2020【通用版】人教版八年级下册期中检测卷(含答案)(含答案)
2020年八年级下册期中质量数学试题(有答案)
八年级(下)期中数学试卷一、选择题(每小题3分,共30分),下列各小题均有四个答案其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.若分式有意义,则x的取值范围是()A.x≠﹣3B.x≠0C.x≠D.x≠32.计算1÷的结果是()A.﹣m2﹣2m﹣1B.﹣m2+2m﹣1C.m2﹣2m﹣1D.m2﹣13.如果a﹣b=,那么代数式(a﹣)•的值是()A.﹣2B.2C.﹣D.4.在双曲线y=﹣上的点是()A.(﹣,﹣)B.(﹣,)C.(1,2)D.(,1)5.已知反比例函数y=的图上象有三个点(2,y1),(3,y2),(﹣1,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y16.方程=0的解为()A.﹣2B.2C.5D.无解7.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是()A.B.C.D.8.函数y=与y=mx﹣m(m≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.9.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣3)﹣b>0的解集为()A.x<3B.x>2C.x<5D.x>510.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.二、填空题(每小題3分,共15分)11.若分式的值为零,则x的值为.12.一粒米的重量约为0.000036克,用科学记数法表示为克.13.若一次函数y=kx+b的图象经过(﹣3,6),且平行于直线y=﹣x﹣2,这个函数的解析式为.14.某乡镇要在生活垃圾存放区建一个老年活动中心,这样必须把1200m3生活垃圾运走,每天能运xm,所需时间为y天,y与x之间的函数关系式为.15.如图,在平面直角坐标系中,BA⊥y轴于点A,BC⊥x轴于点C,函数y=﹣(x>0)的图象分别交BA、BC于点D、E,当BD=3AD,且△BDE的面积为18时,则k的值是.三、解答题.(共75分)16.(14分)(1)化简()2﹣÷(2)先化简分式(﹣)÷,并从﹣1≤x≤3中选一个你认为合适的整数x代入求值.17.(7分)某市从今年1月1日起调整居民家用水价格,每立方米水费上涨,小刚家去年12月份的水费是15元,而今年7月份的水费是30元,已知小刚家今年7月份的用水量比去年12月份的用水量多5m3,求该市今年居民用水价格.18.(8分)(1)在同一坐标系中画出函数y=﹣3x+3和函数y=x﹣6的图象(2)若直线y=﹣3x+3与y轴交于A,直线y=x﹣6与x轴交于B,两条直线交于C,求△ABC 的面积.19.(8分)为保护学生的身体健康,某中学课桌椅的高度都是按一定的关系配套设计的,下表列出5套符合条件的课桌椅的高度.椅子高度x(cm)4542393633桌子高度y(cm)8479746964(1)假设课桌的高度为ycm,椅子的高度为xcm,请确定y与x的函数关系式;(2)现有一把高38cm的椅子和一张高73.5cm的课桌,它们是否配套?为什么?20.(8分)我校实行学案教学,需印刷若干份数学学案.印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费方式的函数关系式是;乙种收费方式的函数关系式是;(2)如果我校八年级每次印刷100~450(含100和450)份学案,选择哪种印刷方式较合算.21.(9分)如图,一次函数y=kx+2的图象与反比例函数y=的图象在第一象限的交点于P,函=1,OA=2OC 数y=kx+2的图象分别交x轴、y轴于点C、D,已知△OCD的面积S△OCD(1)点D的坐标为;(2)求一次函数解析式及m的值;(3)写出当x>0时,不等式kx+2>的解集.22.(10分)(1)问题提出:如图已知直线OA的解析式是y=2x,OC⊥OA,求直线OC的函数解析式.甲同学提出了他的想法:在直线y=2x上取一点M,过M作x轴的垂线,垂足为D设点M的横坐标为m,则点M的纵坐标为2m.即OD=m,MD=2m,然后在OC上截取ON=OM,过N作x 轴的垂线垂足为B.则点N的坐标为,直线OC的解析式为.(2)拓展:已知直线OA的解析式是y=kx,OC⊥OA,求直线OC的函数解析式.(3)应用:直接写出经过P(2,3),且垂直于直线y=﹣x+2的直线解析式.23.(11分)如图,直线:y=﹣x+b与x轴分别交于A(4,0)、B两点,在y轴上有一点N(0,4),动点M从点A以每秒1个单位的速度匀速沿x轴向左移动.(1)点B的坐标为;(2)求△MNO的面积S与移动时间t之间的函数关系式;(3)当t=时,△NOM≌△AOB;(4)若M在x轴正半轴上,且△NOM≌△AOB,G是线段ON上一点,连结MG,将△MGN沿MG折叠,点N恰好落在x轴上的H处,求G点的坐标.八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分),下列各小题均有四个答案其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.若分式有意义,则x的取值范围是()A.x≠﹣3B.x≠0C.x≠D.x≠3【分析】分式有意义的条件是分母不等于零.【解答】解:分式有意义,所以x+3≠0,解得:x≠﹣3.故选:A.【点评】本题主要考查的是分式有意义的条件,熟练掌握分式有意义的条件是解题的关键.2.计算1÷的结果是()A.﹣m2﹣2m﹣1B.﹣m2+2m﹣1C.m2﹣2m﹣1D.m2﹣1【分析】首先将除法变为乘法运算,即乘以除数的倒数,然后利用乘法运算法则约分求解即可求得答案.【解答】解:1÷=1××(m+1)(m﹣1)=﹣(m﹣1)2=﹣m2+2m﹣1.故选:B.【点评】此题考查了分式的乘除混合运算.解题的关键是注意运算顺序:同级运算,从左到右依次进行.3.如果a﹣b=,那么代数式(a﹣)•的值是()A.﹣2B.2C.﹣D.【分析】直接利用分式的混合运算法则将原式变形进而得出答案.【解答】解:(a﹣)•=•=•=a﹣b,∵a﹣b=,∴原式=.故选:D.【点评】此题主要考查了分式的化简求值,正确化简分式是解题关键.4.在双曲线y=﹣上的点是()A.(﹣,﹣)B.(﹣,)C.(1,2)D.(,1)【分析】只需把所给点的横纵坐标相乘,结果是﹣2的,就在此函数图象上.【解答】解:∵反比例函数y=﹣中,k=﹣2,∴只需把各点横纵坐标相乘,结果为﹣2的点在函数图象上,四个选项中只有B符合.故选:B.【点评】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.5.已知反比例函数y=的图上象有三个点(2,y1),(3,y2),(﹣1,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y1【分析】先判断出k2+1是正数,再根据反比例函数图象的性质,比例系数k>0时,函数图象位于第一三象限,在每一个象限内y随x的增大而减小判断出y1、y2、y3的大小关系,然后即可选取答案.【解答】解:∵k2≥0,∴k2+1≥1,是正数,∴反比例函数y=的图象位于第一三象限,且在每一个象限内y随x的增大而减小,∵(2,y1),(3,y2),(﹣1,y3)都在反比例函数图象上,∴0<y2<y1,y3<0,∴y3<y2<y1.故选:A.【点评】本题考查了反比例函数图象的性质,对于反比例函数y=(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内,本题先判断出比例系数k2+1是正数是解题的关键.6.方程=0的解为()A.﹣2B.2C.5D.无解【分析】根据解分式方程的步骤依次计算可得.【解答】解:两边都乘以x﹣5,得:2﹣x+3=0,解得:x=5,检验:当x=5时,x﹣5=0,所以方程无解.故选:D.【点评】本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.7.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是()A.B.C.D.【分析】关键描述语是:“比李老师早到半小时”;等量关系为:李老师所用时间﹣张老师所用时间=.【解答】解:李老师所用时间为:,张老师所用的时间为:.所列方程为:﹣=.故选:B.【点评】未知量是速度,有路程,一定是根据时间来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.8.函数y=与y=mx﹣m(m≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】先根据反比例函数的性质判断出m的取值,再根据一次函数的性质判断出m取值,二者一致的即为正确答案.【解答】解:A、由双曲线在一、三象限,得m>0.由直线经过一、二、四象限得m<0.错误;B、由双曲线在二、四象限,得m<0.由直线经过一、二、三象限得m>0.错误;C、正确;D、由双曲线在二、四象限,得m<0.由直线经过二、三、四象限得m>0.错误.故选:C.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,重点是注意系数m的取值.9.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣3)﹣b>0的解集为()A.x<3B.x>2C.x<5D.x>5【分析】将直线y=kx﹣b向右平移3个单位长度即可得到直线y=k(x﹣3)﹣b,观察图形找出直线在x轴上方部分即可得出结论.【解答】解:将直线y=kx﹣b向右平移3个单位长度即可得到直线y=k(x﹣3)﹣b,如图所示.观察图形可知:当x<5时,直线y=k(x﹣3)﹣b在x轴上方.故选:C.【点评】本题考查了一次函数与一元一次不等式,根据平移的性质“左加右减”画出函数y=k(x ﹣3)﹣b的图象是解题的关键.10.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.【分析】分析动点P在每段路径上的运动的过程中的面积增大、减小或不变的趋势即可.【解答】解:由点P的运动可知,当点P在GF、ED边上时△ABP的面积不变,则对应图象为平行于t轴的线段,则B、C错误.点P在AD、EF、GB上运动时,△ABP的面积分别处于增、减变化过程.故D排除故选:A.【点评】本题为动点问题的函数图象判断题,考查学生对于动点运动过程中函数图象的变化趋势的判断.解答关键是注意动点到达临界点前后的图象变化.二、填空题(每小題3分,共15分)11.若分式的值为零,则x的值为﹣2.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得|x|﹣2=0,x﹣2≠0,由|x|﹣2=0,解得x=2或x=﹣2,由x﹣2≠0,得x≠2,综上所述,得x=﹣2,故答案为:﹣2.【点评】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.一粒米的重量约为0.000036克,用科学记数法表示为 3.6×10﹣5克.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000036=3.6×10﹣5;故答案为:3.6×10﹣5.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.若一次函数y=kx+b的图象经过(﹣3,6),且平行于直线y=﹣x﹣2,这个函数的解析式为y=﹣x+3.【分析】根据平行k相同,待定系数法构建方程组即可解决问题;【解答】解:由题意:,解得,∴一次函数的解析式为y=﹣x+3.故答案为y=﹣x+3.【点评】本题考查两条直线平行相交问题、待定系数法等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.某乡镇要在生活垃圾存放区建一个老年活动中心,这样必须把1200m3生活垃圾运走,每天能运xm,所需时间为y天,y与x之间的函数关系式为y=.【分析】根据每天能运xm3,所需时间为y天的积就是1200m3,即可写出函数关系式.【解答】解:∵xy=1200,∴y与x之间的函数关系式为y=.故答案为:y=.【点评】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义求解.15.如图,在平面直角坐标系中,BA⊥y轴于点A,BC⊥x轴于点C,函数y=﹣(x>0)的图象分别交BA、BC于点D、E,当BD=3AD,且△BDE的面积为18时,则k的值是﹣16.【分析】设B(4a,b),E(4a,d),利用AD:BD=1:3,则D(a,b),进而利用△BDE的面积为18得出ab﹣ad=12,结合反比例函数图象上的性质得出ab=4ad,进而得出ad的值,即可得出答案.【解答】解:如图,过点D作DF⊥x轴于点F,过点E作EG⊥y轴于点G.设B(4a,b),E(4a,d).∵AD:BD=1:3,∴D(a,b).又∵△BDE的面积为18,∴BD=3a,BE=b﹣d,∴×3a(b﹣d)=18,∴a(b﹣d)=12,即ab﹣ad=12,∵D,E都在反比例函数图象上,∴ab=4ad,∴4ad﹣ad=12,解得:ad=4,∴﹣k=4ad=16,∴k=﹣16,故答案为﹣16.【点评】此题主要考查了反比例函数综合应用以及三角形面积求法等知识,根据已知得出ab=4ad 是解题关键.三、解答题.(共75分)16.(14分)(1)化简()2﹣÷(2)先化简分式(﹣)÷,并从﹣1≤x≤3中选一个你认为合适的整数x代入求值.【分析】(1)根据分式的乘除法和减法可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,再从﹣1≤x≤3中选一个原分式有意义的整数代入即可解答本题.【解答】解:(1)()2﹣÷===0;(2)(﹣)÷===,当x=2时,原式=.【点评】本题考查分式的化简求值、一元一次不等式组的整数解,解答本题的关键分式化简求值的方法.17.(7分)某市从今年1月1日起调整居民家用水价格,每立方米水费上涨,小刚家去年12月份的水费是15元,而今年7月份的水费是30元,已知小刚家今年7月份的用水量比去年12月份的用水量多5m3,求该市今年居民用水价格.【分析】求的是单价,总价明显,一定是根据数量来列等量关系,本题的关键描述语是:今年7月份的用水量比去年12月份的用水量多5m3,等量关系为:7月份的用水量﹣12月份的用水量=5m3.【解答】解:设去年居民用水价格为x元/立方米,则今年水费为x(1+)元/立方米,根据题意可列方程为:﹣=5∴,∴,方程两边同时乘以2x,得:45﹣30=10x,解得:x=1.5经检验x=1.5是原方程的解.则x(1+)=2答:该市今年居民用水价格为2元/立方米.【点评】本题考查了分式方程的应用,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.18.(8分)(1)在同一坐标系中画出函数y=﹣3x+3和函数y=x﹣6的图象(2)若直线y=﹣3x+3与y轴交于A,直线y=x﹣6与x轴交于B,两条直线交于C,求△ABC 的面积.【分析】(1)根据描点法画出图象即可;(2)联立两个方程得出点C的坐标,利用三角形的面积公式解答即可.【解答】解:(1)经过(1,0),(0,3)点的直线是y=﹣3x+3的图象,经过(0,﹣6),(4,0)点的直线是y=x﹣6的图象;(2)联立方程可得:,解得:,所以点C(2,﹣3),∵A(0,3),B(4,0),D(0,﹣6),所以.【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.19.(8分)为保护学生的身体健康,某中学课桌椅的高度都是按一定的关系配套设计的,下表列出5套符合条件的课桌椅的高度.椅子高度x(cm)4542393633桌子高度y(cm)8479746964(1)假设课桌的高度为ycm,椅子的高度为xcm,请确定y与x的函数关系式;(2)现有一把高38cm的椅子和一张高73.5cm的课桌,它们是否配套?为什么?【分析】(1)根据表格中的数据可以设出对应的函数解析式,进而求得函数解析式,从而可以解答本题;(2)根据(1)中的函数关系式可以解答本题.【解答】解:(1)假设桌子的高度y与椅子的高度x之间的函数关系式为y=kx+b(k≠0),,得,∴y=,当x=39时,y=74,当x=36时,y=69,当x=33时,y=64,∴y与x的函数关系式为y=;(2)高38cm的椅子和一张高73.5cm的课桌不配套,理由:当x=38时,y==72≠72.5,∴高38cm的椅子和一张高73.5cm的课桌不配套.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.20.(8分)我校实行学案教学,需印刷若干份数学学案.印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费方式的函数关系式是y1=0.1x+6(x≥0);乙种收费方式的函数关系式是y2=0.12x(x≥0);(2)如果我校八年级每次印刷100~450(含100和450)份学案,选择哪种印刷方式较合算.【分析】(1)设甲种收费的函数关系式y1=kx+b,乙种收费的函数关系式是y2=k1x,直接运用待定系数法就可以求出结论;(2)由(1)的解析式分三种情况进行讨论,当y1>y2时,当y1=y2时,当y1<y2时分别求出x 的取值范围就可以得出选择方式.【解答】解:(1)设甲种收费的函数关系式y1=kx+b,乙种收费的函数关系式是y2=k1x,由题意,得,12=100k1,解得:,k1=0.12,∴y1=0.1x+6(x≥0),y2=0.12x(x≥0);故答案为:y1=0.1x+6(x≥0),y2=0.12x(x≥0);(2)由题意,得当y1>y2时,0.1x+6>0.12x,得x<300;当y1=y2时,0.1x+6=0.12x,得x=300;当y1<y2时,0.1x+6<0.12x,得x>300;∴当100≤x<300时,选择乙种方式合算;当x=300时,甲、乙两种方式一样合算;当300<x≤450时,选择甲种方式合算.答:印制100~300(含100)份学案,选择乙种印刷方式较合算,印制300份学案,甲、乙两种印刷方式都一样合算,印制300~450(含450)份学案,选择甲种印刷方式较合算.【点评】本题考查待定系数法求一次函数的解析式的运用,运用函数的解析式解答方案设计的运用,解答时求出函数解析式是关键,分类讨论设计方案是难点.21.(9分)如图,一次函数y=kx+2的图象与反比例函数y=的图象在第一象限的交点于P,函数y=kx+2的图象分别交x轴、y轴于点C、D,已知△OCD的面积S=1,OA=2OC△OCD(1)点D的坐标为(0,2);(2)求一次函数解析式及m的值;(3)写出当x>0时,不等式kx+2>的解集.【分析】(1)利用y轴上的点的坐标特征,利用解析式y=kx+2确定D点坐标;=1求出OC的长得到C点坐标,则把C点坐标代入y=kx+2求出k得到一次函(2)利用S△OCD数解析式;再利用一次函数解析式求出P点坐标,然后利用反比例函数图象上点的坐标特征求出m 的值;(3)在第一象限内,写出一次函数图象再反比例函数图象上方所对应的自变量的范围即可.【解答】解:(1)当x=0时,y=kx+2=2,则D(0,2),故答案为(0,2);=1,(2)∵S△OCD∴OD•OC=1,∴OC=1,∴C(﹣1,0),把C(﹣1,0)代入y=kx+2得﹣k+2=0,解得k=2,∴一次函数解析式为y=2x+2;∵OA=2OC=2,∴P点的横坐标为2,当x=2时,y=2x+2=6,∴P(2,6),把P(2,6)代入y=,∴m=2×6=12;(3)不等式kx+2>的解集为x>2.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了数形结合的思想.22.(10分)(1)问题提出:如图已知直线OA的解析式是y=2x,OC⊥OA,求直线OC的函数解析式.甲同学提出了他的想法:在直线y=2x上取一点M,过M作x轴的垂线,垂足为D设点M的横坐标为m,则点M的纵坐标为2m.即OD=m,MD=2m,然后在OC上截取ON=OM,过N作x 轴的垂线垂足为B.则点N的坐标为(﹣2m,m),直线OC的解析式为y=﹣.(2)拓展:已知直线OA的解析式是y=kx,OC⊥OA,求直线OC的函数解析式.(3)应用:直接写出经过P(2,3),且垂直于直线y=﹣x+2的直线解析式y=3x﹣3.【分析】(1)设出点M的坐标,构造全等三角形,进而求出点N坐标,最后用待定系数法即可得出结论;(2)同(1)的方法即可得出结论;(3)先根据(2)求出直线的比例系数,最后将点P的坐标代入即可得出结论.【解答】解:(1)在第一象限直线y=2x上取一点M,过M作x轴的垂线,垂足为D,在第二象限OC上截取ON=OM,过N作x轴的垂线,垂足为B.∴∠ODM=∠OBN=90°,∴∠DOM+∠DMO=90°,∵OA⊥OC,∴∠DOM+∠BON=90°,∴∠DMO=∠BON,在△ODM和△NBO中,,∴△ODM≌△NBO(AAS),∴DM=OB,OD=BN,∵设点M的横坐标为m,则点M的纵坐标为2m.∴OD=m,MD=2m,∴OB=2m,BN=m,∴N(﹣2m,m),设直线OC的解析式为y=kx,∴﹣2mk=m,∴k=﹣,∴直线OC的解析式为y=﹣x,故答案为(﹣2m,m),y=﹣x;(2)当k>0时,在第一象限直线y=kx上取一点M,过M作x轴的垂线,垂足为D,在第二象限OC上截取ON=OM,过N作x轴的垂线,垂足为B.∴∠ODM=∠OBN=90°,∴∠DOM+∠DMO=90°,∵OA⊥OC,∴∠DOM+∠BON=90°,∴∠DMO=∠BON,在△ODM和△NBO中,,∴△ODM≌△NBO(AAS),∴DM=OB,OD=BN,∵设点M的横坐标为m,则点M的纵坐标为km.∴OD=m,MD=km,∴OB=km,BN=m,∴N(﹣km,m),设直线OC的解析式为y=k'x,∴﹣2km•k'=m,∴k=﹣,∴直线OC的解析式为y=﹣x;当k<0时,同理可得,直线OC的解析式为y=﹣x;即:直线OC的解析式为y=﹣x;(3)同(2)的方法得,直线y=kx与直线y=k'x垂直,可得k•k'=﹣1,设过点P的直线解析式为y=kx+b,∵经过P(2,3),且垂直于直线y=﹣x+2,∴k=3,∴过点P的直线解析式为y=3x+b,∴3×2+b=3,∴b=﹣3,∴过点P的直线解析式为y=3x﹣3,故答案为y=3x﹣3.【点评】此题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造全等三角形是解本题的关键.23.(11分)如图,直线:y=﹣x+b与x轴分别交于A(4,0)、B两点,在y轴上有一点N(0,4),动点M从点A以每秒1个单位的速度匀速沿x轴向左移动.(1)点B的坐标为(0,2);(2)求△MNO的面积S与移动时间t之间的函数关系式;(3)当t=2或6时,△NOM≌△AOB;(4)若M在x轴正半轴上,且△NOM≌△AOB,G是线段ON上一点,连结MG,将△MGN沿MG折叠,点N恰好落在x轴上的H处,求G点的坐标.【分析】(1)由点A的坐标利用待定系数法可求出b值,再利用一次函数图象上点的坐标特征可求出点B的坐标;(2)由点A、H的坐标及点M移动的速度可得出ON、OM的长度,再利用三角形的面积公式即可找出△MNO的面积S与移动时间t之间的函数关系式;(3)由OA=ON=4、∠AOB=∠NOM=90°,可得出若要△NOM≌△AOB只需OM=OB=2,结合OM=|4﹣t|可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论;(4)设点G的坐标为(0,y),则OG=y,由折叠的性质可找出GH、OH的长度,在Rt△GOH 中,利用勾股定理可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)∵直线y=﹣x+b过点A(4,0),∴0=﹣×4+b,解得:b=2,∴直线AB的函数关系式为y=﹣x+2.当x=0时,y=﹣x+2=2,∴点B的坐标为(0,2).故答案为:(0,2).(2)∵A(4,0),N(0,4),动点M从点A以每秒1个单位的速度匀速沿x轴向左移动,∴OA=4,ON=4,OM=OA﹣AM=|4﹣t|,∴S=OM•ON=|4﹣t|×4=|8﹣2t|.(3)∵OA=ON=4,∠AOB=∠NOM=90°,∴若要△NOM≌△AOB,只需OM=OB=2.∵OM=|4﹣t|,∴|4﹣t|=2,解得:t=2或6.故答案为:2或6.(4)设点G的坐标为(0,y),则OG=y.根据折叠的性质,可知:MH=MN==2,GH=GN=4﹣y,∴OH=2﹣2.在Rt△GOH中,GH2=OG2+OH2,即(4﹣y)2=y2+(2﹣2)2,解得:y=﹣1,∴点G的坐标为(0,﹣1).【点评】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征、三角形的面积、折叠的性质、全等三角形的判定以及勾股定理,解题的关键是:(1)根据点的坐标,利用待定系数法求出直线AB的函数关系式;(2)利用三角形的面积公式找出S关于t的函数关系式;(3)利用全等三角形的判定定理找出关于t的含绝对值符号的一元一次方程;(4)在Rt△GOH中,利用勾股定理找出关于点G的纵坐标的一元一次方程.。
2020-2021学年人教版八年级英语下册期中测试卷(含答案)
2020-2021学年八年级英语下册期中测试卷限时:120分钟满分:120分听力部分(20分)一、听句子, 选择适当的应答语。
每个句子读两遍(每小题1分, 共5分)1. A. Yes, he will. B. Yes, he was. C. Yes, they were.2. A. Not at all. B. No, I couldn't. C. Sorry, I will.3. A.I was busy. B. Yesterday was Sunday.C. It was rainy.4. A. No problem. B. You should go home and get it.C. Good luck.5. A. Well, you should write him a letter.B. No, not at all.C. You are welcome.二、听对话和问题, 根据所听内容, 选择正确答案, 每段对话读两遍(每小题1分,共5分)6. A. She had a fever. B. She had a cold.C. She cut herself.7. A. Eating an apple. B. Doing the housework.C. Watching TV.8. A. Play with Tom. B. Argue with Tom.C. Call Tom and ask him for the storybook.9. A. In the library. B. In the classroom.C. At home.10. A. Sweep the floor. B. Do her homework.C. Have her dinner.三、听两段长对话, 根据所听内容, 选择正确的答案, 每段对话读两遍(每小题1分, 共5分)听第一段对话, 回答第11和12小题11. Who is going shopping tomorrow?A. The boy.B. The boy's mother.C. The boy's friends.12. What does the boy need to do first?A. Finish his homework.B. Clean the living room.C. Buy some snacks.听第二段对话, 回答第13至15小题13. What's wrong with Bob?A. He has a toothache.B. His arms hurt.C. His leg is broken.14. What does the woman advise Bob to do?A. Have a cup of tea.B. Go to the hospital.C. Carry fewer boxes.15. What is the relationship(关系) between the two speakers?A. Guide and tourist.B. Husband and wife.C. Doctor and patient.四、听独白, 根据所听内容完成表格, 独白读两遍(每小题1分, 共5分)笔试部分(100分)五、单项选择(每小题1.5分, 共15分)21. —How do you like Western food?—Well, it's not bad. Now I ________ sandwiches.A. am used to eatB. am used for eatingC. am used to eatingD. used to eat22. They spoke ________ quietly ________ I could hardly hear them.A. such; thatB. so; thatC. neither; norD. both; and23. We enjoyed ________ at the English party last weekend.A. usB. ourC. oursD. ourselves24. We are going to ________ a group to help each other with study.A. give upB. look upC. set upD. turn up25. The math problem was very hard for him, but he still ________ it ________.A. worked; onB. worked; outC. worked; withD. worked; for26. While Xiao Ming ________ his homework, his mother came with a cup of tea.【2020·黔南州】A. has doingB. had doneC. is doingD. was doing27. Jill felt ________, so she had to see a doctor.A. happyB. illC. wellD. tired28. To avoid gathering(聚集), neither the students nor their teacher ________going to the party this evening. 【2020·齐齐哈尔改编】A. wasB. wereC. areD. is29. It's reported that the 2020 Tokyo Olympic Games have been ________ untilJuly 23, 2021. 【2020·昆明】A. put upB. put downC. put onD. put off30. —Could you come, please? I want some help.—________.A. Yes, I couldB. You're welcomeC. Sure. I'm coming nowD. That's right六、完形填空(每小题1.5分, 共15分)Last summer, we had a volunteer activity in a village school. In the school, I saw a name Feng Aiguo on a list. This man offered much money to the school. I thought he must be a ________31man.One day, on my way home from school, my bike was broken. Luckily I found a repairing stand(修理摊) across from the street. An old man was ________32a bike. He was wearing a clean suit. He looked energetic(精力充沛的). While waiting, I knew ________33about him from the old men chatting there. He was Laofeng and ________34to repair bikes after he retired (退休). Two months ago, his family moved into a new house. His son didn't want him to repair bikes any longer. He bought him suits and asked him to ________35 them and rest at home. But it didn't work. The old man continued his repairing work in his suits.After a while, the old man got my bike repaired.________36I was leaving, an old lady came and called him “Aiguo”. ________37 the name on the list of the village school came into my mind. But how could such a common repairman________38so much money? I asked him if he knew that village. He told me it was his hometown and that the ________39 there still needed help. So he always saved money by repairing bikes to help them. Then I was sure that he was the person on the ________40.31. A. rich B. poor C. healthy D. unhealthy32. A. selling B. washing C. riding D. repairing33. A. everything B. something C. anything D. nothing34. A. started B. failedC. fearedD. remembered35. A. wear B. lose C. make D. lend36. A. Unless B. When C. If D. Though37. A. Luckily B. SadlyC. UsuallyD. Immediately38. A. give away B. throw away C. take back D. give back39. A. workers B. visitors C. riders D. villagers40. A. way B. map C. list D. book七、阅读理解(每小题2分, 共30分)A【2020·凉山】China is called the kingdom of fans. Fans are everywhere in our daily life. But how much do you know about them?It is said that fans were first used to cool the air during the Shang Dynasty. At that time, they were made of feathers, bamboo or silk. Some of them were round, while others were square.Folding paper fans first became popular during the Song Dynasty. There were usually beautiful pictures on the fans. Some were mountains and rivers; others were flowers and animals. Many people, including Su Dongpo, a poet of the Song Dynasty, and Tang Bohu, a scholar of the Song Dynasty, even painted and wrote poems on fans. This made the fans into art works. Many rich and important people liked holding fans.Today, fans are popular gifts. During the 2008 Beijing Olympic Games, folding fans were given to leaders and officials from other countries, as well as audience members. While they were having their fans to get cool air, they were also experiencing Chinese culture.41. The fans were made of different materials except ________ during the ShangDynasty.A. paperB. bambooC. silkD. feathers42. When did folding fans first become popular?A. The Shang Dynasty.B. The Song Dynasty.C. Today.D. In 2008.43. What couldn't people see on fans in the Song Dynasty?A. Mountains.B. Animals.C. Flowers.D. Audience.44. Which of the following is TRUE according to the passage?A. Fans were first used to cool the air during the Song Dynasty.B. Tang Bohu never wrote or painted on fans.C. Some fans were round, while others were square during the Shang Dynasty.D. Folding fans were only given to leaders and officials from China.45. What's the best title of this passage?A. The Development of FansB. The Shapes of FansC. When Fans Became PopularD. How Fans Became Art WorksB46.Which address can you send an email to if you have any problem?A. Eric@.B. Joan@.C. Beth @.D. Carla@.47. How soon did Eric get the reply from Aunt Carla?A. In one day.B. In two days.C. In a week.D. In a month.48. What's the meaning of the underl ined word “forgive” in the passage?A. 原谅B. 忘记C. 给予D. 补偿49. Why did Eric write the email to Carla?A. To say sorry.B. To ask for advice.C. To give advice.D. To say something friendly.50. How many pieces of advice did Carla give to Eric?A. Five.B. Four.C. Three.D. Two.CDust storms(沙尘暴) appear when strong wind blows sand and dirt from a dry surface. Strong dust storms may cause deaths, so you should know how to protect yourself from dust storms when you meet them.Be careful of dust storm warningsDust storms probably happen on hot summer days, and it's not safe for people totravel during this period. So you should listen to the local TV or radio before travelling, and consider changing or giving up your trip if dust storms are predicted (预测).Be preparedIf you are in a place where storms often happen, carry a mask(面具)to keep dust and dirt away from your face, and a pair of glasses to protect your eyes.Stay insideDo not move around when a dust storm comes, as you will not be able to see hidden (隐藏的)dangers. So if you are in a house, don't go out and just stay inside.Protect yourself from flying objectsCover your body as much as possible in a dust storm. A strong wind of dust storms can carry heavy objects, so you should try to stay low, and close to the ground, and protect your head with your arms or a backpack.51. What should you do before you travel according to the passage?A. Pack your backpack.B. Bring some money with you.C. Listen to the local TV or radio.D. Have a good sleep.52. We can learn from the passage that________.A. it is safe to travel on hot summer daysB. people should stay inside when a dust storm comesC. a strong wind of dust storms can't carry heavy objectsD. you should bring some money with you before you travel53. Which of the following may NOT be needed when you meet a dust storm?A. A knife.B. A mask.C. A pair of glasses.D. Knowledge about dust storms.54. The underlined word “dirt” mentioned in the first paragraph means “________”.A. 烂泥B. 尘土C. 丑闻D. 肮脏55. What's the main idea of this passage?A. How to predict dust storms.B. How to reduce (减少)dust storms.C. How to protect yourself from dust storms.D. How to travel in summer.八、词汇运用(每小题1分共10分)A) 根据句意及首字母提示填写单词56. —I didn't see Jim for long.—He fell down last month and h his legs.57. I need a k to cut it off.58. I don't know the new word. What does it m ?59. We visited a city park last weekend and enjoyed o very much on thatday.60. We all know the i of learning a foreign language.B)用括号中所给词的适当形式填空61. One of his ________(foot) got hurt during the journey.62. You need to take some ________ (medicine) and have a rest at home.63. —What's wrong with your hands?—I cut ________ (me) when I prepared for my dinner.64. In fact all the ________ (feel) will come and go.65. Mario is used to ________(volunteer) at an animal hospital now.九、补全对话(每小题1分, 共5分)根据下面对话中的情境, 在每个空白处填入一个恰当的句子, 使对话完整A:Hi, Linda. You look sad. __________________66?B:Well, I love music, but my mother doesn't allow me to listen to it.A:______________________67?B:Because she thinks it is not good for my study.A:________________________68. I also love music. It makes me relaxed and helps me study better.B:Right. Music brings me much, too. But how can I solve my problem? Can you give me some advice?A:Of course. ________________________69?B: No, I don't often talk with her. We often argue.A:I think communicating with each other is a better way. You can have a good talk with your mother.B:________________________70. Thanks for your advice.十、选词填空(每小题1分, 共10分) 【2020·抚顺、本溪、辽阳】根据短文内容, 用方框中所给词的正确形式填空, 使短文完整、正确。
人教版2020-2021学年初二数学下学期期中检测试题 ( 含答案)
2020-2021学年八年级第二学期期中数学试卷一、选择题(共10小题).1.(3分)下列式子中,属于最简二次根式的是()A.B.C.D.2.(3分)下列计算正确的是()A.﹣B.3C.﹣D.=±33.(3分)函数y=的自变量x的取值范围为()A.x>2B.x<2C.x≤2D.x≠24.(3分)下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5B.6、8、10C.、2、D.5、12、13 5.(3分)下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直6.(3分)如图,平行四边形ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于()A.100°B.80°C.60°D.40°7.(3分)关于正比例函数y=﹣3x,下列结论正确的是()A.图象不经过原点B.y随x的增大而增大C.图象经过第二、四象限D.当x=时,y=18.(3分)已知直角三角形斜边上的中线长为3,则斜边长为()A.3B.6C.9D.129.(3分)已知﹣2<m<3,化简+|m+2|的结果是()A.5B.1C.2m﹣1D.2m﹣510.(3分)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB 于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.1B.1.3C.1.2D.1.5二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)要使有意义,则x的取值范围是.12.(4分)已知,如图在四边形ABCD中,AB=CD,则添加一个条件(只需填写一种)可以使得四边形ABCD为平行四边形.13.(4分)已知函数y=x+m﹣2020(m常数)是正比例函数,则m=.14.(4分)已知直角三角形的两边的长分别是3和4,则第三边长为.15.(4分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD 的周长是.16.(4分)若是整数,则满足条件的最小正整数n为.17.(4分)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是.三、解答题(本大题3小题,每小题6分,共18分)18.(6分)计算:÷﹣×+.19.(6分)如图,在平行四边形ABCD中,点E,F分别为边BC,AD的中点.求证:四边形AECF是平行四边形.20.(6分)小红星期天从家里出发骑自行车去舅舅家,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,如图是她本次去舅舅家所用的时间与小红离家的距离的关系式示意图.根据图中提供的信息回答下列问题:(1)小红家到舅舅家的路程是米,小红在商店停留了分钟;(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分?四、解答题(本大题3小题,每小题8分,共24分)21.(8分)如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°.22.(8分)已知:如图,过矩形ABCD的顶点C作CE∥BD,交AB的延长线于点E.(1)求证:∠CAE=∠CEA;(2)若AD=1,∠E=30°,求△ACE的周长.23.(8分)已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的表达式;(2)在x轴上能否找到一点M,使△AOM是等腰三角形?若存在,求点M的坐标;若不存在,请说明理由.五、解答题(本大题2小题,每小题10分,共20分)24.(10分)阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如,这样的式子,其实我们还可以将其进一步化简:(一)==;(二)===﹣1;(三)====﹣1.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简:①参照(二)式化简=.②参照(三)式化简=.(2)化简:+++…+.25.(10分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图(1),连接AF、CE.①四边形AFCE是什么特殊四边形?说明理由;②求AF的长;(2)如图(2),动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.参考答案一、选择题(本大题10小题,每小题3分,共30分)每小题给出4个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)下列式子中,属于最简二次根式的是()A.B.C.D.解:A、=3,故A错误;B、是最简二次根式,故B正确;C、=2,不是最简二次根式,故C错误;D、=,不是最简二次根式,故D错误;故选:B.2.(3分)下列计算正确的是()A.﹣B.3C.﹣D.=±3解:A、﹣,无法计算,故此选项错误;B、3=,故此选项错误;C、﹣=,正确;D、=3,故此选项错误;故选:C.3.(3分)函数y=的自变量x的取值范围为()A.x>2B.x<2C.x≤2D.x≠2解:∵函数表达式y=的分母中含有自变量x,∴自变量x的取值范围为:x﹣2≠0,即x≠2.故选:D.4.(3分)下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5B.6、8、10C.、2、D.5、12、13解:A、32+42=52,故是直角三角形,故A选项不符合题意;B、62+82=102,故是直角三角形,故B选项不符合题意;C、()2+22≠()2,故不是直角三角形,故C选项符合题意;D、52+122=132,故是直角三角形,故D选项不符合题意.故选:C.5.(3分)下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直解:矩形和菱形的内角和都为360°,矩形的对角线互相平分且相等,菱形的对角线垂直且平分,∴矩形具有而菱形不具有的性质为对角线相等,故选:C.6.(3分)如图,平行四边形ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于()A.100°B.80°C.60°D.40°解:在▱ABCD中,∵AD∥BC,∴∠DAB=180°﹣∠B=180°﹣100°=80°.∵AE平分∠DAB,∴∠AED=∠DAB=40°.故选:D.7.(3分)关于正比例函数y=﹣3x,下列结论正确的是()A.图象不经过原点B.y随x的增大而增大C.图象经过第二、四象限D.当x=时,y=1解:A.图象经过原点,错误;B.y随x的增大而减小,错误;C、图象经过第二、四象限,正确;D.当x=时,y=﹣1,错误;故选:C.8.(3分)已知直角三角形斜边上的中线长为3,则斜边长为()A.3B.6C.9D.12解:∵直角三角形斜边上的中线长为3,∴斜边长是6.故选:B.9.(3分)已知﹣2<m<3,化简+|m+2|的结果是()A.5B.1C.2m﹣1D.2m﹣5解:∵﹣2<m<3,∴m﹣3<0,m+2>0,∴+|m+2|=3﹣m+m+2=5.故选:A.10.(3分)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB 于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.1B.1.3C.1.2D.1.5解:∵AB=3,AC=4,BC=5,∴∠EAF=90°,∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交点就是M点.∵当AP的值最小时,AM的值就最小,∴当AP⊥BC时,AP的值最小,即AM的值最小.∵AP•BC=AB•AC,∴AP•BC=AB•AC.∵AB=3,AC=4,BC=5,∴5AP=3×4,∴AP=2.4,∴AM=1.2;故选:C.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)要使有意义,则x的取值范围是x≥4.解:由题意得:x﹣4≥0,解得:x≥4.故答案为:x≥4.12.(4分)已知,如图在四边形ABCD中,AB=CD,则添加一个AD=BC条件(只需填写一种)可以使得四边形ABCD为平行四边形.解:添加AD=BC,∵AD=BC,AB=CD,∴四边形ABCD为平行四边形,故答案为:AD=BC.13.(4分)已知函数y=x+m﹣2020(m常数)是正比例函数,则m=2020.解:∵函数y=x+m﹣2020(m常数)是正比例函数,∴m﹣2020=0,解得m=2020,故答案为:2020.14.(4分)已知直角三角形的两边的长分别是3和4,则第三边长为5或.解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:=;②长为3、4的边都是直角边时:第三边的长为:=5;综上,第三边的长为:5或.故答案为:5或.15.(4分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD 的周长是24.解:∵AC是菱形ABCD的对角线,E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴EF=BC=3,∴BC=6,∴菱形ABCD的周长是4×6=24.故答案为24.16.(4分)若是整数,则满足条件的最小正整数n为7.解:∵28=4×7,4是平方数,∴若是整数,则n的最小值为7.故答案为:7.17.(4分)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是(0,21009).解:由已知,点A每次旋转转动45°,则转动一周需转动8次,每次转动点A到原点的距离变为转动前的倍∵2018=252×8+2∴点A2018的在y轴正半轴上,OA2018==21009故答案为:(0,21009)三、解答题(本大题3小题,每小题6分,共18分)18.(6分)计算:÷﹣×+.解:原式=﹣+2=4+19.(6分)如图,在平行四边形ABCD中,点E,F分别为边BC,AD的中点.求证:四边形AECF是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点E,F分别是BC,AD的中点,∴,,∴AF∥EC,AF=EC,∴四边形AECF是平行四边形.20.(6分)小红星期天从家里出发骑自行车去舅舅家,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,如图是她本次去舅舅家所用的时间与小红离家的距离的关系式示意图.根据图中提供的信息回答下列问题:(1)小红家到舅舅家的路程是1500米,小红在商店停留了4分钟;(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分?解:(1)根据图象舅舅家纵坐标为1500,小红家的纵坐标为0,故小红家到舅舅家的路程是1500米;据题意,小红在商店停留的时间为从8分到12分,故小红在商店停留了4分钟.故答案为:1500,4;(2)根据图象,12≤x≤14时,直线最陡,故小红在12﹣14分钟最快,速度为=450米/分.四、解答题(本大题3小题,每小题8分,共24分)21.(8分)如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°.【解答】证明:连接AC.∵AB=20,BC=15,∠B=90°,∴由勾股定理,得AC2=202+152=625.又CD=7,AD=24,∴CD2+AD2=625,∴AC2=CD2+AD2,∴∠D=90°.∴∠A+∠C=360°﹣180°=180°.22.(8分)已知:如图,过矩形ABCD的顶点C作CE∥BD,交AB的延长线于点E.(1)求证:∠CAE=∠CEA;(2)若AD=1,∠E=30°,求△ACE的周长.【解答】证明:(1)∵四边形ABCD是矩形,∴DC∥BE,AC=BD.又EC∥BD,∴四边形DBEC是平行四边形.∴CE=DB.∴AC=EC.∴∠CAE=∠CEA;(2)由(1)得∠DBA=∠E=30°,∴BD=2AD=2,AB=.∴AC=CE=BD=2,AE=2AB=2.所以△ACE周长为4+2.23.(8分)已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的表达式;(2)在x轴上能否找到一点M,使△AOM是等腰三角形?若存在,求点M的坐标;若不存在,请说明理由.解:(1)∵点A的横坐标为3,△AOH的面积为3,点A在第四象限,∴点A的坐标为(3,﹣2).将A(3,﹣2)代入y=kx,﹣2=3k,解得:k=﹣,∴正比例函数的表达式为y=﹣x.(2)①当OM=OA时,如图1所示,∵点A的坐标为(3,﹣2),∴OH=3,AH=2,OA==,∴点M的坐标为(﹣,0)或(,0);②当AO=AM时,如图2所示,∵点H的坐标为(3,0),∴点M的坐标为(6,0);③当OM=MA时,设OM=x,则MH=3﹣x,∵OM=MA,∴x=,解得:x=,∴点M的坐标为(,0).综上所述:当点M的坐标为(﹣,0)、(,0)、(6,0)或(,0)时,△AOM是等腰三角形.五、解答题(本大题2小题,每小题10分,共20分)24.(10分)阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如,这样的式子,其实我们还可以将其进一步化简:(一)==;(二)===﹣1;(三)====﹣1.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简:①参照(二)式化简=﹣.②参照(三)式化简=﹣.(2)化简:+++…+.解:(1)①==﹣;②===﹣;(2)原式=+++…+==.故答案为:(1)①﹣;②﹣25.(10分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图(1),连接AF、CE.①四边形AFCE是什么特殊四边形?说明理由;②求AF的长;(2)如图(2),动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.解:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE.∵EF垂直平分AC,∴OA=OC.在△AOE和△COF中,∴△AOE≌△COF(AAS),∴OE=OF(AAS).∵EF⊥AC,∴四边形AFCE为菱形.②设菱形的边长AF=CF=xcm,则BF=(8﹣x)cm,在Rt△ABF中,AB=4cm,由勾股定理,得16+(8﹣x)2=x2,解得:x=5,∴AF=5.2)由作图可以知道,P点AF上时,Q点CD上,此时A,C,P,Q四点不可能构成平行四边形;同理P点AB上时,Q点DE或CE上,也不能构成平行四边形.∴只有当P点在BF上,Q点在ED上时,才能构成平行四边形,∴以A,C,P,Q四点为顶点的四边形是平行四边形时,∴PC=QA,∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,∴PC=5t,QA=12﹣4t,∴5t=12﹣4t,解得:t=.∴以A,C,P,Q四点为顶点的四边形是平行四边形时,t=秒.1、三人行,必有我师。
最新人教版数学八年级下学期《期中检测卷》及答案解析
2020-2021学年度第二学期期中测试人教版八年级数学试题一.选择题(共10小题)1. 下列式子是最简二次根式的是( ) A. 8 B. 36 C. 21 D. 317- 2. 如图,要测定被池塘隔开的A ,B 两点的距离.可以在AB 外选一点C ,连接AC ,BC ,并分别找出它们的中点D ,E ,连接DE .现测得AC =30m ,BC =40m ,DE =24m ,则AB =( )A. 50mB. 48mC. 45mD. 35m 3. x 取( )时,式子2x -在实数范围内有意义. A. x ≥1且x ≠2 B. x ≥2且x ≠1 C. x ≥2 D. 都不正确 4. 一根竹子高9尺,折断后竹子顶端落在离竹子底端3尺处,折断处离地面高度是( )A. 3尺B. 4尺C. 5尺D. 6尺5. 由线段a 、b 、c 组成的三角形不是直角三角形的是( )A. 7a =,24b =,25c =B. 41a =,4b =,5c =C. 54a =,1b =,34c =D. 13a =,14b =,15c = 6. 下列结论错误的是( )A. 对角线相等的菱形是正方形B. 对角线互相垂直的矩形是正方形C. 对角线互相垂直且相等的四边形是正方形D. 对角线互相垂直且相等的平行四边形是正方形7. 顺次连接矩形各边中点得到的四边形是( )A. 平行四边形B. 矩形C. 菱形D. 正方形8. 如图,在平行四边形ABCD 中,∠A =130°,在AD 上取DE =DC ,则∠ECB 的度数是( )A. 65°B. 50°C. 60°D. 75° 9. 某广场上一个形状是平行四边形的花坛,分别种有红、黄、蓝、白、橙、紫6种颜色的花.如果有AB ∥EF ∥DC ,BC ∥GH ∥AD ,那么下列说法中错误的是( )A. 红花,白花种植面积一定相等B . 红花,蓝花种植面积一定相等C. 蓝花,黄花种植面积一定相等D. 紫花,橙花种植面积一定相等10. 如图,在四边形ABCD 中,90ABC ∠=︒ ,//,//AD BC AE CD 交BC 于E ,AE 平分BAC ∠ ,AO CO AD DC ==,,下面结论:①2AC AB = ;②ABO ∆是等边三角形;③3ADC ABE S S ∆∆=;④2DC BE =,其中正确的有A .1个B. 2个C. 3个D. 4个 二.填空题(共11小题)11. 如图,图中所有的四边形都是正方形,所有的三角形都是直角三角形,已知正方形A ,B ,C ,D 的边长分别是6,8,3,4,则最大正方形E 的面积是_____.12. 如图,在四边形ABCD 中,AD BC =,在不添加任何辅助线的情况下,请你添加一个条件_____,使四边形ABCD 是平行四边形. 13. 若x ,y 为实数,且|x+2|+3y -=0,则(x+y )2016的值为_____. 14. 已知3131x y =+=-,,求下列各式的值: (1)222x xy y ++;(2)22x y -.15. 已知a+1a =13,则a ﹣1a=________. 16. 已知一个直角三角形的两条直角边分别为6、8,那么这个直角三角形斜边上的高为__;三角形的两边分别为3和5要使这个三角形组成直角三角形,则第三边长是__.17. 若菱形的对角线长分别是6cm 、8cm ,则其周长是________ ,面积是______________.18. 如图,在▱ABCD 中,BC =10,AC =8,BD =14,△AOD 的周长是__;△DBC 比△ABC的周长长__.19. 在Rt △ABC 中,∠C =90°,AB =2AC ,则∠A =__°,∠B =___°.20. 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠ACD=3∠BCD,E是斜边AB的中点,则∠ECD 的度数为__________度.21. 如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为__.三.解答题(共7小题)22. (1)(24﹣12)﹣(168+);(2)3212⨯÷52;(3)(23+6)(23﹣6);(4)(32111234-)2.23. 有一个水池,水面是一个边长为12尺的正方形,在水池正中央有一根芦苇,它高出水面2尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水的深度与这根芦苇的长度分别是多少?24. 如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD的面积.25. 在平行四边形ABCD 中,BD 是它的一条对角线,过A ,C 两点分别作AE ⊥BD ,CF ⊥BD ,E 、F 为垂足,求证:四边形AFCE 是平行四边形.26. 如图,AE ∥BF ,AC 平分∠BAE ,且交BF 于点C ,BD 平分∠ABF ,且交AE 于点D ,连接CD .(1)求证:四边形ABCD 是菱形;(2)若∠ADB =30°,BD =12,求AD 的长.27. 已知:如图,在ABCD 中,,AE BC CF AD ⊥⊥,,E F 分别垂足.(1)求证:ABE CDF ∆∆≌;(2)求证:四边形AECF 是矩形.28. 如图1,四边形ABCD 是正方形,点G 是BC 边上任意一点.DE ⊥AG 于点E ,BF ∥DE 且交AG 于点F .(1)求证:AE =BF ; (2)如图2,如果点G 是BC 延长线上一点,其余条件不变,则线段AF 、BF 、EF 有什么数量关系?请证明出你的结论.答案与解析一.选择题(共10小题)1. 下列式子是最简二次根式的是()A. 8B. 36C. 21D. 317-【答案】C【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是【详解】A、822=,不是最简二次根式,故本选项不符合题意;B、36=6,不是最简二次根式,故本选项不符合题意;C、21是最简二次根式,故本选项符合题意;D、37017-=-,不是最简二次根式,故本选项不符合题意;故选C.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2. 如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接DE.现测得AC=30m,BC=40m,DE=24m,则AB=()A. 50mB. 48mC. 45mD. 35m【答案】B【解析】∵D是AC的中点,E是BC的中点,∴DE 是△ABC 的中位线,∴DE=12AB , ∵DE=24m ,∴AB=2DE=48m ,故选B .3. x 取( )时,式子21x x --在实数范围内有意义. A. x ≥1且x ≠2B. x ≥2且x ≠1C. x ≥2D. 都不正确【答案】C【解析】【分析】根据二次根式有意义可得x ﹣2≥0,根据分式有意义可得x ﹣1≠0,再解即可.【详解】解:由题意得:x ﹣2≥0且x ﹣1≠0,解得:x ≥2故选:C .【点睛】本题考查二次根式有意义和分式有意义的条件,被开方数不能为负,分式的分母不能为0. 4. 一根竹子高9尺,折断后竹子顶端落在离竹子底端3尺处,折断处离地面高度是( )A. 3尺B. 4尺C. 5尺D. 6尺【答案】B【解析】【分析】 杆子折断后刚好构成一直角三角形,设杆子折断处离地面x 尺,则斜边为(9﹣x )尺.利用勾股定理解题即可.【详解】解:设杆子折断处离地面x 尺,则斜边为(9﹣x )尺,根据勾股定理得:x 2+32=(9﹣x )2解得:x =4.故选:B .【点睛】本题考查勾股定理的应用,根据题意设出未知数,表示出直角三角形三边的长度,列方程求解即可.5. 由线段a 、b 、c 组成的三角形不是直角三角形的是( )A. 7a =,24b =,25c =B. 41a =,4b =,5c =C. 54a =,1b =,34c = D. 13a =,14b =,15c = 【答案】D【解析】【分析】【详解】A 、72+242=252,符合勾股定理的逆定理,是直角三角形;B 、42+52=41)2,符合勾股定理的逆定理,是直角三角形;C 、12+(34)2=(54)2,符合勾股定理的逆定理,是直角三角形; D 、(14)2+(15)2≠(13)2,不符合勾股定理的逆定理,不是直角三角形. 故选D .6. 下列结论错误的是( )A. 对角线相等的菱形是正方形B. 对角线互相垂直的矩形是正方形C. 对角线互相垂直且相等的四边形是正方形D. 对角线互相垂直且相等的平行四边形是正方形【答案】C【解析】【分析】根据正方形的判定方法解答即可.【详解】选项A ,对角线相等的菱形是正方形,选项A 正确;选项B ,对角线互相垂直的矩形是正方形,选项B 正确;选项C ,∵对角线互相垂直平分且相等的四边形是正方形,∴对角线互相垂直且相等的四边形不一定是正方形,选项C 错误;选项D ,对角线互相垂直且相等的平行四边形是正方形,选项D 正确.故选C .【点睛】本题考查了正方形的判定方法,熟记正方形的判定定理是解决本题的关键.7. 顺次连接矩形各边中点得到的四边形是( )A. 平行四边形B. 矩形C. 菱形D. 正方形【答案】C【解析】【分析】根据三角形的中位线定理,得新四边形各边都等于原四边形的对角线的一半,进而可得连接对角线相等的四边形各边中点得到的四边形是菱形.【详解】解:如图,矩形ABCD 中, ,AC BD ∴=,,,E F G H 分别为四边的中点,1//,,2EF BD EF BD ∴=1//,,2GH BD GH BD = 1,2FG AC = //,,EF GH EF GH ∴=∴ 四边形ABCD 是平行四边形, 11,,,22AC BD EF BD FG AC === ,EF FG ∴=∴ 四边形EFGH 是菱形.故选C.【点睛】本题主要考查了矩形的性质、菱形的判定,以及三角形中位线定理,关键是掌握三角形的中位线定理及菱形的判定.8. 如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是()A. 65°B. 50°C. 60°D. 75°【答案】A【解析】【分析】利用平行四边形对角相等和邻角互补先求出∠BCD和∠D,再利用等边对等角的性质解答.【详解】在平行四边形ABCD中,∠A=130°,∴∠BCD=∠A=130°,∠D=180°-130°=50°,∵DE=DC,∴∠ECD=12(180°-50°)=65°,∴∠ECB=130°-65°=65°.【点睛】考查平行四边形对角相等和邻角互补的性质,熟练掌握性质是解题的关键.9. 某广场上一个形状是平行四边形的花坛,分别种有红、黄、蓝、白、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法中错误的是()A. 红花,白花种植面积一定相等B. 红花,蓝花种植面积一定相等C. 蓝花,黄花种植面积一定相等D. 紫花,橙花种植面积一定相等【答案】B【解析】【分析】由题意得出四边形ABCD 、四边形DEOH 、四边形BGOF 、四边形AGOE 、四边形CHOF 是平行四边形,得出△ABD 的面积=△CBD 的面积,△DOE 的面积=△DOH 的面积,△BOG 的面积=△BOF 的面积,得出四边形AGOE 的面积=四边形CHOF 的面积,即可得出结论.【详解】解:如图所示:∵AB ∥EF ∥DC ,BC ∥GH ∥AD ,∴四边形ABCD 、四边形DEOH 、四边形BGOF 、四边形AGOE 、四边形CHOF 是平行四边形,∴△ABD 的面积=△CBD 的面积,△DOE 的面积=△DOH 的面积,△BOG 的面积=△BOF 的面积, ∴四边形AGOE 的面积=四边形CHOF 的面积,∴A 、C 、D 正确,B 不正确;故选:B .【点睛】此题考查平行四边形的性质,利用平行四边形性质比较三角形面积大小,结合图形解题较为简便. 10. 如图,在四边形ABCD 中,90ABC ∠=︒ ,//,//AD BC AE CD 交BC 于E ,AE 平分BAC ∠ ,AO CO AD DC ==,,下面结论:①2AC AB = ;②ABO ∆是等边三角形;③3ADC ABE S S ∆∆=;④2DC BE =,其中正确有A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】由两组对边平行证明四边形AECD是平行四边形,由AD=DC得出四边形AECD是菱形,得出AE=EC=CD=AD,则∠EAC=∠ECA,由角平分线定义得出∠EAB=∠EAC,则∠EAB=∠EAC=∠ECA,证出∠EAB=∠EAC=∠ECA=30°,则BE=12AE,AC=2AB,①正确;由AO=CO得出AB=AO,由∠EAB=∠EAC=30°得出∠BAO=60°,则△ABO是等边三角形,②正确;由菱形的性质得出S△ADC=S△AEC=12AB•CE,S△ABE=12AB•BE,由BE=12AE=12CE,则S△ADC=2S△ABE,③错误;由DC=AE,BE=12AE,则DC=2BE,④正确;即可得出结果.【详解】解:∵AD∥BC,AE∥CD,∴四边形AECD是平行四边形,∵AD=DC,∴四边形AECD是菱形,∴AE=EC=CD=AD,∴∠EAC=∠ECA,∵AE平分∠BAC,∴∠EAB=∠EAC,∴∠EAB=∠EAC=∠ECA,∵∠ABC=90°,∴∠EAB=∠EAC=∠ECA=30°,∴BE=12AE,AC=2AB,①正确;∵AO=CO,∴AB=AO,∵∠EAB=∠EAC=30°,∴∠BAO=60°,∴△ABO是等边三角形,②正确;∵四边形AECD是菱形,∴S△ADC=S△AEC=12 AB•CE,S△ABE=12 AB•BE,∵BE=12AE=12CE,∴S△ADC=2S△ABE,③错误;∵DC=AE,BE=12 AE,∴DC=2BE,④正确;故选C.【点睛】本题考查平行四边形的判定、菱形的判定与性质、角平分线定义、等边三角形的判定、含30°角直角三角形的性质、三角形面积的计算等知识,熟练掌握菱形的性质与含30°角直角三角形的性质是解题关键.二.填空题(共11小题)11. 如图,图中所有的四边形都是正方形,所有的三角形都是直角三角形,已知正方形A,B,C,D的边长分别是6,8,3,4,则最大正方形E的面积是_____.【答案】125.【解析】【分析】根据正方形的面积公式,结合勾股定理,能够导出正方形A,B,C,D的面积和即为最大正方形的面积.【详解】解:根据勾股定理的几何意义,可知S E=S F+S G=S A+S B+S C+S D=62+82+32+42=125;故答案为125.【点睛】本题考查勾股定理,熟悉勾股定理的几何意义是解题关键.12. 如图,在四边形ABCD 中,AD BC =,在不添加任何辅助线的情况下,请你添加一个条件_____,使四边形ABCD 是平行四边形.【答案】//AD BC (答案不唯一)【解析】【分析】可再添加一个条件AD ∥BC ,根据两组对边分别相等的四边形是平行四边形,四边形ABCD 是平行四边形.【详解】根据平行四边形的判定,可再添加一个条件://AD BC .故答案为//AD BC (答案不唯一).【点睛】此题考查平行四边形的判定,解题关键在于掌握判定法则13. 若x ,y 为实数,且|x+2|+3y -,则(x+y )2016的值为_____.【答案】1.【解析】试题解析:3y -,∴x+2=0,y-3=0,∴x=-2,y=3,∴(x+y )2016=1. 考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.14. 已知3131x y ==,,求下列各式的值: (1)222x xy y ++;(2)22x y -.【答案】(1)12 (2)3【解析】【分析】观察可知:(1)式是和的完全平方公式,(2)是平方差公式.先转化,再代入计算即可.【详解】(1)当x+1,y时,原式=(x +y )2=)2=12;(2)当x,y时,原式=(x +y )(x -y )=))15. 已知a+1aa ﹣1a=________. 【答案】±3 【解析】【分析】 首先对a+1aa 2+21a ,然后根据(a-1a )2=a 2+21a-2求解. 【详解】解:∵a+1a∴(a+1a )2=13,即a 2+21a=11, ∴(a-1a )2=a 2+21a-2=11-2=9, ∴a-1a =±3. 故答案是:±3. 【点睛】本题考查了二次根式的化简求值,正确理解完全平方公式,对所求的式子进行变形是关键. 16. 已知一个直角三角形两条直角边分别为6、8,那么这个直角三角形斜边上的高为__;三角形的两边分别为3和5要使这个三角形组成直角三角形,则第三边长是__.【答案】 (1). 4.8 (2).4【解析】【分析】根据勾股定理求出斜边,设斜边上的高为h ,根据同一三角形面积一定,列方程求出这个直角三角形斜边上的高;根据勾股定理的逆定理,可设第三条边长为x ,如果满足32+52=x 2或32+x 2=52,即为直角三角形,解出x 的值即可解答.【详解】解:∵直角三角形的两条直角边分别为6,8,10,设斜边上的高为h ,则直角三角形的面积为12×6×8=12×10h,解得:h=4.8,这个直角三角形斜边上的高为4.8;三角形的两边分别为3和5,设第三条边长为x,∵三角形是直角三角形,∴32+52=x2或32+x2=52,解得,x=34或x=4,即第三边长是34或4.故答案为:4.8;34或4.【点睛】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.也考查了勾股定理的运用,直角三角形的面积的求法.17. 若菱形的对角线长分别是6cm、8cm,则其周长是________,面积是______________.【答案】(1). 20cm (2). 24cm2【解析】根据菱形的对角线互相垂直平分,求出对角线的一半,然后利用勾股定理求出菱形的边长,最后根据周长公式计算即可求解;根据菱形的面积等于对角线乘积的一半列式计算即可求解.解:∵菱形的两条对角线的长分别是6cm和8cm,∴两条对角线的长的一半分别是3cm和4cm,∴菱形的边长为=2234=5cm,∴菱形的周长=5×4=20cm;面积=12×8×6=24cm2.故答案为20,24.18. 如图,在▱ABCD中,BC=10,AC=8,BD=14,△AOD的周长是__;△DBC比△ABC的周长长__.【答案】(1). 21(2). 6 【解析】【分析】根据平行四边形的性质可得AB=CD,BC=AD=10,AO=CO=12AC=4,BO=DO=12BD=7,然后可得△AOD的周长,进而可得△DBC和△ABC的周长差.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD=10,AO=CO=12AC=4,BO=DO=12BD=7,∴△AOD的周长是:AD+AO+DO=10+4+7=21;△DBC周长﹣△ABC的周长=BD+BC+DC﹣AB﹣BC﹣AC=BD=AC=14﹣8=6;故答案为:21;6.【点睛】此题主要考查了平行四边形的性质,关键是掌握平行四边形对边相等,对角线互相平分.19. 在Rt△ABC中,∠C=90°,AB=2AC,则∠A=__°,∠B=___°.【答案】(1). 60(2). 30【解析】【分析】在Rt△ABC中,根据AB=2AC,可得出∠B=30°,∠A=60°.【详解】解:如图,在Rt△ABC中,∵∠C=90°,AB=2AC,∴sin∠B=ACAB=12,∴∠B=30°,∴∠A=90°﹣∠B=90°﹣30°=60°.故答案为:60,30.【点睛】此题考查有一个角是30°的直角三角形的性质,根据三角函数求解较简单.20. 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠ACD=3∠BCD,E是斜边AB的中点,则∠ECD 的度数为__________度.【答案】45°【解析】【分析】求出∠ACD=67.5°,∠BCD=22.5°,根据三角形内角和定理求出∠B=67.5°,根据直角三角形斜边上中线性质求出BE=CE,推出∠BCE=∠B=67.5°,代入∠ECD=∠BCE-∠BCD求出即可.【详解】∵∠ACD=3∠BCD,∠ACB=90°,∴∠ACD=67.5°,∠BCD=22.5°,∵CD⊥AB,∴∠CDB=90°,∴∠B=180°−90°−22.5°=67.5°,∵∠ACB=90°,E是斜边AB的中点,∴BE=CE,∴∠BCE=∠B=67.5°,∴∠ECD=∠BCE−∠BCD=67.5°−22.5°=45°.【点睛】本题考查三角形内角和定理和直角三角形斜边上中线性质,解题的关键是掌握三角形内角和定理和直角三角形斜边上中线性质.21. 如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为__.【答案】13【解析】【分析】本题是典型的一线三角模型,根据正方形的性质、直角三角形两个锐角互余以及等量代换可以证得△AFB≌△AED;然后由全等三角形的对应边相等推知AF=DE、BF=AE,所以EF=AF+AE=13.【详解】解:∵ABCD是正方形(已知),∴AB=AD,∠ABC=∠BAD=90°;又∵∠F AB+∠FBA=∠F AB+∠EAD=90°,∴∠FBA=∠EAD(等量代换);∵BF⊥a于点F,DE⊥a于点E,∴在Rt△AFB和Rt△AED中,∵90AFB DEAFBA EADAB DA︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△AFB≌△DEA(AAS),∴AF=DE=8,BF=AE=5(全等三角形的对应边相等),∴EF=AF+AE=DE+BF=8+5=13.故答案为:13.【点睛】本题考查了正方形的性质、直角三角形的性质、全等三角形的判定和性质及熟悉一线三角模型是解本题的关键.三.解答题(共7小题)22. (1)+;(2)(3)()();(4)2.【答案】(1﹣(2)10;(3)6;(4)5﹣52【解析】【分析】(1)首先化简二次根式进而合并得出答案;(2)直接利用二次根式的乘法运算法则计算得出答案;(3)直接利用平方差公式计算得出答案;(4)直接利用完全平方公式计算得出答案.【详解】解:(1)=24--(2)÷=2×4=3=10;(3)()()=(2)2=12﹣6=6;(4)2=955324342⨯+-⨯=155344+-=5﹣52【点睛】掌握并熟练运用实数的运算法则,平方差公式及二次根式的运算法则是解本题的关键.23. 有一个水池,水面是一个边长为12尺的正方形,在水池正中央有一根芦苇,它高出水面2尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水的深度与这根芦苇的长度分别是多少?【答案】水的深度是8尺,这根芦苇长10尺.【解析】【分析】设水深为x尺,则这根芦苇的长为(x+2)尺,根据勾股定理列出方程,求出x的值,即可求解.【详解】设水深为x尺,则这根芦苇的长为(x+2)尺,根据勾股定理得:x2+(122)2=(x+2)2,解得:x=8,芦苇的长度=x+2=8+2=10(尺),答:水的深度是8尺,这根芦苇长10尺.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.24. 如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD的面积.【答案】36【解析】【分析】连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD的形状,最后利用三角形的面积公式求解即可.【详解】解:连接AC,如下图所示:∵∠ABC=90°,AB=3,BC=4,∴AC=22AB BC=5,在△ACD中,AC2+CD2=25+144=169=AD2,∴△ACD是直角三角形,∴S四边形ABCD=12AB•BC+12AC•CD=12×3×4+12×5×12=36.【点睛】本题考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据勾股定理的逆定理判断出△ACD 的形状是解答此题的关键,难度适中.25. 在平行四边形ABCD中,BD是它的一条对角线,过A,C两点分别作AE⊥BD,CF⊥BD,E、F为垂足,求证:四边形AFCE是平行四边形.【答案】见解析【解析】【分析】连接AC交BD于点O,由平行四边形的性质可证明△AED≌△CFB,则可求得DE=BF,从而可求得OE=OF,可证得结论.【详解】证明:连接AC交BD于点O,∵四边形ABCD为平行四边形,∴OA=OC,OD=OB,AD∥BC,AD=BC,∴∠ADE=∠CBF,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB ,在△AED 和△CFB 中AED CFB ADE CBF AD BC ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△AED ≌△CFB (AAS ),∴DE=BF ,∴OD-DE=OB-BF ,即OE=OF ,∴四边形AFCE 是平行四边形.【点睛】此题考查平行四边形的判定和性质,掌握平行四边形的判定和性质是解题的关键,即①两组对边分别平行四边形⇔平行四边形,②两组对边分别相等的四边形⇔平行四边形,③一组对边平行且相等的四边形⇔平行四边形,④两组对角分别相等的四边形⇔平行四边形,⑤对角线互相平分的四边形⇔平行四边形.26. 如图,AE ∥BF ,AC 平分∠BAE ,且交BF 于点C ,BD 平分∠ABF ,且交AE 于点D ,连接CD .(1)求证:四边形ABCD 是菱形;(2)若∠ADB =30°,BD =12,求AD 的长.【答案】(1)见解析;(2)3【解析】【分析】(1)由平行线的性质和角平分线定义得出∠ABD =∠ADB ,证出AB =AD ,同理:AB =BC ,得出AD =BC ,证出四边形ABCD 是平行四边形,即可得出结论;(2)由菱形的性质得出AC ⊥BD ,OD =OB =12BD =6,再由三角函数即可得出AD 的长. 【详解】证明:(1)∵AE ∥BF ,∴∠ADB =∠CBD ,又∵BD 平分∠ABF ,∴∠ABD =∠CBD ,∴∠ABD =∠ADB ,∴AB =AD ,同理:AB =BC ,∴AD =BC ,∴四边形ABCD 是平行四边形,又∵AB =AD ,∴四边形ABCD 是菱形;(2)∵四边形ABCD 是菱形,BD =12,∴AC ⊥BD ,OD =OB =12BD =6, ∵∠ADB =30°,∴cos ∠ADB =3OD AD =, ∴3643AD =÷=. 【点睛】本题考查了菱形的判定与性质、平行线的性质、等腰三角形的判定、平行四边形的判定、三角函数等知识;熟练掌握菱形的判定与性质是解决问题的关键.27. 已知:如图,在ABCD 中,,AE BC CF AD ⊥⊥,,E F 分别为垂足.(1)求证:ABE CDF ∆∆≌;(2)求证:四边形AECF 是矩形.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)由平行四边形的性质得出∠B=∠D ,AB=CD ,AD ∥BC ,由已知得出∠AEB=∠AEC=∠CFD=∠AFC=90°,由AAS 证明△ABE ≌△CDF 即可;(2)证出∠EAF=∠AEC=∠AFC=90°,即可得出结论.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴,B D AB CD ∠=∠=,AD BC ∕∕,∵,AE BC CF AD ⊥⊥,∴90AEB AEC CFD AFC ∠=∠=∠=∠=︒,在ABE ∆和CDF ∆中,B D AEB CFD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABE CDF AAS ∆∆≌;(2)证明:∵AD BC ∕∕,∴90EAF AEB ∠=∠=︒,∴90EAF AEC AFC ∠=∠=∠=︒,∴四边形AECF 是矩形.【点睛】本题考查了矩形的判定、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质和矩形的判定是解题的关键.28. 如图1,四边形ABCD 是正方形,点G 是BC 边上任意一点.DE ⊥AG 于点E ,BF ∥DE 且交AG 于点F .(1)求证:AE =BF ;(2)如图2,如果点G 是BC 延长线上一点,其余条件不变,则线段AF 、BF 、EF 有什么数量关系?请证明出你的结论.【答案】(1)见解析;(2)AF +EF =BF ,证明见解析【解析】【分析】(1)根据正方形的四条边都相等可得DA =AB ,再根据同角的余角相等求出∠BAF =∠ADE ,然后利用“角角边”证明△ABF 和△DAE 全等,再根据全等三角形对应边相等可得BF =AE ,AF =DE ,然后根据图形列式整理即可得证;(2)根据题意作出图形,然后根据(1)的结论可得BF =AE ,AF =DE ,然后结合图形写出结论即可.【详解】(1)证明:∵四边形ABCD 是正方形,BF ⊥AG ,DE ⊥AG ,∴DA =AB ,∠BAF+∠DAE =∠DAE+∠ADE =90°,∴∠BAF =∠ADE ,在△ABF 和△DAE 中,90BAF ADE AFB DEA DA AB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABF ≌△DAE (AAS ),∴BF =AE ,AF =DE ,(2)AF+BF =EF ;∵四边形ABCD 是正方形,BF ⊥AG ,DE ⊥AG ,∴DA =AB ,∠BAF+∠DAE =∠DAE+∠ADE =90°,∴∠BAF =∠ADE ,在△ABF 和△DAE 中,90BAF ADE AFB DEA DA AB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABF ≌△DAE (AAS ),∴BF =AE ,AF =DE ,∴AF+EF =BF .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的应用,熟记正方形的四条边都相等,每一个角都是直角,然后求出三角形全等是解题的关键.。
部编人教版2020---2021学年度下学期八年级语文期中考试卷及答案(含三套题)
密学校 班级 姓名 学号密 封 线 内 不 得 答 题部编人教版2020---2021学年度下学期八年级语文期中考试卷及答案(满分:150分 时间:120分钟)A 卷(共100分)第I 卷(选择题,共24分)一、基础知识(每小题3分,共12分)1.下面的字注音全部正确的一项是( )(3分)A .潇.洒(xi āo ) 翘.首(qi ào )由衷.(ch ōng )锃.(c èng )亮B .颤.抖(ch àn ) 澎湃..(p éng b ài )桅.杆(gu ī)屏.声敛息(p íng )C .抑扬顿挫.(cu ò)绯.红(f ěi )瞥.见(bi ē)殚.精竭虑(d ān )D .叱咤.风云(zh à)芋梗..汤(y ù g ěng ) 字帖.(ti è) 颔.首低眉(h àn ) 2.下列语句中书写准确无误的一项是( )(3分)A .冰雪融化,草木萌发,各种花次弟开放。
B .这可能是一个巨大的小行星或慧星撞击地球的的结果。
C .一只燕子的来临说明不了春天,但当一群大雁冲破了3月暖流的雾蔼时,春天就来到了。
D .实际上,地球上的记录比这篇文章所介绍的还要丰富得多,这里不过是拉开了帷幕的一角而已。
3.下列句子加点成语使用正确的一项是( )(3分)A .让情况更加尖锐的是这些势力越来越锐不可当....并常常卷入法律制裁之中。
B .新组建的这支足球队上场比赛到底怎样,还不得而知,我们将刮目相看....。
C .十一黄金周,天南海北的游客齐聚北京游玩,故宫景点人头攒动,摩肩接踵....。
D .这栋现代建筑,在这个老社区里显得鹤立鸡群....。
4.下列各句中,没有语病的一句是( )(3分)A .随着“神舟十号”飞船和长征二F 遥十火箭组合体顺利转运到发射区,意味着“神十”发射已进入最后准备阶段。
2020人教版八年级数学下册期中试卷含答案
2020人教版八年级数学下册期中试卷含答案八年级数学下册期中测试一、选择题1.若 $\frac{1}{2x-1}$ 在实数范围内有意义,则 $x$ 的取值范围是()A。
$x\geq \frac{1}{2}$ B。
$x\geq \frac{1}{2}$ C。
$x。
\frac{1}{2}$ D。
$x\neq \frac{1}{2}$2.一直角三角形的两直角边长为12和16,则斜边长为()A。
12 B。
16 C。
18 D。
203.如图,在▱ABCD 中,已知 $AD=5$ cm,$AB=3$ cm,$AE$ 平分∠$BAD$ 交 $BC$ 边于点 $E$,则 $EC$ 等于()A。
1 cm B。
2 cm C。
3 cm D。
4 cm4.下列计算错误的是()A。
$14\times 7=98$ B。
$60\div 5=12$ C。
$9a+25a=34a$ D。
$32-2=30$5.如图,点 $P$ 是平面直角坐标系内一点,则点 $P$ 到原点的距离是()A。
3 B。
2 C。
7 D。
56.下列根式中,是最简二次根式的是()A。
$0.2b$ B。
$12a-12b$ C。
$x^2-y^2$ D。
$5ab^2$7.如图,已知四边形 $ABCD$ 是平行四边形,下列结论中不正确的是()A。
当$AB=BC$ 时,它是菱形B。
当$AC\perp BD$ 时,它是菱形C。
当∠$ABC=90°$ 时,它是矩形 D。
当 $AC=BD$ 时,它是正方形8.已知菱形 $ABCD$ 中,对角线 $AC$ 与 $BD$ 交于点$O$,∠$BAD=120°$,$AC=4$,则该菱形的面积是()A。
16√3 B。
16 C。
8√3 D。
89.如图,在四边形 $ABCD$ 中,$AB=BC$,∠$ABC=\angle CDA=90°$,$BE\perp AD$ 于点 $E$,且四边形 $ABCD$ 的面积为8,则 $BE$ =()A。
人教版2020-2021学年八年级数学下学期期中检测卷 (含答案)
2020-2021学年八年级(下)期中数学试卷一、选择题(本题有10个小题,每小题3分,共30分)每小题只有一个正确答案.1.(3分)要使式子有意义,则x的取值范围是()A.x≥4B.x≠4C.x<4D.x>42.(3分)下面四个图标中,中心对称图形个数是()A.0B.1个C.2个D.3个3.(3分)一组数据按从小到大排列为2,4,6,x,14,15,若这组数据的中位数为9,则x是()A.7B.9C.12D.134.(3分)若n边形的内角和等于外角和的3倍,则边数n为()A.n=6B.n=7C.n=8D.n=95.(3分)烹饪大赛的菜品的评价按味道,外形,色泽三个方面进行评价(评价的满分均为100分),三个方面的重要性之比依次为7:2:1.某位厨师的菜所得的分数依次为92分、88分、80分,那么这位厨师的最后得分是()A.90分B.87分C.89分D.86分6.(3分)如图所示,在▱ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,当E,F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A.OE=OF B.DE=BF C.∠ADE=∠CBF D.∠ABE=∠CDF 7.(3分)若关于x的方程kx2﹣x+3=0有实数根,则k的取值范围是()A.k≤12B.k≤C.k≤12且k≠0D.k≤且k≠0 8.(3分)若关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2019,则一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为()A.2017B.2020C.2019D.20189.(3分)一次函数y=﹣kx+k与反比例函数y=(k≠0)在同一坐标系中的图象可能是()A.B.C.D.10.(3分)如图,在▱ABCD中,点E、F分别在AD和AB上,依次连接EB、EC、FC、FD,阴影部分面积分别为S1,S2,S3,S4,已知S1=3,S2=15,S3=4,则S4的值是()A.8B.14C.16D.22二、认真填一填(本题有6个小题,每小题4分,共24分)要认真看清题目的条件和要填写的内容,尽量完整的填写答案.11.(4分)化简:=.12.(4分)若n边形的每一个外角都等于30°,则n=.13.(4分)一组数据x1,x2,x3,…,x n的平均数为5,则数据x1+5,x2+5,x3+5,…,x n+5的平均数是.14.(4分)在▱ABCD中,∠A的平分线分BC成4cm和3cm的两条线段,则▱ABCD的周长为.15.(4分)直线y=ax(a>0)与双曲线y=相交于A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值为.16.(4分)如图,反比例函数y=(x<0),△OAB和△BCD均为等腰直角三角形,点D 在反比例函数图象上,若S△OAB﹣S△BCD=10,则k=.三.解答题(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自已能写出的答案写出一部分也可以.17.(6分)计算下列各式:(1)﹣3+×;(2)(﹣)2+.18.(8分)解方程:(1)x2﹣8x﹣9=0;(2)2x(x﹣3)+x=3.19.(8分)如图,▱ABCD中,E为BC边上一点,且AB=AE.(1)求证:△ABC≌△EAD;(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数.20.(10分)某校举办了一次趣味数学竞赛,满分100分,学生得分均为整数,达到成绩60分及以上为合格,达到90分及以上为优秀,这次竞赛中,甲、乙两组学生成绩如下(单位:分)甲组:30,60,60,60,60,60,70,90,90,100;乙组:50,60,60,60,70,70,70,70,80,90.(1)以上成绩统计分析表如表:组别平均分中位数方差合格率优秀率甲组68a37630%乙组b c90%则表中a=,b=,c=.(2)如果你是该校数学竞赛的教练员,现在需要你根据成绩的稳定性选一组同学代表学校参加复赛,你会选择哪一组?并说明理由.21.(10分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是直角三角形时,求k的值.22.(12分)如图,已知在平面直角坐标系中,O是坐标原点,点A(2,5)在反比例函数y1=的图象上.一次函数y2=x+b的图象过点A,且与反比例函数图象的另一交点为B.(1)求反比例函数和一次函数的解析式;(2)连结OA和OB,求△OAB的面积;(3)根据图象直接写出y1>y2时,x的取值范围.23.(12分)如图,平行四边形ABCD中,AB=4cm,AD=2cm,∠C=30°.点P以2cm/s 的速度从顶点A出发沿折线A﹣B﹣C向点C运动,同时点Q以1cm/s的速度从顶点A 出发沿折线A﹣D﹣C向点C运动,当其中一个动点到达末端停止运动时,另一点也停止运动.设运动时间为ts.(1)求平行四边形ABCD的面积;(2)求当t=0.5s时,△APQ的面积;(3)当△APQ的面积是平行四边形ABCD面积的时,求t的值.参考答案与试题解析一、选择题(本题有10个小题,每小题3分,共30分)每小题只有一个正确答案.1.(3分)要使式子有意义,则x的取值范围是()A.x≥4B.x≠4C.x<4D.x>4【分析】根据二次根式有意义的条件求解.【解答】解:∵式子有意义,∴x﹣4≥0,∴x≥4.故选:A.2.(3分)下面四个图标中,中心对称图形个数是()A.0B.1个C.2个D.3个【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【解答】解:根据中心对称图形的定义可知从左到右第1个图形和第三个图形是中心对称图形,第二和第四个图形不是中心对称图形.故选:C.3.(3分)一组数据按从小到大排列为2,4,6,x,14,15,若这组数据的中位数为9,则x是()A.7B.9C.12D.13【分析】根据中位数为9和数据的个数,可求出x的值.【解答】解:由题意得,(6+x)÷2=9,解得:x=12,故选:C.4.(3分)若n边形的内角和等于外角和的3倍,则边数n为()A.n=6B.n=7C.n=8D.n=9【分析】根据n边形的内角和等于外角和的3倍,可得方程180(n﹣2)=360×3,再解方程即可.【解答】解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.5.(3分)烹饪大赛的菜品的评价按味道,外形,色泽三个方面进行评价(评价的满分均为100分),三个方面的重要性之比依次为7:2:1.某位厨师的菜所得的分数依次为92分、88分、80分,那么这位厨师的最后得分是()A.90分B.87分C.89分D.86分【分析】利用加权平均数的计算公式直接计算即可求得答案.【解答】解:这位厨师的最后得分为:=90(分).故选:A.6.(3分)如图所示,在▱ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,当E,F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A.OE=OF B.DE=BF C.∠ADE=∠CBF D.∠ABE=∠CDF 【分析】根据平行四边形的判定和题中选项,逐个进行判断即可.【解答】解:A、∵四边形ABCD是平行四边形,∴OD=OB,又∵OE=OF∴四边形DEBF是平行四边形.能判定是平行四边形.B、DE=BF,OD=OB,缺少夹角相等.不能利用全等判断出OE=OF∴四边形DEBF不一定是平行四边形.C、在△ADE和△CBF中,∵∠ADE=∠CBF,AD=BC,∠DAE=∠BCF,∴△ADE≌△CBF,∴AE=CF,∴OE=OF,故C能判定是平行四边形;D、同理△ABE≌△CDF,∴AE=CF,∴OE=OF,故D能判定是平行四边形故选:B.7.(3分)若关于x的方程kx2﹣x+3=0有实数根,则k的取值范围是()A.k≤12B.k≤C.k≤12且k≠0D.k≤且k≠0【分析】由于k的取值不确定,故应分k=0(此时方程化简为一元一次方程)和k≠0(此时方程为二元一次方程)两种情况进行解答.【解答】解:当k=0时,﹣x+3=0,解得x=3,当k≠0时,方程kx2﹣x+3=0是一元二次方程,根据题意可得:△=1﹣4k×3≥0,解得k≤,k≠0,综上k≤,故选:B.8.(3分)若关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2019,则一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为()A.2017B.2020C.2019D.2018【分析】对于一元二次方程a(x﹣1)2+b(x﹣1)+21=0,设t=x﹣1得到at2+bt+2=0,利用at2+bt+2=0有一个根为t=2019得到x﹣1=2019,从而可判断一元二次方程a(x ﹣1)2+b(x﹣1)=﹣2必有一根为x=2020.【解答】解:对于一元二次方程a(x﹣1)2+b(x﹣1)+2=0,设t=x﹣1,所以at2+bt+2=0,而关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2019,所以at2+bt+2=0有一个根为t=2019,则x﹣1=2019,解得x=2020,所以一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为x=2020.故选:B.9.(3分)一次函数y=﹣kx+k与反比例函数y=(k≠0)在同一坐标系中的图象可能是()A.B.C.D.【分析】根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【解答】解:A、∵由反比例函数的图象在一、三象限可知,k>0,∴一次函数y=﹣kx+k 的图象经过一、二、四象限,故本选项错误;B、∵由反比例函数的图象在一、三象限可知,k>0,∴一次函数y=﹣kx+k的图象经过一、二、四象限,故本选项正确;C、∵由反比例函数的图象在二、四象限可知,k<0,∴一次函数y=﹣kx+k的图象经过一、三、四象限,故本选项错误;D、∵由反比例函数的图象在一、三象限可知,k>0,∴一次函数y=﹣kx+k的图象经过一、二、四象限,故本选项错误.故选:B.10.(3分)如图,在▱ABCD中,点E、F分别在AD和AB上,依次连接EB、EC、FC、FD,阴影部分面积分别为S1,S2,S3,S4,已知S1=3,S2=15,S3=4,则S4的值是()A.8B.14C.16D.22【分析】阴影部分S2是三角形CDF与三角形CBE的公共部分,而S1,S4,S3这三块是平行四边形中没有被三角形CDF与三角形CBE盖住的部分,故△CDF面积+△CBE面积+(S1+S4+S3)﹣S2=平行四边形ABCD的面积,而△CDF与△CBE的面积都是平行四边形ABCD面积的一半,据此求得S4的值.【解答】解:设平行四边形的面积为S,则S△CBE=S△CDF=S,由图形可知,△CDF面积+△CBE面积+(S1+S4+S3)﹣S2=平行四边形ABCD的面积,∴S=S△CBE+S△CDF+3+S4+4﹣15,即S=S+S+3+S4+4﹣15,解得S4=8,故选:A.二、认真填一填(本题有6个小题,每小题4分,共24分)要认真看清题目的条件和要填写的内容,尽量完整的填写答案.11.(4分)化简:=+.【分析】把分子分母都乘以+,然后利用平方差公式计算.【解答】解:原式==.故答案为+.12.(4分)若n边形的每一个外角都等于30°,则n=12.【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数n.【解答】解:多边形的边数n:360°÷30°=12,则n=12.故答案为:12.13.(4分)一组数据x1,x2,x3,…,x n的平均数为5,则数据x1+5,x2+5,x3+5,…,x n+5的平均数是10.【分析】根据平均数的性质知,要求x1+5,x2+5,x3+5,…,x n+5的平均数,只要把数x1,x2,x3,…,x n的和表示出即可.【解答】解:∵x1,x2,x3,…,x n的平均数为5∴x1+x2+x3+…+x n=5n,∴x1+5,x2+5,x3+5,…,x n+5的平均数为:=(x1+5+x2+5+x3+5+…+x n+5)÷n=(5n+5n)÷n=10,故答案为:10.14.(4分)在▱ABCD中,∠A的平分线分BC成4cm和3cm的两条线段,则▱ABCD的周长为22cm或20cm.【分析】∠A的平分线分BC成4cm和3cm的两条线段,设∠A的平分线交BC于E点,有两种可能,BE=4或3,证明△ABE是等腰三角形,分别求周长.【解答】解:设∠A的平分线交BC于E点,∵AD∥BC,∴∠BEA=∠DAE,又∠BAE=∠DAE,∴∠BEA=∠BAE∴AB=BE.而BC=3+4=7.①当BE=4时,AB=BE=4,▱ABCD的周长=2×(AB+BC)=2×(4+7)=22;②当BE=3时,AB=BE=3,▱ABCD的周长=2×(AB+BC)=2×(3+7)=20.所以▱ABCD的周长为22cm或20cm.故答案为22cm或20cm.15.(4分)直线y=ax(a>0)与双曲线y=相交于A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值为﹣6.【分析】先根据点A(x1,y1),B(x2,y2)是双曲线y=上的点可得出x1•y1=x2•y2=3,再根据直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点可得出x1=﹣x2,y1=﹣y2,再把此关系代入所求代数式进行计算即可.【解答】解:∵点A(x1,y1),B(x2,y2)是双曲线y=上的点,∴x1•y1=x2•y2=3,∵直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点,∴x1=﹣x2,y1=﹣y2,∴原式=﹣x1y1﹣x2y2=﹣3﹣3=﹣6.故答案为:﹣6.16.(4分)如图,反比例函数y=(x<0),△OAB和△BCD均为等腰直角三角形,点D 在反比例函数图象上,若S△OAB﹣S△BCD=10,则k=﹣20.【分析】根据题意列式表示出D点的坐标,然后在根据k的几何意义即可求出答案.【解答】解:设AO=a,CD=b,∵△OAB和△BCD均为等腰直角三角形,∴AO=AB=a,BO=a,CD=BC=b,DB=b,∴D(﹣a﹣b,a﹣b),∵点D在反比例函数图象上,∴(﹣a﹣b)(a﹣b)=k,即b2﹣a2=k,又∵S△OAB﹣S△BCD=10,即,∴﹣k=20,∴k=﹣20.三.解答题(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自已能写出的答案写出一部分也可以.17.(6分)计算下列各式:(1)﹣3+×;(2)(﹣)2+.【分析】(1)先利用二次根式的乘法法则运算,然后把二次根式化为最简二次根式后合并即可;(2)利用完全平方公式计算.【解答】解:(1)原式=6﹣6+=;(2)原式=2﹣2+3+2=5.18.(8分)解方程:(1)x2﹣8x﹣9=0;(2)2x(x﹣3)+x=3.【分析】(1)方程利用因式分解法求出解即可;(2)方程整理后,利用因式分解法求出解即可.【解答】解:(1)分解因式得:(x﹣9)(x+1)=0,可得x﹣9=0或x+1=0,解得:x1=9,x2=﹣1;(2)移项得:2x(x﹣3)+(x﹣3)=0,因式分解得:(x﹣3)(2x+1)=0,可得x﹣3=0或2x+1=0,解得:x1=3,x2=﹣.19.(8分)如图,▱ABCD中,E为BC边上一点,且AB=AE.(1)求证:△ABC≌△EAD;(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数.【分析】(1)先证明∠B=∠EAD,然后利用SAS可进行全等的证明;(2)证明△ABE为等边三角形,可得∠BAE=60°,求出∠BAC的度数,即可得∠AED 的度数.【解答】(1)证明:∵在平行四边形ABCD中,AD∥BC,BC=AD,∴∠EAD=∠AEB,又∵AB=AE,∴∠B=∠AEB,∴∠B=∠EAD,在△ABC和△EAD中,,∴△ABC≌△EAD(SAS).(2)解:∵AE平分∠DAB,∴∠BAE=∠DAE,∴∠BAE=∠AEB=∠B,∴△ABE为等边三角形,∴∠BAE=60°,∴∠BAC=∠BAE+∠EAC=60°+25°=85°,∵△ABC≌△EAD,∴∠AED=∠BAC=85°.20.(10分)某校举办了一次趣味数学竞赛,满分100分,学生得分均为整数,达到成绩60分及以上为合格,达到90分及以上为优秀,这次竞赛中,甲、乙两组学生成绩如下(单位:分)甲组:30,60,60,60,60,60,70,90,90,100;乙组:50,60,60,60,70,70,70,70,80,90.(1)以上成绩统计分析表如表:组别平均分中位数方差合格率优秀率甲组68a37630%乙组b c90%则表中a=60,b=68,c=70.(2)如果你是该校数学竞赛的教练员,现在需要你根据成绩的稳定性选一组同学代表学校参加复赛,你会选择哪一组?并说明理由.【分析】(1)利用中位数的定义确定a、c的值,根据平均数的定义计算出b的值;(2)先计算出乙组成绩的方差,然后选择甲乙两组成绩的方差较小的一组.【解答】解:(1)甲组学生成绩的中位数为=60,即a=60;乙组学生成绩的平均数为(50+3×60+4×70+80+90)=68;乙组学生成绩的中位数为=70,即b=68,c=70;(2)选择乙组.理由如下:乙组学生成绩的方差为[(50﹣68)2+3(60﹣68)2+4(70﹣68)2+(80﹣68)2+(90﹣68)2]=116,因为甲乙两组学生成绩的平均数相同,而乙组学生成绩的方差较小,成绩比较稳定,所以选择乙组.21.(10分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是直角三角形时,求k的值.【分析】(1)根据方程的系数结合根的判别式,可得出△=1>0,进而可证出方程有两个不相等的实数根;(2)利用因式分解法可求出AB,AC的长,分BC为直角边及BC为斜边两种情况,利用勾股定理可得出关于k的一元一次方程或一元二次方程,解之即可得出k值,取其正值(利用三角形的三边关系判定其是否构成三角形)即可得出结论.【解答】(1)证明:∵△=[﹣(2k+1)]2﹣4×(k2+k)=1>0,∴方程有两个不相等的实数根.(2)解:∵x2﹣(2k+1)x+k2+k=0,即(x﹣k)[x﹣(k+1)]=0,解得:x1=k,x2=k+1.当BC为直角边时,k2+52=(k+1)2,解得:k=12;当BC为斜边时,k2+(k+1)2=52,解得:k1=3,k2=﹣4(不合题意,舍去).答:k的值为12或3.22.(12分)如图,已知在平面直角坐标系中,O是坐标原点,点A(2,5)在反比例函数y1=的图象上.一次函数y2=x+b的图象过点A,且与反比例函数图象的另一交点为B.(1)求反比例函数和一次函数的解析式;(2)连结OA和OB,求△OAB的面积;(3)根据图象直接写出y1>y2时,x的取值范围.【分析】(1)只需把点A的坐标代入一次函数和反比例函数的解析式,就可解决问题;(2)只需求出直线AB与y轴的交点,然后运用割补法就可解决问题;(3)观察函数图象即可求解.【解答】解:(1)∵点A(2,5)是直线y=x+b与反比例函数y=的图象的一个交点,∴5=2+b,k=2×5=10,∴b=3,即k和b的值分别为10、3,故反比例函数和一次函数的解析式分别为y1=和y2=x+3;(2)解方程组,得,∴点B(﹣5,﹣2).∵点C是直线y=x+3与y轴的交点,∴点C(0,3),∴S△OAB=S△OAC+S△OBC=×3×2+×3×5=,即△OAB的面积为;(3)观察函数图象可知,y1>y2时,x的取值范围为:x<﹣5或0<x<2.23.(12分)如图,平行四边形ABCD中,AB=4cm,AD=2cm,∠C=30°.点P以2cm/s 的速度从顶点A出发沿折线A﹣B﹣C向点C运动,同时点Q以1cm/s的速度从顶点A 出发沿折线A﹣D﹣C向点C运动,当其中一个动点到达末端停止运动时,另一点也停止运动.设运动时间为ts.(1)求平行四边形ABCD的面积;(2)求当t=0.5s时,△APQ的面积;(3)当△APQ的面积是平行四边形ABCD面积的时,求t的值.【分析】(1)过点B作BE⊥CD于点E,由30°角所对的直角边等于斜边的一半,得出平行四边形的高,再按底乘以高,即可得解;(2)过点Q作QM⊥AP,分别计算出t=0.5s时,AP,AQ和QM的长,则按三角形面积公式计算即可;(3)分点P在线段AB上,点Q在线段AD上和点P在线段BC上,点Q在线段CD上,两种情况计算即可.【解答】解:(1)平行四边形ABCD中,AB=4cm,AD=2cm∴CD=AB=4cm,BC=AD=2cm如图,过点B作BE⊥CD于点E,∵∠C=30°∴BE=BC=1cm∴平行四边形ABCD的面积为:CD×BE=4×1=4(cm2)答:平行四边形ABCD的面积为4cm2.(2)当t=0.5s时,AP=2×0.5=1cm,AQ=1×0.5=0.5cm如图,过点Q作QM⊥AP∵四边形ABCD为平行四边形,∴∠A=∠C∵∠C=30°∴∠A=30°∴QM=AQ=×0.5=(cm)∴△APQ的面积为:×AP×QM=×1×=(cm2)答:当t=0.5s时,△APQ的面积为(cm2).(3)∵由(1)知平行四边形ABCD的面积为4cm2.∴当△APQ的面积是平行四边形ABCD面积的时,△APQ的面积为:4×=(cm2)当点P在线段AB上运动t秒时,点Q在AD上运动t秒,AP=2tcm,AQ=tcm,高为=cm∴×2t×=∴t=﹣(舍)或t=∴t=时符合题意;当点P运动到线段BC上时,且运动时间为t秒时,点Q也运动到线段CD上,如图,过点P作MN垂直CD于点M,垂直于AB延长线于点N∵四边形ABCD为平行四边形,∠C=30°,∴AB∥CD∴∠PBN=∠C=30°PN=PB=(2t﹣4)=(t﹣2)(cm),PM=1﹣(t﹣2)=(3﹣t)(cm)S△APQ=4﹣×4×(t﹣2)﹣×[4﹣(t﹣2)]×[1﹣(t﹣2)]﹣(t﹣2)×1=∴4﹣2t+4﹣(6﹣t)(3﹣t)﹣+1=化简得:t2﹣4t+3=0∴(t﹣1)(t﹣3)=0∴t=1(不符合题意,舍)或t=3当t=3时,点P位于点C处,点Q位于线段CD上,符合题意.综上,t的值为或3.1、三人行,必有我师。
人教版2020-2021学年初二数学下学期期中检测题 (含答案)
2020-2021学年八年级第二学期期中数学试卷一、填空题(共6小题).1.(3分)计算×2=.2.(3分)已知一个直角三角形的两直角边长分别为3和4,则斜边长是.3.(3分)要使式子有意义,则x的取值范围是.4.(3分)如图,在△ABC中,D、E分别为AB、AC边的中点,若DE=2,则BC边的长为.5.(3分)如图,一棵大树在离地面3m、5m两处折成三段,中间一段AB恰好与地面平行,大树顶部落在离大树底部6m处,则大树折断前的高度是.6.(3分)菱形ABCD的对角线AC=4,BD=2,以AC为边作正方形ACEF,则BF的长为.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列式子是最简二次根式的是()A.B.C.D.8.(4分)判断下列各组数能作为直角三角形三边的是()A.3,4,6B.4,5,7C.2,3,D.7,6,9.(4分)如图,已知菱形ABCD的对角线交于点O,DB=6,AD=5,则菱形ABCD的面积为()A.20B.24C.30D.3610.(4分)在Rt△ABC中,∠ABC=90°,D为斜边AC的中点,BD=5,则AC=()A.5B.6C.8D.1011.(4分)下列计算中,正确的是()A.B.C.D.12.(4分)不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠CC.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D13.(4分)如图,延长矩形ABCD的边BC至点E,使CE=CA,连接AE,若∠BAC=52°,则∠E的度数是()A.18°B.19°C.20°D.40°14.(4分)已知a=2+,b=2﹣,则a2+b2的值为()A.12B.14C.16D.18三、解答题(本大题共9小题,共70分)15.(6分)计算:16.(6分)国家交通法规定:小汽车在城市街道上行驶速度不得超过60km/h,一辆小汽车在一条城市街道上由西向东行驶,此时在小汽车正南方向25m处有一个车速检测仪,过了4s后,测得小汽车距离测速仪65m.这辆小汽车超速了吗?通过计算说明理由(1m/s =3.6km/h)17.(8分)如图,四边形ABCD是平行四边形,E为BC的中点,连接AE交DC延长线于点F.求证:DC=CF.18.(6分)如图,在四边形ABCD中,AB=1,AD=,BD=2,∠ABC+∠ADC=180°,CD=.求四边形ABCD的面积.19.(7分)先化简,再求值:,其中a=﹣1.20.(8分)如图,在笔直的高速路旁边有A、B两个村庄,A村庄到公路的距离AC=8km,B村庄到公路的距离BD=14km,测得C、D两点的距离为20km,现要在CD之间建一个服务区E,使得A、B两村庄到E服务区的距离相等,求CE的长.21.(8分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD相交于点O,OA=OB.(1)求证:四边形ABCD是矩形;(2)若AB=5,∠AOB=60°,求BC的长.22.(9分)观察下列等式等式一:﹣1;等式二:;等式三:;……;解决下列问题:(1)化简:;(2)若有理数a、b满足,求a+b的值.23.(12分)如图,四边形ABCD是菱形,∠ABC=60°,AB=10,连接BD,点P是BC上的点,连接AP,交BD于点E,连接EC(1)求证:△ABE≌△CBE;(2)求菱形ABCD的面积;(3)当点P在线段BC的延长线上时,是否存在点P,使得△PEC是直角三角形?若存在,求出BP的长;若不存在,请说明理由.参考答案一、填空题1.(3分)计算×2=4.解:×2=2×2=4.故答案为:4.2.(3分)已知一个直角三角形的两直角边长分别为3和4,则斜边长是5.解:由勾股定理得,斜边长==5,故答案为:5.3.(3分)要使式子有意义,则x的取值范围是x≥﹣5.解:因为式子有意义,则x的取值范围是x≥﹣5.故答案为:x≥﹣5.4.(3分)如图,在△ABC中,D、E分别为AB、AC边的中点,若DE=2,则BC边的长为4.解:∵D、E分别为AB、AC边的中点,∴DE是△ABC的中位线,∴BC=2DE=4,故答案为:4.5.(3分)如图,一棵大树在离地面3m、5m两处折成三段,中间一段AB恰好与地面平行,大树顶部落在离大树底部6m处,则大树折断前的高度是10m.解:如图,作BE⊥OC于点E,由题意得:AD=BE=3m,AB=DE=2m,∵DC=6m,∴EC=4m,∴由勾股定理得:BC==5(m),∴大树的高度为5+5=10(m),故答案为:10m.6.(3分)菱形ABCD的对角线AC=4,BD=2,以AC为边作正方形ACEF,则BF的长为或.解:∵四边形ABCD是菱形,AC=4,BD=2,∴AO=AC=2,BO=BD=1,①如图1,正方形ACEF在AC的上方时,过点B作BG⊥AF交FA的延长线于G,则BG=AO=2,AG=OB=1,FG=AF+AG=4+1=5,在Rt△BFG中,BF===;②如图2,正方形ACEF在AC的下方时,过点B作BG⊥AF于G,则BG=AO=2,FG=AF﹣AG=4﹣1=3,在Rt△BFG中,BF===,综上所述,BF长为或.故答案为:或.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列式子是最简二次根式的是()A.B.C.D.解:A、是最简二次根式;B、==,被开方数含分母,不是最简二次根式;C、==2,被开方数含能开得尽方的因数,不是最简二次根式;D、=,被开方数含分母,不是最简二次根式;故选:A.8.(4分)判断下列各组数能作为直角三角形三边的是()A.3,4,6B.4,5,7C.2,3,D.7,6,解:A、∵32+42≠62,∴不能作为直角三角形三边;B、∵42+52≠72,∴不能作为直角三角形三边;C、∵22+()2≠32,∴不能作为直角三角形三边;D、∵62+()2=72,∴能作为直角三角形三边.故选:D.9.(4分)如图,已知菱形ABCD的对角线交于点O,DB=6,AD=5,则菱形ABCD的面积为()A.20B.24C.30D.36解:∵四边形ABCD是菱形,∴AO=CO=AC,BO=DO=BD=3,AC⊥BD,∴AO===4,∴AC=8,∴菱形ABCD的面积=×AC×BD=×6×8=24,故选:B.10.(4分)在Rt△ABC中,∠ABC=90°,D为斜边AC的中点,BD=5,则AC=()A.5B.6C.8D.10解:∵在Rt△ABC中,∠ABC=90°,D为斜边AC的中点,BD=5,∴AC=2BD=2×5=10,故选:D.11.(4分)下列计算中,正确的是()A.B.C.D.解:(A)原式=3,故A错误.(B)原式==3,故B错误.(D)原式=×=2,故D错误.故选:C.12.(4分)不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠CC.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D解:A、AB∥CD,AD=BC,不能判定四边形ABCD为平行四边形,错误;B、∵AB∥CD,∴∠A+∠D=180°,∵∠A=∠C,∴∠C+∠D=180°,∴AD∥BC,∴四边形ABCD为平行四边形,正确;C、∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形,正确;D、∵∠A=∠C,∠B=∠D,∴∠A+∠D=∠C+∠D=180°,∴AD∥BC,AB∥CD,∴四边形ABCD为平行四边形,正确;故选:A.13.(4分)如图,延长矩形ABCD的边BC至点E,使CE=CA,连接AE,若∠BAC=52°,则∠E的度数是()A.18°B.19°C.20°D.40°解:∵CE=CA,∴∠E=∠CAE,∵四边形ABCD是矩形,∴∠B=90°,∴∠ACB=90°﹣∠BAC=90°﹣52°=38°,∵∠ACB=∠E+∠CAE=2∠E,∴∠E=19°;故选:B.14.(4分)已知a=2+,b=2﹣,则a2+b2的值为()A.12B.14C.16D.18解:∵a=2+,b=2﹣,∴a+b=4,ab=4﹣3=1,∴a2+b2=(a+b)2﹣2ab=42﹣2×1=14.故选:B.三、解答题(本大题共9小题,共70分)15.(6分)计算:解:原式=2+1﹣+8=+9.16.(6分)国家交通法规定:小汽车在城市街道上行驶速度不得超过60km/h,一辆小汽车在一条城市街道上由西向东行驶,此时在小汽车正南方向25m处有一个车速检测仪,过了4s后,测得小汽车距离测速仪65m.这辆小汽车超速了吗?通过计算说明理由(1m/s =3.6km/h)解:由勾股定理得:BC=(米);60÷4=15米/秒=54千米/小时<60千米/小时,所以不超速了.17.(8分)如图,四边形ABCD是平行四边形,E为BC的中点,连接AE交DC延长线于点F.求证:DC=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠B=∠FCE,∠F=∠BAE,∵E为BC中点,∴BE=CE,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS),∴AB=CF,∵AB=DC,∴DC=CF.18.(6分)如图,在四边形ABCD中,AB=1,AD=,BD=2,∠ABC+∠ADC=180°,CD=.求四边形ABCD的面积.解:∵AB=1,AD=,BD=2,∴AB2+AD2=BD2,∴∠DAB=90°,∵∠ABC+∠ADC=180°,∴∠C=90°∴BC===,∴四边形ABCD的面积=×AB×AD+×CD×CB=×1×+××=1+.19.(7分)先化简,再求值:,其中a=﹣1.解:===,当a=﹣1时,原式==.20.(8分)如图,在笔直的高速路旁边有A、B两个村庄,A村庄到公路的距离AC=8km,B村庄到公路的距离BD=14km,测得C、D两点的距离为20km,现要在CD之间建一个服务区E,使得A、B两村庄到E服务区的距离相等,求CE的长.解:设CE=x,则DE=20﹣x,由勾股定理得:在Rt△ACE中,AE2=AC2+CE2=82+x2,在Rt△BDE中,BE2=BD2+DE2=142+(20﹣x)2,由题意可知:AE=BE,所以:82+x2=142+(20﹣x)2,解得:x=13.3所以,E应建在距C点13.3km,即CE=13.3km.21.(8分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD相交于点O,OA=OB.(1)求证:四边形ABCD是矩形;(2)若AB=5,∠AOB=60°,求BC的长.【解答】(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°,∵∠ABC=∠ADC,∴∠BAD=∠BCD,∴四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵OA=OB,∴AC=BD,∴四边形ABCD是矩形.(2)解:∵OA=OB,∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=5,由(1)得:四边形ABCD是矩形,∴∠ABC=90°,AC=2OA=10,∴BC===5.22.(9分)观察下列等式等式一:﹣1;等式二:;等式三:;……;解决下列问题:(1)化简:;(2)若有理数a、b满足,求a+b的值.解:(1)化简:,观察已知等式可知:原式=﹣;(2)因为,所以a(﹣1)+b(+1)=2﹣1,(a+b)﹣(a﹣b)=2﹣1,所以a+b=2,a﹣b=1,答:a+b的值为2.23.(12分)如图,四边形ABCD是菱形,∠ABC=60°,AB=10,连接BD,点P是BC上的点,连接AP,交BD于点E,连接EC(1)求证:△ABE≌△CBE;(2)求菱形ABCD的面积;(3)当点P在线段BC的延长线上时,是否存在点P,使得△PEC是直角三角形?若存在,求出BP的长;若不存在,请说明理由.【解答】(1)证明:∵四边形ABCD是菱形,∴BA=BC,∠ABE=∠CBE.在△ABE和△CBE中,,∴△ABE≌△CBE(SAS);(2)解:连接AC,BD交于点O,则AC⊥BD,∵菱形ABCD中,∠ABC=60°,AB=10,∴∠ABD=30°,AC=10,∴BO=5,∴BD=10,∴菱形ABCD的面积为==50;(3)解:因为点P在线段BC的延长线上,所以∠EPC不可能为直角.如图2所示:①当∠ECP=90°时,∵△ABE≌△CBE,∴∠BAE=∠BCE=90°,∵∠ABC=60°,AB=10,∴BP=2AB=20.②当∠CEP=90°时,∵△ABE≌△CBE,∴∠AEB=∠CEB=45°,∴AO=OE=AB=5,∴OB=OD=5,∴ED=5﹣5,BE=5+5.∵AD∥BP,∴△ADE∽△PBE,∴,∴,∴BP=10+5.综上所述,当△EPC是直角三角形时,线段BP的长为20或10+5.1、三人行,必有我师。
2020春人教版八年级英语下册:期中测试卷(带答案)
期中测试卷时间:120分钟满分:120分姓名:分数:听力部分(25分)一、听力。
第一节听小对话,从A、B、C三个选项中选出正确的选项,回答问题。
对话读两遍。
(5分)1.M:Let's go and watch a cartoon movie.W:Oh.I'm too tired.I'd like to listen to music at home.2.W:If I don't pass the exam,my parents will be angry.I'm really stressed. M:Why not talk about your problem with them?3.M:Did you go to the football match last Saturday?W:How could I?I was in the hospital to look after my granny.4.M:Did you finish your task yesterday?W:Yes,I stayed up late till I finished it.Now I'm so tired and want to sleep.5.M:Was your dad cooking when you came back home?W:No,my dad never cooks.He was washing his car at that time.(C)1.What would the girl like to do?A.Go to see a movie.B.Wash her clothes.C.Listen to music.(C)2.What is the boy's advice for the girl?A.Taking the exam carefully.B.Working harder at school.C.Talking with her parents.(C)3.Where did the woman go last Saturday?A.To the school.B.To the library.C.To the hospital.(B)4.Why does the girl want to sleep now?A.Because she stayed up late playing computer games.B.Because she stayed up late finishing her task.C.Because she stayed up late watching TV.(C)5.What was the girl's father doing when she went back home?A.He was cooking.B.He was having dinner.C.He was washing the car.第二节听长对话,从A、B、C三个选项中选出正确的选项,回答问题。
人教版2020年八年级下册期中数学试卷(含答案)
八年级(下)期中数学试卷一、(共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一个是符合题意的)1.在实数、、、()0中,无理数有()个.A.1 B.2 C.3 D.42.下列几何图形中,既是轴对称图形,又是中心对称图形的是()A.等腰三角形B.正三角形 C.平行四边形D.正方形3.下列说法不正确的是()A.﹣的相反数是B.﹣3的绝对值是3﹣C.2是的平方根D.﹣是﹣3的立方根4.下列各式中正确的是()A.若a>b,则a﹣1<b﹣1 B.若a>b,则a2>b2C.若a>b,且c≠0,则ac>bc D.若>,则a>b5.已知点P(3﹣m,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是()A. B. C. D.6.下列命题错误的是()A.矩形的对角线相等B.平行四边形的对角线互相平分C.对角线相等的四边形是矩形D.对角线互相垂直平分的四边形是菱形7.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.48.如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75 B.100 C.120 D.1259.若=x,则实数x是()A.负实数B.所有正实数C.0或1 D.不存在10.平行四边形的一条边长是12cm,那么它的两条对角线的长可能是()A.8cm和16cm B.10cm和16cm C.8cm和14cm D.8cm和12cm11.关于x的不等式组的解集为x>1,则a的取值范围是()A.a≥1 B.a>1 C.a≤1 D.a<112.如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF 的长为()A.2B.3C.D.二、填空题(共5小题,每小题3分,满分15分,只要求写出最后结果)13.若a<<b,且a、b是两个连续的整数,则a b=.14.不等式(m﹣2)x>2﹣m的解集为x<﹣1,则m的取值范围是.15.已知2a﹣1的立方根是3,3a+b﹣1的算术平方根是6,则a+2b的平方根是.16.如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF,若EF=,BD=4,则菱形ABCD的面积为.17.如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A1、B1、C1、D1,使AA1=BB1=CC1=DD1=a,在边A1B1、B1C1、C1D1、D1A1上分别取点A2、B2、C2、D2,使A1A2=B1B2=C1C2=D1D2=A1B2,….依次规律继续下去,则正方形A n B n C n D n的面积为.三、解答题(本大题共8小题,共69分,解答时写出必要的文字说明、证明过程或演算步骤)18.(1)计算:(﹣3)0×6﹣+|π﹣2|(2)解不等式:>1﹣.19.解不等式组,并将解集在数轴上表示出来.20.如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.21.如图,在△ABC中,AB=AC=5,BC=6,AD为BC边上的高,过点A作AE∥BC,过点D作DE∥AC,AE与DE交于点E,AB与DE交于点F,连结BE.(1)求证:四边形AEBD是矩形;(2)求四边形AEBD的面积.22.已知,关于x,y的方程组的解满足x>y>0,求a的取值范围.23.为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个22元.如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?24.如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.25.如图,在△ABC中,D是BC边上一点,E是AD的中点,过A作BC的平行线交CE的延长线F,且AF=BD,连结BF.(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论;(3)当△ABC满足什么条件时,四边形AFBD为正方形?(写出条件即可,不要求证明)八年级(下)期中数学试卷参考答案与试题解析一、(共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一个是符合题意的)1.在实数、、、()0中,无理数有()个.A.1 B.2 C.3 D.4【考点】无理数;零指数幂.【分析】无理数就是无限不循环小数,根据定义即可作出判断.【解答】解:=3是整数,是有理数;是分数,是有理数;是无理数;()0=1是整数,是有理数.则无理数只有1个.故选A.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(2015•株洲)下列几何图形中,既是轴对称图形,又是中心对称图形的是()A.等腰三角形B.正三角形 C.平行四边形D.正方形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、既是轴对称图形,又是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.下列说法不正确的是()A.﹣的相反数是B.﹣3的绝对值是3﹣C.2是的平方根D.﹣是﹣3的立方根【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数;差的绝对值是大数减小数,开方运算,可得答案.【解答】解:A、只有符号不同的两个数互为相反数,故A正确;B、﹣3的绝对值是3﹣,故B正确;C、2是4的平方根,故C错误;D、﹣是﹣3的立方根,故D正确;故选:C.【点评】本题考查了实数的性质,只有符号不同的两个数互为相反数;注意差的绝对值是大数减小数.4.下列各式中正确的是()A.若a>b,则a﹣1<b﹣1 B.若a>b,则a2>b2C.若a>b,且c≠0,则ac>bc D.若>,则a>b【考点】不等式的性质.【分析】根据不等式的性质,可得答案.【解答】解:A、不等式的两边都减1,不等号的方向不变,故A错误;B、当a<0时,不等式两边乘负数,不等号的方向改变,故B错误;C、当c<0时,ac<bc,故C错误;D、不等式两边乘(或除以)同一个正数,不等号的方向不变,故D正确;故选:D.【点评】本题考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.5.已知点P(3﹣m,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是()A. B. C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式组;点的坐标.【专题】数形结合.【分析】根据第二象限内点的坐标特点,可得不等式,根据解不等式,可得答案.【解答】解:已知点P(3﹣m,m﹣1)在第二象限,3﹣m<0且m﹣1>0,解得m>3,m>1,故选:A.【点评】本题考查了在数轴上不等式的解集,先求出不等式的解集,再把不等式的解集表示在数轴上.6.下列命题错误的是()A.矩形的对角线相等B.平行四边形的对角线互相平分C.对角线相等的四边形是矩形D.对角线互相垂直平分的四边形是菱形【考点】命题与定理.【分析】根据矩形的性质对A进行判断;根据平行四边形的性质对B进行判断;根据矩形的判定方法对C 进行判断;根据菱形的判定方法对D进行判断.【解答】解:A、矩形的对角线相等,所以A为真命题;B、平行四边形的对角线互相平分,所以B为真命题;C、对角线相等的平行四边形是矩形,所以C为假命题;D、对角线互相垂直平分的四边形是菱形,所以D为真命题.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.4【考点】平行四边形的性质;三角形中位线定理.【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OC=OA,又由点E是BC边的中点,根据三角形中位线的性质,即可求得AB的长.【解答】解:∵四边形ABCD是平行四边形,∴OC=OA,∵点E是BC边的中点,即BE=CE,∴OE=AB,∵OE=1,∴AB=2.故选B.【点评】此题考查了平行四边形的性质与三角形中位线的性质.注意平行四边形的对角线互相平分,三角形的中位线平行于三角形的第三边且等于第三边的一半.8.如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75 B.100 C.120 D.125【考点】勾股定理.【分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.【解答】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.故选B.【点评】本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.9.若=x,则实数x是()A.负实数B.所有正实数C.0或1 D.不存在【考点】平方根.【专题】计算题.【分析】由于=x,表示一个数的算术平方根等于它本身,根据算术平方根的定义即可解决问题.【解答】解:∵=x,∴x=1或0.故选C.【点评】此题主要考查了算术平方根性质,解题注意:0的平方根是0,1的算术平方根也还是它本身.10.平行四边形的一条边长是12cm,那么它的两条对角线的长可能是()A.8cm和16cm B.10cm和16cm C.8cm和14cm D.8cm和12cm【考点】平行四边形的性质;三角形三边关系.【分析】根据平行四边形的性质中,两条对角线的一半和一边构成三角形,利用三角形三边关系判断可知.【解答】解:A、4+8=12,不能构成三角形,不满足条件,故A选项错误;B、5+8>12,能构成三角形,满足条件,故B选项正确.C、4+7<12,不能构成三角形,不满足条件,故C选项错误;D、4+6<12,不能构成三角形,不满足条件,故D选项错误.故选:B.【点评】主要考查了平行四边形中两条对角线的一半和一边构成三角形的性质.并结合三角形的性质解题.11.关于x的不等式组的解集为x>1,则a的取值范围是()A.a≥1 B.a>1 C.a≤1 D.a<1【考点】不等式的解集.【分析】根据题意结合不等式解集的确定方法得出答案.【解答】解:∵关于x的不等式组的解集为x>1,∴a的取值范围是:a≤1.故选:C.【点评】此题主要考查了不等式的解集,正确利用不等式解集确定方法是解题关键.12.如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF 的长为()A.2B.3C.D.【考点】全等三角形的判定与性质;勾股定理;正方形的性质.【专题】压轴题.【分析】首先延长FD到G,使DG=BE,利用正方形的性质得∠B=∠CDF=∠CDG=90°,CB=CD;利用SAS定理得△BCE≌△DCG,利用全等三角形的性质易得△GCF≌△ECF,利用勾股定理可得AE=3,设AF=x,利用GF=EF,解得x,利用勾股定理可得CF.【解答】解:如图,延长FD到G,使DG=BE;连接CG、EF;∵四边形ABCD为正方形,在△BCE与△DCG中,,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF与△ECF中,,∴△GCF≌△ECF(SAS),∴GF=EF,∵CE=3,CB=6,∴BE===3,∴AE=3,设AF=x,则DF=6﹣x,GF=3+(6﹣x)=9﹣x,∴EF==,∴(9﹣x)2=9+x2,∴x=4,即AF=4,∴GF=5,∴DF=2,∴CF===2,故选:A.【点评】本题主要考查了全等三角形的判定及性质,勾股定理等,构建全等三角形,利用方程思想是解答此题的关键.二、填空题(共5小题,每小题3分,满分15分,只要求写出最后结果)13.若a<<b,且a、b是两个连续的整数,则a b=8.【考点】估算无理数的大小.【分析】先估算出的范围,即可得出a、b的值,代入求出即可.【解答】解:∵2<<3,∴a=2,b=3,∴a b=8.故答案为:8.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出的范围.14.不等式(m﹣2)x>2﹣m的解集为x<﹣1,则m的取值范围是m<2.【考点】不等式的解集.【分析】根据不等式的性质3,不等式的两边同乘或除以同一个负数,不等号的方向改变,可得答案.【解答】解:不等式(m﹣2)x>2﹣m的解集为x<﹣1,∴m﹣2<0,m<2,故答案为:m<2.【点评】本题考查了不等式的解集,由不等号方向改变,得出未知数的系数小于0.15.已知2a﹣1的立方根是3,3a+b﹣1的算术平方根是6,则a+2b的平方根是±2.【考点】立方根;平方根;算术平方根.【专题】计算题;实数.【分析】利用平方根、立方根定义求出a与b的值,即可确定出a+2b的平方根.【解答】解:根据题意得:2a﹣1=27,3a+b﹣1=36,解得:a=14,b=﹣5,则a+2b=14﹣10=4,4的平方根是±2,故答案为:±2【点评】此题考查了立方根、平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.16.如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF,若EF=,BD=4,则菱形ABCD的面积为4.【考点】三角形中位线定理;菱形的性质.【分析】根据EF是△ABC的中位线,根据三角形中位线定理求的AC的长,然后根据菱形的面积公式求解.【解答】解:∵E、F是AB和BC的中点,即EF是△ABC的中位线,∴AC=2EF=2,=AC•BD=×2×4=4.则S菱形ABCD故答案是:4.【点评】本题考查了三角形的中位线定理和菱形的面积公式,理解中位线定理求的AC的长是关键.17.如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A1、B1、C1、D1,使AA1=BB1=CC1=DD1=a,在边A1B1、B1C1、C1D1、D1A1上分别取点A2、B2、C2、D2,使A1A2=B1B2=C1C2=D1D2=A1B2,….依次规律继续下去,则正方形A n B n C n D n的面积为.【考点】正方形的性质.【专题】压轴题;规律型.【分析】首先在Rt△A1BB1中,由勾股定理可求得正方形A1B1C1D1的面积=,然后再在Rt△A2B1B2中,由勾股定理求得正方形A2B2C2D2的面积=,然后找出其中的规律根据发现的规律即可得出结论.【解答】解:在Rt△A1BB1中,由勾股定理可知;==,即正方形A1B1C1D1的面积=;在Rt△A2B1B2中,由勾股定理可知:==;即正方形A2B2C2D2的面积=…∴正方形A n B n C n D n的面积=.故答案为:.【点评】本题主要考查的是正方形的性质和勾股定理的应用,通过计算发现其中的规律是解题的关键.三、解答题(本大题共8小题,共69分,解答时写出必要的文字说明、证明过程或演算步骤)18.(1)计算:(﹣3)0×6﹣+|π﹣2|(2)解不等式:>1﹣.【考点】解一元一次不等式;实数的运算;零指数幂.【分析】(1)根据零指数幂,二次根式的性质,绝对值分别求出每一部分的值,再代入求出即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)原式=1×6﹣4+π﹣2=π;(2)去分母得:2x>6﹣(x﹣3),去括号得:2x>6﹣x+3,移项得:2x+x>6+3,合并同类项得:3x>9,系数化成1得:x>3.【点评】本题考查了解一元一次不等式,零指数幂,二次根式的性质,绝对值的应用,能熟记知识点是解此题的关键.19.解不等式组,并将解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【解答】解:,由①得,x>﹣3,由②得,x≤2,故此不等式组的解集为:﹣3<x≤2.在数轴上表示为:【点评】本题考查的是解一元一次不等式组,熟知“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则是解答此题的关键.20.如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.【考点】勾股定理;三角形的面积;勾股定理的逆定理.【专题】计算题.【分析】连接AC,则在直角△ABC中,已知AB,BC可以求AC,根据AC,AD,CD的长可以判定△ACD 为直角三角形,(1)根据∠BAD=∠CAD+∠BAC,可以求解;(2)根据四边形ABCD的面积为△ABC和△ACD的面积之和可以解题.【解答】解:(1)连接AC,∵AB⊥CB于B,∴∠B=90°,在△ABC中,∵∠B=90°,∴AB2+BC2=AC2,又∵AB=CB=,∴AC=2,∠BAC=∠BCA=45°,∵CD=,DA=1,∴CD2=5,DA2=1,AC2=4.∴AC2+DA2=CD2,由勾股定理的逆定理得:∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°;(2)∵∠DAC=90°,AB⊥CB于B,∴S△ABC=,S△DAC=,∵AB=CB=,DA=1,AC=2,∴S△ABC=1,S△DAC=1=S△ABC+S△DAC,而S四边形ABCD∴S=2.四边形ABCD【点评】本题考查了勾股定理在直角三角形中的运用,考查了根据勾股定理逆定理判定直角三角形,考查了直角三角形面积的计算,本题中求证△ACD是直角三角形是解题的关键.21.如图,在△ABC中,AB=AC=5,BC=6,AD为BC边上的高,过点A作AE∥BC,过点D作DE∥AC,AE与DE交于点E,AB与DE交于点F,连结BE.(1)求证:四边形AEBD是矩形;(2)求四边形AEBD的面积.【考点】矩形的判定.【分析】(1)利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD是矩形.(2)在Rt△ADC中,由勾股定理可以求得AD的长度,由等腰三角形的性质求得BD的长度,则矩形的面积=长×宽=AD•BD,即可得出结果.【解答】(1)证明:∵AE∥BC,BE∥AC,∴四边形AEDC是平行四边形.∴AE=CD.在△ABC中,AB=AC,AD为BC边上的高,∴∠ADB=90°,BD=CD.∴BD=AE.∴四边形AEBD是矩形.(2)解:在Rt△ADC中,∠ADB=90°,AC=5,BD=CD=BC=3,∴AD==4.∴四边形AEBD的面积=BD•AD═3×4=12.【点评】本题考查了矩形的判定与性质和勾股定理,根据“等腰三角形的性质和有一内角为直角的平行四边形为矩形”推知平行四边形AEBD是矩形是解题的难点.22.已知,关于x,y的方程组的解满足x>y>0,求a的取值范围.【考点】二元一次方程组的解.【专题】计算题;一次方程(组)及应用.【分析】把a看做已知数表示出方程组的解,代入已知不等式求出a的范围即可.【解答】解:,①+②得:3x=6a+3,即x=2a+1,把x=2a+1代入①得:y=a﹣2,代入不等式得:2a+1>a﹣2>0,解得:a>2.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.23.为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个22元.如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?【考点】一元一次不等式的应用.【分析】设购买球拍x个,根据乒乓球每个1.5元,球拍每个22元,购买的金额不超过200元,列出不等式,求解即可.【解答】解:设购买球拍x个,依题意得:1.5×20+22x≤200,解之得:x≤7,由于x取整数,故x的最大值为7,答:孔明应该买7个球拍.【点评】此题考查了一元一次不等式的应用,解决问题的关键是读懂题意,依题意列出不等式进行求解.24.如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.【考点】菱形的性质;平行四边形的判定.【专题】证明题.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得CE=AE=BE,从而得到AF=CE,再根据等腰三角形三线合一的性质可得∠1=∠2,根据等边对等角可得然后∠F=∠3,然后求出∠2=∠F,再根据同位角相等,两直线平行求出CE∥AF,然后利用一组对边平行且相等的四边形是平行四边形证明;(2)根据菱形的四条边都相等可得AC=CE,然后求出AC=CE=AE,从而得到△AEC是等边三角形,再根据等边三角形的每一个角都是60°求出∠CAE=60°,然后根据直角三角形两锐角互余解答.【解答】(1)证明:∵∠ACB=90°,E是BA的中点,∴CE=AE=BE,∵AF=AE,∴AF=CE,在△BEC中,∵BE=CE且D是BC的中点,∴ED是等腰△BEC底边上的中线,∴ED也是等腰△BEC的顶角平分线,∴∠1=∠2,∵AF=AE,∴∠F=∠3,∵∠1=∠3,∴∠2=∠F,∴CE∥AF,又∵CE=AF,∴四边形ACEF是平行四边形;(2)解:∵四边形ACEF是菱形,∴AC=CE,由(1)知,AE=CE,∴AC=CE=AE,∴△AEC是等边三角形,∴∠CAE=60°,在Rt△ABC中,∠B=90°﹣∠CAE=90°﹣60°=30°.【点评】本题考查了菱形的性质,平行四边形的判定,等边三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半,以及直角三角形两锐角互余的性质,熟记各性质与判定方法是解题的关键.25.如图,在△ABC中,D是BC边上一点,E是AD的中点,过A作BC的平行线交CE的延长线F,且AF=BD,连结BF.(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论;(3)当△ABC满足什么条件时,四边形AFBD为正方形?(写出条件即可,不要求证明)【考点】正方形的判定;全等三角形的判定与性质;矩形的判定.【分析】(1)证明△AEF≌△DEC可得AF=DC,再根据条件AF=BD可利用等量代换可得BD=CD;(2)首先判定四边形AFBD为平行四边形,再根据等腰三角形三线合一的性质可得AD⊥BC,进而可得四边形AFBD为矩形;(3)当AB=AC,且∠BAC=90°时,四边形AFBD为正方形,首先证明∠ABC=45°,∠BAD=45°,可得AD=BD,进而可得四边形AFBD为正方形.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠ECD.∵E是AD的中点,∴DE=AE,在△AEF与△DEC中,,∴△AEF≌△DEC(AAS),∴AF=DC,∵AF=BD,∴BD=CD;(2)答:四边形AFBD为矩形;解:∵AF=BD,AF∥BD,∴四边形AFBD为平行四边形,∵AB=AC,BD=DC,∴AD⊥BC,∴∠BDA=90°,∴四边形AFBD为矩形;精品资料(3)AB=AC,且∠BAC=90°;∵AB=AC,且∠BAC=90°,∴∠ABC=45°,∵AD⊥BC,∴∠BAD=45°,∴AD=DB,∴四边形AFBD为正方形.【点评】此题主要考查了正方形的判定,矩形的判定,以及全等三角形的判定与性质,关键是掌握邻边相等的矩形是正方形.。
新人教版2020学年八年级(下)期中数学试卷(含解析)
2020学年八年级(下)期中数学试卷一、选择题(本大题共6小题,每小题3分,共18分每小题只有一个正确选项)1.(3分)二次根式有意义时,x的取值范围是()A.x≥﹣3B.x>﹣3C.x≤﹣3D.x≠﹣32.(3分)下列二次根式中,与是同类二次根式的是()A.B.C.D.3.(3分)下列各组数能构成勾股数的是()A.2,,B.12,16,20C.,,D.32,42,524.(3分)下列选项中,不能判定四边形ABCD是平行四边形的是()A.AD∥BC,AB∥CD B.AB∥CD,AB=CDC.AD∥BC,AB=DC D.AB=DC,AD=BC5.(3分)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.B.C.D.6.(3分)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=6,则图中阴影部分的面积为()A.10B.12C.16D.18二、填空题(本大题共6小题,每小题3分,共18分)20n7.(3分)已知是整数,则满足条件的最小正整数n为.8.(3分)如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为.9.(3分)如图,一只蚂蚁沿着边长为2的正方体表面从顶点A出发,经过3个面爬到顶点B,如果它运动的路径是最短的,则AB的长为.10.(3分)探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…请写出下一数组:.11.(3分)如图,四边形ABDC中,∠ABD=120°,AB⊥AC,BD⊥CD,AB=4,CD=4,则该四边形的面积是.12.(3分)如图,A、B、C、D为矩形的四个顶点,AB=16cm,AD=8cm,动点P,Q分别从点A、C同时出发,点P以3cm/S的速度向B移动,一直到达B为止;点Q以2cm/s的速度向D移动.当P、Q两点从出发开始到秒时,点P和点Q的距离是10cm.三、(本大题共5小题,每小题6分,共30分)13.(6分)计算:(1)+﹣﹣;(2)(3﹣2+)÷2.14.(6分)已知a=+2,b=﹣2,求下列代数式的值:(1)a2﹣2ab+b2;(2)a2﹣b2.15.(6分)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.16.(6分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图2中画出线段AB的垂直平分线.17.(6分)矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接DE,把△DCE沿DE折叠,使点C落在点C′处,当△BEC′为直角三角形时,求BE的长.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图方式摆放矩形纸片ABCD和矩形纸片ECGF,其中B,C,G三点共线,CE在CD上,连接AF,若M为AF的中点,连接DM,ME.(1)DM与ME的数量关系是.(2)请证明上面的结论.19.(8分)阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当a>0,b>0时,∵(﹣)2=a﹣2+b≥0,∴a+b≥2,当且仅当a=b时取等号.请利用上述结论解决以下问题:(1)当x>0时,求x+的最小值;(2)当x<0时,求x+的最大值;(3)当x>0时,求y=的最小值.20.(8分)已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P在BC边上运动.当△ODP是腰长为5的等腰三角形时,求点P的坐标.五、(本大题共2小题,每小题9分,共18分)21.(9分)阅读下列材料,然后回答问题:在进行类似于二次根式的运算时,通常有如下两种方法将其进一步化简:方法一:===方法二:====(1)请用两种不同的方法化简:;(2)化简:.22.(9分)某超市分两次购进A、B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A商品以每件45元出售,B商品以每件75元出售.为满足市场需求,需购进A、B两种商品共1000件,且A商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.购进数量(件)购进所需费用(元)A B第一次30402900第二次40302700六、(本大题共12分)23.(12分)直线EF分别平行四边形ABCD边AB、CD于直E、F,将图形沿直线EF对折,点A、D分別落在点A′、D′处.(1)如图1,当点A′与点C重合时,连接AF.求证:四边形AECF是菱形;(2)若∠A=60°,AD=4,AB=8,①如图2,当点A′与BC边的中点G重合时,求AE的长;②如图3,当点A′落在BC边上任意点时,设点P为直线EF上的动点,请直接写出PC+P A′的最小值.参考答案一、选择题(本大题共6小题,每小题3分,共18分每小题只有一个正确选项)1.【解答】解:依题意得x+3≥0,解得x≥﹣3.故选:A.2.【解答】解:A、=2,与不是同类二次根式,故本选项错误;B、=3,与不是同类二次根式,故本选项错误;C、=,与是同类二次根式,故本选项正确;D、与不是同类二次根式,故本选项错误.故选:C.3.【解答】解:A、22+()2=()2,但不是正整数,故选项错误;B、122+162=202,能构成直角三角形,是整数,故选项正确;C、()2+()2≠()2,不能构成直角三角形,故选项错误;D、(32)2+(42)2≠(52)2,不能构成直角三角形,故选项错误.故选:B.4.【解答】解:A、由AD∥BC,AB∥CD可以判断四边形ABCD是平行四边形;故本选项不符合题意;B、由AB∥CD,AB=CD可以判断四边形ABCD是平行四边形;故本选项不符合题意;C、由AD∥BC,AB=DC不能判断四边形ABCD是平行四边形;故本选项符合题意;D、由AB=DC,AD=BC可以判断四边形ABCD是平行四边形;故本选项不符合题意;故选:C.5.【解答】解:∵四边形ABCD是正方形,M为边DA的中点,∴DM=AD=DC=1,∴CM==,∴ME=MC=,∵ED=EM﹣DM=﹣1,∵四边形EDGF是正方形,∴DG=DE=﹣1.故选:D.6.【解答】解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∵MP=AE=2∴S△DFP=S△PBE=×2×6=6,∴S阴=6+6=12,故选:B.二、填空题(本大题共6小题,每小题3分,共18分)20n7.【解答】解:∵==2,且是整数;∴2是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案是:5.8.【解答】解:如下图,∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°∴∠ACB=∠DEC∵∠ABC=∠CDE,AC=CE,在△ABC和△CDE中,∴△ABC≌△CDE(AAS),∴BC=DE(如上图),根据勾股定理的几何意义,∵AB2+BC2=AC2,∴b的面积=a的面积+c的面积=5+11=16.9.【解答】解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,AB==2,故答案为:2.10.【解答】解:∵(3,4,5):3=2×1+1,4=2×12+2×1,5=2×12+2×1+1;(5,12,13):5=2×2+1,12=2×22+2×2,13=2×22+2×2+1;(7,24,25):7=2×3+1,24=2×32+2×3,25=2×32+2×3+1;(9,40,41):9=2×4+1,40=2×42+2×4,41=2×42+2×4+1;∴下一组数为:11=2×5+1,60=2×52+2×5,61=2×52+2×5+1,故答案为:(11,60,61).11.【解答】解:如图,延长CA、DB交于点E,∵四边形ABDC中,∠ABD=120°,AB⊥AC,BD⊥CD,∴∠C=60°,∴∠E=30°.在Rt△ABE中,∵AB=4,∠E=30°,∴BE=2AB=8,∴AE==4.在Rt△DEC中,∵∠E=30°,CD=4,∴CE=2CD=8,∴DE==12,∴S△ABE=×4×4=8,S△CDE=×4×12=24,∴S四边形ABDC=S△CDE﹣S△ABE=16.故答案为16.12.【解答】解:设当P、Q两点从出发开始到x秒时,点P和点Q的距离是10cm,此时AP=3xcm,DQ=(16﹣2x)cm,根据题意得:(16﹣2x﹣3x)2+82=102,解得:x1=2,x2=.答:当P、Q两点从出发开始到2秒或秒时,点P和点Q的距离是10cm.故答案为:2或.三、(本大题共5小题,每小题6分,共30分)13.【解答】解:(1)原式=3+2﹣2﹣3=﹣;(2)原式=(6﹣+4)÷2=÷2=.14.【解答】解:∵a=+2,b=﹣2,∴a+b=+2+﹣2=2,a﹣b=(+2)﹣(﹣2)=4,(1)a2﹣2ab+b2=(a﹣b)2=42=16;(2)a2﹣b2=(a+b)(a﹣b)=2×4=8.15.【解答】证明:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO.16.【解答】解:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).(2)线段AB的垂直平分线如图所示,点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.17.【解答】解:如图1,当∠BC′E=90°时,如图1,矩形ABCD中,AB=6,AD=BC=8,∴BD=10,∵把△DCE沿DE折叠,使点C落在点C′处,∴∠DC′E=∠C=90°,∵∠BC′E=90°,∴B,C′,D三点共线,∴DC′=DC=6,∴BC′=4,BE=8﹣C′E,∵BC′2+EC′2=BE2,∴42+C′E2=(8﹣C′E)2,解得C′E=3,∴BE=8﹣3=5;如图2,当∠BEC′=90°时,矩形ABCD中,AB=6,AD=BC=8,∴BD=10,∵把△DCE沿DE折叠,使点C落在点C′处,∴∠DC′E=∠C=90°,∵∠BEC′=90°,∴∠CEC′=90°,∴四边形ECDC′是正方形,∴C′E=CE=CD=6,∴BE=2.综上所述,当△BEC′为直角三角形时,BE的长为2或5.四、(本大题共3小题,每小题8分,共24分)18.【解答】(1)解:猜想:DM=ME;故答案为:DM=ME;(2)证明:延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,∴在△FME和△AMH中,,∴△FME≌△AMH(ASA)∴HM=EM,在Rt△HDE中,HM=EM,∴DM=HM=ME,∴DM=ME.19.【解答】解:(1)当x>0时,x+≥2=2,∴当x>0时,x+的最小值是2;(2)当x<0时,x+=﹣(﹣x﹣),﹣x﹣≥2=2,∴﹣(﹣x﹣)≤﹣2,∴当x<0时,x+的最大值是﹣2;(3)y==x+3+,x+≥2=8,∴x+的最小值是8,∴x+3+的最小值是11,∴当x>0时,y=的最小值是11.20.【解答】解:过P作PM⊥OA于M.(1)当OP=OD时,OP=5,CO=4,∴易得CP=3,∴P(3,4);(2)当OD=PD时,PD=DO=5,PM=4,∴易得MD=3,从而CP=2或CP′=8,∴P(2,4)或(8,4);(3)当OP=PD时,P(,4),此时腰长为:≠5,故这种情况不合题意,舍去.综上,满足题意的点P的坐标为(3,4)、(2,4)、(8,4).五、(本大题共2小题,每小题9分,共18分)21.【解答】解:(1)方法一:原式==﹣;方法二:原式==﹣;(2)原式=(﹣+﹣+…+﹣)=(﹣)=﹣.22.【解答】解:设A、B两种商品每件的进价分别是x元,y元根据题意得:解得:答:A、B两种商品每件的进价分别是30元,50元.(2)设A商品a件,B商品(1000﹣a)件,利润为m元根据题意得:解得:800≤a≤1000m=(45﹣30)a+(75﹣50)(1000﹣a)=25000﹣10a∵k=﹣10<0,∴m随a的增大而减小∴a=800时,m的最大值为17000元.∴A商品800件,B商品200件.六、(本大题共12分)23.【解答】(1)证明:如图1,连接AC,AC交EF于点O,∵四边形ABCD是矩形,∴AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△OBF≌△ODE,∴AE=CF,∵AE∥CF∴四边形AFCE是平行四边形,由翻折得,AF=CF,∴四边形AFCE是菱形.(2)解:①如图2中,作A′H⊥AB交AB的延长线于H.在Rt△GBH中,GB=2,∠GBH=60°,∴BH=BG=1,GH==,设AE=EG=x,在Rt△EGH中,∵EG2=EH2+GH2,∴x2=(9﹣x)2+()2,∴x=,∴AE=.②如图3中,连接AC交EF于P′,连接P′A′,作CH⊥AB交AB的延长线于H.∵A、A′关于直线EF对称,∴P′A′=P′A,∴P′A′+P′C=P′A+P′C=AC,∴当点P与P′重合时,P A′+PC的值最小,最小值=AC的长.在Rt△BCH中,∵BC=4,∠CBH=60°,∴BH=2,CH=2,∴AH=10,在Rt△ACH中,AC===4.∴PC+P A′的最小值为4,故答案为4.。
2020-2021学年八年级下册语文期中考试试卷(含答案)
新人教版八年级下册语文期中考试试卷(满分150分,时间150分钟)一、语言知识及其运用(29分)1. 下列注音完全正确的一项是( )(3分)B. 眼眶.(ku àng ) 缄.默(ji ān ) 褶.皱(zh ě) 狩.猎(sh òu ) A. 潺.潺(ch án ) 锵.然(qi āng ) 欺侮.(r ǔ) 山麓.(l ù) C. 撺.掇(cu ān ) 糜.子(m éi ) 羁绊.(p àn ) 龟.裂(j ūn ) D. 震.撼(zh èn ) 幽悄.(qi ǎo ) 追溯.(s ù) 两栖.(x ī) 2. 下列语句中书写没有错别字的一项是( )(3分) A. 装模作样 海枯石烂 悬崖绝壁 大彻大悟 B. 辗转翻侧 叱咤风云 强词夺理 不知所错 C. 奇形怪壮 依然故我 消声匿迹 衰草连天 D. 风雪载途 世外桃园 垂珠连珑 袖手旁观 3. 下列加点的成语使用不正确的一项是( )(3分) A. 王小东靠近岩石的边缘向下一看,突然感觉头晕目眩....,总觉得眼前的大岩在来回晃动,自己的身体也跟着晃动起来。
B. 因为疫情上了很长一段时间网课,我们应该目空一切....,迎难而上,去创造属于自己的辉煌。
C. 多读一些书,加上因了解人情世故....而产生的一种对人对物的爱与宽恕的涵养,你自然就会有一种从容不迫、雍容高雅的风度。
D. 随着指挥的手落下,悠扬的乐曲戛然而止....,而观众们仍然沉浸在美妙的音乐中,久久不愿起身离场。
4.下列句子中,没有语病的一项是( )(3分) A .针对市民出行困难的问题,大家讨论并提出了具体的解决方案。
B .通过收看专题片,使我对居家防控疫情的相关措施有了更加清晰的认识。
C .老年人发生心力衰竭的主要原因是劳累、用脑过度、精神紧张等诱发的。
D .家长要让孩子接受“吃苦教育”,以此提高孩子自食其力的能力。
人教版2020年八年级下期中数学试卷(含答案)
八年级(下)期中数学试卷一、选择题(10小题,每小题3分,共30分)1.下列各式是最简二次根式的是()A. B. C.D.2.式子有意义,则x的取值范围是()A.x≥2 B.x≤2 C.x≥﹣2 D.x≤﹣23.下列二次根式中与是同类二次根式是()A. B. C. D.4.用配方法解方程x2+4x﹣5=0,下列配方正确的是()A.(x+2)2=1 B.(x+2)2=5 C.(x+2)2=9 D.(x+4)2=95.今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500 B.2500(1+x)2=3500C.2500(1+x%)2=3500 D.2500(1+x)+2500(1+x)2=35006.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,47.一个多边形的内角和是外角和的2倍,这个多边形的边数为()A.5 B.6 C.7 D.88.下列条件中,不能判定四边形ABCD为平行四边形的条件是()A.AB=AD,BC=CD B.∠A=∠C,∠B=∠D C.AB∥CD,AB=CD D.AB=CD,AD=BC9.已知关于x的方程kx2+(2k+1)x+(k﹣1)=0有实数根,则k的取值范围为()A.k≥﹣B.k>﹣C.k≥﹣且k≠0 D.k<﹣10.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x米.则可列方程为()A.32×20﹣32x﹣20x=540 B.(32﹣x)(20﹣x)=540C.32x+20x=540 D.(32﹣x)(20﹣x)+x2=540二、填空题(8小题,每题3分,共24分)11.计算﹣×的值是.12.当1<a<2时,代数式+|1﹣a|=.13.若方程x2﹣4x﹣5=0的两根为x1,x2,则x12+x22的值为.14.三角形两边长分别为3和6,第三边是方程x2﹣6x+8=0的解,则此三角形周长是.15.若一直角三角形两直角边长分别为6和8,则斜边长为.16.平行四边形ABCD中,AB=3cm,∠ABC的平分线BE交AD于E,DE=1cm,则BC=.17.如图,AD=13,BD=12,∠C=90°,AC=3,BC=4.则阴影部分的面积=.18.如图,在△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为.三、解答题(共6小题,19题,20题每题12分,21题,22题,23题每题10分,24题12分,共66分)19.计算:(1)(2).20.解方程(1)x2+2x﹣3=0(2)3x(x﹣2)=2(2﹣x)21.已知关于x的方程x2+(2m﹣1)x+m2=0有实数根,(1)求m的取值范围;(2)若方程的一个根为1,求m的值;(3)设α、β是方程的两个实数根,是否存在实数m使得α2+β2﹣αβ=6成立?如果存在,请求出来,若不存在,请说明理由.22.如图,在一棵树CD的10m高处的B点有两只猴子,它们都要到A处池塘边喝水,其中一只猴子沿树爬下走到离树20m处的池塘A处,另一只猴子爬到树顶D后直线跃入池塘的A处.如果两只猴子所经过的路程相等,试问这棵树多高?23.国贸大厦销售一批名牌衬衫,现在平均每天可售出20件,每件盈利40元.为了扩大销售量,增加盈利,尽快减少库存,国贸决定采取适当的降价措施.经调查发现,如果这种衬衫的售价每降低1元,那么国贸平均每天可多售出2件.国贸若要平均每天盈利1200元,每件衬衫应降价多少元?24.如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.市八年级(下)期中数学试卷参考答案与试题解析一、选择题(10小题,每小题3分,共30分)1.下列各式是最简二次根式的是()A. B. C.D.【考点】最简二次根式.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:=2,被开方数含能开得尽方的因数,不是最简二次根式,A不正确;是最简二次根式,B正确;=x,被开方数含能开得尽方的因数,不是最简二次根式,C不正确;被开方数含分母,不是最简二次根式,D不正确.故选:B.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.式子有意义,则x的取值范围是()A.x≥2 B.x≤2 C.x≥﹣2 D.x≤﹣2【考点】二次根式有意义的条件.【分析】因为是二次根式,所以被开方数大于或等于0,列不等式求解.【解答】解:根据二次根式的性质,被开方数大于或等于0,可知:x﹣2≥0,解得:x≥2.故选A.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.下列二次根式中与是同类二次根式是()A. B. C. D.【考点】同类二次根式.【分析】化简各选项后根据同类二次根式的定义判断.【解答】解:A、与被开方数不同,故不是同类二次根式;B、与被开方数不同,故不是同类二次根式;C、与被开方数相同,故是同类二次根式;D、与被开方数不同,故不是同类二次根式.故选C【点评】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.4.用配方法解方程x2+4x﹣5=0,下列配方正确的是()A.(x+2)2=1 B.(x+2)2=5 C.(x+2)2=9 D.(x+4)2=9【考点】解一元二次方程-配方法.【专题】探究型.【分析】先将原方程进行配方,然后选项进行对照,即可得到正确选项.【解答】解:x2+4x﹣5=0,配方,得(x+2)2=9.故选C.【点评】本题考查解一元二次方程﹣﹣﹣配方法,解题的关键是学生明确什么是配方法、如何运用配方法对一元二次方程配方.5.今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500 B.2500(1+x)2=3500C.2500(1+x%)2=3500 D.2500(1+x)+2500(1+x)2=3500【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】根据2013年教育经费额×(1+平均年增长率)2=2015年教育经费支出额,列出方程即可.【解答】解:设增长率为x,根据题意得2500×(1+x)2=3500,故选B.【点评】本题考查一元二次方程的应用﹣﹣求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“﹣”).6.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,4【考点】勾股定理的逆定理.【分析】知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【解答】解:A、()2+()2≠()2,不能构成直角三角形,故错误;B、12+()2=()2,能构成直角三角形,故正确;C、62+72≠82,不能构成直角三角形,故错误;D、22+32≠42,不能构成直角三角形,故错误.故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.7.一个多边形的内角和是外角和的2倍,这个多边形的边数为()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【分析】多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:B.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.8.下列条件中,不能判定四边形ABCD为平行四边形的条件是()A.AB=AD,BC=CD B.∠A=∠C,∠B=∠D C.AB∥CD,AB=CD D.AB=CD,AD=BC【考点】平行四边形的判定.【分析】根据平行四边形的判断定理分别作出判断得出即可.【解答】解:A、根据平行四边形的判定定理:两组对边分别平行的四边形是平行四边形;故选项A不能判断这个四边形是平行四边形;B、根据平行四边形的判定定理:两组对角分别相等的四边形是平行四边形,故选项B能判断这个四边形是平行四边形;C、根据一组对边平行且相等的四边形是平行四边形,故选项C能判断这个四边形是平行四边形;D、根据平行四边形的判定定理:两组对边相等的四边形是平行四边形,故能判断这个四边形是平行四边形;故选:A.【点评】此题主要考查了平行四边形的判定定理,准确无误的掌握定理是解题关键.9.已知关于x的方程kx2+(2k+1)x+(k﹣1)=0有实数根,则k的取值范围为()A.k≥﹣B.k>﹣C.k≥﹣且k≠0 D.k<﹣【考点】根的判别式;一元一次方程的解.【专题】计算题;判别式法.【分析】由于k的取值不确定,故应分k=0(此时方程化简为一元一次方程)和k≠0(此时方程为二元一次方程)两种情况进行解答.【解答】解:(1)当k=0时,x﹣1=0,解得:x=1;(2)当k≠0时,此方程是一元二次方程,∵关于x的方程kx2+(2k+1)x+(k﹣1)=0有实根,∴△=(2k+1)2﹣4k×(k﹣1)≥0,解得k≥﹣,由(1)和(2)得,k的取值范围是k≥﹣.故选A.【点评】本题考查的是根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.同时解答此题时要注意分k=0和k≠0两种情况进行讨论.10.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x米.则可列方程为()A.32×20﹣32x﹣20x=540 B.(32﹣x)(20﹣x)=540C.32x+20x=540 D.(32﹣x)(20﹣x)+x2=540【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】设道路的宽为x,利用“道路的面积”作为相等关系可列方程(32﹣x)(20﹣x)=540.【解答】解:设道路的宽为x,根据题意得(32﹣x)(20﹣x)=540.故选B.【点评】本题考查的是根据实际问题列一元二次方程.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.二、填空题(8小题,每题3分,共24分)11.计算﹣×的值是.【考点】二次根式的混合运算.【分析】根据二次根式的混合运算顺序,首先计算乘法,然后计算减法,求出算式﹣×的值是多少即可.【解答】解:﹣×=2==即﹣×的值是.故答案为:.【点评】(1)此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式“,多个不同类的二次根式的和可以看作“多项式”.(2)此题还考查了平方根的性质和计算,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.12.当1<a<2时,代数式+|1﹣a|=1.【考点】二次根式的性质与化简.【分析】根据二次根式的性质=|a|进行化简即可.【解答】解:∵1<a<2,∴+|1﹣a|=2﹣a+a﹣1=1.故答案为:1.【点评】本题考查的是二次根式的化简,掌握二次根式的性质=|a|是解题的关键.13.若方程x2﹣4x﹣5=0的两根为x1,x2,则x12+x22的值为26.【考点】解一元二次方程-因式分解法;代数式求值.【专题】计算题.【分析】先利用因式分解法解方程得到x1,x2,然后利用代入法计算x12+x22的值.【解答】解:x2﹣4x﹣5=0,(x﹣5)(x+1)=0,x﹣5=0或x+1=0,所以x1=5,x2=﹣1,所以x12+x22=52+(﹣1)2=26.故答案为26.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).14.三角形两边长分别为3和6,第三边是方程x2﹣6x+8=0的解,则此三角形周长是13.【考点】解一元二次方程-因式分解法;三角形三边关系.【专题】计算题;分类讨论.【分析】求出方程的解,有两种情况:x=2时,看看是否符合三角形三边关系定理;x=4时,看看是否符合三角形三边关系定理;求出即可.【解答】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x1=2,x2=4,当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.【点评】本题考查了三角形的三边关系定理和解一元二次方程等知识点,关键是确定第三边的大小,三角形的两边之和大于第三边,分类讨论思想的运用,题型较好,难度适中.15.若一直角三角形两直角边长分别为6和8,则斜边长为10.【考点】勾股定理.【专题】计算题.【分析】已知两直角边求斜边可以根据勾股定理求解.【解答】解:在直角三角形中,斜边的平方等于两条直角边平方和,故斜边长==10,故答案为10.【点评】本题考查了根据勾股定理计算直角三角形的斜边,正确的运用勾股定理是解题的关键.16.平行四边形ABCD中,AB=3cm,∠ABC的平分线BE交AD于E,DE=1cm,则BC=4cm.【考点】平行四边形的性质.【分析】由平行四边形的性质和角平分线得出∠AEB=∠ABE,由等角对等边得出AE=AB=3cm,即可得出BC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB=3cm,∴BC=AD=AE+DE=4cm;故答案为:4cm.【点评】本题考查了平行四边形的性质、角平分线、等腰三角形的判定;熟练掌握平行四边形的性质,并能进行推理论证与计算是解决问题的关键.17.如图,AD=13,BD=12,∠C=90°,AC=3,BC=4.则阴影部分的面积=24.【考点】勾股定理的逆定理;勾股定理.【分析】先利用勾股定理求出AB,然后利用勾股定理的逆定理判断出△ABD是直角三角形,然后分别求出两个三角形的面积,相减即可求出阴影部分的面积.【解答】解:在RT△ABC中,AB==5,∵AD=13,BD=12,∴AB2+BD2=AD2,即可判断△ABD为直角三角形,阴影部分的面积=AB×BD﹣BC×AC=30﹣6=24.答:阴影部分的面积=24.故答案为:24.【点评】此题考查了勾股定理、勾股定理的逆定理,属于基础题,解答本题的关键是判断出三角形ABD 为直角三角形.18.如图,在△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为.【考点】三角形中位线定理;等腰三角形的判定与性质.【分析】首先根据全等三角形判定的方法,判断出△AFG≌△AFC,即可判断出FG=FC,AG=AC,所以点F是CG的中点;然后根据点E是BC的中点,可得EF是△CBG的中位线,再根据三角形中位线定理,求出线段EF的长为多少即可.【解答】解:∵AD是∠BAC的平分线,∴∠FAG=∠FAC,∵CG⊥AD,∴∠AFG=∠AFC=90°,在△AFG和△AFC中,,∴△AFG≌△AFC,∴FG=FC,AG=AC=3,∴F是CG的中点,又∵点E是BC的中点,∴EF是△CBG的中位线,∴EF==.故答案为:.【点评】(1)此题主要考查了三角形中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.(2)此题还考查了等腰三角形的性质和应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.三、解答题(共6小题,19题,20题每题12分,21题,22题,23题每题10分,24题12分,共66分)19.计算:(1)(2).【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先对式子进行化简,再合并同类项即可解答本题;(2)根据平方差公式对式子进行化简,然后再合并同类项即可解答本题.【解答】解:(1)==5;(2)==5﹣4﹣3+2=0.【点评】本题考查二次根式的混合运算,解题的关键是明确二次根式混合运算的计算方法.20.解方程(1)x2+2x﹣3=0(2)3x(x﹣2)=2(2﹣x)【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】(1)方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解;(2)方程变形后,利用因式分解法求出解即可.【解答】解:(1)分解因式得:(x﹣1)(x+3)=0,可得x﹣1=0或x+3=0,解得:x1=1,x2=﹣3;(2)方程变形得:3x(x﹣2)+2(x﹣2)=0,分解因式得:(3x+2)(x﹣2)=0,可得3x+2=0或x﹣2=0,解得:x1=﹣,x2=2.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解法是解本题的关键.21.已知关于x的方程x2+(2m﹣1)x+m2=0有实数根,(1)求m的取值范围;(2)若方程的一个根为1,求m的值;(3)设α、β是方程的两个实数根,是否存在实数m使得α2+β2﹣αβ=6成立?如果存在,请求出来,若不存在,请说明理由.【考点】根与系数的关系;根的判别式.【专题】计算题.【分析】(1)根据判别式的意义得到△=(2m﹣1)2﹣4m2≥0,然后解不等式即可;(2)把x=1代入原方程可得到关于m的一元二次方程,然后解此一元二次方程即可;(3)根据根与系数的关系得到α+β=﹣(2m﹣1),αβ=m2,利用α2+β2﹣αβ=6得到(α+β)2﹣3αβ=6,则(2m﹣1)2﹣3m2=6,然后解方程后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m﹣1)2﹣4m2≥0,解得m≤;(2)把x=1代入方程得1+2m﹣1+m2=0,解得m1=0,m2=﹣2,即m的值为0或﹣2;(3)存在.根据题意得α+β=﹣(2m﹣1),αβ=m2,∵α2+β2﹣αβ=6,∴(α+β)2﹣3αβ=6,即(2m﹣1)2﹣3m2=6,整理得m2﹣4m﹣5=0,解得m1=5,m2=﹣1,∵m≤;∴m的值为﹣1.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=,反过来也成立.也考查了根的判别式.22.如图,在一棵树CD的10m高处的B点有两只猴子,它们都要到A处池塘边喝水,其中一只猴子沿树爬下走到离树20m处的池塘A处,另一只猴子爬到树顶D后直线跃入池塘的A处.如果两只猴子所经过的路程相等,试问这棵树多高?【考点】勾股定理的应用.【专题】应用题.【分析】要求树的高度,就要求BD的高度,在直角三角形ACD中运用勾股定理可以列出方程式,CD2+AC2=AD2,其中CD=CB+BD.【解答】解:设BD高为x,则从B点爬到D点再直线沿DA到A点,走的总路程为x+AD,其中AD=而从B点到A点经过路程(20+10)m=30m,根据路程相同列出方程x+=30,可得=30﹣x,两边平方得:(10+x)2+400=(30﹣x)2,整理得:80x=400,解得:x=5,所以这棵树的高度为10+5=15m.故答案为:15m.【点评】本题考查的是勾股定理的灵活运用,要求在变通中熟练掌握勾股定理.23.国贸大厦销售一批名牌衬衫,现在平均每天可售出20件,每件盈利40元.为了扩大销售量,增加盈利,尽快减少库存,国贸决定采取适当的降价措施.经调查发现,如果这种衬衫的售价每降低1元,那么国贸平均每天可多售出2件.国贸若要平均每天盈利1200元,每件衬衫应降价多少元?【考点】一元二次方程的应用.【专题】销售问题.【分析】商场降价后每天盈利=每件的利润×卖出的件数=(40﹣降低的价格)×(20+增加的件数),把相关数值代入即可求解.【解答】解:∵每件衬衫降价1元,商场平均每天可多售出2件,∴每件衬衫降价x元,商场平均每天可多售出2x件,∵原来每件的利润为40元,现在降价x元,∴现在每件的利润为(40﹣x)元,∴y=(40﹣x)(20+2x)=﹣2x2+60x+800=1200.整理得:x2﹣30x+200=0.解得:x=10或x=20,∵为了减少库存,∴x=20答:每件衬衫应降价20元.【点评】本题考查一元二次方程的应用,重点考查理解题意的能力,关键是看到降价和销售量的关系,以利润做为不等量关系列方程求解.24.如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.【考点】平行四边形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】(1)根据同旁内角互补两直线平行求出BC∥AD,再根据两直线平行,内错角相等可得∠CBE=∠DFE,然后利用“角角边”证明△BEC和△FCD全等,根据全等三角形对应边相等可得BE=EF,然后利用对角线互相平分的四边形是平行四边形证明即可;(2)分①BC=BD时,利用勾股定理列式求出AB,然后利用平行四边形的面积公式列式计算即可得解;②BC=CD时,过点C作CG⊥AF于G,判断出四边形AGCB是矩形,再根据矩形的对边相等可得AG=BC=3,然后求出DG=2,利用勾股定理列式求出CG,然后利用平行四边形的面积列式计算即可得解;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾.【解答】(1)证明:∵∠A=∠ABC=90°,∴BC∥AD,∴∠CBE=∠DFE,在△BEC与△FED中,,∴△BEC≌△FED,∴BE=FE,又∵E是边CD的中点,∴CE=DE,∴四边形BDFC是平行四边形;(2)①BC=BD=3时,由勾股定理得,AB===2,所以,四边形BDFC的面积=3×2=6;②BC=CD=3时,过点C作CG⊥AF于G,则四边形AGCB是矩形,所以,AG=BC=3,所以,DG=AG﹣AD=3﹣1=2,由勾股定理得,CG===,所以,四边形BDFC的面积=3×=3;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成立;综上所述,四边形BDFC的面积是6或3.【点评】本题考查了平行四边形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分情况讨论.。
2020年最新人教版八年级生物下册期中考试试卷及参考答案
2020年最新人教版八年级生物下册期中考试试卷及参考答案2020年人教版八年级生物下册期中试题一、单项选择题(共25小题,每小题2分,共50分)1.下列结构中属于果实的是()A.一个西瓜B.一粒西瓜籽C.一块洋葱表皮D.一根西瓜苗答案:A2.俗话说:“无心插柳柳成荫”。
这种植物体的繁殖方式属于()A.扦插B.嫁接C.有性生殖D.组织培养答案:A3.水蜜桃味甜,毛桃味酸,现将水蜜桃嫁接到毛桃上,结出的果实味道是()A.酸的B.甜的C.又酸又甜D.有的酸有的甜答案:B4.从蝌蚪发育为成蛙,其呼吸器官的变化为()A.外鳃→内鳃→肺B.内鳃→外鳃→肺C.外鳃→肺D.内鳃→肺答案:A5.受精的鸟卵在雌鸟的体内开始发育,但鸟卵产出后就暂停发育,原因是外界()A.具有阳光B.具有空气C.温度太低D.温度太高答案:D6.下列关于鸟类生殖与发育过程的叙述,正确的是()A.在我国生活的鸟类都是晚成鸟B.晚成鸟刚孵化出来时就已经充分发育C.鸟类的受精方式为体内受精D.受精的鸟卵都在体外开始发育答案:B7.在鸡卵中,真正属于卵细胞的结构是()A.胚盘、卵白和包在外面的卵壳膜B.卵白、卵黄和包在外面的卵壳膜C.胚盘、卵白和包在外面的卵壳膜D.胚盘、卵黄和包在外面的卵黄膜答案:B8.生物的遗传信息中心是()A.细胞膜B.细胞质C.细胞核D.细胞壁答案:C9.下列叙述中,错误的是()A.人的体细胞中多了一条染色体可能导致严重的遗传病B.染色体由蛋白质和DNA组成,它们都是主要的遗传物质C.每个DNA分子上都有许多具有遗传效应的基因D.科学实验证明,细胞中的DNA大多在染色体上答案:A10.下列关于DNA分子、基因和染色体的描述中,正确的是()A.一个DNA分子就是一条染色体B.一个DNA分子上只有一个基因C.一个DNA分子上有许多个基因D.一个细胞中只有一个DNA分子答案:C11.每一种生物的体细胞中都含有特定数目的染色体。
人教版数学八年级下册《期中考试卷》(含答案)
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题4分,共计40分)1. 在二次根式2x -中,字母x 的取值范围是( )A. 2x >B. 2x <C. 2x ≥D. 2x ≤ 2. 下列根式中属于最简二次根式的是( )A. 12B. 8C. 27D. 21a + 3. 下列各组数中,不是勾股数的为( )A. 3,4,5B. 6,8,10C. 5,12,13D. 5,7,10 4. 计算33008÷,结果( ) A 403B. 402C. 203D. 202 5. 如图,平行四边形ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件使△ABE ≌△CDF ,则添加的条件不能..是( )A. AE =CFB. BE =FDC. BF =DED. ∠1=∠26. 如图所示,四边形ABCD 是平行四边形,∠D =120°,∠CAD =32°,则∠ABC 、∠CAB 的度数分别为( ).A. 28°,120°B. 32°,120°C. 120°,28°D. 120°,32°7. 实数在数轴上的位置如图所示,化简22(1)(2)p p-+-=( )A. B. 3 C. 3p- D. 18. 如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A. 4B. 3C. 2D. 59. 平行四边形的两条对角线长分别是、,一边长为12,则、可能是下列各组中的()A. 8与14B. 10与14C. 18与20D. 10与3810. 如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AC边上的高是()A. 105B.2105C.255D.355二、填空题(每题4分,共计24分)11. 1326⨯=____________. 12. 比较大小:1010-__________13-(填“>”、“=”、“<”) 13. 已知直角三角形的两边长分别为12cm 和5cm ,,则第三边长为___________________.14. 在ABCD 中,若30B ∠=︒,BC 10cm =,6AB cm =,则ABCD 的面积是__________.15. 如图,将有一边重合两张直角三角形纸片放在数轴上,纸片上的点表示的数是-2,1AC BC BD ===,若以点为圆心、AD 的长为半径画弧,与数轴交于点(点位于点右侧),则点表示的数为________.16. 如图,▱ABCD 中,∠ABC=60°,E 、F 分别在CD 和BC 延长线上,AE ∥BD ,EF ⊥BC ,EF=3,则AB 的长是_____.三、解答题(共计86分)17. 计算:1325045183(2)2(13)(26)(221)+-18. 已知:ABC ∆中的三条中位线的长分别为5cm 、6cm 、10cm ,求这个三角形的周长.19. 21点.20. 如图,在Rt△ABC 中,∠C=90°,∠A=30°,AC=2求斜边AB 的长.21. 如图,在ABC ∆中,13AB =,14BC =,AD 是BC 边上的高,12AD =,求AC 的长.22. 如图,在平行四边形ABCD 中,若AB=6,AD=10,∠ABC 的平分线交AD 于点E,交CD 的延长线于点F,求DF 的长.23. (1)定义新运算:对于任意实数,a b ,都有()1a b a a b ⊕=-+.例如,数字2和5在该新运算下结果为.计算如下:25⊕=()22515⨯-+=-.(1)求()37-⊕的值;(2)请你模仿(1),定义一种新运算,使得实数642+和322-的运算结果为2020.写出你定义的新运算,并写出计算过程.答案与解析一、选择题(每题4分,共计40分)1. ,字母x 的取值范围是( )A. 2x >B. 2x <C. 2x ≥D. 2x ≤[答案]C[解析][分析]根据二次根式意义,被开方数是非负数,列出不等式,解不等式得到答案.[详解]解:由题意得,x-2≥0,解得x≥2,故选:C[点睛]本题考查的是二次根式有意义的条件,掌握二次根式的意义,被开方数是非负数是解题的关键. 2. 下列根式中属于最简二次根式的是( )[答案]D[解析][分析]根据最简二次根式的两个条件进行判断,即可得出结论.[详解]A =2,不是最简二次根式,错误;B =不是最简二次根式,错误;C ,不是最简二次根式,错误;D ,正确;故选D .[点睛]本题考查最简二次根式的定义.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3. 下列各组数中,不是勾股数的为( )A. 3,4,5B. 6,8,10C. 5,12,13D. 5,7,10 [答案]D[解析][分析]满足222+=a b c 的三个正整数,称为勾股数,由此判断即可.[详解]解:、222435+=,此选项是勾股数; 、2226810+=,此选项是勾股数; 、22251213+=,此选项是勾股数;、2225710+≠,此选项不是勾股数.故选:.[点睛]此题主要考查了勾股数,关键是掌握勾股数的定义.4. 结果为( )A. B. C. D. [答案]D[解析][分析]利用二次根式的乘除法运算法则进行运算即可.[详解]原式===, 故选:D .[点睛]本题考查二次根式的乘除运算,熟练掌握二次根式的乘除运算法则是解答的关键.5. 如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能..是( )A. AE=CFB. BE=FDC. BF=DED. ∠1=∠2[答案]A[解析]试题分析:因为四边形ABCD是平行四边形,所以AB//CD,AB=CD,所以∠ABD=∠CDB,所以要使△ABE≌△CDF,若添加条件:∠1=∠2,可以利用ASA证明△ABE≌△CDF,所以D正确,若添加条件:BE=FD,可以利用SAS证明△ABE≌△CDF,所以B正确,若添加条件:BF=DE,可以得到BE=FD,可以利用SAS证明△ABE≌△CDF,所以C 正确;若添加条件:AE=CF,因为∠ABD=∠CDB,不是两边的夹角,所以不能证明△ABE≌△CDF,所以A错误,故选A.考点:1.平行四边形的性质2.全等三角形的判定.6. 如图所示,四边形ABCD是平行四边形,∠D=120°,∠CAD=32°,则∠ABC、∠CAB的度数分别为().A. 28°,120°B. 32°,120°C. 120°,28°D. 120°,32°[答案]C[解析][分析][详解]解:∵四边形ABCD是平行四边形,∴∠B=∠D,AB∥CD,∴∠BAD+∠D=180°.∵∠D=120°,∠CAD=32°,∴∠ABC=∠D=120°,∠BAD=60°,∴∠CAB=∠BAD﹣∠CAD=60°﹣32°=28°.故选C.7. 实数在数轴上的位置如图所示,化简22-+-=( )(1)(2)p pp- D. 1A. B. 3 C. 3[答案]D[解析][分析]根据数轴确定p的取值范围,再利用二次根式的性质化简即可.[详解]由数轴可得,1<p<2,∴p-1>0,p-2<0,22--,p p(1)(2)故选:D.[点睛]本题主要考查二次根式的化简,判断出代数式的正负是解题关键.8. 如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A. 4B. 3C. 2D. 5[答案]A[解析]分析] 设BN=x ,则由折叠的性质可得DN=AN=9-x ,根据中点的定义可得BD=3,在Rt △BND 中,根据勾股定理可得关于x 的方程,解方程即可求解.[详解]解:设BN=x ,由折叠的性质可得DN=AN=9-x ,∵D 是BC 的中点,∴BD=3,在Rt △NBD 中,x 2+32=(9-x )2,解得x=4.即BN=4.故选A .[点睛]本题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强. 9. 平行四边形的两条对角线长分别是、,一边长为12,则、可能是下列各组中的( )A. 8与14B. 10与14C. 18与20D. 10与38[答案]C[解析][分析] x、y是平行四边形的两条对角线的长,则它们的一半与平行四边形长为12的边构成三角形,根据三角形三边关系中“三角形的任意两边之和大于第三边”即可从选项中判定出正解的答案.[详解]解:∵平行四边形的对角线互相平分,此平行四边形的两对角线长为x、y∴这两条对角线的一半就是x2,y2∴这两条对角线的一半与边长为12的边组成的三角形的三边为:x2、y2、12 根据三角形任意两边之和大于第三边得: A选项中149212=8+2<,不符合;B选项中1014122=+2,不符合;C选项中182019122=>+2,符合;D选项中1038172=<+122,不符合. 故选:C[点睛]本题考查的知识点有两个:一是平行四边形的对角线互相平分,一是三角形的三边关系,综合运用这两个知识点逐个判定是解题的基本方法.10. 如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC ,则AC 边上的高是( )A. 105 2105255 355[答案]D[解析][分析]先求出△ABC 的面积,再根据勾股定理求出AC 的长度,即可求出AC 边上的高.[详解]1113222121112222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯= 22125AC =+=AC 边上的高133525225ABC SAC =÷÷=⨯= 故答案为:D .[点睛]本题考查了三角形的高的问题,掌握勾股定理、三角形面积公式是解题的关键. 二、填空题(每题4分,共计24分)11.=____________.[答案[解析][分析] 利用二次根式的乘除法运算法则进行运算即可.[详解]原式=====[点睛]本题考查了二次根式的运算,熟练掌握二次根式的乘除法运算法则是解答的关键.12. 比较大小:__________13-(填“>”、“=”、“<”) [答案]>[解析][分析]先将这两个数分别平方,通过比较两个数的平方的大小即可得解.[详解]解:∵21()1010-=,211()39-=且11109<,∴1103<,∴13>- 故答案为:>.[点睛]此题主要考查了无理数的估算能力,两个二次根式比较大小可以通过平方的方法进行,两个式子平方的值大的,对应的正的式子的值就大,负的式子就小.13. 已知直角三角形的两边长分别为12cm 和5cm ,,则第三边长为___________________.[答案]13cmcm[解析][分析]设直角三角形的第三条边为c ,分c 为斜边和12cm 为斜边两类进行讨论,根据勾股定理计算即可.[详解]解:设直角三角形的第三条边为c ,当c 为斜边时,2251213c =+= ;当12cm 为斜边时,22125119c =-=.故答案为:13cm 或119cm[点睛]本题考查了勾股定理和直角三角形分类讨论思想.由于条件没有指明直角边和斜边,故要分类讨论,同时要注意直角三角形斜边最长,5cm 不可能为斜边,故分两类讨论.14. 在ABCD 中,若30B ∠=︒,BC 10cm =,6AB cm =,则ABCD 的面积是__________.[答案][解析][分析]连接AC ,利用1sin 2ABC S AB BC B ∆=••求出ABC ∆的面积,再求出ABCD 的面积. [详解]解:连接AC ,如图:∵30B ∠=︒,BC 10cm =,6AB cm =,∴111sin 61015222ABC S AB BC B ∆=••=⨯⨯⨯=; ∴215230ABCD ABC S S ∆==⨯=.故答案为:30.[点睛]本题考查了解直角三角形,平行四边形的性质,以及求三角形的面积,解题的关键是利用1sin 2ABC S AB BC B ∆=••求出三角形的面积.15. 如图,将有一边重合的两张直角三角形纸片放在数轴上,纸片上的点表示的数是-2,1AC BC BD ===,若以点为圆心、AD 的长为半径画弧,与数轴交于点(点位于点右侧),则点表示的数为________.[答案]32-[解析][分析]首先根据勾股定理求出AB 、AD 的长,再根据圆的半径相等可知AD=AE ,再根据数轴上两点间距离的公式即可得出答案.[详解]根据勾股定理得:2AB =,3AD =,∴3AE =,∴23OE =-∴点表示的数为23-+.故答案为:23-+[点睛]此题主要考查了勾股定理,以及数轴与实数,解题时求数轴上两点间的距离应让较大的数减去较小的数即可,本题的关键是求出AE 的长.16. 如图,▱ABCD 中,∠ABC=60°,E 、F 分别在CD 和BC 的延长线上,AE ∥BD ,EF ⊥BC ,EF=3,则AB 的长是_____.[答案]1[解析][分析]根据平行四边形性质推出AB=CD ,AB ∥CD ,得出平行四边形ABDE ,推出DE=DC=AB ,根据直角三角形性质求出CE 长,即可求出AB 的长.[详解]∵四边形ABCD 是平行四边形,∴AB ∥DC ,AB=CD.∵AE ∥BD ,∴四边形ABDE 是平行四边形.∴AB=DE=CD ,即D 为CE 中点.∵EF ⊥BC ,∴∠EFC=90°.∵AB ∥CD ,∴∠DCF=∠ABC=60°.∴∠CEF=30°.∵EF=,∴CE=2∴AB=1三、解答题(共计86分)17. 计算:(2)2(11)+-[答案](1);(2)9;[解析][分析](1)先化简根式,然后再合并同类根式即可;(2)先算乘法和完全平方,再去括号,计算加减即可.[详解](1==+(2)2(13)(26)(221)+---26618(8421)=-+---+232942=--+229-=.[点睛]本题主要考查了二次根式的混合运算,关键是掌握计算顺序和运算法则.18. 已知:ABC ∆中三条中位线的长分别为5cm 、6cm 、10cm ,求这个三角形的周长.[答案]42.cm[解析][分析]根据三角形中位线定理可分别求得三角形各边的长,从而不难求得其周长.[详解]∵三角形的三条中位线的长分别是5cm 、6cm 、10cm ,∴三角形的三条边分别是10cm 、12cm 、20cm .∴这个三角形的周长=10+12+20=42cm .[点睛]此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半. 19. 作图题:在数轴上画出表示21+的点.[答案]作图见解析[解析]分析]由题意,作斜边为2的等腰直角三角形,以数1为圆心画弧,与数轴正方向的交点为所求.[详解]解:如图所示,点A 为21+的点;[点睛]本题考查的是实数与数轴,勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.20. 如图,在Rt△ABC 中,∠C=90°,∠A=30°,AC=2求斜边AB 的长.[答案]433. [解析][分析]设BC=x,则AB=2x,再根据勾股定理求出x 值,进而得出结论.[详解]∵在Rt △ABC 中,∠C=90°,∠A=30°,AC=2, ∴设BC=x ,则AB=2x,∵AC 2+BC 2=AB 2,即22+x 2=(2x)2,解得x=233, ∴AB=2x=433. [点睛]本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.21. 如图,在ABC ∆中,13AB =,14BC =,AD 是BC 边上的高,12AD =,求AC 的长.[答案]15.AC =[解析][分析]利用勾股定理先求出BD ,进而求得DC ,再用勾股定理求得AC 即可.[详解]∵AD 是BC 上的高,∴AD BC ⊥,在Rt ABD ∆中,222213125BD AB AD =-=-=,∴9CD BC BD =-=,∴在Rt ADC ∆中,222212915AC AD CD =+=+=.[点睛]本题考查勾股定理,会利用勾股定理解直角三角形是解答的关键.22. 如图,在平行四边形ABCD 中,若AB=6,AD=10,∠ABC 的平分线交AD 于点E,交CD 的延长线于点F,求DF 的长.[答案]4[解析][分析]首先根据平行四边形的性质可得AB=DC=6,AD=BC=10,AB ∥DC ,再根据平行线的性质与角平分线的性质证明∠2=∠3,根据等角对等边可得BC=CF=10,再用CF ﹣CD 即可算出DF 的长.[详解]∵四边形ABCD 为平行四边形,∴AB=DC=6,AD=BC=10,AB ∥DC .∵AB ∥DC,∴∠1=∠3,又∵BF 平分∠ABC,∴∠1=∠2,∴∠2=∠3,∴BC=CF=10,∴DF=CF ﹣DC=10﹣6=4.[点睛]本题考查了平行四边形的性质;等腰三角形的判定与性质,熟练掌握和灵活运用相关知识是解题的关键.23. (1)定义新运算:对于任意实数,a b ,都有()1a b a a b ⊕=-+.例如,数字2和5在该新运算下结果为.计算如下:25⊕=()22515⨯-+=-.(1)求()37-⊕的值;(2)请你模仿(1),定义一种新运算,使得实数642+和322-的运算结果为2020.写出你定义的新运算,并写出计算过程.[答案](1)31; (2)见解析 [解析][分析](1)根据新定义即可求解;(2)根据平方差公式即可构造新定义运算求解.[详解]解:(1)(37)⊕-()()3371=-⨯--+31=.(2)答案不唯一,合理即可.如:定义新运算:对于任意实数,a b ,都有2018a b ab *=+. (642)(322)+*-(62)(32)2018=+-+2020=.[点睛]此题主要考查新定义运算,解题的关键是熟知平方差公式的运用.。
2020年新人教版八年级数学下册期中试题及答案
八年级(下)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.的算术平方根是()A.4 B.﹣4 C.2 D.±22.菱形具有而矩形不具有的性质是()A.对角线互相平分B.四条边都相等C.对角相等D.邻角互补3.三角形的三边长分别为6,8,10,它的最短边上的高为()A.6 B.4.5 C.2.4 D.84.若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是()A.梯形B.矩形C.菱形D.正方形5.若x<2,化简+|3﹣x|的正确结果是()A.﹣1 B.1 C.2x﹣5 D.5﹣2x6.下面条件中,能判定四边形是平行四边形的条件是()A.一组对角相等B.对角线互相平分C.一组对边相等D.对角线互相垂直7.当x=﹣3时,的值是()A.±3 B.3 C.﹣3 D.98.如图字母B所代表的正方形的面积是()A.12 B.13 C.144 D.1949.下列等式不成立的是()A.()2=a B.=|a| C.=﹣D.a=10.若|x﹣5|+2=0,则x﹣y的值是()A.﹣7 B.﹣5 C.3 D.711.下列计算:①;②;③;④;⑤.其中正确的是()A.①和③B.②和③C.③和④D.③和⑤12.适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4A.2个B.3个C.4个D.5个二、填空题(共6小题,每小题3分,满分18分)13.计算:+=.14.平行四边形ABCD中,∠A=50°,AB=30cm,则∠B=,DC=cm.15.若,则ab=.16.已知平行四边形ABCD的对角线AC,BD相交于点O,AB=5,AO=4,BO=3,则平行四边形的周长是,面积是.17.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,求该河流的宽度为m.18.观察分析下列数据,寻找规律:0,,,3,2,,3,…那么第10个数据应是.三、解答题(共8小题,满分66分)19.(1)计算:+﹣×+;(2)已知三角形一边长为cm,这条边上的高为cm,求该三角形的面积.20.现有一张正方形纸片,将它折两次(第一次折后也可打开铺平再折第二次),使得折痕将纸片分为面积相等且不重叠的四部分(称为一个操作),如图甲(虚线表示折痕).除图甲外,请你再给出三个不同的操作,分别将折痕画在图①至图③中.(规定:一个操作得到的四个图形和另一个操作得到的四个图形,如果能够“配对”得到四组全等的图形,那么就认为是相同的操作,如图乙和图甲是相同的操作)21.(6分)(2015春港南区期中)如图,在△ABC中,AD是∠BAC的平分线,DE∥AC 交AB于E,DF∥AB交AC于F,求证:四边形AEDF是菱形.22.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?23.如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米(先画出示意图,然后再求解).24.如图,4个小动物分别站在正方形场地的4个顶点,它们同时出发并以相同的速度沿场地边缘逆时针方向跑动,当它们同时停止时,顺次连接4个动物所在地点围成的图形是什么形状?为什么?25.在△ABC中,AB=AC,∠BAC=120°,过点C作CD∥AB,且CD=2AB,连接BD,BD=2.求△ABC的面积.26.已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=时,四边形MENF是正方形(只写结论,不需证明).参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.的算术平方根是()A.4 B.﹣4 C.2 D.±2【考点】算术平方根.【分析】首先根据算术平方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:∵=4,∴的算术平方根是=2.故选C.【点评】此题主要考查了算术平方根的定义,注意要首先计算=4.2.菱形具有而矩形不具有的性质是()A.对角线互相平分B.四条边都相等C.对角相等D.邻角互补【考点】矩形的性质;菱形的性质.【专题】证明题.【分析】与平行四边形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等.【解答】解:A、对角线互相平分是平行四边形的基本性质,两者都具有,故A不选;B、菱形四条边相等而矩形四条边不一定相等,只有矩形为正方形时才相等,故B符合题意;C、平行四边形对角都相等,故C不选;D、平行四边形邻角互补,故D不选.故选:B.【点评】考查菱形和矩形的基本性质.3.三角形的三边长分别为6,8,10,它的最短边上的高为()A.6 B.4.5 C.2.4 D.8【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理判定该三角形为直角三角形,然后由直角三角形的定义解答出最短边上的高.【解答】解:由题意知,62+82=102,所以根据勾股定理的逆定理,三角形为直角三角形.长为6的边是最短边,它上的高为另一直角边的长为8.故选D.【点评】本题考查了直角三角形的判定即勾股定理的逆定理和直角三角形的性质.4.若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是()A.梯形B.矩形C.菱形D.正方形【考点】菱形的判定;三角形中位线定理.【专题】压轴题.【分析】因为四边形的两条对角线相等,根据三角形的中位线定理,可得所得的四边形的四边相等,则所得的四边形是菱形.【解答】解:如图,AC=BD,E、F、G、H分别是线段AB、BC、CD、AD的中点,∴EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,∴EH=FG=BD,EF=HG=AC,∵AC=BD∴EH=FG=FG=EF,则四边形EFGH是菱形.故选C.【点评】本题利用了中位线的性质和菱形的判定:四边相等的四边形是菱形.5.若x<2,化简+|3﹣x|的正确结果是()A.﹣1 B.1 C.2x﹣5 D.5﹣2x【考点】二次根式的性质与化简.【分析】根据二次根式的性质,绝对值的性质,先化简代数式,再合并.【解答】解:∵x<2∴|x﹣2|=2﹣x,|3﹣x|=3﹣x原式=|x﹣2|+3﹣x=2﹣x+3﹣x=5﹣2x.故选D.【点评】本题考查实数的综合运算能力及绝对值的性质,是各地中考题中常见的计算题型.6.下面条件中,能判定四边形是平行四边形的条件是()A.一组对角相等B.对角线互相平分C.一组对边相等D.对角线互相垂直【考点】平行四边形的判定.【专题】推理填空题.【分析】根据平行四边形的判定定理(①两组对角分别相等的四边形是平行四边形,②两组对边分别相等的四边形是平行四边形,③对角线互相平分的四边形是平行四边形,④有一组对边相等且平行的四边形是平行四边形)进行判断即可.【解答】解:A、两组对角分别相等的四边形是平行四边形,故本选项错误;B、∵OA=OC、OB=OD,∴四边形ABCD是平行四边形,故本选项正确;C、两组对边分别相等的四边形是平行四边形,故本选项错误;D、对角线互相平分的四边形才是平行四边形,而对角线互相垂直的四边形不一定是平行四边形,故本选项错误.故选B.【点评】本题考查了对平行四边形的判定定理得应用,题目具有一定的代表性,但是一道比较容易出错的题目.7.当x=﹣3时,的值是()A.±3 B.3 C.﹣3 D.9【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质得出化简求出即可.【解答】解:∵x=﹣3,∴==3.故选:B.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.8.如图字母B所代表的正方形的面积是()A.12 B.13 C.144 D.194【考点】勾股定理.【专题】换元法.【分析】由图可知在直角三角形中,已知斜边和一直角边,求另一直角边的平方,用勾股定理即可解答.【解答】解:由题可知,在直角三角形中,斜边的平方=169,一直角边的平方=25,根据勾股定理知,另一直角边平方=169﹣25=144,即字母B所代表的正方形的面积是144.故选C.【点评】此题比较简单,关键是熟知勾股定理:在直角三角形中两条直角边的平方和等于斜边的平方.9.下列等式不成立的是()A.()2=a B.=|a| C.=﹣D.a=【考点】立方根;算术平方根.【分析】根据二次方根的性质、开平方的被开方数都是非负数,可得答案.【解答】解:A、()2=a,故A正确;B、算术平方根是非负数,故B正确;C、负数的立方根是负数,故C正确;D、开平方的被开方数都是非负数故D错误;故选:D.【点评】本题考查了立方根,利用了二次根式的性质.10.若|x﹣5|+2=0,则x﹣y的值是()A.﹣7 B.﹣5 C.3 D.7【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣5=0,y+2=0,解得x=5,y=﹣2,所以,x﹣y=5﹣(﹣2)=5+2=7.故选D.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.11.下列计算:①;②;③;④;⑤.其中正确的是()A.①和③B.②和③C.③和④D.③和⑤【考点】二次根式的加减法.【分析】根据二次根式的加减法则进行计算即可.【解答】解:①与不是同类项,不能合并,故本小题错误;②与2不是同类项,不能合并,故本小题错误;③6﹣2=4,故本小题正确;④5﹣2=3,故本小题正确;⑤==,故本小题错误.故③、④正确.故选C.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.12.适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4A.2个B.3个C.4个D.5个【考点】勾股定理的逆定理;三角形内角和定理.【分析】计算出三角形的角利用定义判定或在知道边的情况下利用勾股定理的逆定理判定则可.【解答】解:①,根据勾股定理的逆定理不是直角三角形,故不是;②a=6,∠A=45不是成为直角三角形的必要条件,故不是;③∠A=32°,∠B=58°则第三个角度数是90°,故是;④72+242=252,根据勾股定理的逆定理是直角三角形,故是;⑤22+22≠42,根据勾股定理的逆定理不是直角三角形,故不是.故选A.【点评】本题考查了直角三角形的定义和勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.二、填空题(共6小题,每小题3分,满分18分)13.计算:+=5.【考点】二次根式的加减法.【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式=2+3=;故答案为:5.【点评】本题考查了二次根式的加减,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.14.平行四边形ABCD中,∠A=50°,AB=30cm,则∠B=130°,DC=30cm.【考点】平行四边形的性质.【分析】根据平行四边形的性质:平行四边形的对边相等且平行,即可求得.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=30cm,∴∠A+∠B=180°,∵∠A=50°,∴∠B=130°.故答案为130°,30.【点评】此题考查了平行四边形的性质:平行四边形的对边相等且平行.解题时注意数形结合思想的应用.15.若,则ab=﹣12.【考点】非负数的性质:算术平方根.【专题】计算题.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:∵若,∴可得:,解得:,∴ab=﹣12.故填﹣12.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.已知平行四边形ABCD的对角线AC,BD相交于点O,AB=5,AO=4,BO=3,则平行四边形的周长是20,面积是24.【考点】平行四边形的性质;勾股定理的逆定理.【分析】由平行四边形ABCD的对角线AC,BD相交于点O,AB=5,AO=4,BO=3,可证得AC⊥BD,即可得平行四边形ABCD是菱形,继而求得答案.【解答】解:∵平行四边形ABCD的对角线AC,BD相交于点O,∴AB=CD=5,AD=BC,AC=2AO=8,BD=2BO=6,∵AB=5,AO=4,BO=3,∴AB2=AO2+BO2,∴∠AOB=90°,即AC⊥BD,∴平行四边形ABCD是菱形,∴平行四边形的周长是:4×5=20,面积是:ACBD=×8×6=24.故答案为:20,24.【点评】此题考查了平行四边形的性质、菱形的判定与性质以及勾股定理的逆定理.此题难度适中,注意掌握定理的应用是关键.17.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,求该河流的宽度为480m.【考点】勾股定理的应用.【专题】应用题.【分析】从实际问题中找出直角三角形,利用勾股定理解答.【解答】解:根据图中数据,运用勾股定理求得AB===480米.【点评】考查了勾股定理的应用,是实际问题但比较简单.18.观察分析下列数据,寻找规律:0,,,3,2,,3,…那么第10个数据应是3.【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】通过观察可知,规律是根号下的被开方数依次是:0,0+3×1,0+3×2,0+3×3,0+3×4,…,3×9,…,3×(n﹣1),所以第10个数据应是=3.【解答】解:通过数据找规律可知,第n个数为,那么第10个数据为:=3.【点评】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.三、解答题(共8小题,满分66分)19.(1)计算:+﹣×+;(2)已知三角形一边长为cm,这条边上的高为cm,求该三角形的面积.【考点】二次根式的应用;二次根式的混合运算.【分析】(1)先化二次根式为最简二次根式,然后计算二次根式的加减法;(2)根据三角形的面积公式进行计算即可.【解答】解:原式=4+﹣×2+2=5﹣2+2;(2)S=××=(cm2).即该三角形的面积是cm2.【点评】本题考查了二次根式的应用,二次根式的混合运算.与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.20.现有一张正方形纸片,将它折两次(第一次折后也可打开铺平再折第二次),使得折痕将纸片分为面积相等且不重叠的四部分(称为一个操作),如图甲(虚线表示折痕).除图甲外,请你再给出三个不同的操作,分别将折痕画在图①至图③中.(规定:一个操作得到的四个图形和另一个操作得到的四个图形,如果能够“配对”得到四组全等的图形,那么就认为是相同的操作,如图乙和图甲是相同的操作)【考点】作图—应用与设计作图.【专题】作图题;压轴题.【分析】分别根据正方形的性质及三角形的面积公式将正方形化为四块面积相等的图形.【解答】解:如图所示:【点评】本题考查的是作图﹣应用与设计作图,熟知正方形的性质及三角形的面积公式是解答此题的关键.21.(6分)(2015春港南区期中)如图,在△ABC中,AD是∠BAC的平分线,DE∥AC 交AB于E,DF∥AB交AC于F,求证:四边形AEDF是菱形.【考点】菱形的判定.【专题】证明题.【分析】根据DE∥AC,DF∥AB得出四边形AEDF为平行四边形,根据平行四边形的性质可得∠FAD=∠EDA,然后根据AD是∠BAC的平分线,可得∠EAD=∠FAD,继而得出∠EAD=∠FAD,AE=ED,最后可判定四边形AEDF是菱形.【解答】证明:∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形,∴∠FAD=∠EDA,∵AD是∠BAC的平分线,∴∠EAD=∠FAD,∴∠EAD=∠FAD,∴AE=ED,∴四边形AEDF是菱形.【点评】本题考查了菱形和判定和平行四边形的性质,解答本题的关键是根据平行四边形的性质和角平分线的性质得出角相等,继而得出边相等,判定菱形.22.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?【考点】生活中的平移现象;勾股定理.【专题】几何图形问题.【分析】根据勾股定理,可得BE的长,再根据路等宽,可得FD,根据矩形的面积减去两个三角形的面积,可得路的面积.【解答】解;路等宽,得BE=DF,△ABE≌△CDF,由勾股定理,得BE==80(m)S△ABE=60×80÷2=2400(m2)路的面积=矩形的面积﹣两个三角形的面积=84×60﹣2400×2=240(m2).答:这条小路的面积是240m2.【点评】本题考查了生活中的平移现象,先求出直角三角形的直角边的边长,再求出直角三角形的面积,用矩形的面积减去三角形的面积.23.如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米(先画出示意图,然后再求解).【考点】勾股定理的应用.【专题】应用题.【分析】根据题意画出图形,构造出直角三角形,利用勾股定理求解.【解答】解:如图所示,过D点作DE⊥AB,垂足为E∵AB=13,CD=8又∵BE=CD,DE=BC∴AE=AB﹣BE=AB﹣CD=13﹣8=5∴在Rt△ADE中,DE=BC=12∴AD2=AE2+DE2=122+52=144+25=169∴AD=13(负值舍去)答:小鸟飞行的最短路程为13m.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.24.如图,4个小动物分别站在正方形场地的4个顶点,它们同时出发并以相同的速度沿场地边缘逆时针方向跑动,当它们同时停止时,顺次连接4个动物所在地点围成的图形是什么形状?为什么?【考点】全等三角形的应用;正方形的判定.【分析】由于速度和时间都相同,所以它们走的路程相等,可以推测:当它们同时停止时,顺次连接4个动物所在地点围成的图形是正方形,根据正方形的特征:四条边都相等,四个角都是直角,只要证明出EFGH是正方形即可.【解答】解:如图:由于速度和时间都相同,所以它们走的路程相等,AE=BF=CG=DH,因为四边形ABCD是正方形,所以AB=BC=CD=DA,∠A=∠B=∠C=∠D,因为AE=BF=CG=DH,所以EB=FC=GD=HA,所以△AEH≌△BFE≌△CGF≌DHG,所以EH=EF=FG=GH,所以四边形EFGH是菱形,又因为△AEH≌△BFE,所以∠AEH=BFE,因为∠BEF+∠BFE=90°,所以∠AEH+∠BFE=90°,所以∠HEF=90°,所以菱形EFGH是正方形.【点评】此题考查了正方形的特征及性质,先证明出四边形EFGH是菱形,然后根据一个角是90度的菱形是正方形即可判定.25.在△ABC中,AB=AC,∠BAC=120°,过点C作CD∥AB,且CD=2AB,连接BD,BD=2.求△ABC的面积.【考点】菱形的判定与性质;等边三角形的判定与性质.【专题】综合题.【分析】过点B作BE∥AC,交CD于点E,过B作BF⊥CD于F,证明四边形ABEC是菱形,然后根据菱形的性质和∠BAC=120°证明出△BDE是等边三角形,从而得出菱形的边长,然后求出菱形的高,△ABC的面积等于菱形面积的一半.【解答】解:过点B作BE∥AC交CD于E,过B作BF⊥CD于F,∵CD∥AB,AB=AC,∴四边形ABEC是菱形,∴BE=CE=AB,∵∠BAC=120°,∴∠ABE=60°,∴∠BED=∠ABE=60°,∵CD=2AB,BD=2,∴CE=DE=BD=2,∴△BDE是等边三角形,∴△BDE的高BF==,∴S△ABC=S=×2×=,菱形ABEC故△ABC的面积为.【点评】本题主要考查了菱形的判定与等边三角形的判定、等边三角形三边相等的性质,作辅助线构造出菱形与等边三角形是解题的关键,也是难点.26.已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=2:1时,四边形MENF是正方形(只写结论,不需证明).【考点】矩形的性质;全等三角形的判定与性质;菱形的判定;正方形的判定.【分析】(1)根据矩形的性质可得AB=CD,∠A=∠D=90°,再根据M是AD的中点,可得AM=DM,然后再利用SAS证明△ABM≌△DCM;(2)四边形MENF是菱形.首先根据中位线的性质可证明NE∥MF,NE=MF,可得四边形MENF是平行四边形,再根据△ABM≌△DCM可得BM=CM进而得ME=MF,从而得到四边形MENF是菱形;(3)当AD:AB=2:1时,四边形MENF是正方形,证明∠EMF=90°根据有一个角为直角的菱形是正方形得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠D=90°,又∵M是AD的中点,∴AM=DM.在△ABM和△DCM中,,∴△ABM≌△DCM(SAS).(2)解:四边形MENF是菱形.证明如下:∵E,F,N分别是BM,CM,CB的中点,∴NE∥MF,NE=MF.∴四边形MENF是平行四边形.由(1),得BM=CM,∴ME=MF.∴四边形MENF是菱形.(3)解:当AD:AB=2:1时,四边形MENF是正方形.理由:∵M为AD中点,∴AD=2AM.∵AD:AB=2:1,∴AM=AB.∵∠A=90,∴∠ABM=∠AMB=45°.同理∠DMC=45°,∴∠EMF=180°﹣45°﹣45°=90°.∵四边形MENF是菱形,∴菱形MENF是正方形.故答案为:2:1.【点评】此题主要考查了矩形的性质,以及菱形的判定和正方形的判定,关键是掌握菱形和正方形的判定方法.438011;ZJX;CJX;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级下册期中检测卷含答案时间:120分钟满分:120分一、积累运用(28分)1.下列加点字注音完全正确的一项是( )(2分)A.凫.水(fú) 争讼.(sòng) 幽悄.(qiāo)无人问津.(jīn)B.亢.奋(kàng) 褶.皱(zhě) 追溯.(sù) 风雪载.途(zài)C.潺.潺(chán) 冗.杂(rǒng) 磅.礴(bàng) 黄发垂髫.(tiáo)D.腐蚀.(shí) 领域.(yù) 灯盏.(zhǎn) 金吾不禁.(jīn)2.下列词语书写没有错别字的一项是( )(2分)A.狩猎邀请鸡犬相闻草长鹰飞B.静穆晦暗人情世故戛然而止C.滑翔羁拌水尤清冽窈窕淑女D.雾霭怅惘海枯石烂哀草连天3.下列句子加点词语使用不正确的一项是( )(2分)A.出了三峡,江面宽阔,眼前豁然开朗....。
B.这次的演出,集合杰出的艺人同台亮相,其精彩程度令人叹.为观止...。
C.老师的声音戛然而止....,而同学们还沉醉在老师美妙的故事中。
D.小伙伴们在花园里玩捉迷藏的游戏,不一会儿,大家都销声..匿迹..了。
4.下列句子组成语段顺序排列正确的一项是( )(2分)①把这些关系导入互联网中,对习惯了与陌生人在互联网上聊天的网民来说,无疑是捅破了虚拟和现实间的最后一层窗户纸,实现了互联网和真实生活的“无缝连接”。
②仅3年多时间,微信已经变成了移动互联网上的“巨鳄”。
③沉淀在手机通讯录和邮箱联系人中的关系是个人最稳定的社交关系。
④微信的4.0版本正式增加了朋友圈功能,随后又逐渐增加了评论、隐私、收藏等功能。
⑤这种模式的即时通讯应用迅速得到传播,在国内首先有了“米聊”,随后又出现了“微信”。
A.①⑤②④③B.②④①⑤③ C.③①⑤④② D.④⑤②③①5.下列关于《傅雷家书》的说法不正确的一项是( )(2分)A.“我一生任何时期,闹恋爱最热烈的时候,也没有忘却对学问的忠诚。
学问第一,艺术第一,真理第一,——爱情第二,这是我至此为止没有变过的原则。
”这是傅雷对儿子的教诲。
B.《傅雷家书》是傅雷及其夫人写给儿子的书信编撰而成的一本家信集,该书字里行间充满了父亲对儿子的挚爱、期望,以及对国家和世界的高尚情感。
C.《傅雷家书》中傅雷对儿子的生活也进行了有益的引导,对日常生活中如何劳逸结合,如何正确理财,以及如何正确处理恋爱婚姻等问题,都像良师益友一样提出意见和建议。
D.在《傅雷家书》中,傅雷觉得儿子的成功不重要,重要的是儿子为祖国增了光,给别人带来欢笑。
6.诗词名句默写。
(每空1分,共8分)(1)挑兮达兮,在城阙兮。
____________,____________。
(2)忽逢桃花林,夹岸数百步,中无杂树,___________,___________。
(3)《送杜少府之任蜀州》中诗人用两人处境相同、感情一致来宽慰朋友,藉以减轻他的悲凉和孤独之感的诗句是:________________,________________。
(4)《望洞庭湖赠张丞相》中描写洞庭湖涵容天宇,水天相连的诗句是:________________,________________。
7.2017年2月,中央电视台推出大型文化情感类节目《朗读者》,产生很好的社会效果。
为此,某校开展以“我爱朗读”为主题的综合性学习活动。
活动中有一些问题,请你参与解决。
(10分)(1)【宣传活动】请你为本次活动拟写一则宣传标语,要求:紧扣主题,至少使用一种修辞手法。
(2分)_______________________________________________________ _________________(2)【品味美文】朗读是体会语言美的重要途径。
如要让你从老舍、朱自清、冰心的作品中选一篇朗读,你会选谁的哪篇作品?请简要说明选择的理由。
(3分)作者:________,作品:____________,理由:___________________________________________________________ ____________________________________________________________________ _________________(3)【完善通知】下面是某同学代表校学生会为“我爱朗读”比赛拟写的一则通知,请你按要求帮他修改。
(2分)通知全体同学:学校将于6月10日下午2点在报告厅举行“我爱朗读”比赛,届时将邀请著名专家作为大赛的评委。
希望广大同学积极参加,踊跃报名。
6月8日校学生会①该通知中有一处语序不当,应修改为:__________________________________。
②该通知中有一处格式问题,请给出修改意见:___________________________________________________________ _______________________________。
(4)【巧妙劝说】为了提高朗读能力,李超同学打算周六晚上收看一期《朗读者》,却被妈妈以耽误学习为由阻止。
假如你是李超,会如何劝说妈妈?(3分)_______________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ _________________二、阅读与理解(42分)(一)阅读下文,完成题目。
(11分)智能机器会超越人类吗?①智能机器真的有可能超越人类吗?2016年3月15日,围棋“人机大战”第五场,“阿尔法围棋”以四比一的比分击败世界顶尖围棋高手九段李世石。
这更激发了人们对人工智能的关注。
②的确,如果按照固定的程序进行预算,人脑的确赶不上人工智能。
而无论是国际象棋还是围棋,都是可以完全程序化的一种运动。
如果我们问“阿尔法”一个简单的问题:“你赢了比赛开心吗?”它就不能像人一样笑着回答,因为它并不具备人类的情感,也不具备人脑的灵活性,不能解答任何程序设计范围之外的问题。
③现有机器和人最大的区别是什么?是人有智能,而现有机器并不具备真正的智能。
严格地讲,智能机器只能执行特定的指令,而人则是处理所有感受到的信息。
显然,执行指令与处理信息有着本质的不同。
④随着人工智能的不断发展,研究智能机器的专家也要懂得神经科学,以便模拟人脑的神经网络构造来建造仿生智能机器。
当然,要建造这样一台仿生机器人的困难程度是难以想象的,因为人脑是世界上已知的最.复杂、最.神奇的“自动化机器”。
人脑拥有1000亿个神经细胞,而每一个神经细胞都有数千个突触和其他神经细胞相连,神经细胞通过这些突触互相交流。
一个三四岁的孩子大约有1000万亿个突触,到了成年大概稳定在100万亿个。
⑤也就是说,仿生机器人需要拥有1000亿个可以独立运算的处理器,并具有100万亿个信息中转器。
无论是制造元件还是整合这些元件,都是一个似乎难以完成的任务。
更为可怕的是,这些处理器及信息中转器需要制成不同的类型。
要完成仿生机器人的制造,需要最先进的纳米技术,才能把每个处理器做得像神经细胞那么小。
它还需要最先进的超级计算机,才能完成对仿生机器人各个器件排列顺序的编程。
⑥因为世界上并不缺人,缺的是比人类某些性能更先进的机器。
因此,科学家认为,未来的仿生机器人并非是要完全模仿人类的所有功能,而是模仿某项功能,这样仅仅需要模仿某个脑区就可以了,这就大大降低了制造难度,并可以强化某些功能,制造一些具有“特异功能”的电脑。
(选文有改动)8.阅读全文,说说智能机器与人有哪些区别。
(3分)_______________________________________________________ ________________________________________________________________________ _________________9.文章第④段加点词能否删去?为什么?(3分)_______________________________________________________ ________________________________________________________________________ _________________10.文章第⑤段画线句子运用了什么说明方法?有什么作用?(3分)_______________________________________________________ ________________________________________________________________________ _________________11.在关注了“人机大战”李世石输给“阿尔法围棋”的新闻后,同学们很是担忧:人类智慧会被人工智能彻底打败吗?请你结合文章相关内容,劝勉同学们要对智能机器的发展保持乐观的态度。
(2分)_______________________________________________________________________________________________________________________________ _________________(二)阅读下文,完成题目。
(15分)等着我倪萍①《等着我》仅录了三回,我就知道了,在这个栏目里,不是我付出了,是我得到了。
②有些朋友看了节目,说哭得稀里哗啦,劝我远离这样的苦难,显然是心疼我。
其实我不这么看。
你上哪儿能找到这些苦难啊?谁会面对面地向你讲述人性的挣扎啊?体味别人的命运,等于你又活了几回。
在他们面前,我学会了倾听,学会了分担、分享……③灵魂的成长,多数来自苦难。
④她是一个白头发、白眉毛、浑身上下都白成一片的白化病女孩,她一上台就把我震住了。
⑤她说:“我走在大街上,回头率比你们名人高,有一个男孩为了看我,头都撞到树上了。
”她一米四几的个子,顿时就在你面前高大起来了。
⑥她说她清楚地记得父亲是怎样抛弃她的。
那时她已经7岁了,父亲扔她的那一天对她很好,先问她想吃糖吗,她说想吃,父亲就领着她上村里的小卖部买了糖,然后领着她向村外走。