复变函数留数习题ppt课件
合集下载
高等数学课件-复变函数与积分变换 第五章 留数 §5.1 留数定理及留数的求法

0
的去心邻域内的罗朗展开式为:
sin z
1 z2
z4
L
1n z2n
L
z
3! 5!
2n 1!
故负幂次项 z1的系数 C1 0 ,即
Res
sin z
z
, 0
0
若孤立奇点z0为f (z)的可去奇点,则
Res f (z), z0 0
例1.3
函数
f
(z)
1 z(z 1)2
在
z
1 处有一个
二级极点,这个函数又有下列罗朗展开式:
n
Ñc f zdz 2πiRes f z, zk (1.3) k 1
证 把在c内的孤立奇点 zk k 1,2,L ,n
用互不包含的正向简单闭曲线 ck 围绕起来 (如图5-1)
图5-1
蜒c f zdz
c1
f
z
dz
蜒 f c2
zdz L
cn
f
z dz
以 2 i 除等式两边,得
1
Cm 0
Байду номын сангаас
g z Cm Cm1 z z0 L C1 z z0 m1
C0 z z0 m L
在点 z0 是解析的,且 g z0 Cm 0
由
f
z
gz z z0 m
,有 z
z0 m
f
z
gz
上式两端对 z 求导 m 1 次,并取极限(z z0),
得
lim
在 z 1的去心邻域
0 z 1 1
内的罗朗展开式,由于
f
z
z
1
12
z
1
1
n0
1n
z
复变函数第五章1留数

证明: 若z0是f (z)的m阶零点 即 f (z) (z z0 )m(z)
((z)在 z0 处解析, 泰勒级数:(z) a0 a1(z z0 ) )
f (z)在z0处的泰勒级数为
f (z) a0 (z z0 )m a1 (z z0 )m1 a2 (z z0 )m2
f (z0 ) f (z0 ) f (m1)(z0 ) 0, f (m)(z0 ) a0 0.
则孤立奇点z0称为 f (z)的本性奇点.
例如:f (z) sin 1 以z 1为它的本性奇点
因为sin
1
1 z
在z 1的去心邻域0 z 1 上的罗朗展式为
1
1
z
sin
(1)n ( 1 )2n1
1 z n0 (2n 1)! 1 z
1 ( 1 ) 1 ( 1 )3 (1)n ( 1 )2n1
z 1是f (z)的本性奇点.
或 z沿实轴从点1的右侧趋向于1
z沿实轴从点1 的左侧趋向于1
1
lim e z1极限不存在,且不为 z 1
z 1是f (z)的本性奇点课. 件
1
lim e z1
z1
1
lim e z1 0,
z1
9
综上所述:
定理5.1 若函数f (z)在0 z z0 R内解析,则
z 1是(z2 1)( z 2)3的一级零点
z 2是(z2 1() z 2)3的三级零点,
z 1是f (z)的二级极点,(见例7,m 1 3 n)
z 2是可去奇点, (见例7,m 3 n)
z 0,2,3, 4, 是f (z)的三级极点.
(见例7, m 0 3 n)
k
课件
3
5.1.1 孤立奇点的定义及分类
复变函数课件5-2-1利用留数求积分

可见, 利用无穷远点的留数更简单.
例6
计算积分
C
(
z
dz i)10(z 1)(z
, 3)
C为正向圆周 : z 2.
解
被积函数
f (z)
(
z
i
)10
(
1 z
1)(
z
3)
除
点外, 其他奇点为 i , 1, 3 .
26
则 Res[ f (z),i] Res[ f (z),1] Res[ f (z),3] Res[ f (z),] 0 .
所以 z 0是 f (z)的三级极点, 由规则3得
Res[
f
(z),0]
(3
1 lim
1)! z0
d2 dz 2
z
3
z
sin z6
z
.
计算较麻烦.
19
解 如果利用洛朗展开式求c1 较方便:
z
sin z6
z
1 z6
z
z
z3 3!
z5 5!
z
C
z4
dz 1
2iRes[ f (z),1] Res[ f (z),1]
Res[ f (z), i] Res[ f (z),i]
由规则3
P(z) Q( z )
z 4z3
1 4z2
,
25
C
z
4
z
1
dz
2i 14
1 4
复变函数3留数在定积分计算上的应用.ppt

R
|z|1
z2 1, 2z
z2 1
2iz
dz iz
|z|1
f
(z)d
z
其中f (z)是z的有理函数, 且在单位圆周|z|=1上分母不为零, 根据留数定理有
n
f (z) d z 2π i Res[ f (z), zk ]
|z|1
k 1
其中zk (k=1,2,...,n)为单位圆 |z|=1内的 f (z)的孤立奇点.
q e d 2 aR(2q / )
0
0
0
M
aR 2q
e
2
M
aR
aR
eaR 1
M
aR
(1
eaR )
R 0,
0
因此得
R(x) eaixd x 2 π i
Res[R(z) eaiz , zk ] .
也可写为 R(x)cos ax d x i R(x)sin ax d x
2 π i Res[R(z)eaiz , zk ].
2n
zi
(n
1)(n 2) n! 22n1
2n (2n 1)!!
2 (2n)!!
3. 形如 R(x) eaixd x (a 0) 的积分 当R(x)是x的有理函数而分母的次数至少比分子的次
数高一次, 且R(x)在实数轴上没有奇点时, 积分是存在的.
象2中处理的一样, 由于mn1, 故对充分大的|z|有
例 4
计算
x2
x4
x2
dx 1
z 4 z 2 1 (z 2 1)2 z 2 (z 2 z 1)(z 2 z 1) 0
f (z) z 2 的四个一阶极点为: z4 z2 1
1 z1,2 2
留数的概念及留数的求法课件

问题转化为易于处理的形式。
实例三:在物理中的应用
要点一
总结词
留数在物理问题中的应用
要点二
详细描述
在物理问题中,留数也有广泛的应用,如求解某些电磁场 问题、波动问题等。通过计算留数,可以将这些物理问题 转化为数学问题,从而得到更精确的解析解。
THANKS
感谢观看
03
留数的求法
利用Cauchy积分公式求留数
总结词
Cauchy积分公式是计算留数的常用方法之一,通过将积分路径进行变形,使得积分路径包含奇点,从而利用公 式计算留数。
详细描述
Cauchy积分公式指出,对于一个在复平面上有奇点的简单闭曲线上的函数f(z),其沿该曲线的积分等于2πi乘以 该函数在奇点的留数。因此,通过选择适当的积分路径,使得该路径经过函数的奇点,然后利用Cauchy积分公 式即可求得留数。
利用Residue定理求留数
总结词
Residue定理是一种计算复平面上简单闭合曲线上的积分的方法,通过计算奇点的留数,然后利用定 理计算出整个闭合曲线的积分。
详细描述
Residue定理指出,对于复平面上任意简单闭合曲线C,函数f(z)在C上的积分等于2πi乘以函数在C内 部的奇点的留数之和。因此,通过确定函数在内部的奇点,并计算其留数,即可利用Residue定理求 得整个闭合曲线上函数的积分。
利用留定理求留数
总结词
留数定理是复分析中的重要定理之一, 它建立了函数在无穷远点的行为与其在 有限区域内奇点的留数之间的关系。
VS
详细描述
留数定理指出,对于一个在无穷远处有极 点的函数f(z),其无穷远点的留数等于该 函数在有限区域内奇点的留数之和。因此 ,通过计算函数在有限区域内的奇点留数 ,并利用留数定理,可以求得函数在无穷 远点的留数。
实例三:在物理中的应用
要点一
总结词
留数在物理问题中的应用
要点二
详细描述
在物理问题中,留数也有广泛的应用,如求解某些电磁场 问题、波动问题等。通过计算留数,可以将这些物理问题 转化为数学问题,从而得到更精确的解析解。
THANKS
感谢观看
03
留数的求法
利用Cauchy积分公式求留数
总结词
Cauchy积分公式是计算留数的常用方法之一,通过将积分路径进行变形,使得积分路径包含奇点,从而利用公 式计算留数。
详细描述
Cauchy积分公式指出,对于一个在复平面上有奇点的简单闭曲线上的函数f(z),其沿该曲线的积分等于2πi乘以 该函数在奇点的留数。因此,通过选择适当的积分路径,使得该路径经过函数的奇点,然后利用Cauchy积分公 式即可求得留数。
利用Residue定理求留数
总结词
Residue定理是一种计算复平面上简单闭合曲线上的积分的方法,通过计算奇点的留数,然后利用定 理计算出整个闭合曲线的积分。
详细描述
Residue定理指出,对于复平面上任意简单闭合曲线C,函数f(z)在C上的积分等于2πi乘以函数在C内 部的奇点的留数之和。因此,通过确定函数在内部的奇点,并计算其留数,即可利用Residue定理求 得整个闭合曲线上函数的积分。
利用留定理求留数
总结词
留数定理是复分析中的重要定理之一, 它建立了函数在无穷远点的行为与其在 有限区域内奇点的留数之间的关系。
VS
详细描述
留数定理指出,对于一个在无穷远处有极 点的函数f(z),其无穷远点的留数等于该 函数在有限区域内奇点的留数之和。因此 ,通过计算函数在有限区域内的奇点留数 ,并利用留数定理,可以求得函数在无穷 远点的留数。
《复变函数留数》PPT课件

(3 ) e 1 z 1 z 1 1 z 2 1 z n
2 !
n !
特点:有无穷多个负幂次项
定义 设z0是f (z)的一个孤立奇点,在z0 的去心邻域内,
若f (z)的洛朗级数
(i)f(z) cn(zz0)n n0 没有负幂次项,称z=z0为可~~去~~奇~~点~~;
( i)if(z )c n (z z 0 ) n ( c m 0 ,m 1 ) n m
将函 f(z)在 数 Rz展 成幂 cnzn,级 由数 此得定 n 可去奇 ---展 点式中不含正幂项; m阶极--点 -展式中含有,且 限 zm为 项最 正高 幂正幂; 本性奇 ---展 点式中含无穷 。项正幂项
§5.2 留数(Residue)
1. 留数的定义 2. 留数定理 3. 留数的计算规则 4. 在无穷远点的留数
当m=1时,式(5)即为式(4).
规则III
设 f(z)P(z) Q(z)
P(z),Q(z)在 z0处解 , 析
P(z0)0,Q(z0)0,Q'(z0)0
z0是 f(z)的 一 阶 ,且 极 Rse[点 f(z),z0]Q P'((zz00))(6)
事实上, Q(z0)0及 Q'(z0)0
z0为 Q(z)的 一 阶 ,从z零 而 0为 Q1 点 (z)的 一 阶 ,
只有有限多个负幂次项,称z=z0为m~~~阶~~极~~点~ ;
(ii)if(z) cn(zz0)n n
有无穷多个负幂次项,称z=z0为本~~性~~奇~~点~~。
3. 性质
若z0为f (z)的可去奇点
f ( z ) n 0 c n ( z z 0 ) n l z z 0 if ( m z ) c 0
【PPT】【复变函数与积分变换】留数及其应用

(法P则11)5 法则Ⅲ
理由
f (z)
am (z z0 )m
a1 z z0
a0 a1(z z0 ) ,
(z z0 )m f (z) am a1(z z0 )m1 a0(z z0 )m ,
dm1 d z m 1
[(
z
z0 )m
f
(z)]
(m 1)!a1
(z
z0 ) (z),
§5.2 留数
一、留数的概念 二、留数的计算方法 三、留数定理 四、函数在无穷远点的留数
2020/8/4
复变函数
1
一、留数的概念
定义 设 z0 为函数 f (z)的孤立奇点,将 f (z) 在 z0 的去心邻域
P112 定义
内展开成洛朗级数:
5.4
f (z) an(z z0 )n
n
a1 z z0
z z0
2020/8/4
复变函数
6
解 (1) z 0 是 f1(z) 的可去奇 点, Res[ f1(z), 0] 0 .
(2) z 0和 z 1均为 f2(z) 的一阶极点,
Res[
f2(z),
0
]
lim[
z0
z
f1(z)
]
lim
z0
1 z1
1,
Res[
f
2
(
z
)
,
1
]
lim[
z1
(
a0 a1(z z0 ) ,
(两边积分)
称 a1 为 f (z) 在 z0 处的留数,记作:
Res[
f (z),
z0 ] a1
1 2πi
f (z)dz ,
C
其中,C 是 z0 的去心邻域内绕 z0 的一条简单闭曲线。
理由
f (z)
am (z z0 )m
a1 z z0
a0 a1(z z0 ) ,
(z z0 )m f (z) am a1(z z0 )m1 a0(z z0 )m ,
dm1 d z m 1
[(
z
z0 )m
f
(z)]
(m 1)!a1
(z
z0 ) (z),
§5.2 留数
一、留数的概念 二、留数的计算方法 三、留数定理 四、函数在无穷远点的留数
2020/8/4
复变函数
1
一、留数的概念
定义 设 z0 为函数 f (z)的孤立奇点,将 f (z) 在 z0 的去心邻域
P112 定义
内展开成洛朗级数:
5.4
f (z) an(z z0 )n
n
a1 z z0
z z0
2020/8/4
复变函数
6
解 (1) z 0 是 f1(z) 的可去奇 点, Res[ f1(z), 0] 0 .
(2) z 0和 z 1均为 f2(z) 的一阶极点,
Res[
f2(z),
0
]
lim[
z0
z
f1(z)
]
lim
z0
1 z1
1,
Res[
f
2
(
z
)
,
1
]
lim[
z1
(
a0 a1(z z0 ) ,
(两边积分)
称 a1 为 f (z) 在 z0 处的留数,记作:
Res[
f (z),
z0 ] a1
1 2πi
f (z)dz ,
C
其中,C 是 z0 的去心邻域内绕 z0 的一条简单闭曲线。
复变函数留数.ppt

则
1 cosmx
I
dx
2 5 4 cosx
命
I1
cosmx dx
5 4 cosx
I2
sin mx dx
5 4 cos x
I1 iI2
e imx
dx
5 4 cos x
设 z eix ,则
I1
iI2
1 i
z
1
5
z
zm 2(1
z
2
)
dz
i
zm dz
2 z 1 (z 1 )(z 2)
令
z=ei, 则dz=ieid,
Euler : ei cos i sin
sin 1 (ei ei ) z z1 z2 1
2i
2i 2iz
cos 1 (ei ei ) z z1 z2 1
2
2
2z
当:0 2时,z沿着圆周 z =1的正向绕行一周,故有
蜒 2
0
R(cos ,sin )d
z 1
1)
z ez z2 1
lim
z 1
z ez z 1
e 2
Res[
f
( z ),1]
lim (z
z 1
1)
z ez z2 1
lim
z 1
z ez z 1
e1 2
.
因此
C
z ez z2 1d
z
2π
i(
e 2
e1 2)
2π
i ch1
我们也可以用规则III来求留数:
| Res[ f (z),1] z ez e ; 2z z1 2
f (z)dz ...cm (z a)m dz ... c1 (z a)1dz ...
复变函数留数PPT课件

1
1 z2
1 1 2! z4
Res[ f (z),0] 0
I0
工程数学---------复变函数
目录 上页 下页 返回 结束
4. 无穷远点的留数 定义:设 f (z)在H : R z 内解析,C为H内绕原点的 任何一条简单正向闭曲线,则积分
2i
k 1
Res[
f
(z), zk ]
工程数学---------复变函数
目录 上页 下页 返回 结束
以 (z z0 )m 乘上式的两端,得 (z z0 )m f (z) cm cm1(z z0 ) c1(z z0 )m1
c0 (z z0 )m c1(z z0 )m1
两边求 m 1阶导数,并乘以 1 , 得 (m 1)!
{ z
1 }
z2
(1)m1
(m 1)! (z z2)m
1 Res[ f (z), z1] (z2 z1)m
工程数学---------复变函数
目录 上页 下页 返回 结束
z2为f (z)的一级极点,
Res[
f
( z ),
z2 ]
lim ( z
zz2
z2 )
f
(z)
1
lim
zz2
(z
z1 ) m
(z z2 z3 )3
z2 z3
1 z2 z4 ) 3! 5!
(1 z z2 )3
2! 3!
2! 3!
1(z)
z
工程数学---------复变函数
目录 上页 下页 返回 结束
1 z2 z4 )
其中(z)
(1
3! z
5! z2
)3
,
且(0) 1,(z)在z 0
复变函数第五章留数教学课件

1 z (z
z5 1)2(z 1)3
s in z z
1 z
g( z ),
所以 z 0 是单极点; z 1 是二级极点;
z 1 是三级极点.
26
例3
证明 z
0
是
f
(z)
1 z 3 (e z3
的六级极点. 1)
证
1 f (z)
z 3 (e z3
1)
z31
z3
(z3 )2 2!
1,
n
f (z)dz 2π i Res[ f (z), zk ]
C
k 1
留数定理将沿封闭曲线C积分转化为求被积函数 在C内各孤立奇点处的留数.
11
2)留数的计算方法
(1) 如果 z0 为 f (z) 的可去奇点, 则
Res[ f (z), z0] 0.
(2) 如果 z0 为 f (z)的本性奇点, 则需将 f (z) 展开
解 (1)在 0 z 1 内,
sin z
1
1
z
1
1
1 3!(z
1)3
,
所以 Ressin(1z 1) ,1 C1 1.
28
(2) z2 sin1 z
解 因为sinz z z3 z5 , 3! 5!
所以在0 z 内,
z2
sin1 z
z 2
1 z
1 3! z 3
1 5! z 5
z6 z9 z12 2! 3!
因为 z 0是 1 z3(ez3 1)的六级零点, f (z)
所以
z
0是
f
(z)
1 z 3 (e z3
的六级极点. 1)
27
例4 求下列各函数在有限奇点处的留数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
nπ
(1)n
1 nπ
,
Res
z
1 sin
z
,0
limz0d dz源自z2z1 sin
z
sin z zcos z
lim z0
sin2 z
0.
31
(4) f (z) sinh z cosh z
解 f (z)的一级极点为
zk
k
2
i
k
0,1,2,
故
sinh z Res[ f (z), zk ] (cosh z) zzk
i) 可去奇点; ii) 极点; iii) 本性奇点.
4
i) 可去奇点 定义 如果洛朗级数中不含 z z0 的负幂项, 那末 孤立奇点 z0 称为 f (z)的可去奇点.
5
ii) 极点 定义 如果洛朗级数中只有有限多个 z z0 的
负幂项, 其中关于(z z0 )1的最高幂为 (z z0 )m ,
zz0
dz
m
1
[(
z
z0 )m
f
(z)]
c)
设
f (z)
P(z), Q(z)
P(z)
及
Q(z) 在
z0都解析,
如果 P(z0 ) 0,Q(z0 ) 0,Q(z0 ) 0, 那末 z0
为一级极点,
且有Res[
f
(z
),
z0
]
P(z0 ) Q(z0 )
.
13
3)无穷远点的留数
1.定义 设函数 f (z)在圆环域 0 z 内解析
C
以 2i 后所得的数称为 f (z)在z0的留数. 记作 Res[ f (z), z0 ]. (即 f (z)在z0为中心的圆环 域内的洛朗级数中负幂项 c1(z z0 )1 的系数.)
10
1)留数定理 设函数 f (z) 在区域 D内除有限个孤 立奇点 z1 , z2 , , zn 外处处解析, C 是 D内包围诸奇 点的一条正向简单闭曲线, 那末
z
z
故知 z 是 f (z) 的可去奇点.
25
例2
求函数
f
(z)
(
z
(z 1)2
5)sin z z2(z 1)3
的奇点,并确
定类型.
解 z 0, z 1, z 1是奇点.
因为
f
(z)
1 z (z
z5 1)2(z
1)3
sin z z
1 z
g(z),
所以 z 0 是单极点; z 1 是二级极点;
注意: 在本性奇点的邻域内 lim f (z) z z0 不存在且不 为 .
8
3)函数的零点与极点的关系
i) 零点的定义 不恒等于零的解析函数 f (z)如果 能表示成 f (z) (z z0 )m (z), 其中 (z) 在 z0 解析且 (z0 ) 0, m为某一正整数, 那末 z0 称为
)
(
z
1 i)
i
sin( z (z
i i )8
)
i
1
1 z
i
( z
1 i)7
1 3!(z
i )5
1 5!(z
i )3
1 7!(z
i)
i
i 1
1( i
z
i
)
1 i2
(z
i
)2
33
i
1 7!
1 5!
1 3!
1 1!
1 z
i
所以
Res[
f
(z
),i
]
i
1
1 3!
1 5!
71!
2
eax 1 ex
dx
π sin aπ
(0
a
1).
20
4.对数留数
定义 具有下列形式的积分:
1 f (z)
2π
i
C
dz f (z)
称为f (z)关于曲线C的对数留数.
如果f (z)在简单闭曲线C上解析且不为零,
在C的内部除去有限个极点以外也处处解析,
那么
1
2π
i
C
f (z)dz f (z)
N
P. 其中, N为
I
R(
x
)dx
.其
中R(
x
)是x的有
理函
数,
分母
的 次 数 至 少 比 分 子 的 次数 高 两 次, 且R( z )在 实 轴 上
没有孤立奇点.
设R(z) P(z) Q(z), P(z)为n次多项式,Q(z)为 n
m次多项式,m n 2,则 I 2π i Res[ R(z), zk ].
1.
28
(2) z2 sin 1 z
解 因为 sin z z z3 z5 , 3! 5!
所以在0 z 内,
z2
sin
1 z
z 2
1 z
1 3! z 3
1 5! z 5
z
1 3! z
1 5! z 3
故
Res z 2
sin
1 z
,0
C1
1 6
.
29
(3) 1 z sin z
解 z nπ (n 0,1,2, )为奇点,
f (z) 的 m 级零点.
ii)零点与极点的关系
1
如果 z0 是 f (z) 的 m 级极点, 那末z0就是 f (z)
的 m 级零点. 反过来也成立.
9
2. 留数
定义 如果 z0 为函数 f (z) 的一个孤立奇点, 则沿 在 z0的某个去心邻域0 z z0 R内包含 z0 的
任意一条简单闭曲线 C 的积分 f (z)dz 的值除
的六级极点. 1)
27
例4 求下列各函数在有限奇点处的留数.
(1)sin 1 , (2)z2 sin 1 ,
z1
z
(3) 1 , z sin z
(4) sinh z . cosh z
解 (1)在 0 z 1 内,
sin
z
1
1
z
1
1
1 3!(z
1)3
,
所以
Ressin(
1 z
1)
,1
C1
孤立奇点, 那末 f (z) 在所有各奇点 (包括点)
的留数的总和必等于零.
15
3. 留数在定积分计算上的应用
1)三角函数有理式的积分
2π
I 0 R(cos ,sin )d
令 z ei,
sin 1 (ei ei ) z2 1, cos 1 (ei ei ) z2 1
2i
2iz
2
2z
3. R( x)eaixdx
3
1. 孤立奇点的概念与分类
1)定义 如果函数 f (z) 在 z0不解析, 但 f (z)在 z0
的某一去心邻域 0 z z0 内处处解析, 则称
z0 为 f (z)的孤立奇点.
孤立奇点
奇点
2)孤立奇点的分类 依据 f (z)在其孤立奇点 z0 的去心邻域 0 z z0 内的洛朗级数的情况分为三类:
在实轴上没有孤立奇点,则
R(
x )e aixdx
2π
i
n
Res[ R(z)eaix , zk ],
k 1
其中zk (k 1,2, , n)为R(z)在上半平面内的极点.
19
特别地
cos mx
0 1 x2
dx
π 2
em ,
sin mx
1 x2
dx
0,
sin x dx π ,
0x
C为圆环域内绕原点的任何一条正向简单闭曲线
那末积分
1 2π i
C
f
( z )dz
的值与C无关
,
则称此定
值为 f (z)在 的留数.
记作
Res[
f
(z),]
1 2π i
C
f
(z)dz
1 2π i
C
f
(z)dz
也可定义为 Res[ f (z),] C1 .
14
定理 如果函数 f (z) 在扩充复平面内只有有限个
1
一、重点与难点
重点:留数的计算与留数定理 难点:留数定理在定积分计算上的应用
2
二、内容提要
可去奇点
孤立奇点
极点
本性奇点
函数的零点与 极点的关系
留数
计算方法 留数定理
对数留数
分留 上数 的在 应定 用积
计算 f (z)dz
辐路 角西
C
原原
2
1. 0 R(sin ,cos )d ;
理理
2.
f ( x)dx;
z
8
1
1
2
z
4
1 z
1
1
5 z2
1
1
1 z4
1 z
1
5 z2
25 z4
3
1
1 z4
1 z8
2
35
1 z
1
15 z2
1
2 z4
1 z
,
所以 Res[ f (z),] C1 1,
当 历经变程 0,2时, z 沿单位圆周 z 1的
正方向绕行一周.
16
I
z
1
R
z
2 2z
1
,
z
2 2iz
1
dz iz
f (z)dz
z 1
n
2π i Res[ f (z), zk ].
k 1
其中zk (k 1,2, ,n)为包含在单位圆周 z 1内的f (z)的孤立奇点.