初中数学建模教学设计硕士论文

合集下载

浅析初中生数学建模能力的培养策略论文

浅析初中生数学建模能力的培养策略论文

浅析初中生数学建模能力的培养策略论文关于浅析初中生数学建模能力的培养策略论文数学建模是针对现实世界某一特定研究对象的数量相依关系和主要特点,采用数学语言和数学符号概括地或近似地表述出来的一种数学结构. 当前,初中生数学建模能力偏低,难以运用数学知识建立解决日常生活实际情境的数学模型,尤其对背景复杂,文字较多的数学应用题更是无从下手,这在很大程度上影响了学生综合素质的全面提升. 因此,在初中数学课堂教学中,教师要重视学生数学建模能力的培养,优选有效策略,引导学生有效构建数学模型,发展学生思维创造力,提高学生分析问题、解决问题的能力.一、创设问题情境,诱发学生的建模热情问题是思维的起点,良好的问题情境,往往有助于调动学生的探究欲和好奇心,引发学生的认知冲突,燃起学生对知识追求的热情,使其以饱满的激情快速投入到教学活动中. 因此,在初中生数学建模能力的培养过程中,教师要注意创设良好的问题情境,从学生感兴趣的数学模型或学生的生活经验和已有的知识背景出发,精心设计难易适中、趣味新颖、富有启发价值、探究意义的数学建模问题,引导学生思考探究,触发学生的数学思维欲望,诱发学生的建模热情.二、丰富生活背景,培养学生建模意识数学建模问题不是单纯的数学问题,它是从生活实际原型或背景出发,涉及多方面的生活知识. 在教学过程中,教师要鼓励学生多接触社会实际,积累丰富自己的生活阅历,为正确建立数学模型奠定良好的基础. 同时,在数学建模教学过程中,教师要尽可能地从学生的生活实际出发,结合教学内容,通过设置与学生息息相关的生活背景,捕捉社会热点问题,或根据学生已有知识水平改编例题背景,引导学生运用归纳、分析、推理、概括、验证等一系列的思维方法,建立数学模型,解决数学建模问题,培养学生的建模意识,发展学生的思维能力.例如,在解“一次函数y = 5x + 10”时,教师可以通过设置不同的生活背景,引导自主探究,合作交流,培养学生的数学建模意识,实现知识的构建. 生活背景1: 公园里有一个长为5m,宽为2m 的长方形花坛. 现把花坛加宽xm,以扩大花坛面积,则花坛面积y 与x 的函数关系为y = 5x + 10. 生活背景2: 弹簧原长10cm,每挂1kg 的物体弹簧伸长5cm,则弹簧长度y( cm) 与挂物重xkg 的函数关系为y = 5x + 10. 生活背景3: 某城市出租车起步价为10 元,超过规定的公里数外,每公里再加5 元,则出租车费用y 与超出规定公里数x的函数关系为y = 5x + 10.三、注重多向思维,拓宽学生建模思路受某些固定模式和学习方法的影响,学生在学习过程中往往容易形成单向思维的状态,并形成一定的思维定势,从而影响学生思维的灵活性和全面性. 数学建模问题有着一定的假设条件和所要达到的目标,数学建模需要将假设条件与目标巧妙地联系起来,这种联系并不是固定唯一的',而是综合多向的. 因此,在初中生数学建模能力的培养过程中,教师要注意学生多向思维的培养,克服思维定势的束缚,引导学生多角度、多方位地构建数学模型,拓宽学生的数学建模思路,提高学生思维的灵活性、深刻性以及广阔性.池塘AB例如,在讲“三角形”后,笔者设计以下问题: 如图1,有一个池塘,要测量池塘的两端A、B 间的距离,直接测量有障碍,用什么方法可以测出A、B 的距离.建模1: 构造三角形及其中位线,利用中位线的性质求出AB.建模2: 构造两个三角形,利用全等或相似性质来求出AB.建模3: 构造等腰三角形或等边三角形,求出AB.建模4: 构造直角三角形,运用勾股定理解决问题,求出AB.四、重视模型归类,增强学生建模能力在初中阶段,方程( 组) 和不等式模型、函数模型、几何模型、统计模型等模型类型是较为常见的数学模型. 在教学过程中,教师要重视这些数学模型的归类,引导学生能够根据某种规律建立变量和参数间的一个明确数学关系,并正确运用方程、不等式、函数等数学思想方法来解决实际问题,从而增强学生的数学建模能力. 方程( 组) 建模是通过给出的实际问题,设立合适的未知数,找出相等关系,并注意验证结果是否与实际问题相符合.总之,初中生数学建模能力的培养,符合当前素质和新课程标准改革的需要. 在教学中,教师要重视数学建模,以学生为主体,结合学生实情,精心创设良好的问题情境,诱发学生的建模热情,注意丰富生活背景,培养学生的建模意识,注重多向思维,拓宽学生的建模思路,重视模型归类,增强学生的建模能力,提高学生的数学应用意识,培养学生良好的思维品质.。

数学建模优秀论文(精选范文10篇) 2021

数学建模优秀论文(精选范文10篇) 2021

根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题,这就是数学建模,本篇文章主要是向大家介绍几篇数学建模优秀论文得范文,希望对有这方面参考得学者有所帮助。

数学建模优秀论文精选范文10篇之第一篇:培养低年段学生数学建模意识得微课教学---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。

---------------------------------------------------------------------------------------------------------------------摘要:本文阐述了录制微课对培养学生建模意识得必要性和可行性,认为在小学数学教学中,鼓励低年段学生录制微课有积极意义,主张提高小学生建模语言表达能力,通过任务驱动和学生自主录制微课,逐步深入学习建模内容,培养并增强学生得建模意识。

关键词:低年段数学; 微课; 建模意识;当今社会,信息技术高速发展使教学资源高度丰富。

广大教师纷纷探讨如何利用信息技术更好地为教学服务,有效地改进教与学得方式,提高学生学习兴趣。

一、录制微课对培养学生建模意识得必要性和可行性“三年级现象”备受关注,很多人认为小学三年级是道坎,有得学生一、二年级数学成绩很好,到了三年级就断崖式下降。

如果真得出现这种现象,那么学生一、二年级数学成绩好只是表象。

一、二年级是学生初步感知数学得重要时期。

低年段数学知识是基础,对于低年段数学教学包括建模教学必须引起广大教育工作者得重视,让学生从小接受正确得教学模式,真正掌握学习数学得思想方法,避免出现短暂成绩好得现象。

初中数学建模论文范文

初中数学建模论文范文

初中数学建模论文范文下载篇1浅谈初中生数学建模能力的培养摘要中学数学建模有利于培养学生运用数学的意识,有利于培养学生勇于探索、积极主动的学习方式,有利于培养学生想象力、联想力和创造力,有利于培养学生团结协作的精神……关键词数学建模能力一、数学建模的重要性数学建模就是运用数学思想、方法和知识解决实际问题的过程。

数学建模教学是指在日常数学课堂教学中,教师结合数学课本知识,将未经简化抽象的现实问题带到课堂上,使学生能运用理解、观察、比较、分析、综合、归纳、抽象、概括等基本的数学思维方法,最大限度地调动已获得的数学概念、公式、图形基本关系,把实际问题中的非数学信息转换成抽象的数学信息,或把现实数学对象中赋予的信息转化成另一种数学对象的信息,建立相应的数学模型,学生通过数学模型的建立和求解来解决实际问题随着数学教育界中“数学应用意识”教育的不断深入,提高数学应用性的教育迫在眉睫。

数学应用性包括两个层次:一是数学的精神、思想和方法;二是数学建模。

而通过数学建模能力的培养,使学生可以从熟悉的环境中引入数学问题,增加与生活、生产的联系,培养学生的数学应用意识、巩固学生的数学方法、培养学生的创新意识以及分析和解决实际问题的能力,这正是素质教育和数学教育的目的。

从初二开始,学生已经能够很好地掌握他们所理解的一些抽象概念的本质属性,并能逐步地分出主次特征,只是对高度概括与抽象缺乏经验,因此,在这个阶段对学生有意识地进行数学建模能力的培养,加强他们对数学的兴趣以及对能力的开发都有深远的影响。

二、初中生数学建模能力培养的基本原则1、以学生为主体原则在教学中必须坚持以学生为主体,一切教学活动必须以调动学生的主观能动性、培养学生的创新思维为出发点,要为学生提供一个学数学、做数学、用数学的环境和动手动脑并充分表达自己想法的机会,教师要激励学生大胆尝试,鼓励他们不怕失败,多读、多想、多练,引导学生自主活动,在自觉学习过程中构建数学建模意识。

初中数学建模论文

初中数学建模论文

初中数学建模论文篇1浅论初探初中数学建模数学新课标教学大纲中明确提出:强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学的理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

所以说强化数学建模能力,不仅能使学生更好地掌握数学基础知识,学会数学的基本思想和方法,也能增强学生应用数学的意识,提高分析问题、解决实际问题的能力。

数学建模的具体步骤:第一,根据实际问题的特点进行数学抽象,构建恰当的数学模型。

第二,对所得到的数学模型,进行逻辑推理或数学演算,求出所需的解答。

第三,联系实际问题,对所得到的解答进行深入讨论,作出评价和解释,返回到原来的实际问题中去,得出实际问题的答案。

中学阶段常见的数学模型有方程模型、不等式模型、函数模型或几何模型、统计模型等,我们把运用数学模型解决现实问题的方法统称为应用建模。

近几年笔者一直任教九年级数学,版本为《泰山版》,现针对任教内容与大家一起探讨几个常见的数学模型。

一、方程模型现实生活中广泛存在着数量之间的相等关系,方程(组)模型则是研究现实世界数量关系最基本的数学模型,它可以帮助人们从数量关系的角度更正确、更清晰认识、描述和把握现实世界。

案例1:一元二次方程中的平均变化率问题。

为了美化环境,某市加大了对绿化的投资,20xx年用于绿化投资20万元,20xx年用于绿化投资28.8万元,求这两年绿化投资的平均增长率。

1.问题分析假设这两年绿化投资的平均增长率为x,那么20xx年用于绿化的投资额为多少元那么20xx年用于绿化的投资额为多少元2.模型建立20xx年用于绿化的投资额为:20(1+x)。

20xx年用于绿化的投资额为:20(1+x)2。

根据20xx年用于绿化的投资28.8万元,得到方程20(1+x)2=28.8。

如果设起始数据为a,终止数据为b,平均变化率为x,则经过两次增长或降低后得到方程形式为a(1+x)2=b或者a(1-x)2=b。

初中数学建模优秀论文

初中数学建模优秀论文

初中数学建模优秀论文试论数学建模方法目前数学教学与数学应用脱节的现象很突出,以至于学生认为学习数学没用,对数学学习失去兴趣,如何改变目前这种教学与应用脱节的现象,笔者认为,可以用数学模型法指导数学应用题教学,为学生用数学来解决问题提供经验和范式,从而探索出一条行之有效的教学途径。

一、什么是数学模型要突出应用,就应站在数学模型法的高度来认识并实施应用题教学。

什么是数学模型法?数学模型法就是把实际问题加以抽象概括,建立相应的数学模型,利用这些模型来研究实际问题的一般数学方法。

教师在应用题教学中要渗透这种方法和思想,要注重并强调如何从实际问题中发现并抽象出数学问题,如何用数学模型(包括数学概念、公式、方程、不等式函数等)来表达实际问题,如何用数学模型的解来解释实际问题的解。

以及为科学决策提供可信的依据并预测其发展趋势。

二、建模示范方法例谈在教学中我根据教学内容,选编一些应用问题进行例题教学,引导学生分析联想、抽象建模,培养学生的建模能力,提供经验和范式。

选编数学应用性例题的一般原则是:①必须与教学内容密切联系;②必须与学生的知识水平相适应;③必须符合科学性和趣味性;④取材应尽量涉及目前社会的热点问题,有时代气息,有教育价值。

1.与其他相关学科有关的问题题1:化学中甲烷CH4的键角109°28′是怎样求出来的?题2:在大楼底层有一控制室,有三条导线和楼上某电器相连,设三连导线的电阻分别为x、y、z,现手头有一只电表可在控制室内测量电阻,试没计一种数学方法求这三根导线的电阻。

2.发生在学生身边的数学问题题3:学校教学大楼,从一楼到二楼共13个台阶。

一位同学上楼梯可以一步上一个台阶,也可以一步上两个台阶。

问从一楼走到二楼,有多少种不同走法?一年365天,每天选用一种走法,能否做到天天的走法均不相同?题4:学校足球场地是一个102×68平方米的矩形,球门宽为8米,由边线下底传中是惯用的战术,请你帮助足球队员确定离底线多少距离的地方起脚传中效果最佳?3.从教材的例题和习题中改造而成的问题课本中有一习题,稍加修改就可以形成以下应用问题。

初中数学建模论文例文

初中数学建模论文例文

初中数学建模论文例文篇1浅析初中生数学建模中的障碍及对策摘要:应用数学去解决各类实际问题时,建立数学模型是非常重要的一步,同时也是非常困难的一步。

文章就初中数学建模中的障碍及对策提出了一些看法。

关键词:初中;数学;建模新课标强调学校的教育根本任务在于教会学生如何学习,如何创造,如何应用所学过的知识解决实际问题,作为一名数学教育工作者,应该教会学生把实际问题转化为数学问题加以解决,这就是初中数学教学中的一个重点如何构造数学模型。

一、什么是数学建模数学建模就是用数学语言描述实际现象的过程,数学模型一般是实际事物的一种数学简化,它常常是某种意义上接近实际事物的抽象形式的存在的,使用数学语言描述的事物就称为数学模型。

二、初中生数学建模障碍分析1.缺乏自信。

一些中学生对应用题理解能力较弱,逐渐在心理上产生了害怕心理,因此,有的学生一看到应用题在心理上就作为难题对待,认为自已肯定做不出来。

学生对解决实际问题产生了心理障碍,这种不良的心理会直接影响到初中生用建模思想解应用题的能力。

2.思维定势。

思维定势是由先前的活动而造成的一种对后来活动的特殊心理准备状态或活动倾向性。

在环境不变的条件下,定势能够应用已掌握的方法迅速解决问题,而在情境已发生变化时,它则会妨碍人们采用新的解决办法。

由于小学应用题比较简单,采用算术方法解题可直接写出计算的式子。

而初中应用题比较复杂,很难直接写出计算的式子。

通常要通过找常变量的关系,然后用方程(组)、不等式、函数等数学办法来解决。

由于小学算术法思维定势,阻碍了学生建模思想来解决应用题的思维。

3.阅读理解能力不强。

理解能力不强主要表现在用方程(组)解决应用题时对基本数量关系弄不明白,例如,多、少、倍、分、早、迟、快、慢等,从而影响到解题。

还有不善于发现隐含条件,在有些应用题中,一些关键的意义有时会被其它因素所掩盖,学生发现不了隐含条件就很难解决问题。

4.生活经验缺乏。

由于一些初中生缺乏常识,对应用题的一些名词不理解,如打几折、翻两番、利润、利率等,从而会使审题受阻,不能顺利解决问题。

数学建模论文(精选4篇)

数学建模论文(精选4篇)

数学建模论文(精选4篇)数学建模论文模板篇一1数学建模竞赛培训过程中存在的问题1.1学生数学、计算机基础薄弱,参赛学生人数少以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区(包括民族地区)的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.1.2无专职数学建模培训教师,培训教师水平有限,培训方法落后数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.1.3学校重视程度不够,相关配套措施还有待完善任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.2针对存在问题所采取的相应措施2.1扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.2.2成立数学建模指导教师组,分批培养培训教师,改进培训方法近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.2.3学校逐渐重视,加大了相关投入,完善了激励措施最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.3结束语对我们这类院校而言,最重要的数学建模赛事就是一年一度的全国大学生数学建模竞赛了.竞赛结果大体可以衡量老师和学生的付出与收获,但不是绝对的,教育部组织这项赛事的初衷主要是为了促进各个院校数学建模教学的有效开展.如果过分的看重获奖等次和数量,对学校的数学建模教学和组织工作都是一种伤害.参赛的过程对学生而言,肯定是有益的,绝大多数参加过数学建模竞赛的学生都认为这个过程很重要.这个过程可能是四年的大学学习过程中体会最深的,它用枯燥的理论知识解决了活生生的现实中存在的问题,虽然这种解决还有部分的理想化.由于我校地处偏远山区,教育经费相对紧张,投入不可能跟重点院校的水平比,只能按照自身实际来.只要学校、老师、学生三方都重视并积极参与这一赛事,数学建模活动就能开展的更好.数学建模论文模板篇二培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。

2022年初中数学建模优秀论文

2022年初中数学建模优秀论文

2022年初中数学建模优秀论文2022年初中数学建模优秀论文1摘要:数学建模作为一种学习竞赛活动,最早源于美国教学领域,其参与主体主要为大学生群体。

在数学建模传入我国数学教学领域后,数学建模的学生参与对象扩展到中学生和初中生。

而近年出现的初中数学建模,更多的是以一种初中数学教学的策略方法存在,对其教学策略进行探究,有助于初中数学建模教学的顺利推进。

关键词:初中数学;“数学建模”;教学一、初中学建模”的意义初中建模是指学生在教师预设的与学习课本知识有关的生活情境中,通过一定的数学活动建立数学模型、解释数学模型和应用数学模型,并以此为载体学习初中数学相关知识。

数学建模大多是在大学生数学学习过程中被提及,而其目的是将所学的数学知识合理的应用到实际的生活中,具有较强的应用性及实践性,与此不同的是,初中数学教学中强调数学建模则是为了让学生学习并掌握新的知识,提高学生能力,形成新思想并体验教学活动等。

初中数学建模其包含的知识结构较为基础、相对简单,作为一种教学策略,通常由教师事先设计好再开展教学活动,需要由教师进行直接参与。

可见,初中数学建模已成为一种数学教学的教学模式。

初中数学模型教学过程的本质是让学生参与到数学探索和实践的活动中,让学生主动参与到数学学习的整个过程中,积极探索、获取新知识,这一教学模式转变了以往枯燥乏味的数学学习模式,从单纯记忆、模仿以及训练的数学学习方式转变为学生进行自主探索、实践创新的过程。

对于学生来说,不仅让学生学习到数学知识,还能体会到数学的乐趣,激发学习兴趣,树立学习信心,强化了学生主动参与到数学学习中的热情及主动性。

可见,开展初中数学建模教学模式不仅是教育方式上的改革,更能提高学生的自主意识、探究能力,发展学生的综合实践能力及创新能力,推动初中数学教育的发展及改革。

二、“数学建模”教学方法在初中数学教学中的运用流程在初中数学教学过程中对数学建模教学方法的运用主要包括:模型准备,模型假设、模型建构以及模型应用与检验四个方面的内容。

初中数学建模论文范文(16篇)

初中数学建模论文范文(16篇)

初中数学建模论文范文(16篇)摘要:所谓数学建模,即借助数学模型,处理所遇到的具体问题的课程,在本文中,分别就教学、模型建立以及相应的信息检索来进行研究,通过将这三面进行相应的糅合从而证明可以将计算机技术引入到相应的建模实践中,从而有效促进数学建模的发展,使得教学质量得以有效提升。

关键词:数学建模;计算机应用;融合1.数学建模与计算机技术概述目前计算机在生活中应用极为广泛,借助于计算机能够使得先前较为复杂繁琐的问题得以简化,有效提升计算速率。

就数学建模来看,计算机在此方面的作用不言而喻。

对于此,人们普遍认为,能够借助于计算机将任何一个数学问题进行简化处理。

而对于生活中所遇到的任意一个实际问题,均能够借助于相应的数学模型来进行表示,在建模过程中,也可以根据实际情况来做出一些相应的简化处理,从而将其归属于完全的数学问题,最终建立起能够用变量所描述的数学模型。

之后,借助于相应的计算机、软件以及编程方面的知识,来对此模型进行相应的求解计算。

2.计算机技术在数学建模中的应用计算机在数学建模中的应用面非常的广泛,限于笔者的水平,本文主要就两个方面展开讨论:第一,确定建模思想;第二,对数学模型进行求解计算。

计算机技术辅助确立数学建模思想对于数学建模,其最为重要的目的便是为了能够提升学生对于数学知识的使用性,借助于相关的数学思想来对实际问题进行解决,同时,还能够促进学生数学思想的发展、建模能力发展以及相关数学知识的完善,最终提升其对于数学知识的使用能力。

培养数学思维重在将学生所思所想以最快最佳的方式展示出来,计算机技术在数学建模中的应用使得这个设想变得可能。

因为数学模型的计算和设计工作量大,传统的计算办法不能迅速解决一些问题,但是在建模的辅助下一切问题迎刃而解。

计算机技术促进数学建模结果求解对于数学建模,其属于一项系统性工程,整个过程工作量较多。

在前期,对于模型的构想与建立需要不断完善,此后,对于模型的求解也是极为困难的,这主要因为其涉及到非常多的数据处理与计算。

初中数学建模论文范文【范本模板】

初中数学建模论文范文【范本模板】

初中数学建模论文范文数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。

强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大.数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质.本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。

一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。

数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。

这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。

如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。

第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。

第三、数学应用题涉及的知识点多。

是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。

二、数学应用题如何建模第一层次:直接建模。

根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:第二层次:直接建模。

可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。

第三层次:多重建模.对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。

第四层次:假设建模。

要进行分析、加工和作出假设,然后才能建立数学模型。

如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模.三、建立数学模型应具备的能力从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。

一篇标准的数学建模论文范文(优选28篇)

一篇标准的数学建模论文范文(优选28篇)

一篇标准的数学建模论文范文(优选28篇)数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。

它给学生再现了一种“微型科研”的过程。

数学建模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。

同时教师自身具备数学模型的构建意识与能力,才能指导和要求学生通过主动思维,自主构建有效的数学模型,从而使数学课堂彰显科学的魅力。

为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。

使用数学语言描述的事物就称为数学模型。

有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。

1.只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。

动手实践、自主探索与合作交流是学生学习数学的重要方式。

学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。

因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。

教师不应只是“讲演者”,而应不时扮演下列角色:参谋,提一些求解的建议,提供可参考的信息,但并不代替学生做出决断。

询问者,故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度。

仲裁者和鉴赏者,评判学生工作成果的价值、意义、优劣,鼓励学生有创造性的想法和作法。

摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。

建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。

本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。

初中数学建模论文范文

初中数学建模论文范文

初中数学建模论文范文篇一:数学建模论文范文6目录一、浅谈对问题解决与数学建模的认识................................................................................................. . (5)1.1从现实现象到数学模型................................................................................................. ....................1.2数学建模的相关基本概念............................................................................. 错误!未定义书签。

1.3 数学建模的意义................................................................................................. (10)1.4 数学建模的方法步骤................................................................................................. . (10)二、数学建模应用于中学数学问题解决教学的实践 (11)2.1教学中建立数学模型的过程................................................................................................. .. (12)2.2教学中具体的建模分析方法................................................................................................. .. (12)2.3掌握常见数学应用题的基本数学模型 (12)2.4数学建模教学活动设计的体会................................................................................................. . (12)三、模型案例................................................................................................... ..............................................16一、浅谈对问题解决与数学建模的认识1.从现实现象到数学模型模型是为了一定目的,对客观事物的一部分进行简缩、抽象、提炼出来的原型的替代物。

初中数学建模优秀论文

初中数学建模优秀论文

初中数学建模优秀论文试论数学建模方法目前数学教学与数学应用脱节的现象很突出,以至于学生认为学习数学没用,对数学学习失去兴趣,如何改变目前这种教学与应用脱节的现象,笔者认为,可以用数学模型法指导数学应用题教学,为学生用数学来解决问题提供经验和范式,从而探索出一条行之有效的教学途径。

一、什么是数学模型要突出应用,就应站在数学模型法的高度来认识并实施应用题教学。

什么是数学模型法?数学模型法就是把实际问题加以抽象概括,建立相应的数学模型,利用这些模型来研究实际问题的一般数学方法。

教师在应用题教学中要渗透这种方法和思想,要注重并强调如何从实际问题中发现并抽象出数学问题,如何用数学模型(包括数学概念、公式、方程、不等式函数等)来表达实际问题,如何用数学模型的解来解释实际问题的解。

以及为科学决策提供可信的依据并预测其发展趋势。

二、建模示范方法例谈在教学中我根据教学内容,选编一些应用问题进行例题教学,引导学生分析联想、抽象建模,培养学生的建模能力,提供经验和范式。

选编数学应用性例题的一般原则是:①必须与教学内容密切联系;②必须与学生的知识水平相适应;③必须符合科学性和趣味性;④取材应尽量涉及目前社会的热点问题,有时代气息,有教育价值。

1.与其他相关学科有关的问题题1:化学中甲烷CH4的键角109°28′是怎样求出来的?题2:在大楼底层有一控制室,有三条导线和楼上某电器相连,设三连导线的电阻分别为x、y、z,现手头有一只电表可在控制室内测量电阻,试没计一种数学方法求这三根导线的电阻。

2.发生在学生身边的数学问题题3:学校教学大楼,从一楼到二楼共13个台阶。

一位同学上楼梯可以一步上一个台阶,也可以一步上两个台阶。

问从一楼走到二楼,有多少种不同走法?一年365天,每天选用一种走法,能否做到天天的走法均不相同?题4:学校足球场地是一个102×68平方米的矩形,球门宽为8米,由边线下底传中是惯用的战术,请你帮助足球队员确定离底线多少距离的地方起脚传中效果最佳?3.从教材的例题和习题中改造而成的问题课本中有一习题,稍加修改就可以形成以下应用问题。

中学数学建模论文精选范文赏析共5篇

中学数学建模论文精选范文赏析共5篇

中学数学建模论文精选范文赏析〔共5篇〕第1篇:新课程背景下中学数学建模教学的几点思考数学学习的观念正在发生转变,如何让数学回归生活、生产实际,如何让学生体验数学知识的形成过程,正是我们数学教师面临的重要问题。

因此笔者认为:在中学数学教学中落实数学建模教学迫在眉睫。

随着新课程的实施,新的"数学课程标准"中增设了"数学建模专题〞,为我们中学数学建模教学搭建了一个很好的平台。

笔者在此借新课程实施的东风,来谈谈自已对数学建模教学的几点思考。

一、对中学数学建模教学的准确定位何为数学建模?一个比较准确的说法:数学建模是指通过对实际问题的抽象、简化,确定变量和参数,并应用*些规律建立起变量、参数间确实定的数学问题,求解该数学问题,从而确定能否用于解决问题的屡次循环、不断深化的过程。

但是在中学阶段数学建模教学有它的特殊性,从数学应用角度分析,数学应用大致可分为以下四个层次:〔1〕直接套用公式计算;〔2〕利用现成的数学模型对问题进展定量分析;〔3〕对已经经过加工提炼的、忽略次要因素,保存下来的诸因素关系比较清楚的实际问题建立模型;〔4〕对原始的实际问题进展加工,提炼出数学模型,再分析数学模型求解。

其中第四个层次属于典型的数学建模问题。

中学数学建模,一般定位在数学应用的第三层次。

在中学阶段,学生建模能力的形成是根底知识根本技能、根本数学方法训练的一种综合效果,建模能力的培养主要是打根底,但是,过分强调根底会导致根底与实际应用的分裂。

因此,在新课程标准中明确提出:在中学阶段至少要让学生进展一次完整的数学建模过程。

从这个意义上讲我们可以适当进入第四层次,而这个分寸的把握是一个很值得探讨的问题,同时也是我们教学的一个难点。

准确地给中学数学建模教学定位,有利于指导数学教学以及更好地开展中学数学建模活动,而不至于陷入盲目及极端地处理数学应用。

二、中学数学建模教学在数学课堂教学中得以渗透由于数学建模问题源于现实的生活情境,历来教师都将它作为相对独立的学习活动或选修课来安排,或者为了应付高考,对数学建模问题不闻不问。

初中建模论文

初中建模论文

初中建模论文初中建模论文论文既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。

它包括学年论文、毕业论文、学位论文、科技论文、成果论文等。

初中建模的论文应该怎么写?初中建模论文篇一:关于初中数学建模思想【摘要】随着素质教育的推行,初中数学教育在教育方法和教育理念上发生了很大变化,数学建模思想的培养成为初中数学教育的重要内容。

数学建模思想的培养不仅能提高课堂教学的效果,还能增强学生的数学思维能力和分析解决问题的能力。

本文主要从数学建模思想的内涵着手,探讨初中数学建模思想的运用及成效,为当前的初中数学教学水平的提高提供相关借鉴。

【关键词】初中数学;建模思想一、数学建模思想的内涵分析数学建模思想产生于上个世纪的六七十年代,在“新数运动”和“回到基础”的数学教学研究之后,数学教育的问题意识逐渐增强,数学建模作为问题素养培养的重要方法也逐渐被人们所认识到。

在我国,以华罗庚为代表的数学家通过中学数学竞赛与数学讲座等方式向中学生介绍数学建模思想,虽然此时并没有明确采用数学建模的名称,但数学建模在解决数学问题中的应用已受到重视。

在几十年的发展过程中,数学建模思想取得了很大发展。

目前,我国初中数学建模思想在初中数学教育中广泛应用,新课程改革和素质教育的实施,推动了学生数学应用意识的加强,促进数学建模的教学方法的应用。

但由于教师教育理念的陈旧和教学方法的不科学,导致数学建模思想的应用受到限制。

数学建模思想的重要性在于以下几点:首先,数学建模思想作为一种学习方法,可以将初中数学知识结合起来,在知识的相互渗透中挖掘出数学学习的规律。

数学建模是一种综合性较强的数学解题方法,初中数学建模教学中,不仅包括实际的生活内容,还包括了多种学科,数学建模的范围比较广阔。

其次,数学建模可以简化信息。

数学建模的目的是将繁杂的数学信息通过科学的模型直观反映出来,将问题的主要方面表现出来,以所学知识对问题进行解读。

数学建模论文六篇

数学建模论文六篇

数学建模论文六篇数学建模论文范文1那么当前我国高中同学的数学建模意识和建模力量如何呢?下面是节自有关人士对某次竞赛中的一道建模题目同学的作答状况所作的抽样调查。

题目内容如下:某市教育局组织了一项竞赛,聘请了来自不同学校的数名老师做评委组成评判组。

本次竞赛制定四条评分规章,内容如下:(1)评委对本校选手不打分。

(2)每位评委对每位参赛选手(除本校选手外)都必需打分,且所打分数不相同。

(3)评委打分方法为:倒数第一名记1分,倒数其次名记2分,依次类推。

(4)竞赛结束后,求出各选手的平均分,按平均分从高到低排序,依此确定本次竞赛的名次,以平均分最高者为第一名,依次类推。

本次竞赛中,选手甲所在学校有一名评委,这位评委将不参与对选手甲的评分,其他选手所在学校无人担当评委。

(Ⅰ)公布评分规章后,其他选手觉得这种评分规章对甲更有利,请问这种看法是否有道理?(请说明理由)(Ⅱ)能否给这次竞赛制定更公正的评分规章?若能,请你给出一个更公正的评分规章,并说明理由。

本题是一道开放性很强的好题,给同学留有很大的发挥空间,不少同学都有精彩的表现,例如关于评分规章的修正,就有下列几种方案:方案1:将选手甲所在学校评委的评分方法改为倒数第一名记1+分,倒数其次名记2+,…依次类推;(评分标准)方案2:将选手甲所在学校评委的评分方法改为在原来的基础上乘以;方案3:对甲评分时,用其他评委的平均分计做甲所在学校评委的打分;然而也有不少同学为空白,究其缘由可能除了时间因素,同学对于较长的文字表述产生畏惧心理、不能正确阅读是重要因素。

同时,一些同学由于不能正确理解规章(3),得出选手甲的平均得分为,其他选手的平均得分为,从而得出错误结论.不少同学消失“甲所在学校的评委会有意压低其他选手的分数,因而对甲有利”的解释,而没有意识到作出必要的假设是数学建模方法中的重要且必要的一环。

有些同学在正确理解题意的基础上,提出了“规章对甲有利”的理由,例如:排名在甲前的同学少得了1分;甲所在学校的评委不给其他选手最高分(n分),所以甲得最高分的概率比其他选手高;相当于甲所在学校的评委把最高分给了甲;甲少拿一个分数,若少拿最低分,则有利;若少拿最高分,则不利;等等。

初中数学建模教学研究

初中数学建模教学研究

《保育员保育实践的个案研究》
针对以上问题,本研究提出以下建议:(1)加强对保育员的培训和教育,提 高其专业素养和技能水平,树立科学、规范的保育理念;(2)建立保育员与幼 儿之间的良好互动关系,幼儿的需求和情感,加强与幼儿的沟通和交流;(3) 完善幼儿园的管理制度,加强对保育员工作的监督和评估,确保保育员的工作质 量和效果。
《保育员保育实践的个案研究》
《保育员保育实践的个案研究》
保育员是幼儿教育事业中的重要角色,他们的保育实践直接影响着幼儿的身 体、心理和社会适应等方面的发展。然而,现实中保育员的保育实践存在诸多问 题,缺乏科学性和规范性,因此本研究旨在深入了解保育员保育实践的现状和问 题,提出相应的建议,为改进幼儿保育工作提供参考。
四、初中数学建模教学实践
(4)该商品在售价为每件30元时,它的月销售量为150件。如果每件的售价 提高2元,则月销售量减少10件。当售价为多少元时,月销售额最高?
四、初中数学建模教学实践
通过这个案例,学生可以学会如何对问题进行建模、求解和优化。同时,通 过与生活实际相结合的方式,培养学生的数学应用意识和实践能力。
《保育员保育实践的个案研究》
本研究通过对某幼儿园一位保育员的个案研究,探讨其保育实践的特点和问 题。首先,通过文献综述了解保育员保育实践的相关理论和研究方法。其次,采 用观察法和访谈法收集保育员在日常工作中的行为表现和与幼儿的互动情况。最 后,对收集到的数据进行分析,总结保育员保育实践的特点和问题,并提出相应 的建议。
二、目标
二、目标
通过推进义务教育“班级均衡”改革,我们可以实现以下目标: 1、缩小城乡之间、地区之间的教育差距,让每个学生都能够享受到优质的教 育资源。
二、目标
2、提高学校的管理水平和服务质量,为学生提供更加舒适、安全的学习环境。 3、培养学生的综合素质和创新精神,提高学生的综合能力和竞争力。

初中数学建模的教学设计

初中数学建模的教学设计

初中数学建模的教学设计一、引言数学建模是一个综合运用数学知识和技能解决实际问题的过程,对于培养学生的创新思维和实践能力具有重要意义。

本文旨在探讨初中数学建模的教学设计,分享一些有效的教学方法和策略,以期提高学生的数学建模能力。

二、任务设计1.明确目标在进行数学建模教学设计时,首先需要明确教学目标。

例如,教师可以设定以下目标:- 培养学生对实际问题分析与建模的能力;- 培养学生的合作与沟通能力;- 提高学生的创新思维和解决问题的能力。

2.选择适当的问题选择适合学生年龄和数学能力的问题是关键。

问题应当具有一定的实际背景和现实意义,能够引发学生的兴趣,激发他们解决问题的动机。

3.分析问题学生在分析问题时可以采取以下步骤:- 理解问题:仔细读懂问题,明确问题的要求和限制条件;- 提取信息:从问题中提取出相关信息,建立问题模型;- 分析问题:对问题进行深入思考,寻找解决问题的方法和途径;- 规划解决方案:制定解决问题的具体方案。

4.团队合作数学建模强调团队合作,学生应当分工合作,充分发挥团队成员的优势,形成合力解决问题。

教师可以设定合理的团队角色和任务分配,鼓励学生之间的交流和合作。

5.解决问题学生在解决问题过程中可以运用所学的数学知识和技能,如代数运算、函数图像、概率统计等。

同时还可以利用计算机和软件进行模拟实验和数据处理,提高解决问题的效率和准确度。

6.结果展示与评价一旦学生完成问题的解决,他们应当对结果进行总结和分析,并进行结果的展示。

教师可以安排学生之间进行交流和评价,从而促进学生之间的学习和进步。

三、教学方法1.案例教学法通过引入真实的案例和问题,激发学生的兴趣,并帮助学生理解数学建模的过程和方法。

2.项目驱动法通过设计具体的项目任务,引导学生深入学习与研究,培养探究精神和学习动力。

3.讨论与合作鼓励学生之间的合作和讨论,通过交流思想和观点,促进学生之间的互相学习和进步。

4.多媒体技术应用利用多媒体技术和互联网资源,为学生提供更多的学习资料和实例,拓宽他们的视野和思路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标下初中数学建模教学设计与实践
学科教学, 2011,硕士
【摘要】《全日制义务教育数学课程标准(实验稿)》指出:数学教学就是让学生亲身经历将实际问题抽象成数学模型并进行解释与应用
的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

由此可见,初中数学建模教学的研究已经是一个不可忽视的重大问题。

本文立足初中数学教学的实际情况,以在常态课中渗透数学建模思想为目的,系统地研究数学建模融
入教学的过程和方法,并给出教学设计及案例。

本文首先阐述了问题提出的实际背景和研究方法。

其次,介绍了相关概念、数学建模教学及其研究现状和理论基础。

相关概念包括:数学建模、初中数学建模的特点和教学设计。

从数学建模的国内外发展状况到教学研究两个方面介绍了数学建模教学及其研究现状。

从建构主义理论、问题解决理论、元认知理论三个方面分析了新课标下初中数学建模的理论基础。

第三部分是本文的主要内容,给出了初中数学建模教学设计的五个环节:分析教学对象;确定教学目标、选择教学内容;确定教学模式及时间;设计教学活动过程;设计教学评价。

结合新课标的要求对每一环节进行分析研究。

随后,以第三部分给出的五个环节及其分析为指导,
设计教学案例、实施教学案例并且对实施效果给... 更多还原【Abstract】 The Mathematics Curriculum Standards in the Phase of Full-time Compulsory Education (Experimental Manuscript)
points out that mathematics teaching is to make students experience in person the progress to abstract practical problems into mathematical models, and then make explanations and put it into practice, consequently making students acquire mathematical understanding, and improve and develop in many ways, such as thinking abilities, emotional attitudes and values etc. Therefore, the researc... 更多还原
【关键词】初中;数学建模;教学设计;
【Key words】Junior middle school;Mathematical modeling;Teaching design;
【索购全文】Q联系Q:138113721 Q联系Q: 139938848付费即发
目录
摘要5-6
ABSTRACT 6-7
第一章前言8-10
一、问题提出8-9
二、研究方法9-10
第二章数学建模教学理论基础及研究现状10-22
一、相关概念界定10-14
二、数学建模教学及其研究现状14-16
三、理论基础16-22
第三章初中数学建模教学设计22-30
一、数学建模教学设计思想22-23
二、分析教学对象23-24
三、确定教学目标、选择教学内容24-25
四、确定教学模式及时间25-26
五、设计教学活动过程26-28
六、设计教学评价28-30
第四章初中数学建模教学实践30-44
一、分析教学对象30
二、确定教学目标、选择教学内容30-31
三、确定教学模式及时间31
四、教学活动过程设计及实施31-39
五、教学评价设计及实施39-40
六、教学设计效果分析40-44
第五章启示与反思44-46
注释46-48
参考文献。

相关文档
最新文档