,正确作出辅助线,利用AB的长表示抽BD和BC是关键.23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.【考点】相似三角形的判定与性质.【分析】(1)证出△ABD∽△ACB,得出对应角相等即可;(2)由相似三角形的性质得出对应边成比例求出AD=,BD=,得出BD=CD,由等腰三角形的性质得出∠DBC=∠ACB,证出∠ABD=∠BDC,再证明点B、E、D、F四点共圆,由圆周角定理得出,即可得出结论.【解答】(1)证明:∵AB是AD与AC的比例中项.∴,又∵∠A=∠A,∴△ABD∽△ACB,∴∠ACB=∠ABD;(2)证明:∵△ABD∽△ACB,∴,即,解得:AD=,BD=,∴CD=AC﹣AD=6﹣=,∴BD=CD,∴∠DBC=∠ACB,∵∠ACB=∠ABD,∴∠ABD=∠BDC,∵∠EDF=∠A+∠C,∠A+∠C=180°﹣∠ABC,∴∠EDF+∠ABC=180°,∴点B、E、D、F四点共圆,∴,∴DE=DF.【点评】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理等知识;熟练掌握相似三角形的判定与性质,证明四点共圆是解决问题(2)的关键.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C (4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.【考点】二次函数综合题.【分析】(1)利用待定系数法直接求出抛物线的解析式;(2)设出D,E坐标,根据平移,用k表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63﹣,进而利用相似三角形得出比例式建立方程即可求出k【解答】解:(1)∵抛物线过点A(1,0)、B(3,0),∴设抛物线的解析式为y=a(x﹣1)(x﹣3),∵C(4,6),∴6=a(4﹣1)(4﹣3),∴a=2,∴抛物线的解析式为y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)如图,设点D(m,0),E(n,0),∵A(1,0),∴AD=m﹣1,AE=n﹣1由(1)知,抛物线的解析式为y=2x2﹣8x+6=2(x﹣2)2﹣2;∴将此抛物线先沿x轴方向向右平移6个单位,得到抛物线的解析式为y=2(x﹣8)2﹣2;∴再沿y轴方向平移k个单位,得到的抛物线的解析式为y=2(x﹣8)2﹣2﹣k;令y=0,则2(x﹣8)2﹣2﹣k=0,∴2x2﹣32x+126﹣k=0,根据根与系数的关系得,∴m+n=16,mn=63﹣,∵A(1,0),C(4,6),∴AC2=(4﹣1)2+62=45,∵△ACD∽△AEC,∴,∴AC2=AD•AE,∴45=(m﹣1)(n﹣1)=mn﹣(m+n)+1,∴45=63﹣﹣16+1,∴k=6,即:k=6,向下平移6个单位.【点评】此题是二次函数综合题,主要考查了待定系数法,平移的性质,相似三角形的性质,根与系数的关系,解本题的关键是设出了点D,E的坐标,借助韦达定理直接求出k.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.【考点】三角形综合题;等腰三角形的性质;勾股定理;相似三角形的判定与性质;解直角三角形.【专题】压轴题;面积法.【分析】(1)先根据∠ACB=90°,AC=3,BC=4,求得AB=5,sinA=,tanB=,再根据△ACD为直角三角形,求得AD,在Rt△CDE中,求得DE,最后根据BE=AB﹣AD﹣DE进行计算即可;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,进而得出∠CED=∠CDE,再根据∠B=∠DCE,∠CDE=∠BDC,得到∠BCD=∠CED=∠CDE=∠BDC,最后求得AD的长;(3)先作CH⊥AB于H,Rt△ACH中,求得CH和AH的长,在Rt△CDH中,根据勾股定理得出:CD2=x2﹣x+9,再判定△BDC∽△CDE,得出CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),最后求得y关于x的函数解析式,并写出定义域.【解答】(1)在△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,sinA=,tanB=,如图,当CD⊥AB时,△ACD为直角三角形,∴CD=AC•sinA=,∴AD==,又∵∠DCE=∠ABC,∴在Rt△CDE中,DE=CD•tan∠DCE=×=,∴BE=AB﹣AD﹣DE=5﹣﹣=;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,∴唯有∠CED=∠CDE,又∵∠B=∠DCE,∠CDE=∠BDC,∴∠BCD=∠CED=∠CDE=∠BDC,∴BD=BC=4,∴AD=5﹣4=1;(3)如图所示,作CH⊥AB于H,∵×BC×AC=AB×CH,∴CH=,∴Rt△ACH中,AH==,∴在Rt△CDH中,CD2=CH2+DH2=()2+(﹣x)2=x2﹣x+9,又∵∠CDE=∠BDC,∠DCE=∠B,∴△BDC∽△CDE,∴CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),解得.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形的综合应用,解决问题的关键是中辅助线构造直角三角形,根据勾股定理以及面积法进行求解.。
2020年安徽省中考数学模拟试卷含答案(2套)
![2020年安徽省中考数学模拟试卷含答案(2套)](https://img.taocdn.com/s3/m/815b6d38443610661ed9ad51f01dc281e53a56de.png)
2020年安徽省中考数学一模试卷姓名:—得分:—日期:一、选择题(本大题共10小题,共40分)1、(4分)-3的倒数是()A.-3B.3C.--D.-332、(4分)下列运算正确的是()A.a2+a2=a4B.(-b2)3=-b6C.2x«2x2=2x3D.(m-n)2=m2-n23、(4分)我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路"地区覆盖总人口为4400000000人,这个数用科学记数法表示为()A.44X108B.4.4X108C.4.4X109D.4.4X10104、(4分)如图是一个螺母零件的立体图形,它的左视图是()2%-1<5一5、(4分)不等式组3X-11>y的解集在数轴上表小正确的是()I-L.26、(4分)某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10 (1+x) 2=36.4B.10+10 (1+x) 2=36.4C.10+10 (1+x) +10 (l+2x) =36.4D.10+10 (1+x) +10 (1+x) 2=36.4 7、(4分)为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产 合格产品的个数整理成甲、乙两组数据,如下表:甲26778乙23488关于以上数据,说法正确的是()A.甲、乙的众数相同C.甲的平均数小于乙的平均数 B.甲、乙的中位数相同D.甲的方差小于乙的方差8、(4分)如图,点C 在反比例函数y=j (x>0)的图象上,过点C 的直线与x 轴,y 轴分别交于点A, B,且AB=BC,% a AOB 的面积为1,则k 的值为( )A.1B.2C.3D.49、(4分)如图,点E 是矩形ABCD 的边AD 的中点,且BE1AC 于点F,则下列结论中错误的是( )C.ZDCF=ZDFC B S m 时=1S'CDF 3"宜曷=y10、(4分)在边长为2的正方形ABCD 中,对角线AC 与BD 相交于点0, P 是 BD 上一动点,过P 作EFHAC,分别交正方形的两条边于点E, F.设BP=x,ABEF的面积为y,则能反映y与x之间关系的图象为()二、填空题(本大题共4小题,共20分)11、(5分)面的平方根是.12、(5分)分解因式:2xy2+4xy+2x=.13、(5分)如图,AB是O0的弦,点C在过点B的切线上,且0C1OA,OC交AB于点P,已知ZOAB=22°,贝<JzOCB=.14、(5分)如图,在矩形ABCD中,AB=3,BC=4,动点M,N分别从A,C同时向B,D匀速移动,且两点的运动速度相同,当动点M到达B点时,M,N同时停止运动,过点N作NP1CD,交BD于P点,当ABMP为等腰三角形时, AM=.三、计算题(本大题共1小题,共8分)15、(8分)计算:(―1)2019—|—3|X亨+媚+兀。
2020年安徽省中考数学模拟试卷(12)
![2020年安徽省中考数学模拟试卷(12)](https://img.taocdn.com/s3/m/6718d2bab52acfc788ebc99f.png)
五.解答题(共 2 小题,满分 20 分,每小题 10 分) 19.( 10 分)如图, AB 是⊙ O 的直径, P、C 是圆周上的点, ????=? ????,? 弦 PC 交 AB 于点 D.
( 1)求证:∠ A=∠ C; ( 2)若 OD = DC ,求∠ A 的度数.
0.0000000052mm,数据 0.0000000052 用
科学记数法表示正确的是(
)
8
A .5.2× 10
9
B .5.2× 10
【解答】 解: 0.0000000052= 5.2×10﹣9;
﹣9
C. 5.2×10
﹣8
D. 5.2×10
故选: C.
6.( 4 分)尺规作图要求: Ⅰ、过直线外一点作这条直线的垂线; Ⅱ、作线段的垂直平分线;
2020 年满分 40 分,每小题 4 分)
1.( 4 分)若 |a|=﹣ a,则 a 一定是(
)
A .正数
B .负数
C.正数或零
D .负数或零
2.( 4 分)下列运算正确的是(
)
A .(﹣ a3) 2=﹣ a6
B. 2a2+3a2= 6a2
3,﹣ 3, 9,﹣ 15, 33… ③ ( 1)第 ① 行数的第 n 个数为
(用含有 n 的式子表示) .
( 2)第 ②③ 行数与第 ① 行数分别有什么关系? ( 3)取每行的第 9 个数,求这三个数的和.
七.解答题(共 1 小题,满分 12 分,每小题 12 分)
22.( 12 分)国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经 销商购进 A、 B 两种型号的低排量汽车,其中 A 型汽车的进货单价比 B 型汽车的进货单
安徽省十校联考2020年中考模拟(一)数学试卷(解析版)
![安徽省十校联考2020年中考模拟(一)数学试卷(解析版)](https://img.taocdn.com/s3/m/f8b898fa0722192e4436f688.png)
安徽省十校联考2020年中考数学一模试卷(解析版)一、选择题(本大题共10小题,每小题4分,满分40分)1.数轴上表示﹣2和1的点分别是A和B,则线段AB的长为()A.3B.﹣3C.1D.﹣12.下列运算结果为a5的是()A.a5﹣a B.a5•a C.a7÷a2D.(a2)33.把4个相同的正方体按如图方式摆放,那么它的俯视图是()A.B.C.D.4.在防治“非典”的例行体温检查中,检查人员将高出37℃的部分记作正数,将低于37℃的部分记作负数,体温正好是37℃时记作“0”.一位同学在一周内的体温测量结果分别为+0.1,﹣0.3,﹣0.5,+0.1,+0.2,﹣0.6,﹣0.4,那么,该同学一周中测量体温的平均值为()A.37.1℃B.37.31℃C.36.69℃D.36.8℃5.能说明命题“若x2≥4,则x≥2”为假命题的一个反例可以是()A.x=﹣1B.x=2C.x=﹣3D.x=56.如图,D是等腰△ABC外接圆弧AC上的点,AB=AC且∠CAB=56°,则∠ADC的度数为()A.116°B.118°C.122°D.126°7.如图,在▱ABCD中,AB=3,AD=5,∠BCD的平分线交BA的延长线于点E,则AE 的长为()A.3B.2.5C.2D.1.58.如图是某公司去年8~12月份生产成本统计图,设9~11月每个月生产成本的下降率都为x,根据图中信息,得到x所满足的方程是()A.30(1﹣x)2=15B.15(1+x)2=30C.30(1﹣2x)4=15D.15(1+2x)2=309.如图,抛物线y=ax2+2x+a2﹣1(a≠0)是①②③④中的一个,那么该抛物线的顶点为()A.(﹣1,﹣1)B.(1,﹣1)C.(﹣1,1)D.(1,1)10.如图,∠O=60°,∠ACB的两边与∠O的两边分别交于点A,B,且∠ACB=120°,CA=CB,点P在射线OA上,OP=20,则CP的最小值是()A.10B.C.D.15二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)因式分解ax2﹣ax的结果是.12.(5分)如图,a∥b,∠2=95°,∠3=150°,则∠1的度数是.13.(5分)如图,点A,B都在双曲线y=(x>0)上,点A横坐标是点B横坐标的2倍,AC,BD都垂直于坐标轴,点C,D为垂足,阴影面积是k﹣2,则k的值是.14.(5分)关于x的方程kx2﹣2x﹣1=0有实数根,其中k为非正整数,则k等于.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:.16.(8分)某旅游区的平面图如图所示,分别从景点A,B测得视角∠BAC=120°,∠ABC =25°,景点A,C相距800米,求景点A,B之间的距离.(参考数据:sin25°≈0.45,cos25°≈0.9,tan25°≈0.5,≈1.73;精确到1米)四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△A'B'C'以点O为位似中心,且它们的顶点都为网格线的交点.(1)在图中画出点O(要保留画图痕迹),并直接写出:△ABC与△A'B'C'的位似比是.(2)请在此网格中,以点C为位似中心,再画一个△A1B1C,使它与△ABC的位似比等于2:1.18.(8分)如图,AB是半⊙O的直径,AD⊥切线CD,点C为切点.求证:AC平分∠DAB.五.(本大题共2小题,每小题10分,满分20分)19.(10分)观察下列各式:①=2;②=2;③=2;④=2……按照以上规律,解决下列问题:(1)写出第6个等式.(2)写出你猜想的第n个等式(用含n的等式表示),并证明.20.(10分)如图,正方形ABCD的顶点A在直线l上,分别过点B,D作直线l的垂线,点E,F为垂足,连接BF.(1)求证:AE=DF;(2)若AE=6,BF=,求△ABF的面积.六、(本题满分12分)21.(12分)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是;(2)请你补全两个统计图,并观察补全后的统计图,写出一条你发现的结论;(3)若老师想从四次成绩总分前三名的一男两女中选拔两个人参加学校代表队,请你用画树状图或列表的方法求恰好选中两女的概率.七、(本题满分12分)22.(12分)已知二次函数y=x2﹣2ax+4a+2.(1)若该函数与x轴的一个交点为(﹣1,0),求a的值及该函数与x轴的另一交点坐标;(2)不论a取何实数,该函数总经过一个定点,①求出这个定点坐标;②证明这个定点就是所有抛物线顶点中纵坐标最大的点.八、(本题满分14分)23.(14分)四边形ABCD中,∠ABC+∠ADC=180°,对角线BD平分∠ABC.(1)如图1,延长BC,AD交于点M.求证:①△MCD∽△MAB;②AD=CD;(2)如图2,连接AC交BD于点F,将△ABC沿着AC翻折得到△AEC,连接DE,若CE∥BD,BC=6,CD=4,求CF的长.2020年安徽省十校联考中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.数轴上表示﹣2和1的点分别是A和B,则线段AB的长为()A.3B.﹣3C.1D.﹣1【分析】根据数轴上两点距离的计算方法进行计算即可.【解答】解:AB=|﹣2﹣1|=3,故选:A.【点评】本题考查数轴表示数的意义,数轴上两点之间的距离等于这两点所表示数的差的绝对值.2.下列运算结果为a5的是()A.a5﹣a B.a5•a C.a7÷a2D.(a2)3【分析】根据幂的运算法则进行计算便可判断正误.【解答】解:A.当a≠0时,a5﹣a≠a5,此选项不合题意;B.a5•a=a5+1=a6,此选项不合题意;C.a7÷a2=a7﹣2=a5,此选项符合题意;D.(a2)3=a2×3=a6,此选项不全题意;故选:C.【点评】本题主要考查了同底数幂的乘法,同底数幂的除法,幂的乘方,熟记这些法则是解题的关键.3.把4个相同的正方体按如图方式摆放,那么它的俯视图是()A.B.C.D.【分析】从上面看物体,所得到的图形是该物体的俯视图.【解答】解:从上面看到的是三个正方形“一”字排列,选项B中的图形符合题意,故选:B.【点评】本题考查简单组合体的三视图,画三视图时注意“长对正,宽相等、高平齐”.4.在防治“非典”的例行体温检查中,检查人员将高出37℃的部分记作正数,将低于37℃的部分记作负数,体温正好是37℃时记作“0”.一位同学在一周内的体温测量结果分别为+0.1,﹣0.3,﹣0.5,+0.1,+0.2,﹣0.6,﹣0.4,那么,该同学一周中测量体温的平均值为()A.37.1℃B.37.31℃C.36.69℃D.36.8℃【分析】根据题意将这位同学一周内的体温写出来相加再除以七,得出其体温的平均值.【解答】解:根据题意检查人员将高出37℃的部分记作正数,将低于37℃的部分记作负数,体温正好是37℃时记作“0”得这位同学在一周内的体温分别是37.1、36.7、36.5、37.1、37.2、36.4、36.6;将(37.1+36.7+36.5+37.1+37.2+36.4+36.6)÷7=36.8℃;故选:D.【点评】概念:用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.5.能说明命题“若x2≥4,则x≥2”为假命题的一个反例可以是()A.x=﹣1B.x=2C.x=﹣3D.x=5【分析】当x=﹣3时,满足x2≥4,但不能得到x≥2,于是x=﹣3可作为说明命题“若x2≥4,则x≥2”是假命题的一个反例.【解答】解:说明命题“若x2≥4,则x≥2”是假命题的一个反例可以是x=﹣3.故选:C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.如图,D是等腰△ABC外接圆弧AC上的点,AB=AC且∠CAB=56°,则∠ADC的度数为()A.116°B.118°C.122°D.126°【分析】由等腰三角形的性质可得∠ABC=∠ACB,进而可求出∠B的度数,再由圆内接四边形定理即可求出∠ADC的度数.【解答】解:∵AB=AC,∴∠ABC=∠ACB,∵∠CAB=56°,∴∠ABC==62°,∵D是等腰△ABC外接圆弧AC上的点,∴∠ABC+∠ADC=180°,∴∠ADC=118°,故选:B.【点评】本题考查了等腰三角形的性质以及圆内接四边形定理的运用,熟记和圆有关的各种定理是解题的关键.7.如图,在▱ABCD中,AB=3,AD=5,∠BCD的平分线交BA的延长线于点E,则AE 的长为()A.3B.2.5C.2D.1.5【分析】由平行四边形ABCD中,CE平分∠BCD,可证得△BCE是等腰三角形,继而利用AE=BE﹣AB,求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠E=∠ECD,∵CE平分∠BCD,∴∠BCE=∠ECD,∴∠E=∠BCE,∴BE=BC=5,∴AE=BE﹣AB=5﹣3=2;故选:C.【点评】此题考查了平行四边形的性质以及等腰三角形的判定与性质.能证得△BCE是等腰三角形是解此题的关键.8.如图是某公司去年8~12月份生产成本统计图,设9~11月每个月生产成本的下降率都为x,根据图中信息,得到x所满足的方程是()A.30(1﹣x)2=15B.15(1+x)2=30C.30(1﹣2x)4=15D.15(1+2x)2=30【分析】设9~11月每个月生产成本的下降率都为x,根据该公司9月份及11月份的生产成本,即可得出关于x的一元二次方程.【解答】解:设每个月生产成本的下降率为x,根据题意得:30(1﹣x)2=15,故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.如图,抛物线y=ax2+2x+a2﹣1(a≠0)是①②③④中的一个,那么该抛物线的顶点为()A.(﹣1,﹣1)B.(1,﹣1)C.(﹣1,1)D.(1,1)【分析】由抛物线的对称轴为直线x=﹣=﹣≠0,判定图①②不符合题意;根据图抛物线过原点,解得a=±1,由③④得,对称轴直线x=﹣>0,得到a<0,即可判定图③符合题意,图④不符合题意,把a=﹣1代人解析式,然后化成顶点式,即可求得顶点坐标.【解答】解:∵抛物线y=ax2+2x+a2﹣1(a≠0)的对称轴是直线x=﹣=﹣≠0,图①②中的对称轴是y轴,∴图①②不符合题意;∵图③④中“抛物线过原点”,∴a2﹣1=0,解得a=±1,由③④得,对称轴直线x=﹣>0,∴a<0,∴图③符合题意,图④不符合题意,当a=﹣1时,则y=﹣x2+2x=﹣(x﹣1)2+1,∴该抛物线的顶点坐标为(1,1),故选:D.【点评】本题考查了二次函数的图象和性质,通过对图象的分析得出a=﹣1是解题的关键.10.如图,∠O=60°,∠ACB的两边与∠O的两边分别交于点A,B,且∠ACB=120°,CA=CB,点P在射线OA上,OP=20,则CP的最小值是()A.10B.C.D.15【分析】过点C作CM⊥OA,CN⊥OB,M,N为垂足,根据AAS证明△CAM与△CBN 全等,进而利用全等三角形的性质和角平分线的性质解答即可.【解答】解:如图,过点C作CM⊥OA,CN⊥OB,M,N为垂足,在四边形CMON中,∠MCN=360°﹣60°﹣90°﹣90°=120°,∵∠ACM=∠BCA﹣∠BCM=120°﹣∠BCM,∠BCN=∠MCN﹣∠BCM=120°﹣∠BCM,∴∠ACM=∠BCN,在Rt△CAM与Rt△CBN中,,∴△CAM≌△CBN(AAS),∴CM=CN,根据到角的两边距离相等的点在角平分线上,可得,点C一定在∠AOB的平分线上,过点P作PC'⊥OC交OC于点C',在Rt△OPC'中,OP=20,∠POC'=30°,则PC'=PO=10,即CP的最小值为10,故选:A.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)因式分解ax2﹣ax的结果是ax(x﹣1).【分析】直接提取公因式ax,然后整理即可.【解答】解:ax2﹣ax=ax(x﹣1).故答案为:ax(x﹣1).【点评】本题主要考查提公因式法分解因式,项本身就是公因式,提取公因式后要注意剩下1或﹣1,不要漏项.12.(5分)如图,a∥b,∠2=95°,∠3=150°,则∠1的度数是115°.【分析】过点C作CD∥a,进而利用平行线的性质解答即可.【解答】解:过点C作CD∥a,∵a∥b,∴CD∥a∥b,∴∠1+∠ECD=180°,∠3+∠DCF=180°,∵∠2=95°,∠3=150°,∴∠1+∠2+∠3=360°,∴∠1=360°﹣∠2﹣∠3=360°﹣150°﹣95°=115°,故答案为:115°.【点评】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.13.(5分)如图,点A,B都在双曲线y=(x>0)上,点A横坐标是点B横坐标的2倍,AC,BD都垂直于坐标轴,点C,D为垂足,阴影面积是k﹣2,则k的值是.【分析】根据反比例函数系数k的几何意义得到S△BOD=k=S△AOC,根据三角形面积公式即可证得BD=2OC,证得PE、PF分别是△OBD和△OAC的中位线,即可证得S△BPE=S△BOD=k,S△APF=S△AOC=k,根据题意得到k+k=k﹣2,解得即可.【解答】解:设AC与BD的交点为P,AC与OB的交点为E,BD与OA的交点为F,∵AC,BD都垂直于坐标轴,∴S△BOD=k=S△AOC,∴OD•BD=AC•OC,∵点A横坐标是点B横坐标的2倍,∴AC=2OD,∴BD=2OC,∴PE、PF分别是△OBD和△OAC的中位线,∴S△BPE=S△BOD=k,S△APF=S△AOC=k,∵阴影面积是k﹣2,∴k+k=k﹣2,解得k=,故答案为.【点评】本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.14.(5分)关于x的方程kx2﹣2x﹣1=0有实数根,其中k为非正整数,则k等于0或﹣1.【分析】分k=0和k≠0两种情况计算:①当k=0时,原方程化为一元一次方程,有实数根,符合题意;②当k≠0时,原方程为关于x的一元二次方程,根据一元二次方程的解与判别式的关系,得出关于k的不等式,求解并结合k为非正整数即可得出答案.【解答】解:①当k=0时,原方程化为:﹣2x﹣1=0,解得:x=﹣,故k=0符合题意;②当k≠0时,原方程为关于x的一元二次方程,∵有实数根,∴△=(﹣2)2﹣4k×(﹣1)=4+4k≥0,解得:k≥﹣1,∵k为非正整数,k≠0,∴k=﹣1.综上,k=0或k=﹣1.故答案为:0或﹣1.【点评】本题主要考查了一元二次方程的根与判别式的关系,分类讨论并熟练掌握一元二次方程的根与判别式的关系是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:.【分析】原式利用特殊角的三角函数值,绝对值的代数意义,负整数指数幂法则,以及二次根式性质计算即可求出值.【解答】解:原式=4×()2﹣(﹣1)+3+2=1﹣+1+3+2=5+.【点评】此题考查了实数的运算,负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.16.(8分)某旅游区的平面图如图所示,分别从景点A,B测得视角∠BAC=120°,∠ABC =25°,景点A,C相距800米,求景点A,B之间的距离.(参考数据:sin25°≈0.45,cos25°≈0.9,tan25°≈0.5,≈1.73;精确到1米)【分析】过点C作BA的垂线,交BA的延长线于点D,利用三角函数解答即可.【解答】解:过点C作BA的垂线,交BA的延长线于点D,在Rt△ACD中,∠CAD=60°,由sin∠CAD=,可得:CD=AC•sin∠CAD=800×=400,由cos∠CAD=,可得:AD=AC•cos∠CAD=800×=400,在Rt△BCD中,由tan∠B=可得:,解得:BD=800,∴AB=BD﹣AD=800﹣400≈984(米),答:景点A,B之间的距离约为984米.【点评】本题考查了解直角三角形的应用,对于解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△A'B'C'以点O为位似中心,且它们的顶点都为网格线的交点.(1)在图中画出点O(要保留画图痕迹),并直接写出:△ABC与△A'B'C'的位似比是1:2.(2)请在此网格中,以点C为位似中心,再画一个△A1B1C,使它与△ABC的位似比等于2:1.【分析】(1)直接利用位似图形的性质得出位似中心的位置;(2)直接利用位似比得出对应点位置进而得出答案.【解答】解:(1)如图所示:点O即为所求,△ABC与△A'B'C'的位似比是:1;2;故答案为:1:2;(2)如图所示:△A1B1C即为所求.【点评】此题主要考查了位似变换,正确得出对应点位置是解题关键.18.(8分)如图,AB是半⊙O的直径,AD⊥切线CD,点C为切点.求证:AC平分∠DAB.【分析】连接OC,根据平行线的性质证出AD∥OC,由OA=OC可以得到∠OAC=∠OCA,由平行线的性质证出∠DAC=∠OCA,即可得出结论.【解答】证明:连接OC,如图所示:∵CD切⊙O于C,∴CO⊥CD,又∵AD⊥CD,∴AD∥CO.∴∠DAC=∠ACO,∵OA=OC,∴∠ACO=∠CAO∴∠DAC=∠CAO,∴AC平分∠BAD.【点评】此题主要考查了切线的性质、平行线的性质和判定,等腰三角形的性质等知识;熟练掌握切线的性质与判定和等腰三角形的性质是解决问题的关键.五.(本大题共2小题,每小题10分,满分20分)19.(10分)观察下列各式:①=2;②=2;③=2;④=2……按照以上规律,解决下列问题:(1)写出第6个等式.(2)写出你猜想的第n个等式(用含n的等式表示),并证明.【分析】观察每个式子,发现分子共有三项相加,第n个式子的前两项是n2,(n+1)2,第三项的底数是前两项底数的和,即(n+n+1).对于分母,前两项依然是n2,(n+1)2,第三项是前两项底数之积.【解答】解:(1)第6个式子:.故答案为:.(2).证明:左边===右边.∴猜想的第n个式子成立.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.生很容易发现各部分的变化规律,但是如何用一个统一的式子表示出分式的符号的变化规律是难点中的难点.20.(10分)如图,正方形ABCD的顶点A在直线l上,分别过点B,D作直线l的垂线,点E,F为垂足,连接BF.(1)求证:AE=DF;(2)若AE=6,BF=,求△ABF的面积.【分析】(1)根据正方形的性质和全等三角形的判定和性质解答即可;(2)根据勾股定理和三角形的面积公式解答即可.【解答】证明:(1)∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵BE⊥l,DF⊥l,∴∠AEB=∠AFD=90°,∵∠EAB+∠F AD=90°,∠EAB+∠ABE=90°,∴∠F AD=∠ABE,在△BEA与△AFD中,,∴△BEA≌△AFD(AAS),∴AE=DF,(2)由(1)知△BEA≌△AFD,∴AF=BE,设AF=BE=x,则EF=AF+AE=x+6,在Rt△BEF中,BE2+EF2=BF2,即,即x2+6x﹣40=0,解得:x1=4,x2=﹣10(舍去),∴.【点评】本题主要考查正方形的性质,解题的关键是掌握正方形的判定与性质、勾股定理等知识点.六、(本题满分12分)21.(12分)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是40人;(2)请你补全两个统计图,并观察补全后的统计图,写出一条你发现的结论;(3)若老师想从四次成绩总分前三名的一男两女中选拔两个人参加学校代表队,请你用画树状图或列表的方法求恰好选中两女的概率.【分析】(1)用第一次人数及其所占百分比可得总人数;(2)根据“优秀率=优秀人数÷总人数”求解可得;(3)列表表示所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.【解答】解:(1)该班总人数为28÷70%=40人,故答案为:40人;(2)第二次的优秀率为×100%=55%,第三次优秀的人数为40×80%=32人,补全图形如下:由折线统计图知第四次考的最好;(3)列表:共有6种等可能的结果,其中恰好选取两名女生的情况有2种,∴恰好选中两女的概率为=.【点评】本题考查的是条形统计图和扇形统计图以及求随机事件的概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.七、(本题满分12分)22.(12分)已知二次函数y=x2﹣2ax+4a+2.(1)若该函数与x轴的一个交点为(﹣1,0),求a的值及该函数与x轴的另一交点坐标;(2)不论a取何实数,该函数总经过一个定点,①求出这个定点坐标;②证明这个定点就是所有抛物线顶点中纵坐标最大的点.【分析】(1)(﹣1,0)代入得0=1+2a+4a+2,,即可求解.(2)①整理得y=a(4﹣2x)+x2+2,即可求解;②函数顶点为(a,﹣a2+4a+2),而﹣a2+4a+2=﹣(a﹣2)2+6,a=2时纵坐标有最大值6,即可求解.【解答】解:(1)(﹣1,0)代入得0=1+2a+4a+2,∴,∴y=x2+x,∴另一交点为(0,0).(2)①整理得y=a(4﹣2x)+x2+2,令x=2代入y=6,故定点为(2,6),②∵y=x2﹣2ax+4a+2=(x﹣a)2+(﹣a2+4a+2),顶点为(a,﹣a2+4a+2),而﹣a2+4a+2=﹣(a﹣2)2+6,当a=2时,纵坐标有最大值6,此时x=2,y=6,顶点(2,6),故定点(2,6)是所有顶点中纵坐标最大的点.【点评】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点,代表的意义及函数特征等.八、(本题满分14分)23.(14分)四边形ABCD中,∠ABC+∠ADC=180°,对角线BD平分∠ABC.(1)如图1,延长BC,AD交于点M.求证:①△MCD∽△MAB;②AD=CD;(2)如图2,连接AC交BD于点F,将△ABC沿着AC翻折得到△AEC,连接DE,若CE∥BD,BC=6,CD=4,求CF的长.【分析】(1)①证出∠MDC=∠ABC,再由∠M=∠M,即可得出△MCD∽△MAB;②连接AC,由相似三角形的性质得=,证△MBD∽△MAC,得∠MBD=∠MAC,证出∠DCA=∠MBD,则∠DCA=∠MAC,即可得出AD=CD;(2)连接BE交AC于点N,证△CEN≌△FBN(ASA),得EC=BF=6,证A、B、C、D四点共圆,由圆周角定理得∠DAC=∠DBC,证△DBC∽△DCF,得==,求出DB=8,进而得出CF=3.【解答】(1)证明:①∵∠ABC+∠ADC=180°,∠MDC+∠ADC=180°,∴∠MDC=∠ABC,又∵∠M=∠M,∴△MCD∽△MAB;②连接AC,如图1所示:∵由①可知,△MCD∽△MAB,∴=,∴=,又∵∠M=∠M,∴△MBD∽△MAC,∴∠MBD=∠MAC,∵∠ABC+∠ADC=180°,BD平分∠ABC,∴2∠MBD+∠ADC=180°,∵∠ADC+∠MAC+∠DCA=180°,∴∠DCA=∠MBD,∴∠DCA=∠MAC,∴AD=CD;(2)解:连接BE交AC于点N,如图2所示:∵将△ABC沿着AC翻折得到△AEC,∴点B与点E关于AC对称,EC=BC=6,∴BN=EN,∵CE∥BD,∴∠CEN=∠FBN,在△CEN和△FBN中,,∴△CEN≌△FBN(ASA),∴EC=BF=6,∵∠ABC+∠ADC=180°,∴A、B、C、D四点共圆,∴∠DAC=∠DBC,∵AD=CD,∴∠DAC=∠DCA,∴∠DBC=∠DCA,又∵∠BDC=∠BDC,∴△DBC∽△DCF,∴==,∴DB•DF=DC2,∴DB•(DB﹣BF)=DC2,∴DB2﹣6DB=16,解得:DB=8,或DB=﹣2(舍去),∵=,即=,解得:CF=3.【点评】本题是相似形综合题目,考查了相似三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质、翻折变换的性质、四点共圆、圆周角定理等知识;本题综合性强,熟练掌握相似三角形的判定与性质是解题的关键.。
安徽省安庆市2020年中考数学模拟试卷(4月份)(含解析)
![安徽省安庆市2020年中考数学模拟试卷(4月份)(含解析)](https://img.taocdn.com/s3/m/acbd3d8fcc7931b764ce1567.png)
安徽省安庆市2020年中考数学模拟试卷(4月份)一、选择题1、-0.2的相反数是()A 0.2B -0.2C 2D 52、计算(-a)10÷a5的结果是()A a2B a5C -a2D -a53、按照中央对新型冠状病毒肺炎工作领导小组部署,国家卫健委今年下达603.3亿元支持各地开展基本公共温升服务和基层疫情工作,将603.3亿用科学记数法表示为()A 603.3×108B 6.033×109C 6.033×1010D 6.033×10114、下图是某工厂要设计生产的零件的主视图,这个零件可能是()A B C D5、把多项式(a+b)(a+4b)-9ab分解因式正确的是()A (a-2b)2B (a+2b)2C a(a-3b)2D ab(a+3)(a-3)6、已知一次函数y=-2x-2与x轴交于A点,与反比例函数k的图像交于第二象限的Byx点,过B作y轴的垂线,垂足为C,若OC=2OA,则k的值为()A 2B -2C 4D -47、某中学随机抽取200名学生寒假期间平均每天体育锻炼时间进行问卷调查,并将调查结果分为A、B、C、D四个等级。
A:1小时以内; B:1小时~1.5小时; C 1.5小时~2小时;D 2小时以上;根据调查结果绘制了不完整的统计图(如图)。
若用扇形统计图来描述这200名学生寒假期间平均每天的体育锻炼情况,则C等级对应的扇形圆心角的度数为()A 36°B 60°C 72°D 108°第7题图第8题图第10题图8、如图,在△ABC中,AB=AC=6,D是AC中点,E是BC上一点,BE=52,∠AED=∠B,则CE 的长为()A 152B 223C 365D 6499、已知三个实数a、b、c满足a+b+c=0,a-b+c=0,则下列结论一定成立的是()A a+b≥0B a+c>0C b+c≥0D b2-4ac≥010、如图,正方形ABCD的边长为2,延长AB至E,使得AB=BE,连接CE,P为CE上一动点,分别连接PA、PB,则PA+PB的最小值为()A 4B 5C 22D 25二、填空题(本大题共4小题,每小题5分,满分20分)11.在△ABC中,若角A,B满足|cos A﹣|+(1﹣tan B)2=0,则∠C的大小是.12.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=cm.13.如图,⊙O的半径为6,点P在⊙O上,点A在⊙O内,且AP=3,过点A作AP的垂线交⊙O于点B、C.设PB=x,PC=y,则y与x的函数表达式为.14.已知在△ABC中,∠ABC=90°,AB=9,BC=12.点Q是线段AC上的一个动点,过点Q 作AC的垂线交射线AB于点P.当△PQB为等腰三角形时,则AP的长为.三、(本大题共2小题,每小题8分,满分16分)15.计算:(﹣2)0+()﹣2+4sin60°﹣|3﹣|.16.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C (3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2.四、(本大题共2小题,每小题8分,满分16分)17.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为多少?18.已知不等臂跷跷板AB长4m.如图①,当AB的一端A碰到地面上时,AB与地面的夹角为α;如图②,当AB的另一端B碰到地面时,AB与地面的夹角为β.求跷跷板AB的支撑点O到地面的高度OH.(用含α,β的式子表示)五、(本大题共2小题,每小题10分,满分20分)19.如图,一次函数y=﹣x+5的图象与反比例函数y=kx﹣1(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式与点B坐标;(2)求△AOB的面积.20.如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.(1)如图①,当=时,求的值;(2)如图②当DE平分∠CDB时,求证:AF=OA;(3)如图③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=BG.六、(本题满分12分)21.如图,某大楼的顶部竖有一块广告牌CD,小明在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)七、(本题满分12分)22.如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.(1)求证:DO∥AC;(2)求证:DE•DA=DC2;(3)若tan∠CAD=,求sin∠CDA的值.八、(本题满分14分)23.已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.参考答案一、选择题:每小题给出的四个选项中,其中只有一个是正确的.请把正确选项的代号写在答题表内,(本大题共10小题,每题4分,共40分)1-5: ABCBA; 6-10: DCCDD二、填空题(本大题共4小题,每小题5分,满分20分)11.在△ABC中,若角A,B满足|cos A﹣|+(1﹣tan B)2=0,则∠C的大小是105°.【分析】直接利用特殊角的三角函数值结合非负数的性质得出∠A=30°,∠B=45°,进而利用三角形内角和定理求出答案.解:∵|cos A﹣|+(1﹣tan B)2=0,∴cos A﹣=0,1﹣tan B=0,∴∠A=30°,∠B=45°,∴∠C=180°﹣30°﹣45°=105°.故答案为:105°.12.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=8 cm.【分析】根据垂径定理推出EC=ED=4,再利用勾股定理求出OE即可解决问题.解:∵AB⊥CD,AB是直径,∴CE=ED=4cm,在Rt△OEC中,OE===3(cm),∴AE=OA+OE=5+3=8(cm),故答案为8.13.如图,⊙O的半径为6,点P在⊙O上,点A在⊙O内,且AP=3,过点A作AP的垂线交⊙O于点B、C.设PB=x,PC=y,则y与x的函数表达式为y=.【分析】连接PO并延长交⊙O于H,连接BH,证明△PAC∽△PBH,根据相似三角形的性质列出比例式,代入计算得到答案.解:连接PO并延长交⊙O于H,连接BH,由圆周角定理得,∠C=∠H,∠PBH=90°,∵PA⊥BC,∴∠PAC=90°,∴∠PAC=∠PBH,∴△PAC∽△PBH,∴=,即=,∴y=,故答案为:y=.14.已知在△ABC中,∠ABC=90°,AB=9,BC=12.点Q是线段AC上的一个动点,过点Q 作AC的垂线交射线AB于点P.当△PQB为等腰三角形时,则AP的长为5或18 .【分析】当△PQB为等腰三角形时,有两种情况,需要分类讨论.(I)当点P在线段AB上时,如题图1所示.由三角形相似(△AQP∽△ABC)关系计算AP的长;(II)当点P在线段AB的延长线上时,如题图2所示.利用角之间的关系,证明点B为线段AP的中点,从而可以求出AP.解:在Rt△ABC中,AB=9,BC=12,由勾股定理得:AC=15.∵∠QBP为钝角,∴当△PQB为等腰三角形时,(I)当点P在线段AB上时,如题图1所示.∵∠QPB为钝角,∴当△PQB为等腰三角形时,只可能是PB=PQ,∵PQ⊥AQ,∴∠AQP=90°=∠ABC,在△APQ与△ABC中,∵∠AQP=90°=∠ABC,∠A=∠A,∴△AQP∽△ABC,∴,即,解得:PB=4,∴AP=AB﹣PB=9﹣4=5;(II)当点P在线段AB的延长线上时,如题图2所示.∵∠QBP为钝角,∴当△PQB为等腰三角形时,只可能是PB=BQ.∵BP=BQ,∴∠BQP=∠P,∵∠BQP+∠AQB=90°,∠A+∠P=90°,∴∠AQB=∠A,∴BQ=AB,∴AB=BP,点B为线段AP中点,∴AP=2AB=2×9=18.综上所述,当△PQB为等腰三角形时,AP的长为5或18,故答案为:5或18三、(本大题共2小题,每小题8分,满分16分)15.计算:(﹣2)0+()﹣2+4sin60°﹣|3﹣|.【分析】首先根据零指数幂:a0=1(a≠0)、负整数指数幂:a﹣p=(a≠0,p为正整数)、特殊角的三角函数值和绝对值的性质计算,然后再算加减即可.解:原式=1+9+4×﹣(3﹣),=1+9+2﹣3+,=7+3.16.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C (3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2.【分析】(1)根据轴对称性质即可画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)根据旋转的性质即可将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2.解:如图,(1)△A1B1C1即为所求;(2)△A2B2C2即为所求.四、(本大题共2小题,每小题8分,满分16分)17.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为多少?【分析】设垂直于墙的材料长为x米,则平行于墙的材料长为27+3﹣3x=30﹣3x,表示出总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75即可求得面积的最值.解:设垂直于墙的材料长为x米,则平行于墙的材料长为27+3﹣3x=30﹣3x,则总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75,故饲养室的最大面积为75平方米,18.已知不等臂跷跷板AB长4m.如图①,当AB的一端A碰到地面上时,AB与地面的夹角为α;如图②,当AB的另一端B碰到地面时,AB与地面的夹角为β.求跷跷板AB的支撑点O到地面的高度OH.(用含α,β的式子表示)【分析】根据三角函数的知识分别用OH表示出AO,BO的长,再根据不等臂跷跷板AB长4m,即可列出方程求解即可.解:依题意有:AO=OH÷sinα,BO=OH÷sinβ,AO+BO=OH÷sinα+OH÷sinβ,即OH÷sinα+OH÷sinβ=4m,则OH=m.故跷跷板AB的支撑点O到地面的高度OH是(m).五、(本大题共2小题,每小题10分,满分20分)19.如图,一次函数y=﹣x+5的图象与反比例函数y=kx﹣1(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式与点B坐标;(2)求△AOB的面积.【分析】(1)利用待定系数法求出点A坐标即可解决问题.(2)构建方程组求出交点B坐标,直线y=﹣x+5交y轴于E(0,5),根据S△AOB=S△OBE ﹣S△AOE计算即可.解:(1)∵A(1,n)在直线y=﹣x+5上,∴n=﹣1+5=4,∴A(1,4),把A(1,4)代入y=kx﹣1得到k=4,∴反比例函数的解析式为y=.(2)由,解得或,∴B(4,1),直线y=﹣x+5交y轴于E(0,5),∴S△AOB=S△OBE﹣S△AOE=×5×4﹣×5×1=7.5.20.如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.(1)如图①,当=时,求的值;(2)如图②当DE平分∠CDB时,求证:AF=OA;(3)如图③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=BG.【分析】(1)根据题意得到=,根据正方形的性质得到AD∥BC,AD=BC,得到==,根据三角形的面积公式计算即可;(2)根据正方形的性质、角平分线的定义得到∠ADF=∠AFD,得到AF=AD,证明结论;(3)设BC=4x,CG=y,证明△EGF∽△ECD,根据相似三角形的性质得到=,求出y=x,计算即可证明结论.【解答】(1)解:∵=,∴=,∵四边形ABCD是正方形,∴AD∥BC,AD=BC,∴==,∴=;(2)证明:∵四边形ABCD是正方形,∴∠ADB=∠ACD=45°,AD=OA,∵DE平分∠CDB,∴∠BDE=∠CDE,∵∠ADF=∠ADB+∠BDE,∠AFD=∠ACD+∠CDE,∴∠ADF=∠AFD,∴AF=AD,∴AF=OA;(3)设BC=4x,CG=y,则CE=2x,FG=y,∵FG∥CD,∴△EGF∽△ECD,∴=,即=,整理得,y=x,则EG=2x﹣y=x,∴BG=2x+x=x,∴CG=BG.六、(本题满分12分)21.如图,某大楼的顶部竖有一块广告牌CD,小明在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)【分析】(1)在Rt△ABH中,通过解直角三角形求出BH;(2)过B作DE的垂线,设垂足为G.在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE﹣DE即可求出宣传牌的高度.解:(1)Rt△ABF中,i=tan∠BAH==,∴∠BAH=30°,∴BH=AB=5;(2)过B作BG⊥DE于G,由(1)得:BH=5,AH=5,∴BG=AH+AE=5+15,Rt△BGC中,∠CBG=45°,∴CG=BG=5+15.Rt△ADE中,∠DAE=60°,AE=15,∴DE=AE=15.∴CD=CG+GE﹣DE=5+15+5﹣15=20﹣10≈2.7m.答:宣传牌CD高约2.7米.七、(本题满分12分)22.如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.(1)求证:DO∥AC;(2)求证:DE•DA=DC2;(3)若tan∠CAD=,求sin∠CDA的值.【分析】(1)点D是中点,OD是圆的半径,又OD⊥BC,而AB是圆的直径,则∠ACB =90°,故:AC∥OD;(2)证明△DCE∽△DCA,即可求解;(3)=3,即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan∠CAD=,则AC=6k,AB=10k,即可求解.解:(1)因为点D是弧BC的中点,所以∠CAD=∠BAD,即∠CAB=2∠BAD,而∠BOD=2∠BAD,所以∠CAB=∠BOD,所以DO∥AC;(2)∵,∴∠CAD=∠DCB,∴△DCE∽△DAC,∴CD2=DE•DA;(3)∵tan∠CAD=,连接BD,则BD=CD,∠DBC=∠CAD,在Rt△BDE中,tan∠DBE===,设:DE=a,则CD=2a,而CD2=DE•DA,则AD=4a,∴AE=3a,∴=3,而△AEC∽△DEF,即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan∠CAD=,∴AC=6k,AB=10k,∴sin∠CDA=.八、(本题满分14分)23.已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.【分析】(Ⅰ)把b=2,c=﹣3代入函数解析式,求二次函数的最小值;(Ⅱ)根据当c=5时,若在函数值y=l的情况下,只有一个自变量x的值与其对应,得到x2+bx+5=1有两个相等是实数根,求此时二次函数的解析式;(Ⅲ)当c=b2时,写出解析式,分三种情况进行讨论即可.解:(Ⅰ)当b=2,c=﹣3时,二次函数的解析式为y=x2+2x﹣3=(x+1)2﹣4,∴当x=﹣1时,二次函数取得最小值﹣4;(Ⅱ)当c=5时,二次函数的解析式为y=x2+bx+5,由题意得,x2+bx+5=1有两个相等是实数根,∴△=b2﹣16=0,解得,b1=4,b2=﹣4,∴二次函数的解析式y=x2+4x+5,y=x2﹣4x+5;(Ⅲ)当c=b2时,二次函数解析式为y═x2+bx+b2,图象开口向上,对称轴为直线x=﹣,①当﹣<b,即b>0时,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而增大,∴当x=b时,y=b2+b•b+b2=3b2为最小值,∴3b2=21,解得,b1=﹣(舍去),b2=;②当b≤﹣≤b+3时,即﹣2≤b≤0,∴x=﹣,y=b2为最小值,∴b2=21,解得,b1=﹣2(舍去),b2=2(舍去);③当﹣>b+3,即b<﹣2,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而减小,故当x=b+3时,y=(b+3)2+b(b+3)+b2=3b2+9b+9为最小值,∴3b2+9b+9=21.解得,b1=1(舍去),b2=﹣4;∴b=时,解析式为:y=x2+x+7b=﹣4时,解析式为:y=x2﹣4x+16.综上可得,此时二次函数的解析式为y=x2+x+7或y=x2﹣4x+16.。
2020年安徽省中考数学一模试卷 (含解析)
![2020年安徽省中考数学一模试卷 (含解析)](https://img.taocdn.com/s3/m/8c084bdd844769eae109eda8.png)
2020年安徽省中考数学一模试卷一、选择题(本大题共10小题,共40.0分)1.比−4小的数是()A. −2B. −1C. −6D. 62.计算a6÷(−a)2的结果是()A. a3B. a4C. −a3D. −a43.由一个圆柱体与一个长方体组成的几何体如图所示,这个几何体的左视图是()A.B.C.D.4.2018年安徽省上半年实现GDP约为14264亿元,将14264亿用科学记数法表示为()A. 0.14264×1013B. 1.4264×1013C. 1.4264×1012D. 1.4264×1045.方程x2−kx+1=0有两个相等的实数根,则k的值是()A. 2B. −2C. ±2D. 06.一组数据:201、200、199、202、200,分别减去200,得到另一组数据:1、0、−1、2、0,其中判断错误的是()A. 前一组数据的中位数是200B. 前一组数据的众数是200C. 后一组数据的平均数等于前一组数据的平均数减去200D. 后一组数据的方差等于前一组数据的方差减去2007.一次函数y=kx−1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A. (−5,3)B. (1,−3)C. (2,2)D. (5,−1)8.已知Rt△ABC中,∠C=90°,CD是AB边上的高,且AB=5,cosA=45,则CD的长为()A. 35B. 45C. 125D. 1659.下列命题为假命题的是()A. 对顶角相等B. 垂线段最短C. 同位角相等D. 同角的补角相等10.如图,边长分别为2和4的两个等边三角形,开始它们在左边重叠,大△ABC固定不动,然后把小△A′B′C′自左向右平移,直至移到点B′到C重合时停止.设小三角形移动的距离为x,两个三角形的重合部分的面积为y,则y关于x的函数图象是()A. B.C. D.二、填空题(本大题共4小题,共20.0分)11.化简:√25=.12.分解因式:16m2−4=.13.如图,直线l⊥x轴于点P,且与反比例函数y1=k1x(x>0)及y2=k2x(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为3,则k1−k2=______.14.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=____________°.三、解答题(本大题共9小题,共90.0分)15.解不等式:x−22<7−x3.16.如图,已知A(1,−1),B(3,−3),C(4,−1)是直角坐标平面上三点.(1)请画出△ABC关于x轴对称的△A1B1C1;(2)请画出△A1B1C1绕点O逆时针旋转90°后的△A2B2C2;(3)判断以B,B1,B2,为顶点的三角形的形状(无需说明理由).17.观察下列各式:2×6+4=42…………①4×8+4=62…………②6×10+4=82…………③……探索以上式子的规律:(1)试写出第5个等式;(2)试写出第n个等式(用含n的式子表示),并用你所学的知识说明第n个等式成立.18.塔是一种亚洲常见的有着特定的形式和风格的传统建筑.在成都某公园内有一座古塔,如图小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶仰角∠AEH为62.3°.(点D、B、F在同一水平线上,参考数据:sin62.3°≈0.89,cos62.3°≈0.46,tan62.3°≈1.9)(1)求小亮与塔底中心的距离BD;(用含a的式子表示)(2)若小亮与小琴相距52米,求慈氏塔的高度AB.19.据了解某市区居民生活用水开始实行阶梯式计量水价,实行的阶梯式计量水价分为三级(污水处理费、垃圾处理费等另计),如下表所示:例:若某用户2016年9月份的用水量为35吨,按三级计算则应交水费为:20×1.6+10×2.4+ (35−20−10)×4.8=80(元)(1)如果小白家2016年6月份的用水量为10吨,则需缴交水费______ 元;(2)如果小明家2016年7月份缴交水费44元,那么小明家2016年7月份的用水量为多少吨?(3)如果小明家2016年8月份的用水量为a吨,那么则小明家该月应缴交水费多少元?(用含a的代数式表示)20.如图,在△ABC中,AB=BC,以AB为直径的⊙O交BC于点D,交AC于点F,过点C作CE//AB,与过点A的切线相交于点E,连接AD.(1)求证:AD=AE;(2)若AB=10,AC=4√5,求AE的长.21.合肥46中体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)“喜欢乒乓球”的学生所占的百分比是__________并请补全条形统计图(图2);(2)请你估计全校1200名学生中“喜欢足球”项目的有__________名;(3)在扇形统计图中,“喜欢篮球”部分所对应的圆心角是__________度;(4)从“喜欢排球”的6人(4男2女)和“喜欢其他”的2人(1男1女)中各选1人参加座谈,被选中的两人恰好是1男1女的概率是多少?22.如图,已知点A(0,2),B(2,2),C(−1,−2),抛物线F:y=x2−2mx+m2−2与直线x=−2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y p,求y p的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤−2,比较y1与y2的大小.23.已知矩形ABCD的对角线AC、BD相交于点O,∠AOB=60°,点E为边BC上的一点,连接EO并延长,交CD的延长线于点F.(1)如图1,若EF⊥AC.①求证:BC=OF②求证:AB2=BE⋅OF(2)如图2,若AB=BE⋅BC,求OFOD 的值.【答案与解析】1.答案:C解析:本题考查了有理数比较大小,两负数比较大小,绝对值大的数反而小是解题关键.根据两负数比较大小,绝对值大的数反而小,可得答案.解:−6<−4,故选C.2.答案:B解析:解:原式=a6÷a2=a4.故选B.首先计算(−a)2,然后利用同底数的幂的除法法则即可求解.本题考查同底数幂的除法法则,理解法则是关键.3.答案:D解析:解:从左面可看到一个长方形和上面的中间有一个小长方形.故选D.找到从左面看所得到的图形即可.本题主要考查了三视图的知识,左视图是从物体的左面看得到的视图.4.答案:C解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:14264亿=1.4264×1012,故选C.5.答案:C解析:本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2−4ac>0时,方程有两个不相等的实数根;当b2−4ac=0时,方程有两个相等的实数根;当b2−4ac<0时,方程无实数根.根据已知得出△=0,代入求出即可.解:∵方程x2−kx+1=0有两个相等的实数根,∴△=(−k)2−4×1×1=0,解得:k=±2,故选C.6.答案:D解析:本题主要考查方差,中位数,众数,算术平均数,一组数据中出现次数最多的那个数据叫做这组数据的众数;一组数据按从大到小(或从小到大)的顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数;方差为这组数据与平均数差的平方的平均数,据此可逐项求解.解:A.前组数据的众数是200,故该选项说法正确;B.前组数据的中位数是200,故该选项说法正确;C.后一组数据的平均数等于前一组数据的平均数减去200,故该选项说法正确;D.后一组数据的方差等于前一组数据的方差,故该选项说法错误.故选D.7.答案:C解析:本题考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k >0是解题的关键. 将选项的各点代入解析式,求出k 的值,再与0比较大小即可.解:一次函数y =kx −1的图象的y 值随x 值的增大而增大,∴k >0,A .把点(−5,3)代入y =kx −1得到:k =−45<0,不符合题意;B .把点(1,−3)代入y =kx −1得到:k =−2<0,不符合题意;C .把点(2,2)代入y =kx −1得到:k =32>0,符合题意;D .把点(5,−1)代入y =kx −1得到:k =0,不符合题意;故选C . 8.答案:C解析:解:∵Rt △ABC 中,∠C =90°,AB =5,cosA =45,cosA =AC AB ,∴AC =4,∴BC =√52−42=3,∵AC⋅BC 2=AB⋅CD 2, ∴4×32=5×CD 2,解得,CD =125,故选:C . 根据Rt △ABC 中,∠C =90°,AB =5,cosA =45,可以求得AC 的长,然后根据勾股定理即可求得BC 的长,然后根据等积法即可求得CD 的长.本题考查解直角三角形、勾股定理,解答本题的关键是明确题意,利用锐角三角函数和勾股定理解答. 9.答案:C解析:此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.根据真命题与假命题的定义分别进行判断即可求出答案;正确的命题叫真命题,错误的命题叫做假命题.解:A.对顶角相等;真命题;B.垂线段最短;真命题;C.同位角相等;假命题;同位角不一定相等;D.同角的补角相等;真命题;故选C.10.答案:C解析:本题考查动点问题的函数图象,根据题意可知在点C′移动到点C的过程中,重合部分的面积不变,可以算出相应的面积,C′继续向右移动可以求出相应的重合部分的面积,从而可得到相应的函数解析式,从而可以明确哪个选项是正确的.解:由题意可知,当C′从左向右移动到C的位置时,△ABC与△A′B′C′重合的面积是△A′B′C′的面积,∵△A′B′C′是等边三角形,边长等于2,∴S△A′B′C′=2×√3×12=√3;①当x≤2时,两个三角形重叠面积为:y=12×2×√3=√3;②当2<x≤4时,两个三角形重叠面积为:y=12(4−x)×√32(4−x)=√34x2−2√3x4√3=√34(4−x)2此时函数图象为抛物线,开口向上,顶点坐标是(4,0).故选C.11.答案:5解析:本题主要考查二次根式的性质与化简,属于简单题.直接利用二次根式的性质化简求出即可.解:√25=5.故答案为5.12.答案:4(2m+1)(2m−1)解析:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.原式提取4,再利用平方差公式分解即可.解:原式=4(4m2−1)=4[(2m)2−1]=4(2m+1)(2m−1),故答案为4(2m+1)(2m−1).13.答案:6解析:由反比例函数的图象过第一象限可得出k1>0,k2>0,再由反比例函数系数k的几何意义即可得出S△OAP=12k1,S△OBP=12k2,根据△OAB的面积结合三角形之间的关系即可得出结论.本题考查了反比例函数与一次函数的交点问题以及反比例函数系数k的几何意义,属于基础题,用系数k来表示出三角形的面积是关键.解:∵反比例函数y1=k1x (x>0)及y2=k2x(x>0)的图象均在第一象限内,∴k1>0,k2>0.∵AP⊥x轴,∴S△OAP=12k1,S△OBP=12k2.∴S△OAB=S△OAP−S△OBP=12(k1−k2)=3,解得:k1−k2=6.故答案为:6.14.答案:55°解析:本题考查了平行四边形的性质、折叠的性质;由平行四边形和折叠的性质得出∠D1AE=∠BAD是解决问题的关键.由平行四边形的性质和折叠的性质得出∠D1AE=∠BAD,得出∠D1AD=∠BAE即可.解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠的性质得:∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD+∠EAD=∠BAE+∠EAD,∴∠D1AD=∠BAE=55°,故答案为55°.15.答案:解:去分母得:3(x−2)<2(7−x),去括号得:3x−6<14−2x,移项合并得:5x<20,系数化1,得:x<4.解析:根据解不等式的步骤:去分母、去括号、移项、合并同类项、系数化为1求解即可求得答案.此题考查了一元一次不等式的解法.注意解不等式依据不等式的基本性质,特别是在系数化为1这一个过程中要注意不等号的方向的变化.去分母的过程中注意不能漏乘没有分母的项.16.答案:解:(1)△A1B1C1如图所示.(2)△A2B2C2如图所示.(3)△BB1B2是等腰直角三角形.解析:本题考查作图−旋转变换,轴对称变换,等腰三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)分别作出点A1,B1,C1的对应点A2,B2,C2即可.(3)△BB1B2是等腰直角三角形.17.答案:解:(1)第5个等式:10×14+4=122;(2)第n个等式:2n(2n+4)+4=(2n+2)2;证明:∵2n(2n+4)+4=4n2+8n+4,(2n+2)2=4n2+8n+4,∴2n(2n+4)+4=(2n+2)2,故原等式成立.解析:(1)根据观察发现,发现第5个等式:10×14+4=122;(2)根据观察发现,发现第n个等式:2n(2n+4)+4=(2n+2)2;将等式两边展开,即可证明等式相等.本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.18.答案:解:(1)由题意得,四边形CDBG、HBFE为矩形,∴GB=CD=1.7,HB=EF=1.5,∴GH=0.2,在Rt△AHE中,tan∠AEH=AH,HE则AH=HE⋅tan∠AEH≈1.9a,∴AG=AH−GH=1.9a−0.2,在Rt△ACG中,∠ACG=45°,∴CG=AG=1.9a−0.2,∴BD=1.9a−0.2,答:小亮与塔底中心的距离BD为(1.9a−0.2)米;(2)由题意得,1.9a−0.2+a=52,解得,a=18,则AG=1.9a−0.2=34,∴AB=AG+GB=35.7,答:慈氏塔的高度AB为35.7米.解析:本题考查的是解直角三角形的应用−仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.(1)根据正切的定义用a先表示出AH,根据等腰直角三角形的性质计算;(2)根据题意列方程求出a,结合图形计算,得到答案.19.答案:(1)16(2)∵20×1.6=32(元)、20×1.6+10×2.4=56(元)∵32<44<56∴小明家2016年7月份缴交水费属于第二级设小明家2016年7月份的用水量为x吨,根据题意,得:20×1.6+2.4(x−20)=44解得:x=25答:小明家2016年7月份的用水量为25吨;(3).当0≤a≤20时,该月应缴交水费为1.6a元;当20≤a≤30时,该月应缴交水费为1.6×20+2.4(a−20)=2.4a−16元;当a≥30时,该月应缴交水费为1.6×20+2.4×10+4.8(a−30)=4.8a−88元.解析:本题考查了整式的加减、列代数式、列一元一次方程解应用题;明确题意得出关系进行计算是解决问题的关键.(1)判断得到10吨为20吨以下,由表格中的水价计算即可得到结果;(2)判断得7月份用水量在20吨−30吨之间,设为x吨,根据水费列出方程,求出方程的解即可得到结果;(3)根据a的范围,按照第3级收费方式,计算即可得到结果.解:(1)1.6×10=16;故答案为16;(2)见答案;(3)见答案.20.答案:(1)证明:∵AE与⊙O相切,AB是⊙O的直径,∴∠BAE=90°,∠ADB=90°=∠ADC,∵CE//AB,∴∠E=90°,∴∠E=∠ADB,∵在△ABC中,AB=BC,∴∠BAC=∠BCA,∵AB//CE,∴∠BAC=∠ACE,∴∠BCA=∠ACE,又∵AC=AC,∴△ADC≌△AEC(AAS),∴AD═AE;(2)解:设BD=x,CD=10−x,AD2=AB2−BD2=AC2−CD2,即102−x2=(4√5)2−(10−x)2,解得:x=6,∴AD=AE=8.解析:本题主要考查的是切线的性质,圆周角定理及其推论,全等三角形的判定及性质,平行线的性质,等腰三角形的性质,勾股定理等有关知识.(1)利用平行线的性质,圆的性质和等腰三角形的性质,证明△AEC和△ADC全等即可证明AD=AE,(2)设BD=x,CD=10−x,利用勾股定理即可求出AE的长.21.答案:解:(1)28%;(2)192;(3)144;(4)如图:总情况有12种,被选中的两人恰好是1男1女的有6种,被选中的两人恰好是1男1女的概率是612=12.解析:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.(1)先利用喜欢足球的人数和它所占的百分比计算出调查的总人数,再计算出喜欢乒乓球的人数,然后补全条形统计图;(2)用1200乘以样本中喜欢排球的百分比可根据估计全校1200名学生中最喜欢“足球”项目的写生数;(3)用360°乘以喜欢篮球人数所占的百分比即可;(4)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.解:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50−8−20−6−2=14(人),×100%=28%,所以喜欢乒乓球的学生所占的百分比=1450补全条形统计图如下:故答案为28%;(2)1200×16%=192(人),故答案为192;(3)篮球”部分所对应的圆心角=360 ∘×40%=144°;(4)见答案.22.答案:解:(1)∵抛物线F经过点C(−1,−2),∴−2=1+2m+m2−2,∴m=−1,∴抛物线F的表达式是y=x2+2x−1.(2)当x=−2时,y P=4+4m+m2−2=(m+2)2−2,∴当m=−2时,y P的最小值为−2.此时抛物线F的表达式是y=(x+2)2−2,∴当x≤−2时,y随x的增大而减小.∵x1<x2≤−2,∴y1>y2.解析:本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.(1)根据待定系数法即可求得;(2)把x=−2代入解析式得到P点的纵坐标y P=4+4m+m2−2=(m+2)2−2,即可得到当m=−2时,y P的最小值为−2,然后根据二次函数的性质即可判断y1与y2的大小.23.答案:证明:(1)①∵四边形ABCD是矩形,∴AB//CD,∠ABC=90°,OB=OA=OC,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=OC,∵EF⊥AC,∴∠COF=90°,∴∠ABC=∠COF,∵AB//CD,∴∠OCF=∠BAC,在△ABC和△COF中{∠BAC=∠OCF AB=OC∠ABC=∠COF,∴△ABC≌△COF(ASA),∴BC=OF;②∵四边形ABCD是矩形,∴OB=OC,∴∠OBC=∠OCB,∵∠AOB=60°,∠AOB=∠OBC+∠OCB,∴∠OBC=∠OCB=30°,∵∠COF=90°=∠AOE,∴∠CEO=60°,∠EOB=30°,∴∠EOB=∠OCB,∵∠EBO=∠OBC,∴△EOB∽△OCB,∴BEBO =BOBC,即BO2=BE⋅BC,由①可知BC=OF,AB=BO,∴AB2=BE⋅OF;(2)∵四边形ABCD是矩形,∴OB=OC=OD,∠BCD=90°,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=OC=OD,∵∠AOB=∠OBC+∠OCB,∴∠OBC=∠OCB=30°,∵AB2=BE⋅BC,∴OB2=BE⋅BC,∴OBBE =BCOB,∵∠EBO=∠OBC,∴△EOB∽△OCB,∴∠EOB=∠OCB=30°,∴∠OCF=60°,∵∠DOF=∠EOB,∠COD=∠AOB,∴∠COF=90°,∴OFOD =OFOC=tan∠OCF=√3.解析:(1)①根据矩形的性质和等边三角形的性质以及全等三角形的判定和性质得出△ABC与△COF 全等,进而证明即可;②利用矩形的性质和相似三角形的判定和性质得出比例式即可;(2)根据矩形的性质和等边三角形的性质,利用比例式解答即可.此题属于四边形的综合题.考查了矩形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识.根据矩形的性质和等边三角形的性质以及全等三角形的判定和性质得出△ABC与△COF 全等是解此题的关键.。
2020年安徽省芜湖市中考数学第一次模拟试卷(Word版含解析)
![2020年安徽省芜湖市中考数学第一次模拟试卷(Word版含解析)](https://img.taocdn.com/s3/m/59e28aac482fb4daa48d4b42.png)
2020年中考数学一模试卷一、选择题.1.﹣2的绝对值是()A.﹣2B.2C.﹣D.2.下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=2a6D.3.如图所示的几何体的左视图为()A.B.C.D.4.下列一元二次方程中,没有实数根的是()A.x2﹣2x=0B.x2+4x﹣1=0C.2x2﹣4x+3=0D.3x2=5x﹣2 5.一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣5 6.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685B.x+2x+3x=34685C.x+2x+2x=34685D.x+x+x=346858.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.29.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.10.如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是()A.2B.4C.5D.10二、填空题(共4小题,每小题5分,满分20分)11.因式分解:2x2﹣8=.12.函数y=中,自变量x的取值范围是.13.如图,菱形ABCD顶点A在函数y=(x>0)的图象上,函数y=(k>3,x>0)的图象关于直线AC对称,且经过点B,D两点,若AB=2,∠BAD=30°,则k=.14.如图,在Rt△ABC中,C为直角顶点,∠ABC=20°,O为斜边的中点,将OA绕着点O逆时针旋转θ°(0<θ<180)至OP,当△BCP恰为轴对称图形时,θ的值为.三、解答题(共2小题,每小题8分,满分16分)15.计算4sin45°+(π﹣2)0﹣+|﹣1|16.如图,在平面直角坐标系中,A(0,1),B(4,2),C(2,0).(1)将△ABC沿y轴翻折得到△A1B1C1,画出△A1B1C1;(2)将△ABC绕着点(﹣1,﹣1)旋转180°得到△A2B2C2,画出△A2B2C2;(3)线段B2C2可以看成是线段B1C1绕着平面直角坐标系中某一点逆时针旋转得到,直接写出旋转中心的坐标为.四、(共2小题,每小题8分,满分16分)17.如图,已知直线l1:y1=﹣2x﹣3,直线l2:y2=x+3,l1与l2相交于点P,l1,l2分别与y轴相交于点A,B.(1)求点P的坐标.(2)若y1>y2>0,求x的取值范围.(3)点D(m,0)为x轴上的一个动点,过点D作x轴的垂线分别交l1和l2于点E,F,当EF=3时,求m的值.18.某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37°,测得点C处的俯角为45°.又经过人工测量操控者A和教学楼BC距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)五、(共2小题,每小题10分,满分20分)19.如图,AB是⊙O的直径,P、C是圆周上的点,=,弦PC交AB于点D.(1)求证:∠A=∠C;(2)若OD=DC,求∠A的度数.20.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.六、(本题满分12分)21.观察下列数据:第1列第2列第3列第4列…第n列第1行1234…n第2行2468…2n第3行36912…3n…………………第n行n2n3n4n…n2请回答:(1)第1行所有数字之和为(用含字母n的式子表示);(2)表格中所有数字之和为(用含字母n的式子表示);(3)根据以上的信息,计算13+23+33+ (1003)七、(本题满分12分)22.国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A、B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元;花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同.(1)求A、B两种型号汽车的进货单价;(2)销售中发现A型汽车的每周销量y A(台)与售价x(万元/台)满足函数关系y A=﹣x+20,B型汽车的每周销量y B(台)与售价x(万元/台)满足函数关系y B=﹣x+14,A型汽车的售价比B型汽车的售价高2万元/台.问A、B两种型号的汽车售价各为多少时,每周销售这两种汽车的总利润最大?最大利润是多少万元?八、(本题满分14分)23.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.参考答案一.选择题(共10小题)1.﹣2的绝对值是()A.﹣2B.2C.﹣D.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.解:|﹣2|=2.故选:B.2.下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=2a6D.【分析】分别根据幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方逐一计算即可判断.解:A、(﹣a3)2=a6,此选项错误;B、2a2+3a2=5a2,此选项错误;C、2a2•a3=2a5,此选项错误;D、,此选项正确;故选:D.3.如图所示的几何体的左视图为()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.解:从左边看是上大下小等宽的两个矩形,矩形的公共边是虚线,故选:D.4.下列一元二次方程中,没有实数根的是()A.x2﹣2x=0B.x2+4x﹣1=0C.2x2﹣4x+3=0D.3x2=5x﹣2【分析】利用根的判别式△=b2﹣4ac分别进行判定即可.解:A、△=4>0,有两个不相等的实数根,故此选项不合题意;B、△=16+4=20>0,有两个不相等的实数根,故此选项不合题意;C、△=16﹣4×2×3<0,没有实数根,故此选项符合题意;D、△=25﹣4×3×2=25﹣24=1>0,有两个不相等的实数根,故此选项不合题意;故选:C.5.一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:=0.00002=2×10﹣5.故选:D.6.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.解:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ.故选:D.7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685B.x+2x+3x=34685C.x+2x+2x=34685D.x+x+x=34685【分析】设他第一天读x个字,根据题意列出方程解答即可.解:设他第一天读x个字,根据题意可得:x+2x+4x=34685,故选:A.8.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.2【分析】连接AI、BI,因为三角形的内心是角平分线的交点,所以AI是∠CAB的平分线,由平行的性质和等角对等边可得:AD=DI,同理BE=EI,所以图中阴影部分的周长就是边AB的长.解:连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=4,即图中阴影部分的周长为4,故选:B.9.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.【分析】根据二次函数y=ax2+bx与一次函数y=ax+b(a≠0)可以求得它们的交点坐标,然后根据一次函数的性质和二次函数的性质,由函数图象可以判断a、b的正负情况,从而可以解答本题.解:解得或.故二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中的交点在x 轴上为(﹣,0)或点(1,a+b).在A中,由一次函数图象可知a>0,b>0,二次函数图象可知,a>0,b>0,﹣<0,a+b>0,故选项A有可能;在B中,由一次函数图象可知a>0,b<0,二次函数图象可知,a>0,b<0,由|a|>|b|,则a+b>0,故选项B有可能;在C中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,a+b<0,故选项C有可能;在D中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b>0,由|a|>|b|,则a+b<0,故选项D不可能;故选:D.10.如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是()A.2B.4C.5D.10【分析】如图,作DH⊥AB于H,CM⊥AB于M.由tan A==2,设AE=a,BE=2a,利用勾股定理构建方程求出a,再证明DH=BD,推出CD+BD=CD+DH,由垂线段最短即可解决问题.解:如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠AEB=90°,∵tan A==2,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,∴a=2或﹣2(舍弃),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AB,∴CM=BE=4(等腰三角形两腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴sin∠DBH===,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最小值为4.方法二:作CM⊥AB于M,交BE于点D,则点D满足题意.通过三角形相似或三角函数证得BD=DM,从而得到CD+BD=CM=4.故选:B.二、填空题(共4小题,每小题5分,满分20分)11.因式分解:2x2﹣8=2(x+2)(x﹣2).【分析】观察原式,找到公因式2,提出即可得出答案.解:2x2﹣8=2(x+2)(x﹣2).12.函数y=中,自变量x的取值范围是x≥﹣1且x≠1.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解:根据题意得:x+1≥0且x﹣1≠0,解得:x≥﹣1且x≠1.故答案为:x≥﹣1且x≠1.13.如图,菱形ABCD顶点A在函数y=(x>0)的图象上,函数y=(k>3,x>0)的图象关于直线AC对称,且经过点B,D两点,若AB=2,∠BAD=30°,则k=6+2.【分析】连接OC,AC,过A作AE⊥x轴于点E,延长DA与x轴交于点F,过点D作DG⊥x轴于点G,得O、A、C在第一象限的角平分线上,求得A点坐标,进而求得D 点坐标,便可求得结果.解:连接OC,AC,过A作AE⊥x轴于点E,延长DA与x轴交于点F,过点D作DG ⊥x轴于点G,∵函数y=(k>3,x>0)的图象关于直线AC对称,∴O,A,C三点在同直线上,且∠COE=45°,∴OE=AE,不妨设OE=AE=a,则A(a,a),∵点A在在反比例函数y=(x>0)的图象上,∴a2=3,∴a=,∴AE=OE=,∵∠BAD=30°,∴∠OAF=∠CAD=∠BAD=15°,∵∠OAE=∠AOE=45°,∴∠EAF=30°,∴AF=,EF=AE tan30°=1,∵AB=AD=2,AE∥DG,∴EF=EG=1,DG=2AE=2,∴OG=OE+EG=+1,∴D(+1,2),故答案为:6+2.14.如图,在Rt△ABC中,C为直角顶点,∠ABC=20°,O为斜边的中点,将OA绕着点O逆时针旋转θ°(0<θ<180)至OP,当△BCP恰为轴对称图形时,θ的值为40°或100°或70°.【分析】如图1,连接AP,根据直角三角形的判定和性质得到∠APB=90°,当BC=BP时,得到∠BCP=∠BPC,推出AB垂直平分PC,求得∠ABP=∠ABC=25°,于是得到θ=2×20°=40°,当BC=PC时,如图2,连接CO并延长交PB于H,根据线段垂直平分线的性质得到CH垂直平分PB,求得∠CHB=90°,根据等腰三角形的性质得到θ=2×50°=100°,当PB=PC时,如图3,连接PO并延长交BC于G,连接OC,推出PG垂直平分BC,得到∠BGO=90°,根据三角形的内角和得到θ=∠BOG =70°.解:∵△BCP恰为轴对称图形,∴△BCP是等腰三角形,如图1,连接AP,∵O为斜边中点,OP=OA,∴BO=OP=OA,∴∠APB=90°,当BC=BP时,∴∠BCP=∠BPC,∴∠BCP+∠ACP=∠BPC+∠APC=90°,∴∠ACP=∠APC,∴AC=AP,∴AB垂直平分PC,∴∠ABP=∠ABC=20°,∴θ=2×20°=40°,当BC=PC时,如图2,连接CO并延长交PB于H,∵BC=CP,BO=PO,∴CH垂直平分PB,∴∠CHB=90°,∵OB=OC,∴∠BCH=∠ABC=20°,∴∠CBH=70°,∴∠OBH=50°,∴θ=2×50°=100°;当PB=PC时,如图3,连接PO并延长交BC于G,连接OC,∵∠ACB=90°,O为斜边中点,∴OB=OC,∴PG垂直平分BC,∴∠BGO=90°,∵∠ABC=20°,∴θ=∠BOG=70°,综上所述:当△BCP恰为轴对称图形时,θ的值为40°或100°或70°,故答案为:40°或100°或70°.三、解答题(共2小题,每小题8分,满分16分)15.计算4sin45°+(π﹣2)0﹣+|﹣1|【分析】直接利用特殊角的三角函数值以及零指数幂的性质和二次根式的性质分别化简得出答案.解:原式=4×+1﹣3+1=﹣+2.16.如图,在平面直角坐标系中,A(0,1),B(4,2),C(2,0).(1)将△ABC沿y轴翻折得到△A1B1C1,画出△A1B1C1;(2)将△ABC绕着点(﹣1,﹣1)旋转180°得到△A2B2C2,画出△A2B2C2;(3)线段B2C2可以看成是线段B1C1绕着平面直角坐标系中某一点逆时针旋转得到,直接写出旋转中心的坐标为(﹣2,﹣2)或(﹣6,0).【分析】(1)利用关于y轴对称的点坐标特征写出点A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出点A1、B1、C1的对应点A2、B2、C2,从而得到△A2B2C2;(3)作B1B2和C1C2的垂直平分线,它们相交于点P,则点P为旋转中心,然后写出P 点坐标即可或作C1B2和B1C2的垂直平分线,它们的交点旋转中心.解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)如图,线段B2C2可以看成是线段B1C1绕着点P逆时针旋转90°得到,此时P点的坐标为(﹣2,﹣2).线段B2C2可以看成是线段C1B1绕着点(﹣6,0)顺时针旋转90°得到,此时P点的坐标为(﹣6,0).故答案为(﹣2,﹣2)或(﹣6,0).四、(共2小题,每小题8分,满分16分)17.如图,已知直线l1:y1=﹣2x﹣3,直线l2:y2=x+3,l1与l2相交于点P,l1,l2分别与y轴相交于点A,B.(1)求点P的坐标.(2)若y1>y2>0,求x的取值范围.(3)点D(m,0)为x轴上的一个动点,过点D作x轴的垂线分别交l1和l2于点E,F,当EF=3时,求m的值.【分析】(1)联立两直线解析式得到关于x、y的方程组,解之即可得;(2)求得直线l2:y2=x+3与x轴的交点,然后根据图象即可求得;(3)根据题意表示出E、F的坐标,得到关于m的方程,解之可得答案.解:(1)根据题意,得:,解得:,∴点P的坐标为(﹣2,1).(2)在直线l2:y2=x+3中,令y=0,解得x=﹣3,由图象可知:若y1>y2>0,x的取值范围是﹣3<x<﹣2;(2)由题意可知E(m,﹣2m﹣3),F(m,m+3),∵EF=3,∴|﹣2m﹣3﹣m﹣3|=3,解得:m=﹣3或m=﹣1.18.某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37°,测得点C处的俯角为45°.又经过人工测量操控者A和教学楼BC距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】作DE⊥AB于点E,作CF⊥DE于点F,由tan37°=≈0.75求得AE=40.2,由AB=57知BE=17.3,再根据四边形BCFE是矩形知CF=BE=17.由∠CDF=∠DCF =45°知DF=CF=17.4,从而得BC=EF=30﹣17=13.5.解:过点D作DE⊥AB于点E,过点C作CF⊥DE于点F.由题意得,AB=57,DE=30,∠A=37°,∠DCF=45°.在Rt△ADE中,∠AED=90°,∴tan37°=≈0.75.∴AE=40.2∵AB=57,∴BE=17.3∵四边形BCFE是矩形,∴CF=BE=17.在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°.∴DF=CF=17.4∴BC=EF=30﹣17=13.5答:教学楼BC高约13米.五、(共2小题,每小题10分,满分20分)19.如图,AB是⊙O的直径,P、C是圆周上的点,=,弦PC交AB于点D.(1)求证:∠A=∠C;(2)若OD=DC,求∠A的度数.【分析】(1)连接OP,构造全等三角形(△POA≌△POC),由该全等三角形的性质证得结论;(2)设∠A=∠C=x°,利用圆周角定理和三角形内角和定理列出方程,由方程思想解答.【解答】(1)证明:如图,连接OP.∵=,∴PA=PC.在△POA与△POC中,.∴△POA≌△POC(SSS).∴∠A=∠C;(2)设∠A=∠C=x°,则∠POB=2∠A=2x°.∵OD=DC,∴∠DOC=∠C=x°.在△POC中,x+3x+x=180°x=36.∴∠A=36°.20.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了20名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.【分析】(1)由题意可得:王老师一共调查学生:(2+1)÷15%=20(名);(2)由题意可得:C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.解:(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为:20;(2)∵C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2…女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:=.六、(本题满分12分)21.观察下列数据:第1列第2列第3列第4列…第n列第1行1234…n第2行2468…2n第3行36912…3n…………………第n行n2n3n4n…n2请回答:(1)第1行所有数字之和为(用含字母n的式子表示);(2)表格中所有数字之和为(用含字母n的式子表示);(3)根据以上的信息,计算13+23+33+ (1003)【分析】(1)直接利用前n个数和公式可得结论;(2)分别计算每一列的所有数字之和,再相加可得结论;(3)通过计算发现:前n个数的立方和等于前n个数的和的平方,根据(1)中的结论可解答.解:(1)1+2+3+…+n=;故答案为:;(2)第1列所有数字之和=1+2+3+…+n=,第2列所有数字之和=2+4+6+…+2n=2(1+2+3+…+n)=,…第n列所有数字之和=n(1+2+3+…+n)=,∴格中所有数字之和为:++…+===;故答案为:;(3)∵13=12,13+23=9=(1+2)2,13+23+33=36=(1+2+3)2,…∴13+23+33+ (1003)=(1+2+3+…+100)2,=50502,=25502500.七、(本题满分12分)22.国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A、B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元;花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同.(1)求A、B两种型号汽车的进货单价;(2)销售中发现A型汽车的每周销量y A(台)与售价x(万元/台)满足函数关系y A=﹣x+20,B型汽车的每周销量y B(台)与售价x(万元/台)满足函数关系y B=﹣x+14,A型汽车的售价比B型汽车的售价高2万元/台.问A、B两种型号的汽车售价各为多少时,每周销售这两种汽车的总利润最大?最大利润是多少万元?【分析】(1)根据购进两种型号的汽车数量相同列出分式方程即可求解;(2)根据销售利润等于每台汽车的利润乘以销售量列出二次函数关系即可求解.解:(1)设B型汽车的进货单价为x万元,根据题意,得=,解得x=8,经检验x=8是原分式方程的根.答A、B两种型号汽车的进货单价为:10万元、8万元.(2)设两种汽车的总利润为w万元,根据题意,得w=(x+2﹣10)[﹣(x+2)+18]+(x﹣8)(﹣x+14)=﹣2x2+48x﹣256=﹣2(x﹣12)2+32∵﹣2<0,当x=12时,w有最大值为32.答:A、B两种型号的汽车售价各为14万元、12万元时,每周销售这两种汽车的总利润最大,最大利润是32万元八、(本题满分14分)23.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为1;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC ∽△BOD,则∠AMB=90°,,可得AC的长.解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.。
2020年安徽省九年级数学中考模拟测试卷(一)(含答案)
![2020年安徽省九年级数学中考模拟测试卷(一)(含答案)](https://img.taocdn.com/s3/m/3fa438abe2bd960590c677cb.png)
2020年安徽省中考九年级数学模拟测试卷(一)时间:120分钟满分:150分一、选择题(本大题共10小题,每小题4分,满分40分)1.2020的倒数是()A.-2020B.12020-C.2020D.120202.化简-ab-2ab 的结果是()A.-1 B.ab C.-3ab D .-ab3.2020年2月11日,世卫组织总干事谭德赛在全球研究与创新论坛记者会上宣布,将新型冠状病毒引发的疾病命名为“COVID-19”.已知冠状病毒直径约80~120nm(1nm=10-9m).“120nm”用科学记数法可表示为()A.1.2×10-7m B.1.2×10-11m C.0.12×10-10m D.12×10-11m4.如图是由若干个大小相同的小立方块组成的几何体的三视图,则构成该几何体的小立方块的个数是()A.3 B.4 C.5D .6第4题图第6题图第7题图5.将一条直的等宽纸带,按如图所示方式折叠,则a 的度数为()A.80° B.65° C.60°D .45°6.甲、乙、丙三位同学通过“手心手背”游戏“找朋友”,规定:当恰好只有两个人所出的手势相同时,这两个人就成为“朋友”,若三人同时出手势一次,则甲、乙两位同学成为“朋友”的概率是()A.12B.13C.14D .237.如图,四边形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O ,若DOCADO S S ∆∆=,则BC AD的值为()A .B .C .D .8.某企业2017年给希望工程捐款a 万元,之后捐款金额逐年增加,且每年的增长率为10%,从2017年到2019年,该企业共给希望工程捐款b 万元,则()A.b=a(1+10%)2B.b=a+a(1+10%)+a(1+10%)2C.b=a(1+10%×2)D.b=a+a(1+10%)+a(1+10%x2)9.若抛物线y1=a1x2+b1x+c1,y2=a2x2+b2x+c2满足111222(0,1)a b c k ka b c===≠,则称抛物线y1,y2互为”友好抛物线”.对于“友好抛物线”y1,y2,有下列说法:①开口方向相同;②开口大小可能相同;③对称轴相同;④若y2有最大值,且最大值为m,则y1有最大值,且最大值为km.其中正确说法的个数是()A.1B.2C.3D.410.如图,在矩形ABCD中,AB=8,BC=6,点P为直线AB外一点,且∠APB=90°,则满足PC=4的点P的个数是()A.0B.1C.2D.3二、填空题(本大题共4小题,每小题5分,满分20分)11.计算÷的结果是.PE为边作正方形PEDQ,使点Q恰好在半圆上,则OP的长为.14.在平面直角坐标系xOy中,点A(1.1)在反比例函数y=kx(k=0)的图象上,过点A作AB⊥x轴于点B.分别作点O,B关于直线y=-x+a的对称点O',B',当线段O'B'与反比例函数y=kx的图象有公共点时,a的取值范围是.三、(本大题共2小题,每小题8分,满分16分)15.解方程:3x(x-3)=x2-9.16.《九章算术》中有这样一道题,原文如下:今有不善行者先行一十里,善行者追之一百里,先至不善行者二十里.问善行者几何里及之?大意为:走路慢的人先走10里,走路快的人追了100里,超过走路慢的人20里,问:走路快的人走多少里时追上走路慢的人?请解决下列问题:(1)走路快的人走100里的时间内,走路慢的人走了里;(2)请解答《九章算术》中的这道题.四、(本大题共2小题,每小题8分,满分16分)17.如图,在12×12的正方形网格中,每个小正方形的边长都是1,已知点A,B,C,D均为网格线的交点.(1)在网格中将△ABC绕点D顺时针旋转90°,画出旋转后得到的△A1B1C1(点A,B,C的对应点分别为点A1,B1,C1);(2)在网格中画出△DEF,使△DEF∽△ABC,且相似比为2:1(点E,F为格点);(3)若M是线段AB上的一个动点(可以与两端点重合),△A1DM的面积为S,则S的取值范围是.18.在平面直角坐标系中,一只蚂蚁从原点O出发,沿着O→A1→A2→A3→A4→A5→A6→…的路线运动,每次移动1个单位长度,其行走路线如图所示.(1)填写下列各点的坐标:A1,A3,A9;(2)请直接写出点A2n的坐标(n是正整数);(3)当蚂蚁运动到A2020时停止运动,此时蚂蚁的运动轨迹是中心对称图形还是轴对称图形?如果是中心对称图形,求出其对称中心的坐标;如果是轴对称图形,写出其对称轴.五、(本大题共2小题,每小题10分,满分20分)19.小明在一块空地上试飞一架无人机。
【2020年】安徽省数学中考模拟试题(含答案)
![【2020年】安徽省数学中考模拟试题(含答案)](https://img.taocdn.com/s3/m/6725e830960590c69ec37690.png)
2020年安徽省中考模拟试题含答案注意事项:1、本试卷共八大题,满分150分,考试时间为120分钟。
2、请将答案填写在答题卷上。
考试结束后,将试题卷和答题卷一并交回。
一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.下列图形中,既是轴对称图形又是中心对称图形的有( )A.4个B.3个C.2个D.1个2.如图,点D ,E 分别是△ABC 的边AB ,AC 的中点,则△ADE 的面积与四边形BCED 的面积的比为( )(第2题) (第3题) (第4题)A.1:2B.1:3C.1:4D.1:13.如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限.若反比例函数y =x k 的图象经过点B ,则k 的值是( )A.1B.2C.3 D.23 4.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( )A.BP AB =CB AC B.∠APB =∠ABC C.AB AP =ACAB D.∠ABP =∠C 5.在△ABC 中,(2cos A ﹣2)2+|1﹣tan B |=0,则△ABC 一定是( ) A.直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形6.已知x =1是方程x 2+bx ﹣2=0的一个根,则方程的另一个根是( )A.1B.2C.﹣2D.﹣17.有四张背面一模一样的卡片,卡片正面分别写着一个函数关系式,分别是y =2x ,y =x 2-3(x >0),y =x 2(x >0),y =-x31(x <0),将卡片顺序打乱后,随意从中抽取一张,取出的卡片上的函数是y 随x 的增大而增大的概率是( )A.41B.21C.43 D.1 8.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则下列结论中正确的是( )(第8题) (第9题) (第10题)A.a >0B.3是方程ax 2+bx +c =0的一个根C.a +b +c =0D.当x <1时,y 随x 的增大而减小9.如图所示,直线l 和反比例函数y =x k (k >0)的图象的一支交于A ,B 两点,P 是线段AB 上的点(不与A ,B 重合),过点A ,B ,P 分别向x 轴作垂线,垂足分别是C ,D ,E ,连接OA ,OB ,OP ,设△AOC 面积是S 1,△BOD 面积是S 2,△POE 面积是S 3,则( )A.S 1<S 2<S 3B.S 1>S 2>S 3C.S 1= S 2>S 3D.S 1= S 2<S 3 10.如图,⊙O 是△ABC 的外接圆,弦AC 的长为3,sin B =43,则⊙O 的半径为( ) A.4 B.3 C.2 D.3二、填空题:(本大题共4小题,每小题5分,满分20分)11.如图,若点A 的坐标为(1,3),则sin∠1= .(第11题) (第12题)12.如图,以点O 为圆心的两个圆中,大圆的弦AB 切小圆于点C ,OA 交小圆于点D ,若OD =2,tan∠OAB =21,则AB 的长是____________. 13.如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是___________________.(第13题) (第14题)14.在矩形ABCD 中,AB =6,BC =8,AC ,BD 相交于O ,P 是边BC 上一点,AP 与BD 交于点M ,DP 与AC 交于点N .①若点P 为BC 的中点,则AM :PM =2:1;②若点P 为BC 的中点,则四边形OMPN 的面积是8;③若点P 为BC 的中点,则图中阴影部分的总面积为28;④若点P 在BC 的运动,则图中阴影部分的总面积不变.其中正确的是_____________.(填序号即可)三、解答题(本大题共2个小题,每小题8分,满分16分)15.计算:(2﹣1)0+(﹣1)2015+(31)-1﹣2sin30°16.解方程:x 2﹣5x +3=0四、(本大题共2个小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点四边形ABCD (顶点是网格线的交点),按要求画出四边形AB 1C 1D 1和四边形AB 2C 2D 2.⑴以A 为旋转中心,将四边形ABCD 顺时针旋转90°,得到四边形AB 1C 1D 1;⑵以A 为位似中心,将四边形ABCD 作位似变换,且放大到原来的两倍,得到四边形AB 2C 2D 2.18.如图,专业救助船“沪救1”轮、“沪救2”轮分别位于A 、B 两处,同时测得事发地点C 在A 的南偏东60°且C 在B 的南偏东30°上.已知B 在A 的正东方向,且相距100里,请分别求出两艘船到达事发地点C 的距离.(注:里是海程单位,相当于一海里.结果保留根号)五、(本大题共2个小题,每小题10分,满分20分)19.如图,在平面直角坐标系xOy 中,直线y =﹣21x +2分别与x 、y 轴交于点B 、A ,与反比例函数的图象分别交于点C 、D ,CE ⊥x轴于点E ,OE =2.⑴求反比例函数的解析式;⑵连接OD ,求△OBD 的面积.20.如图,已知△ABC 为直角三角形,∠C =90°,边BC 是⊙O 的切线,切点为D ,AB经过圆心O 并与圆相交于点E ,连接AD .⑴求证:AD 平分∠BAC ;⑵若AC =8,tan∠DAC =43,求⊙O 的半径.六、(本题满分12分)21.在一个不透明的袋子中装有仅颜色不同的5个小球,其中红球3个,黑球2个.⑴先从袋中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,填空:若A 为必然事件,则m 的值为_______,若A 为随机事件,则m 的取值为______;⑵若从袋中随机摸出2个球,正好红球、黑球各1个,用列表法与树状图法求这个事件的概率.七、(本题满分12分)22.如图1,在四边形ABCD 中,∠DAB 被对角线AC 平分,且AC 2=AB ·AD ,我们称该四边形为“可分四边形”,∠DAB 称为“可分角”.⑴如图2,四边形ABCD 为“可分四边形”,∠DAB 为“可分角”,如果∠DCB =∠DAB ,则∠DAB =_________.⑵如图3,在四边形ABCD 中,∠DAB =60°,AC 平分∠DAB ,且∠BCD =150°,求证:四边形ABCD 为“可分四边形”;⑶现有四边形ABCD 为“可分四边形”,∠DAB 为“可分角”,且AC =4,BC =2,∠D =90°,求AD 的长?图1 图2 图3八、(本题满分14分)23.已知抛物线l 1:y =﹣x 2+2x +3与x 轴交于点A 、B (点A 在点B 左边),与y 轴交于点C ,抛物线l 2经过点A ,与x 轴的另一个交点为E (4,0),与y 轴交于点D (0,﹣2).⑴求抛物线l 2的解析式;⑵点P 为线段AB 上一动点(不与A 、B 重合),过点P 作y 轴的平行线交抛物线l 1于点M ,交抛物线l 2于点N .①当四边形AMBN 的面积最大时,求点P 的坐标;②当CM=DN≠0时,求点P的坐标.备用图数学参考答案一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1—5 CBCAD,6-10 CCBDC二、填空:11、 12、 8 13、 x<﹣1,或0<x<2 14、①③三、解答题:15、(8分)原式=216、(8分) x1=,x2=.17、(8分)18、(8分)解:作BG⊥AC于G,∵点C在A的南偏东60°,∴∠A=90°﹣60°=30°,∵C在B的南偏东30°,∴∠ABC=120°,∴∠C=30°,∴BC=AB=100里,∴BG=BC•sin30°=50里,CG=BC•cos30°=50里,∴AC=2CG=100里.答:A船到达事发地点C的距离是100里,B船到达事发地点C的距离是100里.19、(10分)解:(1)∵OE=2,CE⊥x轴于点E.∴C的横坐标为﹣2,把x=﹣2代入y=﹣x+2得,y=﹣×(﹣2)+2=3,∴点C的坐标为C(﹣2,3).设反比例函数的解析式为y=,(m ≠0)将点C 的坐标代入,得3=.∴m=﹣6. ∴该反比例函数的解析式为y=﹣.(2)由直线线y=﹣x+2可知B (4,0),解得,,∴D (6,﹣1), ∴S △OBD =×4×1=2.20(10分)解:(1)连接OD , ∵BC 是⊙O 的切线, ∴OD⊥BC ∴∠ODB=90°又∵∠C=90° ∴AC∥OD ∴∠CAD=∠ADO又∵OA=OD ∴∠OAD=∠ADO ∴∠CAD=∠OAD∴ AD 平分∠BAC(2)在R t △ACD 中 AD=1022=+CD AC连接DE ,∵AE 为⊙O 的直径 ∴∠ADE=90° ∴∠ADE=∠C∵∠CAD=∠OAD∴△ACD∽△ADE∴AD AE AC AD =,即10810AE = ∴AE=225 ∴⊙O 的半径是42521、解:(1)∵“摸出黑球”为必然事件, ∴m=3,∵“摸出黑球”为随机事件,且m >1, ∴m=2; 故答案为:3,2; (2)画树状图得:∵共有20种等可能的结果,从袋中随机摸出2个球,正好红球、黑球各1个的有12种情况,∴从袋中随机摸出2个球,正好红球、黑球各1个的概率为: =.22(1)︒=∠120DAB(2)∵AC 平分∠DAB,∠DAB=60°∴∠DAC=∠CAB=30°∵∠DCB=150° ∴∠DCA=150°-∠ACB在△ADC 中,∠ADC=180°- ∠DAC - ∠DCA =180°-30°-(150°-∠ACB)=∠ACB∴△ACD∽△ABC ∴AB AC AC AD = ∴AD AB AC ⋅=2, 即证四边形ABCD 为“可分四边形” (3)∵四边形ABCD 为“可分四边形”,∠DAB 为“可分角”∴AC 平分∠DAB,AD AB AC ⋅=2即∠DAC=∠CAB,ABAC AC AD = ∴△ACD∽△ABC ∴∠ACB=∠D=90° 在Rt△ACB 中AB= 5222=+BC AC∵ AD AB AC ⋅=2∴AD=55852422==AB AC 23.解:(1)∵令﹣x 2+2x+3=0,解得:x 1=﹣1,x 2=3,∴A (﹣1,0),B (3,0).设抛物线l 2的解析式为y=a (x+1)(x ﹣4).∵将D (0,﹣2)代入得:﹣4a=﹣2, ∴a=. ∴抛物线的解析式为y=x 2﹣x﹣2;(2)①如图1所示:∵A (﹣1,0),B (3,0), ∴AB=4.设P (x ,0),则M (x ,﹣x 2+2x+3),N (x , x 2﹣x ﹣2).∵MN ⊥AB , ∴S AMBN =AB ·MN=﹣3x 2+7x+10(﹣1<x <3).∴当x=时,S AMBN 有最大值. ∴此时P 的坐标为(,0).②如图2所示:作CG ⊥MN 于G ,DH ⊥MN 于H ,如果CM 与DN 不平行.∵DC ∥MN ,CM=DN , ∴四边形CDNM 为等腰梯形. ∴∠DNH=∠CMG .在△CGM 和△DNH 中, ∴△CGM ≌△DNH . ∴MG=HN . ∴PM ﹣PN=1.设P (x ,0),则M (x ,﹣x 2+2x+3),N (x , x 2﹣x ﹣2).∴(﹣x 2+2x+3)+(x 2﹣x ﹣2)=1,解得:x 1=0(舍去),x 2=1. ∴P (1,0).当CM∥DN时,如图3所示:∵DC∥MN,CM∥DN,∴四边形CDNM为平行四边形.∴DC=MN.=5 ∴﹣x2+2x+3﹣(x2﹣x﹣2)=5,∴x1=0(舍去),x2=,∴P(,0).总上所述P点坐标为(1,0),或(,0).。
2020年安徽省中考数学模拟试卷(含解析)
![2020年安徽省中考数学模拟试卷(含解析)](https://img.taocdn.com/s3/m/ef61d60428ea81c759f578b3.png)
2020年安徽省中考数学模拟试卷一、选择题(本大题共10小题,共40.0分)1.−2的相反数是()A. 2B. −2C. 12D. −122. 3.计算(−a)2⋅(a2)3正确的()A. a8B. −a8C. a7D. −a73.2017年我省粮食总产量为695.2亿斤,其中695.2亿用科学记数法表示为()A. 6.952×106B. 6.952×108C. 6.952×1010D. 695.2×1084.下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是()A. B. C. D.5.下列因式分解正确的是()A. x2−1=(x−1)2B. a3−2a2+a=a2(a−2)C. −2y2+4y=−2y(y+2)D. m2n−2mn+n=n(m−1)26.估算√18+√24×√13的运算结果在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间7.某钢铁厂今年1月份钢产量为5000吨,3月份上升到7200吨,设平均每月增长的百分率为x,根据题意得方程()A. 5000(1+x)+5000(1+x)2=7200B. 5000(1+x2)=7200C. 5000(1+x)2=7200D. 5000+5000(1+x)2=72008.如图,是某次射击比赛中,一位选手五次射击成绩的频数分布直方图,则关于这位选手的成绩(单位:环),下列说法错误的是()A. 众数是8B. 中位数是8C. 平均数是8D. 方差是1.049.如图,点A,B,C,D都在⊙O上,BD为直径,若∠A=65°,则∠DBC的度数是()A. 15°B. 25°C. 35°D. 45°10.如图,中AB=4,BC=2,正方形ADEF的边长为2,F,A,B在同一直线上,正方形ADEF向右平移到点F与B重合,点F的平移距离为x,平移过程中两图重叠部分的面积为y,则y与x的关系的函数图像表示正确的是()A. B.C. D.二、填空题(本大题共4小题,共20.0分)11.命题“如果a2=b2,那么a=b”的逆命题是______________________________________.12.不等式组{x−3(x−2)≥−41+2x3<x−1的解集是______ .13.如图,曲线l是由函数y=12在第一象限内的图象绕坐标原点O逆时针x旋转90°得到的,且过点A(m,6),B(−6,n),则△OAB的面积为______.14.如图,在矩形ABCD中,AB=4,BC=6,若点P在AD边上,连接BP、PC,△BPC是以PB为腰的等腰三角形,则PB的长为______.三、计算题(本大题共1小题,共6.0分)15.计算:(2a+b)(2a−b)−2a(a−2b)四、解答题(本大题共8小题,共82.0分)16.某教育部门分两次采购一批篮球和足球(每次采购两种球都要购买),购买篮球和足球的清单如下表.(1)求篮球和足球的单价.(2)由于两种球都不够分配,李主任去补充采购.正好商家搞促销,两种球都打折,且折扣一样.已知李主任此次采购了90个篮球,80个足球,共花去了9120元,问商家是打几折出售这两种球的⋅17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点),在建立的平面直角坐标系中,△ABC绕旋转中心P逆时针旋转90°后得到△A1B1C1.(1)在图中标示出旋转中心P,并写出它的坐标;(2)以原点O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2,在图中画出△A2B2C2,并写出C2的坐标.18.观察下列关于自然数的等式:①42−32=1×7②52−32=2×8③62−32=3×9④72−32=4×10…根据上述规律解决下列问题:(1)完成第⑤个等式:(______)2−(______)2=(______)×(______)(2)写出你猜想的第n个等式(用含n的式子表示),并证明其正确性.19.(1)如图1,AD、BC相交于点O,OA=OC,∠OBD=∠ODB.求证:AB=CD.(2)如图2,AB是⊙O的直径,OA=1,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若OD=√2,求∠BAC的度数.20.如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°角(∠FGK=80°),身体前倾成125°角(∠EFG=125°),脚与洗漱台距离GC=15cm(点D、C、G、K在同一直线上)(精确到0.1cm,参考数据:sin80°≈0.98,cos80°≈0.17,√2≈1.41).(1)此时小强头部E与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少距离?21.某中学为了解该校九年级学生对观看“中国诗词大会”节目喜爱程度,对该校九年级学生进行了随机抽样调查,(调查时,将喜爱程度分为四级:A级(非常喜欢),B级(喜欢),C级(一般),D级(不喜欢)).根据调查结果,绘制成如下两幅不完整的统计图.请你结合图中信息解答下列问题:(1)本次调查共抽取______名学生,在扇形图中,表示A级的扇形的圆心角为______°;(2)若该校九年级共有学生300人,请你估计不喜欢观看“中国诗词大会”节目的有多少人?并补全条形图;(3)已知在A级学生中有3名男生,现要从本次调查中的5名A级学生中,选出2名参加全市中学生诗词大会比赛,请用“列表”或“树形图”的方法,求选出的2名学生中至少有1名女生的概率.22.如图,开口向下的抛物线与x轴交于点A(−1,0)、B(2,0),与y轴交于点C(0,4),点P是第一象限内抛物线上的一点.(1)求该抛物线所对应的函数解析式;(2)设四边形CABP的面积为S,求S的最大值.23.已知,在Rt△ABC中,∠ACB=90°,BC=4,AB=,点D是AC边上的一个动点,将△ABD沿BD所在直线折叠,使点A落在P处.(1)如图1,若点D是AC中点,连接PC.①求AC的长;②试猜想四边形BCPD的形状,并加以证明;(2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求CH的长.【答案与解析】1.答案:A解析:解:根据相反数的定义,−2的相反数是2.故选:A.根据相反数的意义,只有符号不同的数为相反数.本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.答案:A解析:依据幂的乘方以及同底数幂的乘法法则进行计算即可.【详解】解:(−a)2⋅(a2)3=a2⋅a6=a8,故选:A.本题主要考查了幂的乘方以及同底数幂的乘法法则的应用,幂的乘方的底数指的是幂的底数;②性质中“指数相乘”指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加”的区别.3.答案:C解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:695.2亿=69520000000=6.952×1010,故选C.4.答案:B解析:解:A、左视图第一层两个小正方形,俯视图第一层一个小正方形,故A不符合题意;B、左视图和俯视图相同,故B符合题意;C、左视图第一层两个小正方形,俯视图第一层一个小正方形,故C不符合题意;D、左视图是一列两个小正方形,俯视图一层三个小正方形,故D不符合题意;故选:B.根据图形、找出几何体的左视图与俯视图,判断即可.此题主要考查了由几何体判断三视图,考查了空间想象能力,解答此题的关键是要明确:由几何体想象三视图的形状,应分别根据几何体的前面、上面和左侧面的形状想象主视图、俯视图和左视图.5.答案:D解析:此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.直接利用公式法以及提取公因式法分解因式进而判断即可.解:A.x2−1=(x+1)(x−1),故此选项错误;B.a3−2a2+a=a(a−1)2,故此选项错误;C.−2y2+4y=−2y(y−2),故此选项错误;D.m2n−2mn+n=n(m−1)2,正确.故选D.6.答案:C解析:解:√18+√24×√13=3√2+√24×13=3√2+2√2=5√2=√50;∵√49<√50<√64,∴7<√50<8.故原式的运算结果在7和8之间,先将已知式子化简,然后进行估计即可.本题主要考查了无理数的运算以及大小,熟悉无理数的相关内容是解答本题的关键.7.答案:C解析:解:设平均每月增长的百分率为x,则二月份产值为5000(1+x),三月份产值为:5000(1+ x)(1+x),根据题意,得5000(1+x)2=7200.故选:C.主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),本题可先用x表示出2月份产值,再根据2月份的产值表示出3月份产值的式子,然后令其等于7200即可列出方程.本题考查了由实际问题抽象出一元二次方程,解此类题目时常常要先解出前一个月份的产值,再列出所求月份的产值的方程,令其等于已知的条件即可.8.答案:C解析:本题主要考查了频数分布直方图的知识,涉及一组数据的众数、中位数、平均数、方差,熟练掌握各个统计量的概念是解题的关键.由图可知,环数为7的1人,环数为8的2人,环数为9的1人,(7+8+8+9+10)=8.4,方差为环数为10的1人,所以众数为8,中位数为8,平均数为151(1.96+0.16+0.16+0.36+2.56)=1.04,由此可得出结论.5解:由图可知,这一组数据为7,8,8,9,10.所以8出现最多,所以众数为8,最中间为8,所以中位数为8,(7+8+8+9+10)=8.4,平均数为15(1.96+0.16+0.16+0.36+2.56)=1.04,方差为15所以错误的是C,故选C.解析:解:∵BD为直径,∴∠BCD=90°,由圆周角定理得,∠D=∠A=65°,∴∠DBC=90°−65°=25°,故选:B.根据圆周角定理得到∠BCD=90°,∠D=∠A=65°,根据直角三角形的性质计算即可.本题考查的是圆内接四边形的性质、圆周角定理,掌握圆周角定理是解题的关键.10.答案:B解析:本题考查了动点问题的函数图象.解题的关键是根据动点运动的轨迹分段写出函数解析式,根据解析式确定函数的图象.根据正方形在平移过程中与三角形重叠的面积不同分段写出函数解析式:当0≤x≤2时;当2<x≤4时;当4<x≤6时,y与x的函数解析式即可判断.解:如图,当0≤x≤2时,AQ=x,PQ=12x,∴y=12×AQ×PQ=14x2;当2<x≤4时,如图,,AF=x−2,MF=12x−1,PQ=12x,y=12(12x−1+12x)×2=x−1;当4<x≤6时,如图,,AF =x −2,MF =12x −1,FB =6−x , ∴y =12(2+12x −1)(6−x )=−14x 2+x +3.根据二次函数的图象和性质及一次函数的图象和性质可判断选项B 正确. 故选B .11.答案:如果a =b ,那么a 2=b 2解析:本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.解:“如果a 2=b 2,那么a =b ”的逆命题是:如果a =b ,那么a 2=b 2. 故答案为如果a =b ,那么a 2=b 2.12.答案:4<x ≤5解析:解:{x −3(x −2)≥−4①1+2x 3<x −1②∵解不等式①得:x ≤5, 解不等式②得:x >4, ∴不等式组的解集为4<x ≤5, 故答案为:4<x ≤5.先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了解一元一次不等式和解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键.13.答案:16解析:本题考查反比例函数的图象、旋转的性质、待定系数法求反比例函数的解析式,解题的关键是矩形解决问题,属于中考填空题中的压轴题.作AM⊥y轴于M,BN⊥x轴于N,直线AM与BN交于点P,根据旋转的性质得出点A(m,6),B(−6,n)在函数y=−12x的图象上,根据待定系数法求得m、n的值,继而得出P(6,6),然后根据S△AOB=S矩形OMPN−S△OAM−S△OBN−S△PAB即可求得结果.解:作AM⊥y轴于M,BN⊥x轴于N,直线AM与BN交于点P,∵曲线l是由函数y=12x在第一象限内的图象绕坐标原点O逆时针旋转90°得到的,且过点A(m,6),B(−6,n),∴点A(m,6),B(−6,n)在函数y=−12x的图象上,∴6m=−12,−6n=−12,解得m=−2,n=2,∴A(−2,6),B(−6,2),∴P(−6,6),∴S△AOB=S矩形OMPN −S△OAM−S△OBN−S△PAB=6×6−12×2×6−12×6×2−12×4×4=16,故答案为16.14.答案:5或6解析:本题考查了矩形的性质、等腰三角形的判定和勾股定理.解题时,要分类讨论,以防漏解.需要分类讨论:PB=PC和PB=BC两种情况.解:如图,在矩形ABCD中,AB=CD=4,BC=AD=6.如图1,当PB=PC时,点P是BC的中垂线与AD的交点,则AP=DP=12AD=3.在Rt△ABP中,由勾股定理得PB=√AP2+AB2=√32+42=5;如图2,当BP=BC=6时,△BPC也是以PB为腰的等腰三角形.综上所述,PB的长度是5或6.故答案为:5或6.15.答案:解:(2a+b)(2a−b)−2a(a−2b)=4a2−b2−2a2+4ab=2a2−b2+4ab.解析:本题考查整式混合运算,掌握平方差公式,正确计算是本题的解题关键.用平方差公式和单项式乘多项式的法则进行计算,然后合并同类项.16.答案:解:(1)设篮球的价格为x元/个,足球的价格为y元/个.根据题意,得{60x+50y=9800, 30x+70y=9400,解得{x=80, y=100.答:篮球的价格为80元/个,足球的价格为100元/个.(2)设商家是打n折出售这两种球的.根据题意,得90×80×n10+80×100×n10=9120,解得n=6.答:商家是打6折出售这两种球的.解析:本题考查了二元一次方程组的应用、一元一次方程的应用,解答本题的关键是明确题意.(1)设篮球的价格为x元/个,足球的价格为y元/个,根据题意即可得出关于x、y的方程组,解之,即可得出结论;(2)设商家是打n折出售这两种球,根据题意即可得出关于n的一元一次方程,解之,即可得出结论.17.答案:解:(1)如图,点P为所作,P点坐标为(3,1);(2)如图,△A2B2C2为所作,C2的坐标为(2,4)或(−2,−4).解析:(1)作BB1和CC1的垂直平分线,它们的交点即为P点,然后写出P点坐标;(2)把点A1、B1、C1的横纵坐标都乘以2或−2得到对应点A2、B2、C2的坐标,然后描点即可得到△A2B2C2.本题考查了作图−位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.也考查了旋转变换.18.答案:解:(1)8;3;5;11(2)猜想的第n个等式为(n+3)2−32=n(n+6),左边=n2+6n+9−9=n2+6n=n(n+6)=右边,∴(n+3)2−32=n(n+6).解析:解:(1)根据题意知,第⑤个等式为:82−32=5×11,故答案为:8、3、5、11;(2)见答案.(1)由已知等式知,等式左边为序数与3和的平方与3的平方的差,等式右边即为序数与序数加6的乘积,据此可得;(2)根据(1)中所得规律可得第n个等式,利用整式的乘法运算即可验证.本题主要考查数字的变化规律,解题的关键是得出等式左边为序数与3和的平方与3的平方的差,等式右边即为序数与序数加6的乘积.19.答案:(1)证明:∵∠OBD=∠ODB,∴OB=OD,在△AOB与△COD中,{OA=OC∠AOB=∠COD OB=OD,∴△AOB≌△COD(SAS),∴AB=CD;(2)解:连接OC,如图所示:∵CD与⊙O相切,∴OC⊥CD,∵OA=OC,OA=1,∴OC=1,∴CD=√OD2−OC2=√(√2)2−12=1,∴CD=OC,∴△OCD为等腰直角三角形,∴∠COB=45°,∴∠BAC=12∠COB=22.5°.解析:(1)由∠OBD=∠ODB,得出OB=OD,再由SAS证得△AOB≌△COD,即可得出结论;(2)连接OC,由CD与⊙O相切,得出OC⊥CD,求出CD=1,得出△OCD为等腰直角三角形,推出∠COD=45°,即可得出结果.本题主要考查了全等三角形的判定与性质、切线的性质、等腰直角三角形的判定与性质、圆周角定理等知识;熟练掌握全等三角形的判定与性质与圆周角定理是解决问题的关键.20.答案:解:(1)如图,过点F作FN⊥DK于点N,过点E作EM⊥NF,交NF的延长线于点M.∵EF+FG=166cm,FG=100cm,∴EF=66cm,∵∠FGK=80°,∴FN=100⋅sin80°≈98(cm),∠GFN=10°.∵∠EFG=125°,∴∠EFM=180°−125°−10°=45°,∴FM=66⋅cos45°=33√2≈46.53(cm),∴MN=FN+FM≈144.5cm,答:此时小强头部E与地面DK相距约144.5cm.(2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24cm,∵EM=66⋅sin45°≈46.53cm,∴PH≈46.53cm,∵GN=100⋅cos80°≈17(cm),CG=15cm,∴OH=24+15+17=56(cm),∴OP=OH−PH≈56−46.53≈9.5(cm).答:他应向前约9.5cm.解析:本题考查直角三角形的应用,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.求出MF、FN的值即可解决问题;(2)求出OH、PH的值即可判断.21.答案:(1)50;36;=18,(2)解:300×350答:估计该年级观看“中国诗词大会”节目BD级(不喜欢)的学生人数为18;(3)解:列表如图,∵所有等可能的情况有20种,其中所选出的2名学生中至少有1名女生的有14种,∴选出的2名学生中至少有1名女生的概率为1420=710.解析:解:(1)本次抽样调查的样本容量是17÷34%=50,表示“A级(非常喜欢)”的扇形的圆心角为550×360°=36°,故答案为:50,36;(2)300×350=18,答:估计该年级观看“中国诗词大会”节目BD级(不喜欢)的学生人数为18.(3)列表如下:男男男女女男---(男,男)(男,男)(女,男)(女,男)男(男,男)---(男,男)(女,男)(女,男)男(男,男)(男,男)---(女,男)(女,男)女(男,女)(男,女)(男,女)---(女,女)女(男,女)(男,女)(男,女)(女,女)---∵所有等可能的情况有20种,其中所选出的2名学生中至少有1名女生的有14种,∴选出的2名学生中至少有1名女生的概率为1420=710.(1)用C等级人数除以其百分比可得总人数,用A等级人数占总人数的比例乘以360度可得;(2)用样本中D等级所占比例乘以总人数可得答案;(3)列表得出所有等可能结果,利用概率公式求解可得此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.22.答案:解:(1)∵A(−1,0),B(2,0),C(0,4),设抛物线表达式为:y=a(x+1)(x−2),将C代入得:4=−2a,解得:a=−2,∴该抛物线的解析式为:y=−2(x+1)(x−2)=−2x2+2x+4;(2)连接OP,设点P坐标为(m,−2m2+2m+4),m>0,∵A(−1,0),B(2,0),C(0,4),可得:OA=1,OC=4,OB=2,∴S=S四边形CABP=S△OAC+S△OCP+S△OPB=12×1×4+12×4m+12×2×(−2m2+2m+4)=−2m2+4m+6=−2(m−1)2+8,当m=1时,S最大,最大值为8.解析:(1)设二次函数表达式为y=a(x+1)(x−2),再将点C代入,求出a值即可;(2)连接OP,设点P坐标为(m,−2m2+2m+4),m>0,利用S四边形CABP=S△OAC+S△OCP+S△OPB 得出S关于m的表达式,再求最值即可.本题考查了二次函数的应用,待定系数法求二次函数表达式,解题的关键是能将四边形CABP的面积表示出来.23.答案:解:(1)①在Rt△ABC中,∵BC=4,AB=4√5,∴AC=√(4√5)2−42=8,②如图1中,四边形BCPD是平行四边形.理由:∵AC=4,AD=DC,∵BC=4,∴BC=CD=4,∴△BCD是等腰直角三角形,∴∠BDC=45°,∴∠ADB=∠BDP=135°,∴∠PDC=135°−45°=90°,∴∠BCD=∠PDC=90°,∴DP//BC,∵PD=AD=BC=2,∴四边形BCPD是平行四边形.(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=8−x,在Rt△BDC中,∵BD2=CD2+BC2,∴x2=(8−x)2+42,∴x=5,∵DB=DA,DN⊥AB,由△ADN∽△ABC,可得ANAC =ADAB,∴AN8=4√5∴BN=AN=2√5,在Rt△BDN中,DN=√BD2−BN2=√5,由△BDN∽△BAM,可得DNAM =BDAB,∴√5AM =4√5,∴AM=4,由△ADM∽△APE,可得AMAE =ADAP,∴4AE =58,∴AE=325,∴PE=√PA2−AE2=24 5易证四边形PECH是矩形,∴CH=PE=245.解析:本题考查四边形综合题、勾股定理.相似三角形的判定和性质、翻折变换、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.(1)①根据勾股定理求出AC即可;②想办法证明DP//BC,DP=BC即可;(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=8−x,在Rt△BDC中,可得x2=(8−x)2+42,推出x=5,由△ADN∽△ABC,可得ANAC =ADAB,可得AN8=4√5推出BN=AN=2√5,在Rt△BDN中,DN=√BD2−BN2=√5,由△BDN∽△BAM,可得DNAM =BDAB,可得√5AM =4√5,推出AM=4,推出AP=2AM=8,由△ADM∽△APE,可得AMAE=ADAP,可得4AE=58,推出AE=325,推出PE=√PA2−AE2=245,即可解决问题.。
2020年中考数学全真模拟试卷5套附答案(适用于安徽省各地市)
![2020年中考数学全真模拟试卷5套附答案(适用于安徽省各地市)](https://img.taocdn.com/s3/m/2b150494e009581b6bd9ebd4.png)
中考数学二模试卷题号 得分一二三四总分一、选择题(本大题共 10 小题,共 40.0 分) 1. 计算(-2)+1 的结果是()A. B. C. D. -3 D. 62. 若整数 n 满足 2n •2n •2n =8,则 n 的值为( )A. 1B. 2C. 33. 十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅, 国内生产总值从 54 万亿元增长 80 万亿元,稳居世界第二,其中 80 万亿用科学记 数法表示为( )A. 8×1012B. 8×1013C. 8×1014D. 0.8×10134. 如图所示是机器零件的立体图,从左面看到的平面图形是( )A. B. C.D.5. 下列多项式能因式分解的是( )A. m 2+n 2B. m 2-m +1C. m 2-2m +1D. m 2+2m -16. 某超市设计了一种促销活动:在一个不透明的箱子里放有 4 个相同的小球,球上分别标有“0 元”、“10 元”、“20 元”、“30 元”的字样,规定:顾客在本超市 一次性消费满 200 元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回) ,某顾客刚好消费 200 元,则该原客所获得购物券的金额超过 30 元的概率为( )A. B. C. D.7. 若关于 x 的一元二次方程 x 2-2kx -k =0 有两个相等的实数根,则 k 的值是( )A. k =0B. k =2C. k =0 或 k =-1D. k =2 或 k =-1 8. 已知四边形 ABCD 的对角线 AC 、BD 相交于点 O ,下列条件中,不能判定四边形 ABCD 是平行四边形的是( )A. ∠ADB =∠CBD ,AB ∥CD C. ∠DAB =∠BCD ,AB =CDB. ∠ADB =∠CBD ,∠DAB =∠BCD D. ∠ABD =∠CDB ,OA =OC9. 如图,已知△ABC ,AB =6,AC =5,D 是边 AB 的中点,E 是边AC 上一点,∠ADE =∠C ,∠BAC 的平分线分别交 DE 、BC 于点 F 、G ,那么 的值为( )A. B. C. D.10.甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地.甲乙两车距A 地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示,则下列说法:①a=4.5;②甲的速度是60km/h;③乙出发80min 追上甲;④乙刚到达货站时,甲距B地180km.其中正确是()A. ①②③B. ①②④C. ②③④D. ①②③④二、填空题(本大题共4 小题,共20.0 分)11.黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请向问-1 最接近的整数为______.12.如图,点A是反比例函数y= 的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是______.13.如图,点C在⊙O上,将圆心角∠AOB绕点O按逆时针方向旋转到∠A′OB′,旋转角为α(0°<α<180°),若∠AOB=30°,∠BCA′=20°,且⊙O的半径为6,则的弧长为______.(结果保留π).14.如图,在等边△ABC中,AB=4cm,点M为边BC的中点,点N为边AB上的任意一点(不与点A,B重合).若点B关于直线MN的对称点B'恰好落在等边△ABC的边上,则BN的长为______cm.三、计算题(本大题共2 小题,共18.0 分)15.先化简,再求值:,其中x=-1.16.如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100 米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)四、解答题(本大题共7 小题,共72.0 分)17.请你解决《孙子算经》中的一个问题.“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5 尺;将绳子对折再量木条,木条剩余1 尺,问木条长多少尺?”18.如图.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2),(1)画△ABC关于y轴对称的图形△A B C;1 1 1(2)以O为位似中心,在第二象限内把△ABC扩大到原来的两倍,得则△A B C,2 2 2画出△A B C;2 2 2(3)△ABC的面积为______.19.如图是2019 年1 月份的日历.任意选择图中的菱形框部分,将每个菱形框部分中去掉中间位置的数之后,相对的两对数分别相乘,再相减,例如:9×11-3×17=48,13×15-7×21=48.不难发现,结果都是48(1)请证明发现的规律;(2)小明说:他用一个如图所示菱形框,框出5 个数字,其中最小数与最大数的积是120,请判断他的说法是否正确.20.如图,点P是圆O直径CA延长线上的一点,PB切圆O于点B,点D是圆上的一点,连接AB,AD,BD,CD,PB=BC.(1)求证:OP=2OC;(2)若OC=5,sin∠DCA= ,求BD的长.21.甲、乙人5 场10 次投篮命中次数如图(1)填写表格.平均数______ 8 众数8中位数8方差______3.2甲乙______ ______(2)①教练根据这5 个成绩,选择甲参加投篮比赛,理由是什么?②如果乙再投篮1 场,命中8 次,那么乙的投监成绩的方差将会怎样变化?(“变大”“变小”或”不变”)22.水库90 天内的日捕捞量y(kg)与时间第x(天)满足一次函数的关系,部分数据如表:时间第x(天) 1 3 6 10日捕捞量(kg)198 194 188 180(1)求出y与x之间的函数解析式;(2)水库前50 天采用每天降低水位的办法减少捕捞成本,到达最低水位标准后,后40 天水库维持最低水位进行捕捞.捕捞成本和时间的关系如下表:时间第x(天)1≤x<50 50≤x≤9010捕捞成本(元/kg)60-x已知鲜鱼销售单价为每千克70 元,假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出.设销售该鲜鱼的当天收入w元(当天收入=日销售额-日捕捞成本),①请写出w与x之间的函数解析式,并求出90 天内哪天收入最大?当天收入是多少?②若当天收入不低于4800 元,请直接写出x的取值范围?23.如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧)(1)如图1,若点C是AB的中点,则∠CED=______°;(2)如图2.若点C不是AB的中点①求证:△DEF为等边三角形;②连接CD,若∠ADC=90°,AD= ,请求出DE的长.答案和解析1.【答案】B【解析】【分析】此题主要考查了有理数的加法法则:符号不相同的两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.符号不相同的两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值,所以-2+1=-1.【解答】解:-2+1=-1.故选B.2.【答案】A【解析】解:2n•2n•2n=2n+n+n=23n=8,∴3n=3,∴n=1;故选:A.根据同底数幂的法则有:2n•2n•2n=2n+n+n=23n=8,即可求解;本题考查同底数幂的乘法;熟练掌握同底数幂的乘法法则是解题的关键.3.【答案】B【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n是正数;当原数的绝对值<1 时,n是负数.【解答】解:80 万亿=80000000000000,80000000000000 用科学记数法表示为8×1013,∴80 万亿用科学记数法表示为故选B.4.【答案】C【解析】解:机器零件从左面看到的平面图形是故选:C.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.【答案】C【解析】解:A、m2+n2 不能分解因式,故A错误;B、m2-m+1 不能因式分解,故B错误;C、m2-2m+1=(m-1)2,故C正确;D、m2+2m-1 不能分解因式,故D错误;故选:C.根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.本题考查了因式分解,利用了因式分解的意义.6.【答案】B【解析】解:根据题意画图如下:共有12 种可能结果,其中该原客所获得购物券的金额超过30 元的有4 种可能结果,因此P(超过30 元)= = ;故选:B.根据题意画出树状图得出所有等情况数和获得购物券的金额超过30 元的情况数,再根据概率公式即可得出答案.本题主要考查用列表法或树状图求概率.解决本题的关键是弄清题意,满200 元可以摸两次,但摸出一个后不放回,概率在变化.用到的知识点为:概率=所求情况数与总情况数之比.7.【答案】C【解析】解:∵方程x2-2kx-k=0 有两个相等的实数根,∴△=(-2k)2-4×1×(-k)=4k2+4k=0,解得:k=0,k=-1.1 2故选:C.由方程有两个相等的实数根可得出△=4k2+4k=0,解之即可得出结论.本题考查了根的判别式,牢记“当△=0 时,方程有两个相等的实数根”是解题的关键.8.【答案】C【解析】解:A、∵∠ADB=∠CBD,∴AD∥BC,∵AB∥CD,∴四边形ABCD是平行四边形,故此选项不合题意;B、∵∠ADB=∠CBD,∴AD∥BC,∵∠DAB=∠BCD,∴∠BAD+∠ABC=∠ADC+∠BCD=180°,∴∠ABC=∠ADC,∴四边形ABCD是平行四边形,故此选项不符合题意;C、∠DAB=∠BCD,AB=CD不能判定四边形ABCD是平行四边形,故此选项符合题意;D、∵∠ABD=∠CDB,∠AOB=∠COD,OA=OC,∴△AOB≌△COD(AAS),∴OB=OC,∴四边形ABCD为平行四边形,故此选项不合题意;故选:C.根据平行四边形的判定定理分别进行分析即可.此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.9.【答案】C【解析】解:∵AG平分∠BAC,∴∠DAF=∠CAG,∵∠ADF=∠C,∴△ADF∽△ACG,∴= ,∵D是AB的中点,∴AD= AB=3,∴= ,故选:C.证明△ADF∽△ACG,可得= ,解决问题.本题考查相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.10.【答案】D【解析】解:由题意可得,a=4+0.5=4.5,故①正确,甲的速度是:460÷(7+ )=60km/h,故②正确,设乙刚开始的速度为xkm/h,则4x+(7-4.5)×(x-50)=460,得x=90,则设经过b min,乙追上甲,90×=60×,解得,b=80,故③正确,乙刚到达货站时,甲距B地:60×(7-4)=180km,故④正确,故选:D.根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.11.【答案】1【解析】解:∵≈2.236,∴-1 最接近的整数为1.故答案为1.利用的近似值求解.本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB 和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC= AB≈0.618AB,并且线段AB的黄金分割点有两个.12.【答案】-8【解析】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB= |k|,∴|k|=4,∵k<0,∴k=-8.故答案为:-8.连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.本题考查了反比例函数的比例系数k的几何意义:在反比例函数y= 图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.13.【答案】【解析】解:∵∠BCA′=20°,∴∠BOA′=2∠BCA′=40°,∵点C在⊙0 上,将圆心角∠AOB绕点0 按逆时针方向旋转到∠A′OB′,∴∠A′OB′=∠AOB=30°,∴∠AOB′=100°,∴的弧长= = ,故答案为:.由∠BCA′=40°,根据圆周角定理,即可求得∠BOA′的度数,由旋转的性质,即可求得∠A′OB′的度数,继而求得∠AOB′的度数,根据弧长公式即可得到结论.此题考查了弧长的计算,圆周角定理与旋转的性质.此题难度不大,注意掌握数形结合思想的应用.14.【答案】1 或2【解析】解:如图1,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边AB上时,则MN⊥AB,BN=BN′,∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=60°,∵点M为边BC的中点,∴BM= BC= AB=2,∴BN= BM=1,如图2,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边A,C上时,则MN⊥BB′,四边形BMB′N是菱形,∵∠ABC=60°,点M为边BC的中点,∴BN=BM= BC= AB=2,故答案为:1 或2.如图1,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边AB上时,于是得到MN⊥AB,BN=BN′,根据等边三角形的性质得到=AC=BC,∠ABC=60°,根据线段中点的定义得到BN= BM=1,如图2,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边A,C上时,则MN⊥BB′,四边形BMB′N是菱形,根据线段中点的定义即可得到结论.本题考查了轴对称的性质,等边三角形的性质,菱形的判定和性质,分类讨论是解题的关键.15.【答案】解:原式= - =- =- =-x-1,当x=-1 时,原式=1-1=0.【解析】原式变形后,利用同分母分式的减法法则计算,约分得到最简结果,把x的值代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.16.【答案】解:作PE⊥OB于点E,PF⊥CO于点F,在Rt△AOC中,AO=100,∠CAO=60°,∴CO=AO•tan60°=100(米).设PE=x米,∵tan∠PAB= = ,∴AE=2x.在Rt△PCF中,∠CPF=45°,CF=100 -x,PF=OA+AE=100+2x,∵PF=CF,∴100+2x=100 -x,解得x= (米).答:电视塔OC高为100 米,点P的铅直高度为(米).【解析】在图中共有三个直角三角形,即Rt△AOC、Rt△PCF、Rt△PAE,利用60°、45°以及坡度比,分别求出CO、CF、PE,然后根据三者之间的关系,列方程求解即可解决.本题考查的知识点是解直角三角形的应用,关键要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.17.【答案】解:设木条长x尺,绳子长y尺,根据题意得:,答:木条长5.5 尺.【解析】设木条长x尺,绳子长y尺,根据“用一根绳子去量一根木条,绳子剩余4.5 尺;将绳子对折再量木条,木条剩余1 尺”,即可得出关于x,y的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.18.【答案】2【解析】解:(1)如图所示:△A B C顶点坐标为1 1 1:A(2,1),B(1,4),C(3,2);1 1 1(2)如图所示:△A B C顶点坐标为:A(-4,22 2 2 2),B(-2,8),C(-6,4);2 2(3)△ABC的面积为:2×3- ×2×2- ×1×1- ×1×3=2.故答案为:2.(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)直接利用三角形所在矩形面积减去周围三角形面积进而得出答案.此题主要考查了轴对称变换以及位似变换,正确得出对应点位置是解题关键.19.【答案】(1)证明:设中间的数为a,则另外4 个数分别为(a-7),(a-1),(a+1 ),(a+7),∴(a-1)(a+1)-(a-7)(a+7)=a2-1-(a2-49)=48.(2)解:设这5 个数中最大数为x,则最小数为(x-14),依题意,得:x(x-14)=120,解得:x=20,x=-6(不合题意,舍去).1 2∵20 在第一列,∴不符合题意,∴小明的说法不正确.【解析】(1)设中间的数为a,则另外4 个数分别为(a-7),(a-1),(a+1),(a+7 ),利用相对的两对数分别相乘再相减,可证出规律成立;(2)设这5 个数中最大数为x,则最小数为(x-14),根据最小数与最大数的积是120 ,即可得出关于x的一元二次方程,解之取其正值,由该值在第一列可知不符合题意,进而可得出小明的说法不正确.本题考查了一元二次方程的应用以及规律型:数字的变化类,找准等量关系,正确列出一元二次方程是解题的关键.20.【答案】(1)证明:如图1,连接OB,∵PB切圆O于点B,∴∠OBP=90°,∴∠P+∠POB=90°,∵OB=OC,∴∠OBC=∠OCB,∴∠P=∠OCB,∴∠P+∠POB=∠P+2∠OCB=3∠P=90°,∴∠P=30°,∴OP=2OB=2OC;(2)解:如图2,作AH⊥BD于H,∵AC为⊙O的直径,∴∠ADC=90°,∠ABC=90°∵OC=5,sin∠DCA= ,∴AC=10,CD=8,AD=6,∵∠OCB=30°,∴AB= AC=5,∵sin∠ABD=sin∠DCA= ,∴AH=3,BH=4,∵∠ADH=∠OCB=30°,∴DH= AH=3 ,∴BD=BH+DH=4+3 .【解析】(1)连接OB,由切线的性质和等腰三角形的性质得出得出∠P=30°,再由直角三角形的性质即可得出结论;(2)作AH⊥BD于H,由圆周角定理和三角函数得出AC=10,CD=8,AD=6,由直角三角形的性质得出AB= AC=5,由三角函数得出AH=3,BH=4,求出DH= AH=3 ,即可得出结果.本题考查了切线的性质、等腰三角形的性质、圆周角定理、直角三角形的性质、勾股定理、三角函数等知识;熟练掌握切线的性质和三角函数是解题的关键.21.【答案】8 0.4 9 9【解析】解:(1)甲5 次的成绩是:8,8,7,8,9;则平均数为8;方差为:0.4,乙5 次的成绩是:5,9,7,10,9;则众数为9;中位数为9;(2)①∵S2=0.4<S2=3.2,甲乙∴甲的成绩稳定,故选甲;②如果乙再投篮1 场,命中8 次,那么乙的投篮成绩的方差将会变小.(1)根据众数、中位数和方差的定义计算可得;(2)根据方差的意义求解可得.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.22.【答案】解:(1)设y与x之间的函数解析式为y=kx+b(k≠0),将(1,198)、(3,194)代入y=kx+b中,,解得:,当50≤x≤90时,w=70(-2x+200)-10(-2x+200)=-120x+12000.∴w与x之间的函数解析式为w= .∵w=-2x2+180x+2000=-2(x-45)2+6050,∴当x=45 时,w=-2x2+180x+2000(1≤x<50)取最大值,最大值为6050;∵w=-120x+12000 中-120<0,∴当x=50 时,w=-120x+12000(50≤x≤90)取最大值,最大值为6000.∵6050>6000,∴第45 天当天收入最大,最大收入为6050 元.②令-2x2+180x+2000≥4800,解得:20≤x≤70,∵20≤x<50,∴20≤x<50;令-120x+12000≥4800,解得:x≤60,∵50≤x≤70,∴50≤x≤60.综上所述:当20≤x≤60时,当天收入不低于4800 元.【解析】(1)根据表格内数据,利用待定系数法即可求出y与x之间的函数解析式;(2)①根据当天收入=日销售额-日捕捞成本即可找出w与x之间的函数解析式,再利用配方法及一次函数的性质,即可解决最值问题;②分别求出w=-2x2+180x+2000(1≤x<50)中≥4800的x的取值范围及w=-120x+12000 (50≤x≤70)中≥4800的x的取值范围,合在一起即可得出结论.本题考查了二次函数的应用、待定系数法求一次函数解析式、二次函数的最值、一次函数的性质以及解一元二次(一元一次)不等式,解题的关键是:(1)熟练掌握待定系数法求一次函数解析式的应用;(2)①根据数量关系,找出w关于x的函数解析式;②解不等式找出x的取值范围.23.【答案】30【解析】解:(1)如图1,过E作EH⊥AB于H,连接CD,设EH=x,则AE=2x,AH= x,∵AE=EC,∴AC=2AH=2 x,∵C是AB的中点,AD=BD,∴CD⊥AB,∵∠ADB=120°,∴∠DAC=30°,∴DC=2x,∴DC=CE=2x,∵∠CEH=60°,∴∠DEC=30°,故答案为:30°;(2)①如图2,延长FC交AD于H,连接HE,∵CF=FB,∴∠FCB=∠FBC,∵∠CFB=120°,∴∠FCB=∠FBC=30°,同理:∠DAB=∠DBA=30°,∠EAC=∠ECA=30°,∴∠DAB=∠ECA=∠FBD,∴AD∥EC∥BF,同理AE∥CF∥BD,∴四边形BDHE、四边形AECH是平行四边形,∴EC=AH,BF=HD,∵AE=EC,∴AE=AH,∵∠HAE=60°,∴△AEH是等边三角形,∴AE=AH=HE=CE,∠AHE=∠AEH=60°,∴∠DHE=120°,∴∠DHE=∠FCE.∵DH=BF=FC,∴△DHE≌△FCE(SAS),∴DE=EF,∠DEH=∠FEC,∴∠DEF=∠CEH=60°,∴△DEF是等边三角形;②如图3,过E作EM⊥AB于M,∵∠ADC=90°,∠DAC=30°,AD=∴∠ACD=60°,CD=1,AC=2,∵∠DBA=30°,,∴∠CDB=∠DBC=30°,∴∠ECD=30°+60°=90°,∵AE=CE,∴CM= AC=1,∵∠ACE=30°,∴CE= ,Rt△DEC中,DE= = = .(1)如图1,作辅助线,构建高线,根据等腰三角形三线合一的性质得DC=AE=CE,证明∠HED=∠EDC=∠CED,由∠CEH=60°得∠DEC=30°;(2)①作辅助线,构建等边三角形AEH,先证明四边形BDHF、四边形AECH是平行四边形,得对边相等,再证明△AEH是等边三角形,由SAS证明△DHE≌△FCE,可得DE=EF,∠DEH=∠FEC,所以△DEF是等边三角形;②过E作EM⊥AB于M,由∠ADC=90°,∠DAC=30°,AD= 得∠ACD=60°,CD=1,AC=2 ,再证CD=BC=1,证∠ECD=90°,由AE=CE得CM= AC=1,CE= ,利用勾股定理求出DE= = .此题是三角形的综合问题,考查了等边三角形的性质与判定,三角形全等的判定与性质,等腰三角形的性质、直角三角形中30 度角的性质等知识点;熟练掌握30 度的等腰三角形的判定与性质,证明三角形全等是解决问题的关键,本题难度适中.中考数学二模试卷题号得分一二三四总分一、选择题(本大题共10小题,共40.0分)1. - 的相反数是()A. B. 3 C. - D. -32. 下列运算正确的是()A. (2a2)2=2a4B. 6a8÷3a2=2a4C. 2a2•a=2a3D. 3a2-2a2=13. 如图,水平放置的圆柱形物体,中间有一细棒,则此几何体的左视图是()A. B. C. D.4. 据统计,2018 年安徽省第一产业增加值突破2638.1 亿人民币,同比增长3.2 个百分点,2638.1 亿用科学记数法可表示为()A. 0.26381×1012B. 2.6381×1012C. 0.26381×1011D. 2.6381×10115. 如图所示图案是我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为”赵爽弦图“.已知AE=4,BE=3,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为()A. B. C. D.6. 共享单车为市民出行带来了方便,某单车公司第一个月投放1000 辆单车,计划第三个月投放单车数量比第一个月多440 辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为()A. 1000(1+x)2=1000+440 C. 440(1+x)2=1000B. 1000(1+x)2=440D. 1000(1+2x)=1000+4407. 如图,直线y=x-a+4 与双曲线y= 交于A、B两点,则当线段AB的长度取最小值时,a的值为()A. 0B. 2C. 4D. 58. 如图,AC是⊙O的直径,弦BD⊥AC于点E,连接BC过点O作OF⊥BC于点F,若BD=12cm,AE=4cm,则OF的长度是()C.D. 3cm9. 已知y关于x的函数表达式是y=ax2-2x-a,下列结论不正确的是()A. 若a=1,函数的最小值是-2B. 若a=-1,当x≤-1时,y随x的增大而增大C. 不论a为何值时,函数图象与x轴都有两个交点D. 不论a为何值时,函数图象一定经过点(1,-2)和(-1,2)10. 在矩形ABCD中,E是BC边的中点,AE⊥BD,垂足为点F,则tan∠AED的值是()A.B.C.D.二、填空题(本大题共4小题,共20.0分)11. 分解因式:2a2-8b2=______.12. 如图,l∥l,∠1=105°,∠2=140°,则∠α=______.1 213. 若不等式组的解集是x>3,则m的取值范围是______.14. 如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,D是AC的中点,点E在边AB上,将△ADE沿DE翻折,使得点A落在点A′处,当A′E⊥AB时,则A′A=______ .三、计算题(本大题共1小题,共8.0分)15. 先化简,再求值:(1+ )÷,其中x=-4.四、解答题(本大题共8小题,共82.0分)16. 计算:2sin60°+(- )-1-20180-|1- |.17. 如图,在平面直角坐标系中,△ABC的三个顶点分别为A(-1,-2),B(-2,-4),C(-4,-1).(1)把△ABC向上平移3 个单位后得到△A B C,请画出△A B C并写出点B的坐1 1 1 1 1 1 1标;(2)已知点P(-1,0),在方格纸内部做△A B C,使得△A B C与△A B C关于2 2 2 1 1 1 2 2 2点P位似,且位似比为1:2.18. 观察下列不等式:①;②;③;…根据上述规律,解决下列问题:(1)完成第5 个不等式:______;(2)写出你猜想的第n个不等式:______(用含n的不等式表示)(3)利用上面的猜想,比较和的大小.19. 某国飞机失事坠入大海,该国立即派出一艘海上搜救船前往飞机失事海域进行打捞.在失事海域的A点处仪器测得俯角为30o正前方的海底B点处有黑匣子,沿同一方向继续航行2000 米到C点处,测得正前方B点处的俯角为75o,求失事飞机的黑匣子离海面距离.(结果保留根号)(参考数据:sin75°=,cos75°=,tan75°=2+,sin15°=,cos15°=,tan15°=2- )20. 已知:如图,在△ABC中,AB=AC,E为BA延长线上一点,连接EC交△ABC的外接圆于点D,连接AD、BD.(1)求证:AD平分∠BDE;(2)若∠BAC=30°,AE=AB,BC=2,求CD的长.21. 下表统计的是甲、乙两班男生的身高情况,根据统计表绘制了如下不完整的统计图.身高分组152≤x<155频数3频率0.060.140.260.260.180.06n 155≤x<158 7158≤x<161 13139161≤x<164164≤x<167167≤x<170 3170≤x<173 m根据以上统计表完成下列问题:(1)统计表中的m=______,n=______,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在______范围内;(3)在身高不低于167cm的男生中,甲班有2 人.现从这些身高不低于167cm的男生中随机推选2 人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.22. 天然生物制药公司投资制造某药物,先期投入了部分资金.企划部门根据以往经验发现,生产销售中所获总利润y随天数x(可以取分数)的变化图象如下,当总利润到达峰值后会逐渐下降,当利润下降到0 万元时即为止损点,则停止生产.(1)设y=ax2+bx+c(a≠0),求出最大的利润是多少?(2)在(1)的条件下,经公司研究发现如果添加m名工人(7≤m≤15),在工资成本增加的情况下,总利润关系变为y=ax2+mx- .请研究添加m名工人后总利润的最大值,并给出总利润最大的方案中的m值及生产天数.23. 如图,在△ABC中,AB=AC,点D是BC边上的中点,点P是AC边上的一个动点,延长DP到E,使∠CAE=∠CDE,作∠DCG=∠ACE,其中G点在DE上.(1)如图①,若∠B=45°则=______;(2)如图②,若,求tan∠B的值;(3)如图③,若∠ABC=60°,延长CG至点M,使得MG=GC,连接AM,BM,在点P运动的过程中,探究:当的值为多少时,线段AM与DM的长度和取得最小值?答案和解析1.【答案】A【解析】解:- 的相反数是,故选:A.根据只有符号不同的两个数互为相反数,可得答案.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.【答案】C【解析】解:A、(2a2)2=4a4,错误,故本选项不符合题意;B、6a8÷3a2=2a6,错误,故本选项不符合题意;C、2a2•a=2a3,正确,故本选项符合题意;D、3a2-2a2=a2,错误,故本选项不符合题意;故选:C.根据积的乘方法则判断A;根据单项式除以单项式的法则判断B;根据单项式乘以单项式的法则判断C;根据合并同类项的法则判断D.本题考查了积的乘方,单项式除以单项式,单项式乘以单项式,合并同类项,掌握各运算法则是解题的关键.3.【答案】B【解析】解:从左边看时,圆柱是一个圆,中间的木棒是一点,故选B.找到从左面看所得到的图形即可.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.【答案】D【解析】解:将2638.1 亿用科学记数法表示为:2.6381×1011.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10 时,n是正数;当原数的绝对值<1 时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a| <10,n为整数,表示时关键要正确确定a的值以及n的值.5.【答案】A【解析】解:∵AE=4,BE=3,∴AB=5,∴正方形ABCD的面积:5×5=25,正方形EFGH的面积:25-4×=1,∴恰好落在正方形EFGH内的概率为,故选:A.由AE=4,BE=3,得AB=5,所以正方形ABCD的面积:5×5=25,正方形EFGH的面积:25-4×=1,则恰好落在正方形EFGH内的概率为.本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= .6.【答案】A【解析】解:由题意可得,1000(1+x)2=1000+440,故选:A.根据题意可以列出相应的一元二次方程,从而可以解答本题.本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题.7.【答案】C【解析】解:∵根据反比例函数的对称性可知,要使线段AB的长度取最小值,则直线y=x-a+4 经过原点,∴-a+4=0,解得a=4.故选:C.当直线y=x-a+4 经过原点时,线段AB的长度取最小值,依此可得关于a的方程,解方程即可求得a的值.考查了反比例函数与一次函数的交点问题,本题的关键是理解当直线y=x-a+4 经过原点时,线段AB的长度取最小值.8.【答案】A【解析】解:连接OB,∵AC是⊙O的直径,弦BD⊥AC,∴BE= BD=6,在Rt△OEB中,OB2=OE2+BE2,即OB2=(OB-4)2+62,解得,OB= ,则EC=AC-AE=9,BC= =3 ,∵OF⊥BC,∴CF= BC= ,∴OF= = (cm),故选:A.连接OB,根据垂径定理求出BE,根据勾股定理求出OB,再根据勾股定理计算即可.本题考查的是垂径定理、勾股定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.9.【答案】C。