2-1结构动力学(单自由度和阻尼)解析
单自由度无阻尼自由振动的系统分析
单自由度无阻尼自由振动的系统分析在结构动力学之中,单自由度体系的振动是最简单的振动,但单自由度体系的频率计算在结构动力学计算中有着十分重要的意义,因为从中我们能得到关于振动理论的一些最基本的概念和分析方法同时也为更复杂的多质点多自由度体系振动问题奠定基础,同时现实工程中也有许多振动问题可以简化为单自由度问题近似的利用单自由度振动理论去分析解决。
在单层厂房、水塔等建筑物中得到有效的利用结构的自由振动是指结构受到扰动离开平衡位置后,不再受到任何外力影响的振动过程,此处动力系统是否有阻尼项,会直接影响到动力系统的反应。
在此,我们把自由振动分为无阻尼自由振动与有阻尼的自由振动。
一、无阻尼自由系统的振动分析目前,以弹簧-质量系统为力学模型,研究单自由度系统的振动具有非常普遍的实际意义,因为工程中许多问题简化后,用单自由度体系的振动理论就能得到很好的解决。
而对多自由度系统和连续振动,在特殊坐标的考察时,也会显示出与单自由度系统类似的振动。
进行无阻尼自由振动分析的主要目的是为了获得系统固有振动的特性,只有充分地了解系统的自身振动特性才能有效的计算系统的动力响应,目前在单质点单自由度无阻尼自由振动体系中我们的运动方程为:0)()(..=+t ku t um (1) 或 0u(t))(=+ωt u (2)其中的ω是振动圆频率,是反应系统动力的重要参数,其计算公式为:m k m ==δω12 (3)由上式可以看出,ω只和系统的刚度及质量有关,而与系统所受到的初始受力状态无关。
ω的量纲与角速度相同为rad/s ,它反映了系统自由振动的快慢。
自由振动系统的这一特性,我们在日常生活中司空见惯。
比如,键盘类乐器标定后,按动某一个琴键,不管你按动的轻重如何,琴键所发出的声音的频率是一定的,按得轻或按得重仅影响声音的强弱。
(2)式经过三角函数的转换可表示为:)sin()(νω+=t A t u (4)其通解为t A t A t u ωωsin cos )(21+= 常数A 1与A 2与初始条件有关,01χ=A ωχ/02 =A式(4)是标准的简谐方程其中A 是其振幅,则ν是其初相角,他们的计算公式2020)(ωx x A += ,00arctan x x v ω=对于质点振动系统,质量越大,则系统的固有频率越低;刚度越大,则系统的固有频率越高。
结构动力学
§1.3 体系振动的自由度
象静力计算一样,在动力计算时,首先需要选取一个 合理的计算简图。但由于需要考虑惯性力,因此在动力计 算的简图中,多了一项关于质量分布的处理问题。当体系 振动时,它的惯性力与质量的运动情况有关,所以确定质 量在运动中的位置具有重要的意义。 振动的自由度:我们把确定体系上全部质量位置所需 的独立几何参变数的数目,称为该体系的振动自由度。 例1.1 如图(a)所示跨中置一质量为m电动机的简支梁,当 梁自身的质量远小于电动机的质量时,梁的质量可忽略不 计。其计算简图如图(b)所示。
Fp
如:具有偏心质量的回旋机器它所传递 给结构上的横向力就是时间 t 的函数。
t
这类荷载称为动力荷载
图(a)
显然,结构在动力荷载作用下的计 算与静力荷载作用下的计算将有很大的 的区别,而且要复杂的多。
Fpsin t
图(b)
这是因为,在进行动力计算时,除了需要考虑惯 性力外,还需取时间作为自变量。在动力问题中,内 力与荷载不能构成静力平衡,但根据达朗伯原理,可 以将动力问题转化为静力问题,方法是任一时刻在结 构上加入假想的惯性力作为外力。即结构在形式上处 于“平衡状态”,这样,就可以应用静力学的有关原 理和方法计算在给定时刻的内力和位移等。 在实际工程中,大多数荷载都是随时间的改变而 变化的,但有一些荷载使结构产生很小的振动,以至 于其上的惯性力可以忽略不计,此时为了简化计算, 可将其视为静力荷载。仅将那些随时间变化,且使结 构产生较大的振动的荷载才作为动力荷载来考虑。
dmy Fp t dt
1 2
t m y 1 3
当质量m不随时间变化时,有 Fp
0 即:Fp t m y
因此,如果把惯性力(-mÿ)加到原来受力的质量上,则动 力学问题就可以按静力平衡来处理,这种列运动方程的 方法常称为动静法。这种方法较为方便,因此得到广泛 应用。 (2)拉格朗日(Lagrange)方程 应用虚位移原理,作用在任意质量mi上的所有力 (包括惯性力),对任意的虚位移所作的虚功总和应 等于零,得
结构动力学习题解答一二章
2、 动量距定理法
适用范围:绕定轴转动的单自由度系统的振动。
解题步骤:(1) 对系统进行受力分析与动量距分析;
(2) 利用动量距定理J ,得到系统的运动微分方程;
(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
3、 拉格朗日方程法:
;
1、7求图1-36所示齿轮系统的固有频率。已知齿轮A的质量为mA,半径为rA,齿轮B的质量为mB,半径为rB,杆AC的扭转刚度为KA,,杆BD的扭转刚度为KB,
解:由齿轮转速之间的关系 得角速度 ;转角 ;
系统的动能为:
CA
;B D
图1-36
系统的势能为:
;
系统的机械能为
;
由 得系统运动微分方程
;
适用范围:所有的单自由度系统的振动。
解题步骤:(1)设系统的广义坐标为 ,写出系统对于坐标 的动能T与势能U的表达式;进一步写求出拉格朗日函数的表达式:L=T-U;
(2)由格朗日方程 =0,得到系统的运动微分方程;
(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
4、 能量守恒定理法
1、2叙述用衰减法求单自由度系统阻尼比的方法与步骤。
用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法与共振法。
方法一:衰减曲线法。
求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期与相邻波峰与波谷的幅值 、 。
(2)由对数衰减率定义 , 进一步推导有
,
因为 较小,所以有
。
方法二:共振法求单自由度系统的阻尼比。
;L/2L/2
则固有频率为:
图1-33(b)
结构动力学-第三章 单自由度体系 (Part 1)
结构动力学Dynamics of Structures 第三章单自由度体系Chapter 3 Single-Degree-of-Freedom SystemsPart 1华南理工大学土木工程系马海涛/陈太聪本章主要目的及内容目的:z 通过单自由度体系介绍动力学的基本概念z 若干实际问题的解内容:(1)无阻尼自由振动(2)有阻尼自由振动(3)对简谐荷载的反应(4)对周期荷载的反应(5)对任意荷载的反应(6)体系的阻尼和振动过程中的能量(7)隔振(震)原理(8)结构地震反应分析的反应谱法自由振动free vibration强迫振动forced vibration第三章单自由度体系SDOF Systems自由振动:结构受到扰动离开平衡位置以后,不再受任何外力影响的振动过程。
0mucu ku ++= 无阻尼自由振动单自由度系统的运动方程()mucu ku P t ++=00c muku =⇒+= 自由振动运动方程单自由度系统无阻尼自由振动的运动方程0muku += 初始扰动:00(0)(0)t t u u uu ==== 初始位移初始速度二阶齐次常微分方程Homogeneous second orderordinary differential equation无阻尼自由振动的数学模型000;(0),(0)t t muku u u uu ==+=== 初始条件Initial conditions2()0stC ms k e +=设解有以下形式()stu t Ce=代入方程得 C 和s 为待定常数。
因此,方程通解为:121212()n n i ti ts t s tu t C e C eC eC eωω−=+=+或模型求解0muku += 2ms k ⇒+=1,2n ks i mω⇒=±=±()cos sin n n u t A t B tωω=+三角函数形式通解()sin cos n n n n ut A t B t ωωωω=−+00(0)(0)t n t u A u uB u ω====== (0)()(0)cos sin n n nuu t u t tωωω=+(0)(0),nuA uB ω⇒==利用初始条件,我们有单自由度系统无阻尼自由振动问题的解其中n kmω=无阻尼自由振动为简谐运动Simple harmonic motion ωn 称为圆频率或角速度Angular frequency / velocity ()cos sin n n u t A t B tωω=+三角函数形式通解()sin cos n n n n ut A t B t ωωωω=−+振幅无阻尼自由振动问题解的图示(1)振幅–Amplitude of motion[]220(0)(0)n u u u ω⎡⎤=+⎢⎥⎣⎦基本参数(2)固有周期–Natural period of vibration2n nT πω=(3)固有频率–Natural frequency of vibration1n nf T =Hz (赫兹)固有频率s (秒)固有周期rad/s (弧度/秒)固有圆频率单位定义物理量名称2n nT πω=1n nf T =n k m ω=单自由度系统无阻尼自由振动系统参数§3.2 有阻尼自由振动0c uk u m u ++= 运动方程2()0stC ms cs k e ++=设解有以下形式()stu t Ce =代入方程得解为:221,222nc c s m m ω⎛⎞=−±−⎜⎟⎝⎠粘性阻尼模型2ms cs k ++=2c k s s m m++=22n c s s mω++=阻尼系数影响此项的取值进一步决定解的特征Critical damping and damping ration临界阻尼22022n cr n c c m m k c m ωω⎛⎞−=⇒⎜⎟⎝⎠===此时运动方程的解为12ns s ω==−()()n tu t A Bt e ω−=+0mucu ku ++= 验证—分别将两个解代入方程()n tu t Aeω−=()n tu t Bteω−=()22220n t nnnAem m m ωωωω−=−+=()2n t nnAem c k ωωω−−+左端=()()221n t nnnBem t c t kt ωωωω−⎡⎤−++−+⎣⎦左端=()2220n tnnnBec m t m k ωωωω−⎡⎤=−+−+=⎣⎦Critical damping and damping ration运动方程的解为()()n tu t A Bt e ω−=+()()(0)(1)(0)n tn u t u t ut e ωω−=++ (0)(0)n u AuA B ω==−+ 因此,解为根据初始条件,有()()n tn u t A Bt B eωω−=−++⎡⎤⎣⎦ 对应的速度表达式为(0)(0)(0)n A u B u uω==+ 或者(0)()(0)1(0)n t n uu t u t e u ωω−⎡⎤⎛⎞=++⎢⎥⎜⎟⎝⎠⎣⎦(0)()(0)1(0)n t n uu t u t e u ωω−⎡⎤⎛⎞=++⎢⎥⎜⎟⎝⎠⎣⎦ 解的特征由此项控制当阻尼大于临界阻尼时,0mucu ku ++= 220n n uu u ζωω++= 2n crc cm c ζω==其中,阻尼比1221120()s ts ts s u t C e C e<<=+临界阻尼可定义为:体系自由振动反应中不出现往复振动所需的最小阻尼值。
结构动力学 -单自由度体系的振动
13
§2.2 无阻尼自由振动
自由振动(free vibration) :无外界干扰的体系振动形 态称为自由振动(free vibration)。振动是由初始位 移或初始速度或两者共同影响下所引起的。 无阻尼自由振动:如果阻尼系数等于零,则这种自由 振动称为无阻尼自由振动(undamped free vibration)。 假设由于外界干扰,质点离开平衡位置,干扰消失后, 质点将围绕静力平衡点作自由振动。
或:m y ( t) c y ( t) k ( t) y m y g ( t) P e( f t) f
Peff (t ) :等效荷载,即在地面加速度yg (t )影响下,结构的响
应就和在外荷载p (t )作用下的响应一样,只是外荷载 p (t )
等于质量和地面加速度的乘积。
干扰力的大小只能影响振幅A的大小,而对结构自
振周期T的大小没影响。
(2)自振周期与质量平方根成正比,质量越大,则
周期越大;自振周期与刚度的平方根成反比,刚度
越大,则周期越小。要改变结构的自振周期,只有
改变结构的质量或刚度。
24
§2.2 无阻尼自由振动
k g
m
st
(3)把集中质点放在结构上产生最大位移的地方,则可
1、位移以静力平衡位置作为基准的,而这样确定的位移 即为动力响应。
2、在求总挠度和总应力时,要把动力分析的结果与静
力分析结果相加。
9
§2.1运动方程的建立
3、支座运动的影响 结构的动位移和动应力既可以由动荷载引起,也
可以由结构支座的运动而产生。 1)由地震引起建筑物基础的运动; 2)由建筑物的振动而引起安置在建筑物内的设备 基底的运动等等。
2-1结构动力学(单自由度)
O
t
这条曲线仍具有衰减性,但不具有波动性。
1, cr 2m
c 2m
c cr
阻尼比
(2)ξ> 1(强阻尼)情况
1,2 2 1 0
y t C1e1t C2e2t
t
y( t )
O
y (t ) e t C1 sinh 2 1 t C 2 cosh 2 1 t
g y st
y st m T 2 2 k g
频率只取决于体系的质量和刚度,而与外界因素 无关,是体系本身固有的属性,所以又称为固有频率
(natural frequency)。
(3)简谐自由振动的特性
y(t ) Asin( t )
(t ) A 2 sin(t ) y 加速度为: 惯性力为: FI (t ) m (t ) mA 2 sin(t ) y
特征根 一般解
2 2 2 0
1, 2 2 1
y(t ) C1e
1t
C2 e
2t
(1)ξ= 1(临界阻尼)情况
1,2
y C1 C2 t e t
y( t )
tan v
t
y y0 (1 t ) v0t e
d
阻尼对自振频率、周期的影响
,
d
Td T
在工程结构问题中,若0.01<ξ<0.1,可近似取:
d , Td T
y(t ) e t Asin ( d t )
阻尼对振幅的影响
yk Aetk Td e y k 1 Ae (tk Td )
结构动力学第二章 单自由度系统的振动2
0.39 0.66 0.73 1.00 1.05 1.20 1.42 1.55 1.69 1.76 2.00
23
24
解: 水塔的自振频率和周期分别为
k 29.4106 N / m 31.305rad / s
m
30103 kg
T 2 0.2007s
取微小时段 0.01s ,约相当于水塔自振
同理,积分项 B(t) 可用相同的方法进行计算。
16
因此,无阻尼体系动力响应的数值解: y(t) A(t) sin t B(t) cost
同理,也可求得有阻尼体系动力响应。 注:数值积分解答的精确度与计算中选择和微 小时段 有关,一般可取小于系统自振周期 的十分之一,便可得到较好的结果。
17
A yst
1
2
t1
2
( 1 cost1
) 2
t1
1/ 2
sint1
t1 T
0.371
动力系数只与 t1 有关,即只与 t1 T 有关
下表列出不同 t1 T 值时的动力系数。
表 不同 t1 T 值时的动力系数表
t1/T 0.125 0.20 0.25 0.371 0.40 0.50 0.75 1.00 1.50 2.00
用下式进行计算。
无阻尼:
( 0)
y(t) 1 t p( ) sin (t )d
m 0
有阻尼: y(t) 1
( 0)
md
t 0
p(
)e (t )
sin d
(t
)d
2)对于许多实际情况,如果荷载的变化规律是 用一系列离散数据表示(如试验数据),此时 的响应计算就必须借助于数值分析方法。
11
《结构力学》结构动力学(2)
为最大的动力位移与静力位移之比,称为位移动力系数。
简谐荷载作用下, 与 之间关系曲线分析。
1、无阻尼条件
(1) 0 时, 5.0
1, ymax ( t ) yst。
4.0
(2)0 1 0 时,
随着 增加 增大,
3.0
0
FP ( t ) FP sint。 y( t ) yst sint。
(3)当ξ=1时的阻尼称为临界阻尼;相应的 值称为
临界阻尼系数,用cr 表示,则
cr 2mk 2m ,
k 2mk 2m cr
阻尼比 即为阻尼系数 与临界阻尼系数 cr 之比。
§14-4 单自由度结构在简谐荷载作用下的强迫振动
当干扰力 F(t) 直接作用在质点上,质点的受力将如图14-10所示,
且 y( t )与FP ( t ) 同步。
2.0
(3) 1 时, 1.0
, ymax ( t ) , 共振。
(4)1 时,
1.0 2 2.0
3.0
随着 增加 减小,且 y( t )与 FP ( t ) 反向。
(5) 时, 0, 在静平衡位置附近作微小
振动 。
y0
cos 't
y0
ky0
'
sin
't
y bekt sin( 't ')
其中
b
y02
(ห้องสมุดไป่ตู้
y0
ky0
'
)2
tan ' ' y0
/ 为有阻尼自振频率。
y0 ky0
令 k ,称为阻尼比。
' 2 k2 1 ( k )2 1 2
通常当ξ<0.1时,则 ' 和 的差别很小。
于开平-结构动力学第二讲
(2) 阻尼力的功:
Wd A cos t dt c 2 / 1 cos 2 t cA2 2 dt 0 2 1 2 1 2 2 2 / cA2 2 cA cos 2 t dt 0 2 2
5 稳态响应振幅和相位
5.2 初始相位角 根据初相位角表达式
2 tg 1 2
可以画出初相位角随频率比的变化曲线,简称相频曲线:
在共振点,不管阻尼比多大,初相位角均为90度。
6 稳态响应复数解法及频响函数
之前将外载荷假设为正弦形式,其运动控制方程为:
������������ሷ 1 + ������������ሶ 1 + ������������1 = ������0 sin������������ 简谐激励的另一种典型形式为余弦形式,其运动控制方程写作: ������������ሷ 2 + ������ ������ሶ 2 + ������������2 = ������0 cos������������ (2) (1)
o o o
o
1 2 Fo A sin Fo A sin 2
6 稳态响应复数解法及频响函数
令方程特解为������ ������ = ������������ ������ ������������������ ,代入运动控制方程得: (−������2 ������������������ + ������������������������������ + ������������������ )������ ������������������ = ������0 ������ ������������������ 方程对任意时刻t恒等,则方程两边指数函数������ ������������������ 前系数相等,由此可得: ������������ = ������0 ������ − ������������ 2 + ������������������
[讲解]阻尼的概念
阻尼比目录阻尼比的概念阻尼就是使自由振动衰减的各种摩擦和其他阻碍作用。
阻尼比在土木、机械、航天等领域是结构动力学的一个重要概念,指阻尼系数与临界阻尼系数之比,表达结构体标准化的阻尼大小。
阻尼比是无单位量纲,表示了结构在受激振后振动的衰减形式。
可分为等于1,等于0, 大于1,0~1之间4种,阻尼比=0即不考虑阻尼系统,结构常见的阻尼比都在0~1之间.ζ <1的单自由度系统自由振动下的位移 u(t) = exp(-ζwn t)*A cos (wd t - Φ ),其中wn 是结构的固有频率,wd = sqrt(1-ζ^2) ,Φ为相位移.Φ和常数A由初始条件决定.阻尼比的来源及阻尼比影响因素主要针对土木、机械、航天等领域的阻尼比定义来讲解。
阻尼比用于表达结构阻尼的大小,是结构的动力特性之一,是描述结构在振动过程中某种能量耗散的术语,引起结构能量耗散的因素(或称之为影响结构阻尼比的因素)很多,主要有[1](1)材料阻尼、这是能量耗散的主要原因。
(2)周围介质对振动的阻尼。
(3)节点、支座联接处的阻尼(4)通过支座基础散失一部分能量。
阻尼比的计算对于小阻尼情况[2]:1) 阻尼比可以用定义来计算,及ksai=C/C0;2) ksai=C/(2*m*w) % w为结构圆频率3) ksai=ita/2 % ita 为材料损耗系数4) ksai=1/2/Qmax % Qmax 为共振点放大比,无量纲5) ksai=delta/2/pi % delta是对数衰减率,无量纲6) ksai=Ed/W/2/pi % 损耗能与机械能之比再除以2pi阻尼比的取值对结构基本处于弹性状态的的情况,各国都根据本国的实测数据并参考别国的资料,按结构类型和材料分类给出了供一般分析采用的所谓典型阻尼比的值。
综合各国情况,钢结构的阻尼比一般在0.01-0.02之间(单层钢结构厂房可取0.05),钢筋混凝土结构的阻尼比一般在0.03-0.08之间,对于钢-混凝土结构则根据钢和混凝土对结构整体刚度的贡献率取为0.025-0.035。
第二章 单自由度系统的振动1(长沙理工大学结构动力学)
(2-2)
这是个常系数线性齐次微分方程
2、自由振动方程的解
方程(2-2)的通解由数学知识可知为: y(t ) C1 sin t C2 cos t (2-3) C1、C2为待定系数,可由初始条件确定。 0 y (0) 代入(2-3) 设t=0时的初始位移 y0 y(0), 初速度 y
二、阻尼的量测
对相邻幅值比取自然对数,称为对数递减率 y 即:
y ln e
TD
TD
y
2
D
2
1 2
(2-13) 2 2 y 2 为获得更高精度的 可量测相隔m个周期的两个幅值比 y' 这时阻尼比为: (2-14) 2 2 2 m y ' 其中:
其中 -柔度系数(单位力作用下相应的位移) k –刚度系数(单位位移作用下所需加的力) g –重力加速度
W
–重力 yst –重力引起的位移
例1) 、试建立图示结构的运动方程(考虑阻尼)并求自振频率 (不计阻尼)。设横梁刚度无限大, 柱 EI 4.5 106 Nm2 梁的质量 m=5000kg。h=3m 解:由于横梁刚度无穷大,结构只能产生水平 h EI 位移。设x坐标向右。二柱的侧移劲度系数为: 12 EI k k1 k2 3 = h 2 y P(t) m 又设横梁(质量m)位移为y,以它为隔离 体,受力如图所示。 F F cy
列x方向全部力的平衡方程,即可得结构的运 动方程为 ky P(t ) m y cy
12 EI k s1 F F y y 图中Fs1和Fs2可由位移法知 s1 s 2 h3 2 y
P(t)
结构动力学中的阻尼
结构动力学中的阻尼 一、租你的分类1)粘滞阻尼(大小与啥速度成正比,方向与速度相反) 2)滞后阻尼(结构阻尼,大小与位移成正比,方向与速度相反)3)干摩擦阻尼(库伦阻尼,大小与正压力成正比,方向与速度相反) 二、阻尼的测定1)自由振动衰减法,见教材p7)1n n ln(个循环的幅值第个循环的幅值第+=δ (1)tT t t n n e eu e u u u ςωςωςω==+--+)(001 (2) πςςωδ2==t (3)如果相隔n 个周倜,则ςπδn n 2= (4)2)共振法222m a x )2()1(1ςρρ+-===st d y y DLF 最大静位移最大动位移 (5) 222)(210)(ωςρρΩ=-=⇒=d DLF d (6)2max 121ςς-=DLF (7)当共振时,1≈ρ,可以推出;maxmax 2121DLF DLF =⇒=ςξ(8)3)带宽法 (0.707法)频率反应曲线ωωως212-=(9)式(9)推导如下:2222222)121()21())2()1(1(ςςςρρ-=+- (10) 化简 式(10),可得0)1(81)21(222224=--+--ςςρςρ (11)解得:2221221ςςςρ-±-= (12)由于2ζ很小,式(12)可以化简为:ςρ212±= (13)ζρζρ±≈⇒±=121 (14)ωωωζζωωω221212-=⇒=- (15)三、对几种阻尼的比较 1)粘滞阻尼yc fd -= (16))sin(ϕ+Ω=t A y (17) )cos(ϕ+ΩΩ=t A y(18) )cos(ϕ+ΩΩ-=t cA f d (19) 2222222222222222222222)(sin ))(sin 1()(cos y c A c t A c A c t A c t A c f d Ω-Ω=+ΩΩ-Ω=+Ω-Ω=+ΩΩ=ϕϕϕ (20)1222222=+ΩA y c A f d (椭圆方程) (21)椭圆面积为阻尼李在一个周期内所做的功⎰Ω==Td T cA dy f W /202ππ (22)221kA U =(23) 能量耗散系数kcU W T Ω==πφ2 (24) 实验表明Ω与φ无关,与实际不符。
振动力学与结构动力学第二章1
自由振动衰减曲线
y ln
yi y i 1
T d
2
d
2 1
2
由此可得阻尼比
=
y
( 2 ) y
2 2
为了获得 更高的精度和避免偶然 可以量测相隔 y ln yi yi m m 个周期的幅值 mT d m y ( 2 m ) ( y )
第三节 单自由度系统简谐荷载作用下的 受迫振动 一、无阻尼受迫振动
1、无阻尼受迫振动方程解
m ( t ) ky ( t ) F sin t y
运动方程的解
y (t ) y0 sin t y 0 cos t F
2 2
m ( )
sin t
2 2
因素产生的误差, y i 和 y i m , 同样有
2
d
2 m 1
2
从而得阻尼比
=
例:有关参数同前刚架,若用千斤顶使M产生侧移 25mm,然后突然放开,刚架产生自由振动,振动5周 后测得的侧移为7.12mm。试求 :(1)考虑阻尼时 的自振频率;(2)阻尼比和阻尼系数;(3)振动 10周后的振幅。 解:由y0=25mm, y0+5TD=7.12mm,有:
[ y 0 ch D t
y 0 y 0
D
sh D t ]
体系仍不作振动,只发生按指数规律衰减的非周期 蠕动,上式也不含简谐振动因子,由于大阻尼作用,受 干扰后,偏离平衡位置体系不会产生振动,初始能量全 部用于克服阻尼,不足以引起振动。
3、负阻尼情况<0或c<0 阻尼本来是耗散能量的,负阻尼表示在系统振动过程中不
1工程结构中的阻尼及其力学模型
y1 2 ln y 2 1 2
一、工程结构中的阻尼及其力学模型
例题:研究一座桥梁的竖向振动,对于基频,结 构可以看成是单自由度体系。让桥梁在跨中产生 挠度(用绞车把桥梁向下拉),然后突然释放。
在初始扰动之后,求得振动按指数衰减,即在频
率为1.62Hz的三个周期内,振幅从10mm衰减为 5.8mm。在跨中停放质量为40000kg的车辆重复进
宏观尺度的滑动被降低而微观滑动开始这种微观滑动包括接触面间的相互凹凸的微小位移相对于滑动面的对面3连接处嵌固压力的进一步增加将使粗糙面的贯入度变得更大
结构动力学
——单自由度系统的振动 湖南大学土木工程学院
尹华伟
2013年7月
一、工程结构中的阻尼及其力学模型
粘滞阻尼
k c m
cy ky 0 m y
对库仑阻尼,可导出等效粘滞阻尼系数:
cd
4 Fd
一、工程结构中的阻尼及其力学模型
阻尼引起的能量耗散
滞变阻尼: 对简谐激励: 得:
y sin t
Fdy k (1 j )ydy
y , cost y /
2 2
2 2
F k sin t jk sin t k sin t k cost
行试验,并测得其自振频率为1.54HZ。
求有效质量,有效刚度系数和结构阻尼。
设m为有效质量,k为有效刚度系数。
一、工程结构中的阻尼及其力学模型
因为:
1 f1 1.62 2 1 f 2 1.54 2
k m k 3 m 4010
3
故得:
1.62 m 4010 m 1.54 因此有效质量: m 375103 kg 2 有效刚度: k (2f1 ) m 38850 kN/m
结构动力学单自由度
m3
模型。
▪ 例如:
m
m1
m2
m1x1m2x2来自mkmNmkxk
mN xN
2. 广义坐标法
假定具有分布质量的结构在振动时的位移曲线可用一系列 规定的位移曲线的和来表示:
▪ 适用于质量分布比较均 匀,形状规则且边界条 件易于处理的结构。
▪ 例如:右图简支梁的变 形可以用三角函数的线 性组合来表示。
FD cy c 为阻尼系数,y为质量的速度。
结构体系运动方程的建立
定义
在结构动力分析中,描述体系质量运动规律的数学 方程,称为体系的运动微分方程,简称运动方程。
▪ 运动方程的解揭示了体系在各自由度方向的位移 随时间变化的规律。
▪ 建立运动方程是求解结构振动问题的重要基础。 ▪ 常用方法:直接平衡法、虚功法、变分法。
根据所用平衡方程的不同,直接平衡法又分为刚度 法和柔度法。
刚度法: 取每一运动质量为隔离体,通过分析所受 的全部外力,建立质量各自由度的瞬时力平衡方 程,得到体系的运动方程。
y (t ) c
F(t) m
k
y (t )
FD
FI
F (t )
FS
平衡方程: FI FD FS F (t )
刚度法
取每一运动质量为隔离体,通过分析所受的全部 外力,建立质量各自由度的瞬时力平衡方程,得 到体系的运动方程。
结构的自由振动与受迫振动
y
y
t
t
定义
▪ 结构受外部干扰后发生振动,而在干扰消失后继续振动, 这种振动称为结构的自由振动。
▪ 如果结构在振动过程中不断地受到外部干扰力作用,这种 振动称为结构的强迫振动,又称受迫振动 。
固有频率
y
清华大学结构动力学2-1
2.2 运动方程的建立 4. Hamilton原理
可以应用变分法(原理)建立结构体系的运动方程。 体系的平衡位置是体系的稳定位置,在稳定位置,体系 的能量取得极值,一般是极小值。 Hamilton原理是动力学中的变分法(原理)。
2.2 运动方程的建立 4. Hamilton原理(积分形式的动力问题的变分方法)
∫
t2 t1
用 Hamilton 原理推导 Lagrange 方程 对于有 N 个自由度的结构体系,体系的动能和位能分别为:
& & & T = T ( u1 , u 2 , L u N , u1 , u 2 , L u N ) V = V ( u1 , u 2 ,L u N )
(a) (b)
因此动能和位能的变分为:
∫
∫
t2 t1
t2
t1
& & & [ muδu − cuδu − kuδu + p(t )δu]dt = 0
对上式中的第一项进行分部积分
& & & muδudt = ∫ mu(δ
t2 t1 t t t t d d & & & && && u )dt = ∫ mu (δu )dt = ∫ mud (δu ) = muδu tt − ∫ δu ⋅ mudt = − ∫ muδudt t t t t dt dt
结构动力学
(2004秋)
结构动力学
第二章
运动方程的建立
运动方程: 描述结构中力与位移关系的数学表达式 (有时称动力方程) 运动方程是进行结构动力分析的基础 运动方程的建立是结构动力学的重点和难点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EI EI EI
m
l
2 l3 11 3 EI
l
1 3 2l 3 m 2 3EI
EI ml 3
3. 质点重W,求图示体系的自振频率。
k11 k
EI k
3EI l3
l
m W / g
3EI k 3 l g W
4. 求图示体系的自振频率。
m
EI EI1=∞ EA l
g y st
y st m T 2 2 k g
频率只取决于体系的质量和刚度,而与外界因素 无关,是体系本身固有的属性,所以又称为固有频率
(natural frequency)。
(3)简谐自由振动的特性
y(t ) Asin( t )
(t ) A 2 sin(t ) y 加速度为: 惯性力为: FI (t ) m (t ) mA 2 sin(t ) y
y 0 y0 y 0 v0
y (t ) y 0 cost
v0
sin t
(1)方程的解
y(t ) y0 cost v0
sin t
y(t ) A sin t
振幅
(amplitude of vibration)
A
y0
2
0 y v0 2 = y0
2
2
初始相位角
y0 y0 arctan =arctan y v 0 0
y(t ) A sin t
y y
T t
0
y cos t
振动将以 y 一个连续地 v 定常幅度振 0 动。经过一 v y 固定时段又 恢复原运动 A 状态。
第二章
单自由度体系的振动
2.2 单自由度体系的自由振动
Free Vibration of Single Degree of Freedom Systems
1. 无阻尼自由振动
cy ky FP (t ) m y
ky 0 m y
k m
2
c =0, FP(t)=0
在无阻尼自由振动中,位移、加速度和惯性力都按 正弦规律变化,且作相位相同的同步运动,即它们在同 一时刻均达极值,而且惯性力的方向与位移的方向一致。
(3)简谐自由振动的特性
它们的幅值产生于 sin(t ) 1 时,其值分别为:
y A
0
A y
0
2
FI0 mA 2
既然在运动的任一瞬时质体都处于平衡状态,在幅 值出现时间也一样,于是可在幅值处建立运动方程,
此时方程中将不含时间 t ,这样就把微分方程转化为
代数方程了,使计算得以简化。
例题
例1 求图示伸臂梁体系的自振频率和周期
EI m
解
(1) 静定梁,采用柔度法 (2) 画质体单位力下的弯矩图。
l
l/2
l/2
1
B EI= l C
3
A
l /2
k l /2
D
m1
B
k
C
FI0 1FSm2FI02l 3 FI02 l FS l 0 2 2 l 2 0 2 FI 1 m1 A1 m 2 m 3l l 2 2 2 FI 2 m 2 A2 m 3 2 2 FS kl FI0 1
2 y y 0
为什么要讨 论这种简单 模型?
这种理想情况所得到的某些结果,可以相当精确地反映实际 结构的一些动力特性;可以与有阻尼情况加以对比,以便更好地 了解阻尼的作用。
(1)方程的解
k m
2
y 0 y
2
通解 代入初始条件 得动位移为
y C1 cost C2 sin t
-y
T t
v
sin t
T t
0
A sin t
-A
(2) ※结构的自振周期和圆频率
(natural period and natural circular frequency )
周期 完成一次振动需要的时间
T
2
频率 单位时间内完成振动的次数
1 f 2 T
圆频率 2π个单位时间内完成振动的次数,或单位时间内转的周数
2 2 f T
(2) ※结构的自振周期和圆频率
(natural period and natural circular frequency ) ? ? ?
k 1 g m m W
2. 有阻尼自由振动
cy ky FP (t ) m y
FP(t)=0
cy ky 0 m y
k c , 2 m m
2
2y y 0 y
2
2. 有阻尼自由振动
2 y 2y y 0
特征方程
(3) 弯矩图自乘,求柔度系数。
l3 l 2 l 1 l l 2 l 1 l EI 2 3 2 2 2 2 3 2 8 EI 2
(4)
8 EI ml 3 T 2 ml 3 8 EI
例2 求图示单层刚架的自振频率和周期
m EI1=∞ EI EI 体系 1 h 6i/h 6i/h 单位侧移时的弯矩图 1 k 12i/h2 12i/h2 1
m 2 k 0
k m
练习
1. 计算图示结构的自振频率。
m
l /2 EI l /2 l /2
m
EI l /2
m
l /2
EI
l /2
ω1 ׃ω2 ׃ω3= 1 ׃1.512 ׃2
结构约束越强,其刚度越大;刚度越大,其自振动频率也越大。
2. 求图示体系的自振频率。
1
k
隔离体
解
(1) 超静定刚架,采用刚度法 (2) 画质体发生单位位移时的弯矩图。
2 k 24 i h (3) 取隔离体,列平衡方程,求刚度系数
(4) 24 i mh2
T 2 mh2 24i
例3 求图示体系的自振频率 解:在振幅处列平衡方程 1 m2 m m1 m MB 0
特征根 一般解
2 2 2 0