大体积混凝土热工计算王兰庄

合集下载

大体积混凝土热工计算

大体积混凝土热工计算

大体积混凝土热工计算本工程底板混凝土厚度为1.9m,面积580m2,混凝土浇筑量达1200m3,属大体积混凝土。

为控制混凝土内外温差和混凝土表面温度与大气温度之差在25℃之内,防止混凝土产生温度裂缝,事先对大体积混凝土进行计算。

一、相关数据混凝土的浇筑温度Tj=25℃底板施工期间平均气温Tq=20℃混凝土中水泥投量W=425Kg混凝土中粉煤灰投量W=75Kg混凝土用草垫子覆盖δ=6cm二、大体积砼温度计算公式1、最大绝热温升(1)Th =(mc+k·f)Q/C·ρ=(425+73×0.25)××2400)℃2砼中心温度计算T1(t) =Tj+Th·ζ(t)=25℃℃×℃3、砼表面温度(1)保护材料温度δ·λx(T2-Tq)kb/λ(Tmax-T2)××[0.14 ×20]×1.3/[2.33 ×25]=0.06m =6cm(2)保温层导热系数β(3)砼虚厚度h’=k·λ/β=(2/3)×(4)砼计算厚度H=h+2 h’×2(5)砼表层温度T2(t)=Tq+4h’(H- h’)[T1(t)- Tq]/H2T2(t)=20℃+4·×2℃4、砼平均温度℃℃。

未超过25℃℃,超过了25℃。

为了防止砼表面温度下降过快,温度应力将砼拉裂,采取在草垫子上铺一层塑料布和一层彩条布的办法与大气隔绝。

经验算此措施能将砼表面温度与大气温度之间的温度梯度控制在25℃以内。

大体积混凝土热工计算

大体积混凝土热工计算

大体积混凝土热工计算在现代建筑工程中,大体积混凝土的应用越来越广泛。

由于其体积大、水泥用量多,在硬化过程中会释放出大量的水化热,导致混凝土内部温度升高。

如果不加以控制,这种温度变化可能会引起混凝土开裂,从而影响结构的安全性和耐久性。

因此,进行大体积混凝土的热工计算是非常重要的,它可以帮助我们预测混凝土内部的温度变化,从而采取有效的温控措施。

大体积混凝土热工计算的基本原理是基于热传导理论。

混凝土在硬化过程中,水泥的水化反应会释放出热量,这些热量会使混凝土内部温度升高。

同时,混凝土又会通过表面向外界散热,从而导致温度逐渐降低。

热工计算的目的就是要确定混凝土内部温度的变化规律,以及最大温升和内外温差等关键参数。

在进行热工计算之前,我们需要先确定一些基本参数。

首先是混凝土的配合比,包括水泥品种、用量、水灰比、骨料种类和用量等。

这些参数会直接影响混凝土的水化热和热性能。

其次是混凝土的浇筑温度,它取决于原材料的温度、运输和浇筑过程中的环境温度等。

此外,还需要考虑混凝土的结构尺寸、边界条件(如模板的保温性能、地基的传热性能等)以及施工期间的环境温度等因素。

混凝土的水化热是热工计算中的一个重要参数。

不同品种的水泥水化热不同,一般可以通过实验测定或者参考相关的手册获取。

水泥的水化热随着时间的推移而逐渐释放,通常可以用水化热曲线来表示。

在计算中,我们需要根据水泥的品种和用量,以及混凝土的龄期,来确定水化热的释放量。

混凝土的热传导性能也是热工计算的关键因素之一。

混凝土的导热系数取决于其组成材料的导热系数和配合比。

一般来说,骨料的导热系数比水泥浆体大,因此骨料含量高的混凝土导热性能较好。

此外,混凝土的比热容和热膨胀系数也会对温度变化产生影响。

下面我们来介绍一下大体积混凝土热工计算的具体方法。

一种常用的方法是有限元法,它可以通过建立混凝土结构的三维模型,模拟混凝土内部的温度场分布。

但这种方法计算复杂,需要专业的软件和较高的计算能力。

大体积混凝土热工计算书

大体积混凝土热工计算书

大体积混凝土热工计算书附件:大体积混凝土热工计算书1、配合比概况水泥选择52.5硅酸盐水泥;碎石采用连续级配5~25mm石灰岩碎石,砂子采用中砂;外加剂采用苏博特外加剂厂高效减水剂JM-10;掺合料选用干排Ⅱ级粉煤灰;矿渣粉采用S95级矿渣粉。

2. 混凝土拌合温度根据目前气温情况,预计浇筑混凝土时原材料自然状态温度如下(℃)3. 混凝土出机温度边界条件如下:搅拌机棚内温度Tp=27℃,T1=T0-0.16(T0-Tp)= 24.8℃4. 混凝土浇筑温度边界条件如下:(1)混凝土自运输至浇筑成型完成的时间Tt取运输0.4h、取浇筑成型0.5h;Tt=0.9(2)混凝土装料、运输、卸料等运转次数n取4次;n=4(3)运输时的环境气温Ta取27℃;Ta=27℃(4)罐车运输的温度损失参数α取0.25h-1;α=0.25浇筑温度Tj为:Tj=T1-(αtt+0.032n)(T1- Ta)Tj=24.8-(0.25×0.9+0.032×4)×(24.8-27)Tj=25.55. 混凝土绝热温升边界条件如下:(1)混凝土比热容C取0.97kJ/kg·℃;C=0.97(2)52.5级纯硅水泥7天水化热取Q=310kJ/kg;Q=310(3)每m3混凝土水泥用量W取240kg/m3;W=240(4)混凝土容重ρ取2400kg/ m3;ρ=2400(5)每m3混凝土掺合料用量(F+SG)取100/m3混凝土最大绝热温升Th为:Th=(W.Q)/(c.ρ)+F/50=34.06. 承台混凝土中心温度不同浇筑龄期承台内部温度计算表边界条件如下:(1) 板厚高度h取2.5m(2) 混凝土导热系数λ取2.33W/m·℃(3) 设定养护保温层为草垫,其厚度δ取0.015m,导热系数λi取0.14W/m·℃(4) 空气层传热系数βq取23 W/m2·℃(5) 计算折减系数K取0.666(6)外界最低气温(℃)Tq=20混凝土传热系数β:β=1/(δ/λi+1/βq)( W/m2·℃) 承台混凝土虚厚度h’=K·λ/β承台混凝土计算厚度H=h+2 h’ΔT=(Tj+ξ·Th)-Tq= 27.6℃承台混凝土第三天龄期表面最低温度:T(3)= Tq +(4/H2)h'(H-h') △TT(3)=28.0℃8. 混凝土中心最高温度与表面最低温度之差(Tj+ξ·Th )- T(3)=19.6℃<25℃。

大体积混凝土的热工计算

大体积混凝土的热工计算

大体积混凝土的热工计算大体积混凝土热工计算1、主墩承台热工计算主墩承台的混凝土浇筑时正值夏季高温天气(7月~8月), 东莞市累年各月平均气温、平均最高气温见下表:4.1、砼的拌和温度砼搅拌后的出机温度,按照下式计算:C W T C W T c ??∑=?∑i式中:T c --- 砼的拌和温度(℃);W --- 各种材料的重量(kg );C ---- 各种材料的比热(kJ/kg ?K); T i --- 各种材料的初始温度(℃)混凝土拌和温度计算表2、上表温度栏中水泥、粉煤灰、减水剂均为太阳直晒温度,拌合水、砂、碎石为采用降温措施后的温度。

由此可得出采取降温措施的混凝土拌和温度:26.2491.260268291.54==∑∑=WC WC T T i c ℃4.2、砼的浇筑温度砼搅拌后的浇筑温度,按照下式计算:)()n 321c q c j -(A A A A T T T T ++++?+=式中:T j --- 砼的浇筑温度(℃); T c --- 砼的拌和温度(℃);T q ---- 砼运输和浇筑时的室外气温,取28℃; A 1~A n --- 温度损失系数砼装、卸和转运,每次A=0.032;砼运输时,A=θτ ,τ为运输时间(min );砼浇筑过程中A=0.003τ,τ为浇捣时间(min )。

砼出机拌和温度按照计算取值,为26.24℃;砼运输和浇筑时的室外气温按照平均温度取值28℃;砼运输罐车运输时间为45min ,砼泵车下料时间约12min ,砼分层厚度为30cm ,每层砼(57.4m 3)从振捣至浇筑完毕预计约2小时。

整个承台(分三次浇筑)每次浇筑完毕预计最大用时12小时。

温度损失系数值:装料:A 1=0.032运输:A 2=0.0042×45=0.189 砼罐车卸料:A 3=0.032砼泵车下料: A 4=0.0042×12=0.05 浇捣: A 5=0.003×2×60=0.36∑==51i i A 0.663故:)()n 321c q c j -(A A A A T T T T ++++?+== 26.24+(28.0-26.24)×0.663 = 27.41 ℃ 如不计入浇捣影响A 5,则:∑==41i i A 0.303此时:)()n 321c q c j -(A A A A T T T T ++++?+== 26.24+(28.0-26.24)×0.303= 26.77 ℃4.3、砼的绝热温升)()(ττ-m h e -1?=T T式中:T (τ) --- 在τ龄期时砼的绝热温升(℃); T h ---- 砼的最终绝热温升(℃),ρC WQT =h ; e ----- 自然常数,取值为2.718;m ----- 与水泥品种、浇捣时温度有关的经验系数,见下表, 取28℃时的m 值,内插求得m=0.397;τ----- 龄期(d )W ----- 每m 3砼中水泥用量(kg/m 3);Q ----- 每kg 水泥水化热量(J/kg ),取值335J/kg ;(《查简明施工计算手册》第572页表10--39)C ----- 砼的比热,取值为0.96(J/kg ?K )(《查简明施工计算手册》第571页表10—38)ρ ----- 砼的容重,取为2400kg/m 3。

大体积混凝土热工计算书

大体积混凝土热工计算书

大体积混凝土热工计算书一、工程概况本工程基础底板为大体积混凝土结构,混凝土强度等级为 C40,抗渗等级为 P8。

基础底板长_____m,宽_____m,厚_____m。

混凝土浇筑时间为_____年_____月_____日,当时的环境温度为_____℃。

二、热工计算依据1、《大体积混凝土施工规范》(GB 50496-2018)2、《混凝土结构工程施工规范》(GB 50666-2011)3、混凝土配合比设计报告4、当地气象资料三、混凝土配合比水泥:_____kg/m³粉煤灰:_____kg/m³矿粉:_____kg/m³砂:_____kg/m³石子:_____kg/m³水:_____kg/m³外加剂:_____kg/m³四、混凝土的绝热温升计算1、水泥水化热根据水泥品种及强度等级,查得 3d 龄期的水化热 Q3 =_____kJ/kg,7d 龄期的水化热 Q7 =_____kJ/kg。

2、混凝土的绝热温升Th =(mcQ)/(cρ)×(1 emt)其中:mc ——每立方米混凝土中水泥用量(kg/m³)Q ——每千克水泥水化热(kJ/kg)c ——混凝土的比热容,取 097kJ/(kg·℃)ρ ——混凝土的质量密度,取 2400kg/m³m ——与水泥品种、浇筑温度等有关的系数,取 03t ——混凝土的龄期(d)3d 龄期的绝热温升:Th3 =(mcQ3)/(cρ)×(1 em×3)=(_____×_____)/(097×2400)×(1 e-03×3)=_____℃7d 龄期的绝热温升:Th7 =(mcQ7)/(cρ)×(1 em×7)=(_____×_____)/(097×2400)×(1 e-03×7)=_____℃五、混凝土中心温度计算T1(t)= Tj +Thξ(t)其中:T1(t)——t 龄期混凝土中心温度(℃)Tj ——混凝土浇筑温度(℃)Th ——混凝土的绝热温升(℃)ξ(t)——t 龄期降温系数,可根据龄期和厚度查表得到假设混凝土浇筑温度 Tj =_____℃,3d 龄期的降温系数ξ(3)=_____,7d 龄期的降温系数ξ(7)=_____。

大体积混凝土计算公式

大体积混凝土计算公式

大体积混凝土计算公式大体积混凝土计算公式1.温度计算公式1最大绝热温升T h =(W c+K·F) Q/ C·ρT h------混凝土最大绝热温升(℃)W c---混凝土中水泥用量(kg/m3)F----混凝土中标活性掺合料用量(kg/m3)K---掺合料折减系数。

粉煤灰取0.25~0.30 Q----水泥28d水化热(KJ/kg)。

C----混凝土比热.取0.97(KJ/kg . k)ρ—混凝土密度.取2400(kg/m3)不同品种.标号水泥的水化热2.混凝土中心计算温度T1(t) =T j+T h·ξ(t)……(5-5-7).T1(t)-----t岭期混凝土中心计算温度(℃)T j =混凝土浇筑温度(℃)ξ(t) =t龄期降温系数。

降温系数ξ3 混凝土表层(表面下50~100mm处)温度(1)保温材料厚度(或蓄水养护深度)δ=0.5h·λx(T2-T q)k b/λ(T max-T2)δ---保温材料厚度(m)h---大体积混凝土厚度(m)λx--所选保温材料导热系数(w/mk),T2---混凝土表面温度(℃)T q---环境平均温度(℃)K b---修正值.取1.3~2.0λ---混凝土导热系数,取2.33(w/m.k)T max----计算得混凝土最高温度(℃)计算时可取T2 - T q=15~20 ℃T max - T2=20~25℃几种保温材料导热系数传热系Kb数修正值K b1值为一般刮风情况(风速<4m/s,结构位置/>25m)K b2值为刮大风情况如采用蓄水养护方法. 蓄水深度h w= X·M(T max-T2)K b·λw/(700T j+0.28w c·Q) ……(5-5-9) 其中:M=F/Vh w-----养护水深度(m)X-----混凝土维持到指定温度的延续时间,既蓄水养护时间(h)M-----混凝土机构表面系数(1/m)F------与大气接触的表面积(m2)V------混凝土体积(m3)T max - T2-----一般取20~25(℃)K b------传热系数修正值700-----混凝土热容量,既比热与表观密度的乘积(KJ/ m3 k)(2)混凝土表面保温层及摸板的传热系数β=1/[Σδi/λi+1/βq]其中:β---混凝土表面保温层及模板的传热系数(w/m k)δi------各保温材料厚度(m)λi-----各保温材料导热系数(w/m2 k)βq――空气的传热系数,取23[w/(m2.K)(3)混凝土虚厚度h’=k·λ/β…………(5-5-11)其中:h’---混凝土虚厚度(m)k----折减系数,2/3(w/m2k)(4) 混凝土计算厚度H=h+2h’…………(5-5-12)其中:H---混凝土计算厚度(m)h---混凝土实际厚度(m)(5)混凝土表层温度T2(t)=T q+4·h’(H-h’) [T1(t)-t q]/H2其中:T2(t)----混凝土表面温度(℃)T q----施工期大气平均温度(℃)h’----混凝土虚厚度(m)H----混凝土计算厚度(m)T1(t)----混凝土中心温度(℃)4混凝土内平均温度T m(t)=[ T1(t)+ T2(t)]/2T m(t)----混凝土内平均温度(℃)。

大体积混凝土热工计算

大体积混凝土热工计算

大体积混凝土热工计算确定施工配合比:(按图纸设计要求每立方混凝土掺入丹强丝0.9千克,不纳入大体积混凝土的热工计算内)为避免或减少大体积混凝土浇筑产生温度应力裂缝,应对施工阶段浇筑实体的温度应力进行计算,确保混凝土内外温差小于25℃,保证混凝土质量。

注:假设大气温度为30℃,砂含水率为6%,碎石含水率为0%。

1、混凝土拌合物温度为:To=74945.88/2654.31=28.23℃2、出机温度T1=28.23-0.16*(28.23-32)=28.83℃注:搅拌楼温度与大气温度略高,取32℃Tj=28.83-(0.25*0.67+0.032*3)(28.83-30)=29.14℃注:混凝土从运输到浇筑时的时间取40min,约0.67h,混凝土装卸温度损失系数为0.032,从出机到浇筑共装卸3次。

4、混凝土的绝热温升TtTt=[258+(49+79)*0.25]*334/(0.96*2414)=41.80℃水泥用量取258kg,混凝土比热取0.96KJ/kg·℃,混凝土密实度为2414kg/m3。

5、混凝土底板厚2m,估计3天时水化热温度较高,现计算3天的绝热温升。

混凝土内部最高温度T1:T1=Tj+Tt*§(降温系数:查有关资料混凝土厚度为2m时取0.57) =29.14+41.8*0.57=53.0℃6、混凝土的表面温度Tb(指混凝土表面下50-100mm处温度),建议用一层塑料薄膜(厚度0.0005m),两层草包(厚度0.05m)覆盖养护。

导热系数β(1)β=1/(0.0005/0.035+0.05/0.14+1/23)=2.44W/m2·K(2)h´=(2/3*2.3)/2.44=0.65m(混凝土的虚厚度)(3)H=2+2*0.65=3.3m(混凝土的计算厚度)计算混凝土虚厚度为0.65m,计算厚度为3.3mTb=30+4*0.65(3.3-0.65)*(53.0-30)/(3.3*3.3)=44.55℃内部最高温度与混凝土的表面温度之差为53.0-44.55=8.45℃<25℃混凝土表面温度与大气温差为44.55-30=14.55℃<25℃。

某建筑承台大体积混凝土热工计算

某建筑承台大体积混凝土热工计算

某建筑承台大体积混凝土热工计算一、引言混凝土在建筑结构中扮演着非常重要的角色,而混凝土的热工计算则是混凝土工程中的一项重要内容。

特别是对于某些建筑承台这样的大体积混凝土结构来说,热工计算更是必不可少的。

本文将对某建筑承台大体积混凝土的热工计算进行探讨,以期为相关领域的工作者提供一些有价值的参考和帮助。

二、某建筑承台大体积混凝土简介某建筑项目中的承台结构通常是指承受上部结构荷载的基础部分,其体积通常较大,需要承担较大的荷载和压力。

在此类结构中,混凝土的热工计算显得非常重要,因为混凝土在长时间的荷载作用下容易产生裂缝和变形,而热应力则是其中一个主要原因。

2. 热传导方程热传导方程是描述混凝土内部温度分布的数学模型,其基本形式为:\(\frac{\partial T}{\partial t} = \alpha \nabla^2 T + Q\)T为温度分布,t为时间,α为热扩散系数,Q为热源。

通过求解热传导方程,可以得到混凝土内部的温度分布情况。

3. 温度-应力耦合效应在实际工程中,混凝土的温度变化会引起应力的变化,从而影响结构的承载性能。

这种温度-应力的耦合效应需要通过热工计算来分析和评估,以保证结构的安全性。

四、某建筑承台大体积混凝土热工计算方法1. 热工计算参数获取需要获取混凝土的热工性能参数,包括热膨胀系数、导热系数、比热容等参数。

这些参数可以通过实验室测试或者文献资料获取。

2. 建立热传导模型通过建立混凝土的热传导模型,可以分析混凝土内部的温度分布情况。

通常可以采用有限元分析等数值方法来求解热传导方程,得到混凝土的温度分布情况。

4. 热应力的控制和调整根据热工计算的结果,可以对混凝土结构的设计方案进行优化和调整,例如通过设置温度控制装置、增加混凝土的隔热保温层等措施,来降低混凝土的温度应力,从而保证结构的安全性和稳定性。

五、某建筑承台大体积混凝土热工计算实例以某建筑承台大体积混凝土为例,假设混凝土的热膨胀系数为10×10-6/°C,导热系数为2.5W/(m·°C),单位体积比热容为2.0×103J/(m3·°C),混凝土的初温为25°C,环境温度为0°C,混凝土在不同温度下的热膨胀系数和温度分布情况如下:(这里可以插入混凝土的热传导模型结果表格和图表)根据温度分布结果,可以得到混凝土的温度-应力分布情况,如下:根据温度-应力分析的结果,可以对混凝土承台结构的设计方案进行调整和优化,保证其在温度荷载下的稳定性和安全性。

大体积混凝土的热工计算

大体积混凝土的热工计算

大体积混凝土的热工计算混凝土施工前,必须进行温度和温度应力的计算,并预先采取相应的技术措施控制温度差值,控制裂缝的开展,做到心中有数,科学指导施工,确保大体积混凝土的施工质量。

a.温度计算⑴计算依据①根据施工经验,参考相同季节内,国内施工经验数值,现场搅拌的混凝土每立方米各项原材料用量及温度如下:水泥:402kg砂子:730kg,含水率为3%石子:1083kg,含水率为2%水:195kg粉煤灰:35kg外加剂:27kg②根据调研建设当地的气象状况,建设当地最高温度30.5℃、最低温度15.4℃,平均大气温度23℃。

在承台浇筑时,提前采取了适当的保温、遮阳措施后,混凝土原材料中水、水泥、外加剂的温度可以达到平均大气温度23℃,砂石等骨料的温度取最高温度30℃。

为了计算简便,粉煤灰和外加剂的重量均计算在水泥的重量内。

⑵混凝土拌合物的温度T0=[0.9(m ce T ce+m sa T sa+m g T g)+4.2T w(m w- m sa-ωg m g)+c1(ωsa m sa T sa+ωg m g T g)-c2(ω+ωg m g)]÷[4.2m w+0.9(m ce+m sa+m g)]sa m sa式中:T0--混凝土拌合物的温度(℃)。

m w、m ce、m sa、m g--水、水泥、砂、石的用量(kg)。

T w、T ce、T sa、T g--水、水泥、砂、石的温度(℃)。

ωsa、ωg--砂、石的含水率(%)。

c1、c2--水的比热容(kJ/kg.K)及溶解热(kJ/kg)。

当骨料温度>0℃时, c1=4.2,c2=0;≤0℃时, c1=2.1,c2=335。

为了计算简便,粉煤灰和外加剂的重量均计算在水泥的重量内。

T0=[0.9(429×23+730×30+1083×30)+4.2×23(195-3%×730-2%×1083)+4.2(3%×730×30+2%×1083×30)-0]÷[4.2×195+0.9(429+730+1083)]=27.5℃⑶混凝土拌合物的出机温度T1=T0-0.16(T0-T i)式中:T1--混凝土拌合物的出机温度(℃);T i--搅拌棚内温度(℃)。

大体积混凝土热工计算

大体积混凝土热工计算

Th= m c Q/C ρ(1-е-mt)式中:Th—混凝土的绝热温升(℃);m c ——每m 3 混凝土的水泥用量,取3;Q——每千克水泥28d 水化热,取C——混凝土比热,取0.97[KJ/(Kg·K)];ρ——混凝土密度,取2400(Kg/m3);е——为常数,取2.718;t——混凝土的龄期(d);m——系数、随浇筑温度改变,取2、混凝土内部中心温度计算T 1(t)=T j +Thξ(t)式中:T 1(t)——t 龄期混凝土中心计算温度,是混凝土温度最高值T j ——混凝土浇筑温度,取由上表可知,砼第6d左右内部温度最高,则验算第6d砼温差2、混凝土养护计算1、绝热温升计算计算结果如下表ξ(t)——t 龄期降温系数,取值如下表大体积混凝土热工计算计算结果如下表:混凝土表层(表面下50-100mm 处)温度,底板混凝土表面采用保温材料(阻燃草帘)蓄热保温养护,并在草袋上下各铺一层不透风的塑料薄膜。

地下室外墙1200 厚混凝土表面,双面也采用保温材料(阻燃草帘)蓄热保温养护,并在草袋上下各铺一层不透风的塑料薄膜。

①保温材料厚度δ= 0.5h·λi (T 2-T q )K b /λ·(T max -T 2)式中:δ——保温材料厚度(m);λi ——各保温材料导热系数[W/(m·K)] ,取λ——混凝土的导热系数,取2.33[W/(m·K)]T 2——混凝土表面温度:23.9(℃)(Tmax-25)T q ——施工期大气平均温度:25(℃)T 2-T q —--1.1(℃)T max -T 2—21.0(℃)K b ——传热系数修正值,取δ= 0.5h·λi (T 2-T q )K b /λ·(T max -T2)*100=-0.32cm故可采用一层阻燃草帘并在其上下各铺一层塑料薄膜进行养护。

②混凝土保温层的传热系数计算β=1/[Σδi /λi +1/βq ]δi ——各保温材料厚度λi ——各保温材料导热系数[W/(m·K)]βq ——空气层的传热系数,取23[W/(m 2·K)]代入数值得:β=1/[Σδi /λi +1/βq ]=48.83③混凝土虚厚度计算:hˊ=k·λ/βk——折减系数,取2/3;λ——混凝土的传热系数,取2.33[W/(m·K)]hˊ=k·λ/β=0.0318④混凝土计算厚度:H=h+2hˊ= 1.66m⑤混凝土表面温度T 2(t)= T q +4·hˊ(H- h)[T 1(t)- T q ]/H 2式中:T 2(t)——混凝土表面温度(℃)T q —施工期大气平均温度(℃)hˊ——混凝土虚厚度(m)H——混凝土计算厚度(m)式中: hˊ——混凝土虚厚度(m)式中:β——混凝土保温层的传热系数[W/(m 2·K)]T 1(t)——t 龄期混凝土中心计算温度(℃)不同龄期混凝土的中心计算温度(T 1(t))和表面温度(T 2(t))如下表。

大体积混凝土热力计算

大体积混凝土热力计算

二、基础底板混凝土热工计算基础底板混凝土入模温度取30℃,环境温度取30℃(9月份浇砼)。

为了避免水泥水化热引起的温度应力导致裂缝,应在底板混凝土表面覆盖一层塑料薄膜(保湿用)和阻燃草帘被(保温用)。

当混凝土表层与外界温差不大于20℃,底板混凝土中心与表层的温差不大于25℃,且平均降温速度小于1.5~2.0℃/d时才可拆除底板混凝土保温层。

分别取3d、6d、9d的龄期对底板大体积混凝土各项温度指标进行计算:〔以下计算公式见《建筑施工手册》(第四版)缩印本第614—615页〕(1)底板混凝土龄期为3d时,最大绝热温升:式中Th——混凝土最大绝热温升(℃);mc——混凝土中水泥用量(含膨胀剂)(kg/m3),根据搅拌站提供的配合比试配单,水泥用量为260 kg/m3,膨胀剂用量为28 kg/m3,取mc =288 kg/m3;Q——水泥28d水化热(kJ/kg),取375(kJ/kg);c——混凝土比热,取0.97〔kJ/ (kg&#8226;K)〕;ρ——混凝土密度,取2400(kg/ m3);e——为常数,取2.718;t——混凝土的龄期(d),t=3d;m——系数、随浇筑温度改变,当浇筑温度为30℃时,m=0.406(1/d)。

℃(2)混凝土中心计算温度T1(t)=Tj+Th&#8226;式中T1(t)——t龄期混凝土中心计算温度(℃);Tj ——混凝土浇筑温度(℃),取常温30℃;——t龄期降温系数,按板厚2.6m计算,3d龄期时。

T1(3)=30+32.67×0.656=51.43℃(3)混凝土表层(表面下50mm处)温度1)保温材料厚度(保温材料为阻燃草帘被)式中——保温材料厚度;h ——混凝土浇筑块体厚度,本工程大体积基础底板厚度核心筒外为2.0m,核心筒内2.6m;——所选保温材料导热系数〔W/(m&#8226;K)〕,草帘被=0.14;T2 ——混凝土表面温度(℃);Tq ——施工期大气平均温度,取30℃;——混凝土导热系数,取2.33 W/(m&#8226;K);Tmax ——计算得混凝土最高温度(℃);取T2-Tq=20℃,Tmax-T2=25℃Kb ——传热系数修正值。

大体积砼热工计算

大体积砼热工计算

大体积混凝土热工计算1.底板混凝土单次混凝土浇筑厚度最大为2850mm,混凝土强度等级为C35/P12,理论上该处混凝土内部温度最高,容易产生裂缝,所以将此部位混凝土作为范例进行热工计算。

根据C35/P12混凝土配合比为:P.O42.5级水泥227kg,水162kg,中砂761kg,石子1051kg,粉煤灰:102kg,S95级磨细矿渣48kg。

2.预计施工浇筑时间为5月份,查气象历史数据,月最高平均气温为28°。

3.水泥水化热:q=286.6KJ/kg7.1混凝土表面温度裂缝控制计算大体积混凝土结构施工应该使混凝土中心与表面温度、表面温度与大气温度之差在允许范围内,则可控制混凝土裂缝的出现。

7.1.1混凝土的绝热温升水泥水化热引起的混凝土内部实际最高温度与混凝土的绝热温升有关。

混凝土的绝热温升:T i=W×Q×(1-e-mt)/(C×ρ)式中:T h—混凝土的绝热温升(℃)W—每立方混凝土的胶凝材料用量(kg/m3),W=227+102+48=377kg/m3Q—每公斤水泥的水化热,本工程为P.O42.5水泥,查计算手册,Q为335k J/kg C—混凝土比热0.994k J/(kg·K);ρ—混凝土容重2400㎏/m3;t—混凝土龄期(天);m—常数,与水泥品种、浇筑时温度有关,取0.406;e—常数,e=2.718自然对数的底;T(3)=WQ(1-e-mt)/Cρ=377×335×(1-e-0.406×3)/(0.994×2400)=38.198°C;经过计算,得到3天,5天,7天,14天混凝土最高水化热绝热温升:Th3=38.198℃,Th5=47.122℃,Th7=51.076℃,Th14=54.06℃。

7.1.2混凝土的内部最高温度Tmax(t) =Tj+Ti×ζ(t)式中Tmax(t)—混凝土t龄期内部最高温度(℃);分别取3、5、7、14天计算;Tj—混凝土浇筑温度(℃),混凝土浇筑入模温度取35℃;ζ—混凝土t龄期的散热系数,3天,5天,7天,14天分别计算得ζ(3)=0.55,ζ(5)=0.51,ζ(7)=0.351,ζ(14)=0.183;T max =Ti+T(7)ζ=35+38.198×0.55=51°C;按上式计算,3天,5天,7天,14天的结果为T max3=56℃,T max5=59.03℃,T max7=52.93℃,T max14=44.89℃7.1.3砼表层(表面下50~100mm)温度(1)、保温材料厚度(麻袋)δ=0.5h.λx (T2-Tq)Kb/λ(Tmax-T2)=0.5×2.85×0.05×20×1.3/2.33×25=0.0318mδ-保温材料厚度λx-所选保温材料导热系数,材料选麻袋,考虑薄膜保温作用按0.05(T2-Tq)本工程取20℃(Tmax -T2)最高温度与表面温度差,本工程取25℃Kb–传热系数修正值,选1.3。

大体积混凝土热工计算

大体积混凝土热工计算

第五节大体积混凝土热工计算基础筏板混凝土配合比强度等级水水泥掺和料细骨料粗骨料外加剂1 外加剂2水胶比砂率C30P6175334647511038 5.97320.44 42.0% 注:掺入XD-F纤维0.9kg/m31、浇筑温度根据商品混凝土站的原材料情况和大气温度,推定混凝土运到工地后浇筑温度为Tj=22.0℃2、求混凝土的绝热温升Th=W*Q/(C*ρ) =334*314/(0.97*2400) =43.7℃其中W――混凝土中水泥用量Q――水泥水化热,P.O42.5水泥,为314KJ/㎏ρ――混凝土容重,取2400㎏/m3C――混凝土比热,取0.973、混凝土中心温度该筏板混凝土最厚为1.05m,查资料知龄期约为3天时中心温度最高,查表得此时混凝土温度系数ξ=0.36,则混凝土内部中心温度Tmax=Tj+Th×ξ=22.0+43.7×0.36=37.7℃4、混凝土表面温度假设混凝土表面覆盖一层塑料薄膜、一层草袋共厚0.03m,则β=1/[(δi/λi)+(1/βg)] = 1/[(0.03/0.14)+(1/23)] = 3.88W/m2.K其中δi――保温材料的厚度(m)λi――保温材料的导热系数(W/m.K)β――保温层传热系数(W/m2.K)βg――空气的传热系数(W/m2.K)混凝土虚拟厚度h'=K*λ/β=0.666*2.33/3.88=0.40(m)其中λ――混凝土的导热系数取2.33W/m2.KK――计算折减系数,依资料取0.666计算厚度H=h+2h'=1.05+2×0.40=1.85(m)混凝土表面温度Tb(t)=Tg+h'*(H-h')*ΔT(t)*4/H2Tg――龄期t时的大气平均温度,设为21℃ΔT――龄期t时混凝土中心温度与外界气温之差则龄期3天时Tb(3)=21+0.40×(1.85-0.40)×(37.7-21)*4/1.85=32.3℃5、计算温差混凝土中心与表面温度差ΔT1=Tmax-Tb(3)=37.7-32.3=5.4℃<25℃表面温度与大气温度差ΔT2=Tb(3)-Tg=32.3-21.0=11.3℃<25℃5、结论综上计算可知,ΔT1、ΔT2都满足规范规定的25℃标准,说明采取以上技术保证措施对降低混凝土温差,避免出现有害裂缝是有保证的。

大体积混凝土热工计算

大体积混凝土热工计算

大体积混凝土热工计算
大体积混凝土热工计算文档模板范本
1. 引言
在大体积混凝土工程中,热工计算是一个重要的环节,它能够帮助我们评估结构的热传导性能,并提供合适的保温措施。

本文档旨在提供一个详细的热工计算流程,以帮助工程师进行准确的评估和设计。

2. 材料参数
2.1 混凝土配合比
2.2 混凝土的热导率
2.3 混凝土的比热容
2.4 混凝土的导热系数
2.5 其他材料参数(如保温材料)
3. 计算方法
3.1 热传导计算方法
3.1.1 热传导基本原理
3.1.2 热传导计算公式推导
3.2 温度场分析方法
3.2.1 一维温度场分析
3.2.2 二维温度场分析
3.2.3 三维温度场分析
4. 热工计算示例
4.1 地下混凝土储罐的热工计算 4.2 建筑墙体的热工计算
4.3 混凝土道路的热工计算
5. 结果分析与总结
5.1 温度分布图与曲线分析
5.2 热工计算结果的评估与对比
5.3 热工计算的应用前景与展望
6. 附件
6.1 相关图纸和计算表格
6.2 实测数据和模拟结果
7. 法律名词及注释
7.1 建筑法律名词及注释
7.2 热工计算相关法律名词及注释。

关于大体积混凝土的热工计算

关于大体积混凝土的热工计算

关于大体积混凝土的热工计算,有几点疑惑:1、混凝土内外温差产生的最大拉应力:混凝土表面拉应力与混凝土标号及内外温差成正比这很好理解,可混凝土的泊松比值如何确定,其取值的高低是否也与混凝土标高有关?大家是否都是凭经验来取?2、混凝土的水化热绝对温升值的计算:考虑到配合比在混凝土浇灌之前即已确定,故水泥用量为定值,Q(每千克水泥的水化热量)视水泥品种也可确定,可混凝土的密度是充满不定性因素的,且考虑不同的养护时间,计算得出的绝对升温值相差很大,我做过计算,C35砼,考虑5天养护,混凝土密度取2400,每方混凝土放水泥取325,水泥品种为P.O42.5R,经验系数取0.3,得出最高温升值为50.5℃;再考虑提高水泥用量,每方取348Kg,Q取303,c取0.96,混凝土质量密度仍取2400,5天养护时间,得出结果为35.6℃,由此可见,混凝土的水化热绝对温升值的结果与水泥水化热单量有很大关系。

对于第二种情况,我将混凝土质量密度换成2450,其他条件不变,得出结果为34.8℃,那是不是由此可见混凝土水化热与混凝土的振捣密实度没有多大的关系?那再考虑养护时间长短呢?比如时间取7d,或30d?3、考虑控制温差为25℃,混凝土的泊松比为0.175,取时间5d,可得出C35混凝土表面最大拉应力为2.3MPa,而C35砼的标准抗拉强度为2.2MPa,如此说来25℃的温差控制会必然导致混凝土被拉裂?现实当然不是如此,可原因何在?4、考虑徐变影响的松弛系数对混凝土收缩应力的影响到底有多大?5、参考某书籍,讲1℃的内外温差在3~7d龄期内混凝土表面产生约0.025MPa的拉应力,据此计算,考虑25℃温差,拉应力为0.625MPa,那我们是否可以通过加早强剂并加强养护使混凝土实测强度高于此值即可抵抗温度裂缝?或是说此值可以作为混凝土强度控制的指标呢?1.混凝土的泊松比跟混凝土的标号有一定的关系,在前期水化过程中与浇筑的混凝土坍落度也有一定的关系,但是其变化较小,一般情况下按经验取值对最终的结果影响不大。

大体积砼热工计算

大体积砼热工计算

混凝土的热工计算1)最大绝热温升:根据计算公式,T h=m c Q/cp(1-e-mt)其中:T h—混凝土最大绝热温升值m c—每m3水泥用量,取370Q—每公斤水泥水热(3),取Q=375E—常数,e=2.718m—与水泥品种、浇筑时与温度有关的经验系数,取0.340t—混凝土浇筑后至计算时的天数(d)取3d(3d时水化热温度最大)c—混凝土的热比,取c=0.97kJ/(kg.k)p—混凝土质量密度,取R=2400kg/m3。

T h=370×375/0.97×2400×1 =59.6(℃)2)混凝土中心计算温度:○1混凝土浇筑温度按5℃考虑:T1(t)=T j+T h·ξ(t) =5+59.6×0.522=36.1(℃) ○2混凝土浇筑温度按10℃考虑:T1(t)=T j+T h·ξ(t) =10+59.6×0.522=41.11(℃) 其中:T j————混凝土浇筑温度(℃)ξ(t)——t龄期降温系数c混凝土表层温度混凝土表面保温层的传热系数β=1/(∑Si/λi+1/βq)=1/(0.03/0.14+1/23)=3.88 3)混凝土虚厚度h1=K(λ/β)=0.666×(2.33/3.88)=0.4 混凝土计算厚度砼计算厚度:H=h+2h1=1.4+2×0.4=2.2m采用保温材料厚度2cm4)混凝土表层温度○1施工期间大气平均温度5℃考虑:T2(t)=T q+4h’(H-h’)[T1(t)-T q]/H2=5+4×0.4×1.8×[41.11-5]/2.2×2.2=26.5(℃)○2施工期间大气平均温度按10℃考虑:T2(t)=T q+4h’(H-h’)[T1(t)-T q]/H2=10+4×0.4×1.8×[41.11-10]/2.2×2.2= 31.5 (℃)T2(1)———混凝土表层(表面下50~100㎜处)温度T q ———施工期间大气平均温度h’———混凝土虚厚度(h’=k×λ/β)T1(t)———混凝土中心温度根据计算当混凝土浇筑温度按10℃考虑,施工期间大气平均温度按5℃考虑时混凝土中心计算温度与混凝土表层温度之间最大温差为41.11℃-26.5℃=14.6℃小于25℃。

某建筑承台大体积混凝土热工计算

某建筑承台大体积混凝土热工计算

某建筑承台大体积混凝土热工计算建筑承台是建筑结构中的重要构件,大体积混凝土是其主要制成材料之一。

混凝土在施工过程中需经历多个阶段,包括搅拌、浇筑、固化等。

这些阶段中,混凝土材料内部产生的热量会对其性能产生影响,因此需要进行热工计算。

本文将对某建筑承台大体积混凝土热工计算进行介绍。

一、热工性质大体积混凝土的热工性质直接影响其热产生量和热传输率,进而影响其性能。

混凝土的热工性质包括导热系数、比热容、密度等。

导热系数是指材料在温度变化时单位时间内传递的热量。

混凝土的导热系数通常在1.5-3.5W/(m·K)之间,与水泥品种、骨料类型、水胶比等因素有关。

比热容是指材料单位质量在温度变化时所吸收或放出的热量。

混凝土的比热容通常在900-1200J/(kg·K)之间,与水胶比、骨料类型、加气剂类型等有关。

密度是指材料单位体积的质量。

混凝土的密度通常在2200-2600kg/m³之间,与水泥品种、骨料类型、水胶比等因素有关。

二、热产生量计算混凝土在固化过程中,水泥水化反应会产生热量,进而使混凝土内部温度升高。

针对热量的计算,可以采用热量平衡原理。

热量平衡原理指内部热量的产生与内部热量的耗散平衡,即热量的产生量等于热量的散失量。

混凝土的热量产生主要来自水泥水化反应,水化反应与水泥中反应石种数量、活性、配合比等因素有关。

通常来说,热量产生量可以通过水泥水化热量与配用量之间的关系计算。

水泥水化热量可以在水泥包装上找到,一般为稻谷状热量,单位为J/g。

配合比则是指水泥、骨料、砂浆、水所组成的比例,通常用干重计算,即骨料和水泥干重比。

三、热传输计算在固化阶段,混凝土内部温度升高,会对周围环境产生热传输作用。

热传输的计算可以采用传统的傅里叶定律,即热通量大小与温度梯度的乘积成正比例关系。

热传输可以通过导热系数、比热容、密度等物理参数进行计算。

结语某建筑承台大体积混凝土的热工计算是建筑结构设计中不可缺少的部分。

大体积混凝土热值计算

大体积混凝土热值计算

一、大体积混凝土的概念1、定义现代建筑中时常涉及到大体积混凝土施工,如桥梁基础、墩台、高层楼房基础、大型设备基础、水利大坝等。

它主要的特点就是体积大,一般实体最小尺寸大于或等于1m,它的表面系数比较小,水泥水化热释放比较集中,内部温升比较快。

混凝土内外温差较大时,会使混凝土产生温度裂缝,影响结构安全和正常使用。

所以必须从根本上分析它,来保证施工的质量。

我国《大体积混凝土施工规范》GB50496-2009规定:混凝土结构物实体最小尺寸大于或等于1m的大体量混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致有害缝产生的混凝土。

美国混凝土学会(ACI)规定:“任何就地浇筑的大体积混凝土,其尺寸之大,必须要求解决水化热及随之引起的体积变形问题,以最大限度减少开裂”。

日本建筑学会标准(JASS5)规定:“结构断面最小厚度在80cm以上,同时水化热引起混凝土内部的最高温度与外界气温之差预计超过25℃的混凝土,称为大体积混凝土”。

2、大体积混凝土的特点:结构厚实,混凝土量大,工程条件复杂(一般都是地下现浇钢筋混凝土结构),施工技术要求高,水泥水化热较大(预计超过25度),易使结构物产生温度变形。

大体积混凝土除了最小断面和内外温度有一定的规定外,对平面尺寸也有一定限制。

因为平面尺寸过大,约束作用所产生的温度力也愈大,如采取控制温度措施不当,温度应力超过混凝土所能承受的拉力极限值时,则易产生裂缝。

3、大体积砼与普通砼的区别不能仅以截面尺寸来简单判断是否大体积砼,实际施工中,有些砼厚度达到1m,但也不属于大体积砼的范畴,有些砼虽然厚度未达到1m,但水化热却较大,不按大体积砼的技术标准施工,也会造成结构裂缝。

大体积砼与普通砼的区别表面上看是厚度不同,但其实质的区别是由于砼中水泥水化要产生热量,大体积砼内部的热量不如表面的热量散失得快,造成内外温差过大,其所产生的温度应力可能会使砼开裂。

因此判断是否属于大体积砼既要考虑厚度这一因素,又要考虑水泥品种、强度等级、每立方米水泥用量等因素,比较准确的方法是通过计算水泥水化热所引起的砼的温升值与环境温度的差值大小来判别,一般来说,当其差值小于25℃时,其所产生的温度应力将会小于砼本身的抗拉强度,不会造成砼的开裂,当差值大于25℃时,其所产生的温度应力在可能大于砼本身的抗拉强度,造成砼的开裂,此时就可判定该砼属大体积砼,并应按规范进行水化热计算并采取措施进行施工,以确保砼不致开裂,造成工程渗漏水的隐患。

大体积热工计算

大体积热工计算

热工计算:混凝土配合比计算 咨询搅拌站,提供一个配合比,以下热工计算暂按此配比计算,实验室配合比出来后,再从头验算。

一、混凝土拌合温度计算混凝土拌合物的温度可按以下公式计算:T 0=ΣTimC/ΣmCT 0=ΣTimC/ΣmC :T 0=62966/2526.72=24.92℃ 取25℃二、混凝土拌合物的出机温度计算:T1=T0-0.16(T0-T1)式中:T1——混凝土的出机温度(℃)T0——混凝土拌合物的温度(℃)T i——搅拌机内温度(℃)搅拌设备为全封锁式T0= Ti代入公式:T1=T0-0.16(T0-T1) =25-0.16*0=25℃3、混凝土的浇筑温度:Tp=To+(Ta-To)(θ1+θ2+θ3---+θn)其中:Tp—混凝土浇筑温度To—混凝土拌合温度Ta—混凝土运输和浇筑时的室外温度,取35℃θ—温度损失系数,取0.4带入公式:Tp=25+(35-25)*0.4=29℃,取30℃计算依照以上计算能够保证混凝土浇筑温度操纵在30度以下。

4、基础底板大体积混凝土温差计算:混凝土的水化绝热温升值T h=mc Q(1-e-mt)/C.ρ式中:Th—混凝土的绝热温升(℃)mc—每立方混凝土的水泥用量(kg/ m3),取345 kg/ m3 Q—每千克水泥28天的累计水化热,Q0=377J/kg加入外掺料后水化热的调整系数因此,Q取377*0.95=358 J/kgC—混凝土比热0.97kJ/(kg•K0);ρ—混凝土容重2400 ㎏/ m3;t—混凝土龄期(天);m—常数,0.406;e—常数,e=2.718自然对数的底;混凝土最高绝热温升:T max=mc Q/C.ρ=345*358/(0.97*2400)=53℃代入公式T h=mcxQ(1-e-mt)/C.ρ五、混凝土内部中心温度T1(t)=T j+T(h)ξ(t)式中:T1(t)——混凝土中心温度T j——混凝土浇筑温度,取30℃T(h)——在t龄期时混凝土的绝热温升ξ(t)——不同浇筑厚度的温降系数,按下表取值:不同龄期混凝土内部中心温度T1(t)如下表六、混凝土表面温度T2(t)=T q+4hˊ(H-hˊ)ΔT(t)/H2式中:T2(t)——龄期为t时混凝土表面温度T q——龄期为t时大气平均温度,取35度H¬——混凝土计算厚度,H=h+2h’h——混凝土实际厚度(h1=3,h2=2.4,h3=2,h4=1米)hˊ——混凝土虚厚度,h’=KΣλ/βλ—混凝土导导热灵敏度,取2.33w/MΣKK—计算折减系数,取2/3β—模板及保温层传热系数,β=1/(Σδi/λi+1/βq)——各类保温材料厚度,一层阻燃草棉被的厚度取0.04m;本方案采纳二层阻燃草棉被。

大体积混凝土热工计算书

大体积混凝土热工计算书

大体积混凝土热工计算书大体积混凝土是指体积较大,一般厚度大于3米,体积大于1000立方米的混凝土结构。

大体积混凝土在工程中应用广泛,如桥梁基础、高层建筑基础等。

大体积混凝土与其他混凝土相比,具有结构厚、体积大、钢筋密集等特点,因此其施工过程中的热工计算尤为重要。

本计算书将根据相关规范和理论,对大体积混凝土施工过程中的热工问题进行计算和分析。

《混凝土结构工程施工规范》(GB-2011)《混凝土外加剂应用技术规范》(GB-2013)《民用建筑热工设计规范》(GB-2016)混凝土材料:采用C30混凝土,密度为2400kg/m³,比热容为92kJ/(kg·℃),导热系数为33W/(m·℃)。

钢筋材料:采用HRB400钢筋,密度为7850kg/m³,比热容为5kJ/(kg·℃),导热系数为80W/(m·℃)。

施工环境:考虑混凝土浇筑时的温度为25℃,环境温度为20℃。

体积表面系数计算:根据混凝土立方体尺寸,计算立方体表面积与体积之比,即体积表面系数。

混凝土内部温度计算:根据混凝土材料比热容和导热系数,结合环境温度和浇筑温度,计算混凝土内部温度。

表面温度计算:根据混凝土表面与环境之间的热交换,计算表面温度。

温度应力计算:根据混凝土内部温度和表面温度之差,计算温度应力。

体积表面系数计算结果:根据计算,该大体积混凝土的体积表面系数为85。

该系数较大,说明混凝土表面积较大,散热较快。

因此,在施工过程中应采取相应的措施,如通水冷却、表面保温等,以控制混凝土内部温度。

混凝土内部温度计算结果:根据计算,该大体积混凝土的内部温度最高可达35℃。

由于大体积混凝土厚度较大,热量传递至表面需要一定时间,因此内部温度较高。

在施工过程中应采取相应的措施,如分层浇筑、控制水泥用量等,以降低内部温度。

表面温度计算结果:根据计算,该大体积混凝土的表面温度为24℃。

由于大体积混凝土表面积较大,与环境之间的热交换较为明显。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不同浇筑块厚度与混凝土绝热升温的关系ξ 值 浇筑块厚度 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0
ξ0.65
0.68
0.74
0.79
0.82
混凝土弹性模量E0(×104N/mm2) C35 3.15 C45 3.35 C50 3.45 C55 3.55 C60 3.6
水泥水化热值(单位:KJ/Kg) 水泥品种 水泥强 度等级 42.5 普通硅酸盐水泥 矿渣硅酸盐水泥 32.5 42.5 混凝土龄期 3d 314 250 180 7d 354 271 256 28d 375 334 334
注: 1.本表数值是按平均硬化温度15℃时 编制的,当平均温度为7~10℃时,表中数值 按60%~70%采用; 2.当采用碳粉硅酸盐水泥、火山灰质硅酸盐水 泥时,其水化热量可参考矿渣硅酸盐水泥的数 值。
绝热升温计算(为抗裂计算用) t(d) 3 6 47.25 9 52.61 12 54.74 15 55.59 18 55.93 21 56.06
Th(℃) 33.80
m值选用表 浇筑温度 m 5 0.295 10 0.318 15 0.340 20 0.362 25 0.384 30 0.406
不同龄期和浇筑厚度的ξ 值(温度为20~30选用) 浇筑厚 度(m) 1 1.25 1.5 2.5 3 4 不同龄期(d)的ξ 值 3 0.36 0.42 0.49 0.65 0.68 0.74 6 0.29 0.31 0.46 0.62 0.67 0.73 9 0.17 0.19 0.38 0.59 0.63 0.72 12 0.09 0.11 0.29 0.48 0.57 0.65 15 0.05 0.07 0.21 0.38 0.45 0.55 18 0.03 0.04 0.15 0.29 0.36 0.46 21 0.01 0.03 0.12 0.23 0.3 0.37 0.08 0.19 0.25 0.3 0.05 0.16 0.21 0.25 0.04 0.15 0.19 0.24 24 27 30
混凝土28天抗拉强度设计值(×104N/mm2) C40 2.39 C45 2.51 C50 2.64 C55 2.74 C60 2.85
相关文档
最新文档