二次函数的顶点式图像与性质教案

合集下载

二次函数图像和性质教学设计【优秀3篇】

二次函数图像和性质教学设计【优秀3篇】

二次函数图像和性质教学设计【优秀3篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数图像和性质教学设计【优秀3篇】二次函数的基本表示形式为y=aX²+bX+c(a≠0)。

关于二次函数的图像与性质的数学教案(9篇)

关于二次函数的图像与性质的数学教案(9篇)

关于二次函数的图像与性质的数学教案(9篇)二次函数的图像与性质的数学教案篇1【学问与技能】1.会用描点法画函数y=ax2(a>0)的图象,并依据图象熟悉、理解和把握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简洁的实际问题.【过程与方法】经受探究二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象讨论函数的阅历,培育观看、思索、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间沟通争论,到达对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,把握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步熟悉问题 1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么外形呢?问题2 如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思索探究,猎取新知探究1 画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互沟通、展现,表扬画得比拟标准的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和进展趋势.误区二:并非对称点,存在漏点现象,导致抛物线变形。

误区三:无视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延长,而并非到某些点停顿.二次函数的图像与性质的数学教案篇2一学习目标1、把握二次函数的图象及性质;2、会用二次函数的图象与性质解决问题;学习重点:二次函数的性质;学习难点:二次函数的性质与图像的应用;二学问点回忆:函数的性质函数函数图象a0a0性质三典型例题:例 1:已知是二次函数,求m的值例 2:(1)已知函数在区间上为增函数,求a的范围;(2)知函数的单调区间是,求a;例 3:求二次函数在区间[0,3]上的最大值和最小值;变式:(1)已知在[t,t+1]上的最小值为g(t),求g(t)的表达式。

二次函数的图像教案

二次函数的图像教案

二次函数的图像教案教案标题:二次函数的图像教案教案目标:1. 了解二次函数的基本概念和性质。

2. 掌握二次函数的图像特征和变化规律。

3. 能够绘制和分析二次函数的图像。

4. 运用二次函数的图像解决实际问题。

教案步骤:引入(5分钟):1. 引导学生回顾一次函数的图像特征和变化规律。

2. 提问学生是否了解二次函数,以及二次函数与一次函数的区别。

概念讲解(15分钟):1. 解释二次函数的定义:f(x) = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。

2. 介绍二次函数的顶点、对称轴和开口方向的概念。

3. 讲解二次函数的图像特征:顶点坐标、对称轴方程、开口方向等。

图像绘制(20分钟):1. 指导学生通过变化a、b、c的值,绘制不同二次函数的图像。

2. 强调学生观察图像的变化规律,如a的正负值对开口方向的影响,a的绝对值对图像的瘦胖程度的影响等。

图像分析(15分钟):1. 引导学生分析二次函数图像的对称性,即对称轴和顶点的关系。

2. 指导学生根据图像特征,判断二次函数的各项系数的正负情况。

实际问题应用(20分钟):1. 提供一些实际问题,如抛物线运动、最值问题等,要求学生运用二次函数的图像解决问题。

2. 引导学生将问题转化为二次函数的形式,并绘制相应的图像进行分析。

总结与拓展(10分钟):1. 总结二次函数的图像特征和变化规律。

2. 提出一些拓展问题,如图像的平移、伸缩等,鼓励学生进一步探究。

教案评估:1. 课堂练习:要求学生绘制指定二次函数的图像,并分析其特征。

2. 解决实际问题:要求学生运用二次函数的图像解决给定的实际问题。

教案延伸:1. 引导学生研究二次函数的标准形式和顶点形式,并比较它们在图像绘制和分析中的优劣。

2. 引导学生探究二次函数与其他函数的关系,如线性函数、指数函数等。

教案资源:1. 教材或教辅资料中有关二次函数图像的知识点和例题。

2. 计算器或电脑绘图软件,用于绘制二次函数的图像。

二次函数的图象和性质课教案

二次函数的图象和性质课教案

二次函数的图象和性质优质课教案第一章:引言教学目标:1. 让学生了解二次函数的概念和重要性。

2. 引导学生通过实际问题情境,感受二次函数的应用。

教学内容:1. 引入二次函数的概念,给出一般形式的二次函数表达式:y = ax^2 + bx + c。

2. 通过实际问题情境,让学生观察二次函数的图象和性质。

教学活动:1. 引入二次函数的概念,引导学生理解二次函数的三个参数a、b、c的含义。

2. 通过实际问题情境,让学生观察二次函数的图象和性质,例如:抛物线的开口方向、顶点的坐标等。

教学评价:1. 检查学生对二次函数概念的理解程度。

2. 评估学生在实际问题情境中观察二次函数图象和性质的能力。

第二章:二次函数的图象教学目标:1. 让学生掌握二次函数图象的基本特征。

2. 培养学生通过图象分析二次函数性质的能力。

教学内容:1. 介绍二次函数图象的基本特征,包括开口方向、顶点、对称轴等。

2. 引导学生通过图象分析二次函数的增减性和最值问题。

教学活动:1. 利用多媒体展示不同a值的二次函数图象,引导学生观察开口方向的变化。

2. 让学生通过图象分析二次函数的增减性和最值问题,例如:找出函数的最大值或最小值。

教学评价:1. 检查学生对二次函数图象基本特征的掌握程度。

2. 评估学生在图象分析中解决问题的能力。

第三章:二次函数的性质教学目标:1. 让学生了解二次函数的顶点公式及其应用。

2. 培养学生通过二次函数性质解决实际问题的能力。

教学内容:1. 介绍二次函数的顶点公式:顶点坐标为(-b/2a, c b^2/4a)。

2. 引导学生通过二次函数的性质解决实际问题,例如:求函数的最值、对称轴等。

教学活动:1. 让学生通过实际问题情境,应用顶点公式求解二次函数的最值、对称轴等问题。

2. 引导学生利用二次函数的性质解决实际问题,例如:求解抛物线与直线的交点等。

教学评价:1. 检查学生对二次函数顶点公式的掌握程度。

2. 评估学生在实际问题中应用二次函数性质解决问题的能力。

y=x^2的图像和性质教案

y=x^2的图像和性质教案

y=x 的图像和性质教案篇一:26.2.3y=a(x-h)2的图象和性质(教案)26.2.2二次函数y=a(x-h)2的图象与性质【教学目标】1.知道二次函数y?a(x?h)2与y?ax2的图象之间的关系;2.能说出二次函数y?a(x?h)2的开口方向、对称轴和顶点坐标,理解其增减性;【教学重点】掌握二次函数y?a(x?h)2的图象特点及其性质。

【教学难点】灵活运用y?a(x?h)2类型函数的性质解决问题。

【多媒体准备】课件【教学过程】篇二:二次函数的图像和性质教案教学过程一、课堂导入同学首先在演算本上画出一次函数y=x+1的图像,利用列表、描点、连线的方式,然后使用同样的方法画出y=2x2的图像,并根据图像谈论他的性质.二、复习预习二次函数是中考的重点内容,题型主要有选择题、填空题及解答题,而且常与方程、不等式、几何知识等结合在一起综合考查,且一般为压轴题.中考命题不仅考查二次函数的概念、图象和性质等基础知识,而且注重多个知识点的综合考查以及对学生应用二次函数解决实际问题能力的考查.三、知识讲解考点1形如:y=ax2+bx+c(a、b、c是常数,a≠0)那么y叫做x的二次函数,它常用的三种基本形式。

一般式:y=ax2+bx+c(a≠0)顶点式:y=a(x-h)2+k(a≠0)交点式:y=a(x-x1)(x-x2)(a≠0,x1、x2是图象与x轴交点的横坐标)考点2二次函数的图象与性质二次函数y=ax2+bx+c(a≠0)的图象是以(?b4ac?b2b,)为顶点,以直线y=?为对称轴的抛物线。

2a2a4abb时,y随x的增大而减小;在对称轴的右侧,即当x>?2a2a在a >0时,抛物线开口向上,在对称轴的左侧,即x<?时,y随着x的增大而增大。

在a<0时,抛物线开口向下,在对称轴的左侧,即x<?>?b时,y随着x的增大而减小。

2ab时,y随着x的增大而增大。

在对称轴的右侧,即当x2a篇三:《二次函数y=ax 的图象和性质》参考教案22.1.2二次函数y?ax2的图象和性质教学目标1.知识与技能能够用描点法作出函数y=ax2的图象,并根据图象认识和理解其性质2.过程与方法经历探索二次函数y=ax2的图象和性质的过程,体会数形结合的思想和方法.3.情感、态度与价值观在初步建立二次函数表达式与图象之间的联系中,体会数形结合与转化,体会数学内在的美感.教学重点难点1.重点函数y=ax2的图象的画法,了解抛物线的含义,理解函数y=ax2的图象与性质.2.难点用描点的方法准确地画出函数y=ax2的图象,掌握其性质特征.教与学互动设计(一)创设情境导入新课导语一回忆一次函数和反比例函数的定义,图象特征,思考二次函数的图象又有何特征呢?导语二展示(用课件或幻灯片)具有抛物线的实例让大家欣赏,议一议这与二次函数有何联系呢?导语三用红色的乒乓球作投篮动作,观察乒乓球的运动路线,思考运动路线有何规律?怎样用数学规律来描述呢?(二)合作交流解读探究1.函数y=ax2的图象画法及相关名称【探究l】画y=x2的图象学生动手实践、尝试画y=x2的图象教师分析,画图像的一般步骤:列表→描点→连线教师在学生完成图象后,在黑板上示范性画出y=x2的图象,如图22-1-1.【共同探究】次函数图像有何特征?特征如下:①形状是开口向上的抛物线②图象关于y轴对称③由最低点,没有最高点.结合图象介绍下列名称:①顶点;②对称轴;③开口及开口方向.图22-1-1图22-1-22.函数y=ax2的图象特征及其性质【探究2】在同一坐标系中,画出y=12x,y=2x2的图象.2学生自己完成此题.教师做个别指导,在学生(大部分)完成后,教师可示范性地画出两函数的图象.如图22-1-2比较图中三个抛物线的异同.相同点:①顶点相同,其坐标都为(0,0).②对称轴相同,都为y 轴③开口方向相同,它们的开口方向都向上.不同点:开口大小不同.【练一练】画函数y=-x2,y=-施过程)比较函数y=-x2,y=-12x,y=-2x2的图象.找出它们的异同点.212x,y=-2x2的图象.(分析:仿照探究1的实2相同点:①形状都是抛物线.②顶点相同,其坐标都为(0,0).③对称轴相同,都为y轴④开口方向相同,它们的开口方向都向下.不同点:开口大小不同.【归纳】y=ax2的图象特征:(1)二次函数y=ax2的图象是一条抛物线(2)抛物线y=ax2的对称轴是y轴.顶点时原点.a>0时,抛物线开口向上,顶点时抛物形的最低点.a(3)|a|越大,抛物线y==ax2的开口越小(三)应用迁移巩固提高类型之一如何画好二次函数的图象【点拨】画二次函数图象一般是按以下三个步骤进行.①列表、取值;②描点;③连线但初学者对三个步骤,易犯下列错误,注意避免. 【易错点1】表格中,取值过多或过少.画函数y=ax2图象,取对应值时,一般5组或7组有代表性的对应值即可....【易错点2】连线不是光滑曲线,有的用折线,有的画的过渡不自然,不象抛物线.例1下图是甲、乙、丙三人画得二次函数y=2x2的图象.请你帮助修改.解:图甲中有两个错误的地方.①连线不能用直尺作线段,图象中相邻两点时用光滑曲线连接.②抛物线开口应向上无限延伸,不能到两端点为止.修改见图甲中虚线.图乙中有一个错误,其中有一个点(1,-2)的位置画错.(或表格中对应值算错)修改见图乙中虚线.图丙种错误是x的值都是非负数,没有负数,导致出现其图象只是抛物线的一半,没有对称性.修改见图丙中虚线.【点评】此三类错误是初学者应注意的三个方面,以后的练习中,应提醒大家注意.类型之二函数y=ax2的图象特征的应用例2(1)填空:函数y?()2的图象是,顶点坐标是,对称轴是,开口方向是. 1(2)函数y=x2,y=x2,y=-2x2图象如图所示,请指出三条抛物线的名称.2解:(1)y?()2可化为y=2x2.它的图象是抛物线,顶点坐标为(0,0),对称轴为y轴,开口方向向上.【点评】解析式需化为一般式,再根据图象特征解答,避免发生错误.(2)根据抛物线y=ax2中,a的值的作用来判断,最上面的抛物线为y=x2,中间的为y=12x,x轴下方的为y=-2x22【点评】抛物线y=ax2中a>0时,开口向上.a(四)总结反思拓展升华【总结】1.本节所学知识:①二次函数y=ax2的图象的画法.②二次函数y=ax2的图象特征及其性质.2.本节所用的方法:实践比较法【反思】函数y=ax2与y=-ax2的图象之间有何关系?(它们关于x 轴对称)【拓展】已知函数y=ax2经过(1,2).(1)求a的值.(2)当x(2)根据函数y=2x2知x【点评】①通常用待定系数法函数y=ax2中只有一个待定系数a,故知道其图象上一点坐标或x,y的一组对应值就可求出解析式.②结合图象知:x(五)当堂检测反馈1.抛物线y=4x2中的开口方向是向上,顶点坐标是(0,0),对称轴是y轴.抛物线y=-对称轴是y轴.2.二次函数y=ax2与y=2x2,开口大小,形状一样,开口方向相反,则a=2.【分析】a与-2互为相反数13.在同一坐标系中:①y=x2,②y=-x2,③y=2x2这三个函数图象开口最大212x的开口方向是向下,顶点坐标是(0,0),4的是①y?12x2,开口向下的是②y=-x21解:∵||2∵函数y=-x2中,二次项系数为-114.二次函数y=2x2,y=-2x2,y=x22点(0,0);②对称轴相同,都是y轴.5.已知抛物线的顶点在原点,对称轴是y轴,且经过(-3,2).求此抛物线的解析式,并指出x>0时,y随x的变化情况.解:设此抛物线的解析式为y=ax2,∵此抛物线过点(-3,2),∴2=a·(-3)2,即a=22,.∴y=x2,∴当x>0时,y随x的增大而增大.99篇四:《二次函数y=ax 的图象和性质》教学设计《二次函数y=ax2的图象与性质》教学设计一、教学分析(一)教学内容分析本节课为沪科版九年级数学第22章第二节的内容,学习二次函数y=ax2的图象与性质.这是学习一次函数的延续,是对函数内容的再认识,也是学生理解二次函数定义,建立二次函数模型的后续学习.它既是前面函数学习的一次升华,又是后续的y=ax2+bx+c的性质和二次函数应用学习顺利进行的保证,还是学生升入高一级学校学习函数的基础,具有承上启下的作用,因此该内容在教材中的地位十分重要. (二)教学对象分析学生在八年级上学期已经学习了函数及一次函数等内容,对函数已经有了初步的认识.学生通过从特殊到一般的数学研究方法,先学习y?ax2这一最简单的二次函数图象与性质,再进一步研究y?ax2?bx?c(a?0)的图象与性质,可以进一步领悟函数的概念并积累研究函数性质的方法.由于学生在认知方式、动手能力、语言表达和思维方式等方面存在差异,教师要及时了解并尊重学生的个体差异.教学中要多鼓励学生,对学有困难的学生要及时给予帮助和指导,让他们敢于发表自己的见解,丰富教学活动的经验,发展数学能力. (三)教学环境分析充分利用优质的教学资源,尽量采用现代教育技术手段,用计算机展示函数的图象,形象显示图形的变化与联系,提高教学效果与质量.二、教学目标(一)知识与技能1.能够利用描点法作出二次函数y=x2的图象,并能根据图象总结和理解二次函数y=x2的性质;12.能作出y=-x2,y??x2和y=2x2的图象,并比较它们与y=x2的图象的异同,初步体2会二次函数关系式与图象之间的联系;3.能根据二次函数y=x2的图象,探索二次函数的性质(开口方向、对称轴、顶点坐标).(二)过程与方法1.经历探索二次函数y=x2的图象和性质的过程,获得用图象研究函数性质的经验;2.由二次函数y=x2的图象及性质类比地学习二次函数y=-x2的图象及性质,并能比较它们的异同点,培养类比学习能力,渗透数形结合的数学思想方法,发展学生的求同求异思维.(三)情感态度与价值观1.通过探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解;2.在利用图象讨论二次函数的性质时,尽可能多地合作交流,以便能够从多个角度看问题,进而比较准确地理解二次函数的性质.三、教学重点难点(一)教学重点作出二次函数y?ax2的图象,并根据图象观察分析出二次函数y?ax2的性质.(二)教学难点经历探索二次函数y=x2的图象的作法与性质的过程,获得利用图象研究函数性质的经验.并把这种经验运用于研究二次函数y?ax2的图象与性质方面,实现“探索―经验―运用”的思维过程.四、教学过程篇五:22.1.2二次函数y=ax2图像与性质教案21竭诚为您提供优质文档/双击可除23。

二次函数的性质与图像教案

二次函数的性质与图像教案

二次函数的性质与图像教案一、教学目标1. 让学生了解二次函数的定义和标准形式;2. 理解二次函数的性质,包括顶点、开口、对称轴等;3. 掌握二次函数图像的特点,如开口方向、顶点位置等;4. 能够运用二次函数的性质和图像解决实际问题。

二、教学内容1. 二次函数的定义和标准形式;2. 二次函数的性质:顶点、开口、对称轴;3. 二次函数图像的特点:开口方向、顶点位置等;4. 实际问题举例。

三、教学重点与难点1. 重点:二次函数的性质和图像的特点;2. 难点:运用二次函数的性质和图像解决实际问题。

四、教学方法1. 采用讲解、演示、练习、讨论等教学方法;2. 使用多媒体课件辅助教学,直观展示二次函数的图像;3. 引导学生通过实际问题,探究二次函数的性质和图像特点。

五、教学过程1. 引入:通过生活中的实例,引导学生思考二次函数的存在;2. 讲解:讲解二次函数的定义和标准形式,阐述二次函数的性质,如顶点、开口、对称轴等;3. 演示:使用多媒体课件,展示二次函数的图像,让学生直观理解二次函数的性质和图像特点;4. 练习:布置练习题,让学生巩固二次函数的性质和图像知识;5. 讨论:组织学生分组讨论,分享解题心得和实际问题解决方法;6. 总结:总结二次函数的性质和图像特点,强调运用二次函数解决实际问题的重要性。

六、教学评估1. 课堂练习:设计一份包含不同难度的练习题,以评估学生对二次函数性质与图像的理解程度。

2. 小组讨论:观察学生在小组讨论中的参与情况和合作能力,评估他们对知识点的掌握和运用能力。

3. 课后作业:布置一道综合性的课后作业,要求学生应用二次函数的性质与图像解决实际问题,以评估他们的应用能力。

七、教学资源1. 多媒体课件:制作详细的课件,包括二次函数的图像、性质解释和实际问题示例。

2. 练习题库:准备一份涵盖各种类型题目的题库,用于课堂练习和课后作业。

3. 实际问题案例:收集一些与二次函数相关的实际问题案例,用于教学中的实例分析。

二次函数图像和性质教学设计(3篇)

二次函数图像和性质教学设计(3篇)

二次函数图像和性质教学设计(3篇)二次函数的图像和性质3教学设计篇一22.1.3二次函数y=a(x-h)2+k的图象和性质教学设计知识与技能:会用描点法画出二次函数y=a(x-h)2+k的图象;过程与方法:结合图象确定抛物线y=a(x-h)2+k的开口方向、对称轴与顶点坐标及性质;情感态度与价值观:通过比较抛物线y=a(x-h)2+k与y=ax2的关系,培养学生的观察、分析、总结的能力。

学情分析学生在学习了前两课时的基础上,对于顶点式已经有了一定的认识,可以根据类比思想比较容易得出完整顶点式的图象性质,所以这一部分主要是学生独立探究,个别指导,然后归纳总结。

之后把侧重点放在对实际问题的探究上,重点研究实际问题的建模过程,鼓励一题多解,拓展学生思维。

重点难点教学重点:画出形如y=a(x-h)2+k的二次函数的图象,能指出开口方向,对称轴,顶点。

教学难点:理解函数y=a(x-h)2+k与y=ax2及其图象的相互关系。

4教学过程一、复习导入新课师:同学们,在学习新课之前,我们先来做这样一道题。

观察y=-x2、y=-x2-1、y=-(x+1)2这三条抛物线中,第一条抛物线可以经过怎样的平移得到第二条和第三条抛物线。

(指名学生回答)。

师:同学们可不可以在这个知识点的基础上进一步猜想一下第一条抛物线能否经过怎样的平移得到抛物线y=-(x+1)2-1 生:向左平移一个单位,再向下平移一个单位。

师:这个猜想是否正确呢?这节课我们一起来验证一下。

(板书课题)二、探究探究一(大屏幕出示)(自探问题部分)1.画出函数y=-(x+1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.x y=-(x+1)2-1 函数… …-4-3-2-10 1 2 ……开口方向顶点对称轴最值增减性y=-(x+1)2-1(学生口头展示以上问题)2.师:(结合课件)把抛物线y=-x2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y=-(x+1)2-1.所以抛物线y=-x2 与抛物线y=-(x+1)2-1 形状___________,位置________________.通过刚才的演示,可以证明我们前面的猜想是正确的。

二次函数的性质与图像教案

二次函数的性质与图像教案

二次函数的性质与图像教案一、教学目标:1. 理解二次函数的定义和标准形式;2. 掌握二次函数的性质,包括对称轴、顶点、开口方向等;3. 能够绘制和分析二次函数的图像;4. 能够应用二次函数解决实际问题。

二、教学内容:1. 二次函数的定义和标准形式;2. 二次函数的性质:对称轴、顶点、开口方向;3. 二次函数的图像:抛物线的基本形状;4. 实际问题中的应用。

三、教学方法:1. 讲授法:讲解二次函数的定义、性质和图像;2. 案例分析法:分析实际问题中的二次函数;3. 互动讨论法:引导学生参与课堂讨论,巩固知识点;4. 实践操作法:让学生动手绘制二次函数的图像,加深理解。

四、教学准备:1. 教学PPT:包含二次函数的定义、性质、图像及实际问题;2. 练习题:用于巩固所学知识;3. 绘图工具:如直尺、圆规等,用于绘制二次函数的图像。

五、教学过程:1. 导入:通过一个实际问题引入二次函数的概念;2. 讲解:讲解二次函数的定义、性质和图像,引导学生理解;3. 案例分析:分析实际问题中的二次函数,让学生学会应用;4. 互动讨论:引导学生参与课堂讨论,巩固知识点;5. 实践操作:让学生动手绘制二次函数的图像,加深理解;6. 总结:对本节课的内容进行总结,强调重点知识点;7. 布置作业:让学生通过练习题巩固所学知识。

六、教学评估:1. 课堂问答:通过提问方式检查学生对二次函数定义和性质的理解;2. 练习题:布置针对性的练习题,评估学生对二次函数图像分析的能力;3. 小组讨论:评估学生在团队合作中解决问题的能力;4. 作业反馈:收集学生作业,评估其对课堂所学知识的掌握程度。

七、教学拓展:1. 探讨二次函数在实际生活中的应用,如抛物线镜面、物理运动等;2. 介绍二次函数相关的数学历史故事,激发学生兴趣;3. 引导学生探究二次函数的其它性质,如最大值、最小值等;4. 组织数学竞赛,提高学生的学习积极性。

八、教学反思:1. 反思教学方法:根据学生反馈,调整教学方法,提高教学效果;2. 反思教学内容:确保教学内容符合学生认知水平,适当调整难度;3. 反思教学过程:关注学生在课堂上的参与度,优化教学过程;4. 及时与学生沟通:了解学生的学习需求,调整教学策略。

二次函数的顶点式图像与性质教案

二次函数的顶点式图像与性质教案

二次函数的顶点式图像与性质教案一、教学目标1. 理解二次函数的顶点式图像及其性质。

2. 学会如何通过顶点式来确定二次函数的图像和性质。

3. 能够运用二次函数的顶点式图像和性质解决实际问题。

二、教学内容1. 二次函数的顶点式图像:通过顶点式y=a(x-h)^2+k 来分析二次函数的图像,理解顶点式中的h 和k 对图像的影响。

2. 二次函数的顶点式性质:掌握顶点式中的a、h 和k 对二次函数图像的开口方向、对称轴和最值的影响。

三、教学方法1. 采用问题驱动的教学方法,引导学生通过观察和分析来发现二次函数的顶点式图像和性质。

2. 利用多媒体演示和实物模型辅助教学,帮助学生直观地理解二次函数的顶点式图像和性质。

3. 组织小组讨论和练习,鼓励学生互相交流和合作,提高学生的解决问题的能力。

四、教学步骤1. 引入:通过一个实际问题,引出二次函数的顶点式图像和性质的概念。

2. 讲解:讲解二次函数的顶点式图像和性质,并通过示例来说明。

3. 演示:利用多媒体演示二次函数的顶点式图像和性质的变化,让学生直观地感受。

4. 练习:给出一些练习题,让学生运用二次函数的顶点式图像和性质来解决问题。

五、教学评估1. 课堂讲解:观察学生在课堂上的参与程度和理解程度,及时进行反馈和调整教学方法。

2. 练习题:通过学生完成的练习题来评估学生对二次函数的顶点式图像和性质的理解程度。

3. 小组讨论:评估学生在小组讨论中的表现,包括合作能力、交流能力和解决问题的能力。

六、教学活动1. 互动游戏:设计一个互动游戏,让学生通过游戏来加深对二次函数顶点式图像和性质的理解。

例如,可以设计一个“顶点抓取”游戏,学生通过操作鼠标或触摸屏,捕捉二次函数图像的顶点,并回答相关问题。

2. 小组竞赛:将学生分成小组,进行竞赛活动。

每组需要解决一系列与二次函数顶点式图像和性质相关的问题,并在规定时间内提交答案。

教师根据答案的正确性和提交时间来评分,奖励获胜的小组。

22.1.2二次函数的图像和性质(教案)

22.1.2二次函数的图像和性质(教案)
此外,课堂总结时,我询问了学生们对今天课程的感受,他们普遍反映喜欢这种结合实际案例的教学方式。这让我感到欣慰,同时也提醒我,作为教师,需要不断更新教学方法和手段,以保持学生们的学习兴趣。
最后,我意识到在课堂上,对于学生的疑问和困惑,我需要更加耐心和细致地进行解答。有时候,一个简单的解释就能帮助学生跨越理解的障碍。在今后的教学中,我会更加注重与学生的互动,鼓励他们提出问题,并及时给予反馈。
-重点三,利用图示和计算,说明二次函数与x轴的交点即为二次方程的实数根;
-重点四,通过图像和数学推导,让学生理解二次函数最值的含义及其计算方法。
2.教学难点
-理解二次函数图像的对称性,特别是对称轴的概念及其与顶点的关系;
-掌握顶点坐标计算公式的应用,尤其是对于含有绝对值、分式等复杂二次函数的顶点求解;
-学会求解二次函数与坐标轴的交点,理解这些交点与二次方程解的关系;
-掌握二次函数的最值问题,明确当a>0时,函数有最小值;当a<0时,函数有最大值。
举例解释:
-对于重点一,强调a的符号决定了图像的形状,并通过实例展示a的正负对图像的影响;
-重点二,通过具体函数示例,演示如何计算顶点坐标,并解释顶点即为对称轴上的点;
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“22.1.2二次函数的图像和性质”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体抛高后落地的情况?”(如抛球游戏)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次函数图像和性质的奥秘。
3.二次函数图像的顶点坐标计算,顶点公式为(-b/2a,4ac-b²/4a);
4.二次函数图像的对称轴,即x = -b/2a;

九年级下册《二次函数的图像与性质》数学教案

九年级下册《二次函数的图像与性质》数学教案

九年级下册《二次函数的图像与性质》数学教案标题:九年级下册《二次函数的图像与性质》数学教案
一、教学目标
1. 知识目标:理解并掌握二次函数的概念、图像及其性质。

2. 技能目标:能够通过描点法绘制二次函数图像,通过观察图像判断函数的性质。

3. 情感态度价值观目标:培养学生分析问题、解决问题的能力,提高他们对数学的兴趣。

二、教学重难点
1. 教学重点:理解和掌握二次函数的图像和性质。

2. 教学难点:通过图像理解和应用二次函数的性质。

三、教学方法
采用启发式教学法、讲授法和实践操作法相结合的方式进行教学。

四、教学过程
1. 导入新课:通过复习一次函数的知识,引导学生思考如何将一次函数推广到二次函数,激发学生的学习兴趣。

2. 新课讲解:
(1) 二次函数的概念和表达式;
(2) 二次函数的图像:a>0, a=0, a<0三种情况下的图像特征;
(3) 二次函数的性质:顶点坐标、对称轴、开口方向等。

3. 实践操作:让学生分组合作,通过描点法绘制不同类型的二次函数图像,并讨论其性质。

4. 总结反馈:教师总结本节课的主要内容,对学生的表现进行反馈。

五、作业布置
设计一些习题,包括画图题和计算题,以帮助学生巩固所学知识。

六、教学反思
在教学结束后,反思本节课的教学效果,找出存在的问题,以便改进。

二次函数的图像与性质教案

二次函数的图像与性质教案

二次函数的图像与性质教案教案标题:二次函数的图像与性质教案教案目标:1. 理解二次函数的基本概念和性质;2. 掌握二次函数图像的绘制方法;3. 能够分析二次函数的图像特征和性质。

教案步骤:步骤一:引入二次函数的概念和性质(10分钟)1. 引导学生回顾一次函数的概念和性质,然后引入二次函数的概念,解释二次函数与一次函数的区别。

2. 介绍二次函数的一般形式:f(x) = ax^2 + bx + c,并解释各项的含义。

3. 解释二次函数的性质:对称性、开口方向、顶点、轴等。

步骤二:绘制二次函数的图像(20分钟)1. 通过给定不同的a、b、c值,绘制不同形态的二次函数图像。

2. 详细解释如何确定二次函数的顶点、轴和开口方向。

3. 引导学生观察图像的变化规律,总结二次函数图像与a、b、c值的关系。

步骤三:分析二次函数的图像特征和性质(15分钟)1. 引导学生观察不同形态的二次函数图像,分析其对称性、最值、零点等特征。

2. 引导学生发现二次函数图像的对称轴与一次函数图像的x轴有何关系。

3. 引导学生讨论二次函数图像的开口方向与a值的关系,并总结规律。

步骤四:应用二次函数的图像与性质(15分钟)1. 给定实际问题,引导学生建立与之对应的二次函数模型。

2. 利用二次函数图像的性质,解决实际问题,如求最值、零点等。

3. 引导学生讨论二次函数图像在不同场景中的应用,如抛物线的运动轨迹、物体的抛射问题等。

步骤五:总结与拓展(10分钟)1. 让学生总结二次函数的图像特征和性质,包括对称性、开口方向、顶点、轴等。

2. 引导学生思考二次函数的应用领域,并拓展到其他数学知识的应用,如函数的复合、函数的逆运算等。

教学资源:1. 教材:包含二次函数相关知识的教材或教学参考书。

2. 白板、彩色笔等教学工具。

3. 实际问题的案例素材。

评估方式:1. 课堂练习:通过绘制二次函数图像、分析图像特征等练习,检查学生对二次函数的理解和应用能力。

二次函数的性质与图像教案

二次函数的性质与图像教案

二次函数的性质与图像教案一、教学目标1. 让学生理解二次函数的定义和标准形式;2. 掌握二次函数的性质,包括对称轴、顶点、开口方向等;3. 能够绘制二次函数的图像,并分析图像的性质;4. 能够运用二次函数解决实际问题。

二、教学内容1. 二次函数的定义和标准形式;2. 二次函数的性质;3. 二次函数的图像;4. 实际问题中的应用。

三、教学重点与难点1. 重点:二次函数的性质和图像;2. 难点:二次函数图像的分析与应用。

四、教学方法1. 采用问题驱动法,引导学生探究二次函数的性质;2. 利用数形结合法,让学生直观地理解二次函数的图像;3. 结合实际例子,让学生学会运用二次函数解决实际问题。

五、教学准备1. 教学课件;2. 练习题;3. 实物模型或图形软件。

教案内容请参考下述示例:一、二次函数的定义和标准形式1. 二次函数的定义:形如y=ax^2+bx+c(a≠0,a、b、c为常数)的函数称为二次函数。

2. 二次函数的标准形式:y=a(x-h)^2+k,其中(h,k)为顶点坐标。

二、二次函数的性质1. 对称轴:二次函数的对称轴为x=h。

2. 顶点:二次函数的顶点坐标为(h,k)。

3. 开口方向:当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。

三、二次函数的图像1. 绘制二次函数的图像:通过顶点、对称轴、关键点等方法绘制。

2. 分析二次函数的图像:观察开口方向、对称轴、顶点等。

四、实际问题中的应用1. 利用二次函数解决实际问题:如抛物线与坐标轴的交点、最值问题等。

2. 结合实际例子,让学生学会运用二次函数解决实际问题。

五、课堂练习1. 练习题:巩固二次函数的性质与图像知识。

2. 实物模型或图形软件:让学生直观地感受二次函数的图像。

六、教学过程1. 导入:通过回顾一次函数和线性函数的图像,引导学生思考二次函数图像的特点。

2. 新课:介绍二次函数的定义和标准形式,解释对称轴、顶点、开口方向等概念。

高中数学教案:二次函数的图像与性质

高中数学教案:二次函数的图像与性质

高中数学教案:二次函数的图像与性质一、引言二次函数是高中数学中重要的内容之一。

本节课将着重介绍二次函数的图像与性质,通过深入理解二次函数的特点和变化规律,帮助学生掌握相关的知识和技能。

二、二次函数的定义与表示1. 二次函数定义:二次函数是形如 f(x) = ax^2 + bx + c 的函数,其中 a、b、c是实数且a ≠ 0。

2. 二次函数的顶点形式:f(x) = a(x - h)^2 + k,其中 (h, k) 是顶点坐标。

三、二次函数的图像1. 求解顶点坐标:- 对于一般形式 f(x) = ax^2 + bx + c,顶点坐标为 (-b/2a, f(-b/2a))。

- 对于顶点形式 f(x) = a(x - h)^2 + k,顶点坐标为 (h, k)。

2. 判定开口方向:- 当 a > 0 时,图像开口向上;- 当 a < 0 时,图像开口向下。

3. 对称轴:对于一般形式 f(x) = ax^2 + bx + c 或者顶点形式 f(x) = a(x - h)^2 + k,对称轴为 x = -b/2a 或者 x = h。

4. 零点:对于一般形式 f(x) = ax^2 + bx + c,可以利用求根公式得到零点。

四、二次函数图像的性质1. 最值与单调性:- 当 a > 0 时,最小值为顶点坐标 (h, k),函数递增;- 当 a < 0 时,最大值为顶点坐标 (h, k),函数递减。

2. 对称性:- 关于对称轴有对称性,即关于 x = h 对称;- 对称轴也是图像的一个切线。

3. 平移与缩放:- 在顶点形式 f(x) = a(x - h)^2 + k 中,顶点坐标可以通过平移 h 和 k 实现平移和缩放效果。

五、练习题请根据所学知识回答以下问题:1. 给定二次函数 y = 2x^2 + 4x + 1,求其顶点坐标、开口方向以及对称轴。

2. 给定二次函数 y = -3(x + 1)^2 + 5,求其顶点坐标、开口方向以及对称轴。

二次函数的顶点式图像与性质教案

二次函数的顶点式图像与性质教案

二次函数的顶点式图像与性质教案第一章:二次函数的顶点式图像1.1 引入二次函数的一般形式:y = ax^2 + bx + c1.2 解释二次函数的顶点式图像:y = a(x h)^2 + k,其中(h, k)为顶点坐标1.3 探讨顶点式图像的特点:开口方向、对称轴、顶点坐标等1.4 利用顶点式图像分析二次函数的增减性、最大值或最小值等性质第二章:开口方向与a的取值2.1 分析a的取值对开口方向的影响:a > 0时,开口向上;a < 0时,开口向下2.2 利用顶点式图像观察不同开口方向的二次函数特点2.3 引导学生通过观察图像判断开口方向及a的取值范围第三章:对称轴与顶点坐标3.1 解释二次函数的对称轴公式:x = h3.2 探讨对称轴与顶点坐标的关系:对称轴经过顶点3.3 利用顶点式图像分析二次函数的对称性质3.4 引导学生通过图像找到对称轴及顶点坐标第四章:增减性与最值4.1 解释二次函数的增减性:a > 0时,函数在顶点左侧递减,在顶点右侧递增;a < 0时,函数在顶点左侧递增,在顶点右侧递减4.2 探讨最值的求法:当a > 0时,最小值为顶点的y坐标;当a < 0时,最大值为顶点的y坐标4.3 利用顶点式图像观察二次函数的最值及增减性4.4 引导学生通过图像分析二次函数的最值和增减性第五章:实际问题与二次函数的顶点式图像5.1 引入实际问题:如抛物线运动、物体的抛物线轨迹等5.2 解释实际问题中的二次函数顶点式图像与性质的应用5.3 利用顶点式图像解决实际问题,如求物体的最大高度等5.4 引导学生将实际问题与二次函数的顶点式图像和性质相结合,提高解决问题的能力第六章:二次函数图像的平移6.1 回顾一次函数图像的平移规律:上加下减,左加右减6.2 介绍二次函数图像的平移规律:上加下减,左加右减,改变顶点坐标6.3 利用顶点式图像展示二次函数图像的平移过程6.4 引导学生通过实际例子,掌握二次函数图像的平移规律第七章:二次函数图像的叠加7.1 解释二次函数图像的叠加原理:两个函数图像在同一坐标系中绘制,观察交点情况7.2 利用顶点式图像展示两个二次函数图像的叠加情况7.3 探讨二次函数图像的叠加规律:开口方向、对称轴、顶点坐标等7.4 引导学生通过实际例子,理解二次函数图像的叠加原理第八章:二次函数图像与坐标轴的交点8.1 分析二次函数图像与x轴的交点:令y = 0,解方程得到x的值8.2 分析二次函数图像与y轴的交点:令x = 0,解方程得到y的值8.3 利用顶点式图像找出二次函数图像与坐标轴的交点8.4 引导学生通过实际例子,求解二次函数图像与坐标轴的交点第九章:二次函数图像的应用9.1 引入实际应用场景:如抛物线运动、物体的抛物线轨迹等9.2 解释实际应用中二次函数图像的重要性9.3 利用顶点式图像解决实际应用问题,如求物体的最大速度等9.4 引导学生将实际应用与二次函数图像相结合,提高解决问题的能力10.2 强调二次函数图像在实际问题中的应用价值10.3 提出拓展问题,激发学生对二次函数图像与性质的深入研究兴趣10.4 引导学生进行拓展练习,巩固所学知识重点和难点解析一、二次函数的顶点式图像重点和难点解析:理解顶点式图像的开口方向、对称轴、顶点坐标等特点是教学的重点,也是学生理解的难点。

二次函数的顶点式图像与性质教案

二次函数的顶点式图像与性质教案

二次函数的顶点式图像与性质教案第一章:二次函数的顶点式图像1.1 理解二次函数的一般形式:y = ax^2 + bx + c1.2 引入顶点式的概念:y = a(x h)^2 + k,其中(h, k)为顶点坐标1.3 绘制二次函数的顶点式图像,观察顶点、开口方向、对称轴等特征1.4 探讨顶点式图像与一般形式图像的关系第二章:顶点式图像的性质2.1 理解顶点式图像的顶点坐标对图像的影响2.2 探讨顶点式图像的开口方向与a的关系2.3 分析顶点式图像的对称轴方程:x = h2.4 探讨顶点式图像的增减性:a > 0时,y随x增大而增大;a < 0时,y先增大后减小第三章:二次函数的顶点式与一元二次方程3.1 理解二次函数的顶点式与一元二次方程的根的关系3.2 利用顶点式将二次函数转化为一元二次方程:y = a(x h)^2 + k = 03.3 求解一元二次方程,得出x的值3.4 分析一元二次方程的根与顶点式图像的交点关系第四章:实际问题中的应用4.1 引入实际问题,如:抛物线与坐标轴的交点、物体运动等4.2 利用顶点式图像分析实际问题中的最大值、最小值等4.3 探讨实际问题中对称性的应用4.4 分析实际问题中开口方向与实际情况的关系第五章:总结与拓展5.1 总结二次函数的顶点式图像与性质的主要内容5.2 探讨二次函数的顶点式图像在实际问题中的应用5.3 提出拓展问题,如:二次函数的顶点式图像与线性函数的关系等5.4 鼓励学生自主研究,培养学生的探究能力第六章:对称轴与顶点的关系6.1 回顾顶点式y = a(x h)^2 + k 中对称轴的定义6.2 分析对称轴与顶点坐标的h 值的关系6.3 探讨对称轴在实际问题中的应用,如抛物线射击、几何图形的对称性等6.4 进行对称轴相关的练习题,巩固学生对对称轴的理解第七章:开口方向与二次函数的性质7.1 引入开口方向的概念,分析a 值对开口方向的影响7.2 探讨开口方向与顶点式图像的关系7.3 分析开口方向在实际问题中的应用,如球的体积、光学问题等7.4 进行开口方向相关的练习题,帮助学生理解开口方向的意义第八章:增减性分析8.1 回顾顶点式图像的增减性:a > 0 时,y 随x 的增大而增大;a < 0 时,y 的变化为先增大后减小8.2 分析增减性在实际问题中的应用,如气温变化、经济曲线等8.3 进行增减性相关的练习题,让学生掌握增减性的分析方法8.4 探讨增减性与对称轴、开口方向的关系第九章:实际问题中的二次函数应用9.1 引入复杂的实际问题,如利润最大化、路程优化等9.2 利用二次函数的顶点式图像分析实际问题,求解最优解9.3 探讨实际问题中二次函数的多种应用场景,如物理运动、工程设计等9.4 进行实际问题相关的练习题,提高学生解决实际问题的能力第十章:总结与拓展10.1 回顾本节课的主要内容,总结二次函数的顶点式图像与性质的关键点10.2 鼓励学生进行拓展学习,如研究三次函数、高次函数的图像与性质10.3 提出课程延伸问题,如二次函数的顶点式图像在、大数据等领域的应用10.4 布置课后作业,巩固学生对二次函数顶点式图像与性质的理解和应用重点和难点解析一、顶点式图像的绘制与观察:理解顶点式y = a(x h)^2 + k 并能绘制出相应的图像,观察顶点、开口方向和对称轴等特征。

二次函数的顶点式图像与性质教案

二次函数的顶点式图像与性质教案

授课教学案学生姓名: 授课教师: 耿晖 班主任: 科目: 初中数学 上课时间: 年 月 日 时— 时跟踪上次授课情况 上次授课回顾 ○ 完全掌握 ○ 基本掌握 ○ 部分掌握 ○ 没有掌握 作业完成情况 ○ 全部完成 ○ 基本完成 ○ 部分完成 ○ 没有完成本次授课内容授课标题 二次函数顶点式图像性质学习目标 会用描点法画出二次函数顶点式的图像,能结合图像确定抛物线的开口方向、对称轴与顶点坐标及其性质重点难点能确定抛物线的开口方向、对称轴与顶点坐标及其性质授课内容一、回顾抛物线 开口方向 对称轴顶点坐标y=-0.5x 2 开口向下y=-0.5x 2+1 y=-0.5x 2-1抛物线 开口方向对称轴顶点坐标y=2x 2 y=2(x -1)2 y=2(x +1)2二、新知1.用描点法在同一坐标系中画出y=﹣21x 2. y=﹣21x 2-1,y=﹣21(x+1)2-1的图像 x… ﹣3 ﹣2﹣1 0 1 2 3 … y=﹣21x 2 … … y=﹣21x 2-1… … y=﹣21(x+1)2-1……通过图像可知:抛物线y=﹣21(x+1)2-1的开口 ,顶点坐标为 ,对称轴为 ,它可以看成把抛物线y=﹣21x 2向 平移 个单位,再向 平移 个单位得到。

2.通过以上的作图,我们可以总结出函数y=a(x -h)2+k (a ≠0)的图像: (1)当a >0时,开口 ,当a <0时,开口 。

(2)顶点坐标为 ,对称轴为 。

(3)当h >0,k >0时,抛物线y=a(x -h)2+k 可看成由抛物线y=ax 2向 平移 个单位,再向 平移 个单位得到的。

三、例题例1、指出下列函数的开口方向,对称轴,顶点坐标,并说明是由哪个抛物线通过怎么样的平移得到的?(1)y=2(x+3)2+5 (2)y=﹣3(x-1)2-2四、练习1、对称轴是直线x=-2的抛物线是()A y=-2x2-2B y=2x2-2C y= -1/2(x+2)2-2D y= -5(x-2)2-62、抛物线的顶点为(3,5),此抛物线的解析式可设为()A y=a(x+3)2+5B y=a(x-3)2+5C y=a(x-3)2-5D y=a(x+3)2-5学科主任批阅意见:。

数学人教版九年级上册二次函数顶点式图像和性质

数学人教版九年级上册二次函数顶点式图像和性质

己的成果。 (上节课课完成,本节课展示) (2)说出这两个图象之间的联系? (3)学生评价学生作品的完成情况。 动手操 作 提升能 力 活动 2 问题 (1) 根据所学知识, 用描点法在原来的坐标系中 作出函数 y=- 2 (x+1) -1 的图象。 (2) 学生作图。
1
备。
教师引 导个别 指 导
1 2
x ,
2
1
2
讨论研 究
y=- 2 (x+1) 、y=- 2 (x+1) -1 的图象,归纳 抛物线的平移规律。 (3) 根据函数 y=- (x+1) -1 的图象,分别说出 它的开口方向、对称轴及标点坐标。 (4) 学生继续根据图象讨论函数的增减性、 最值 等性质。 2 (5) 归纳二次函数的 y=a(x-h) +k 的开口方向、 对称轴、顶点坐标及其增减性等性质。 活动 4(1)完成课件中的表格及相关题目,检测反 教 师 让 馈学生掌握情况。 (2) 探讨例 4 的解决方法。让学生亲自参与建立平 学生充 分 思 学生思 考回答 问 题
2 2 2
教学过程设计 教 学 内 容
深理解,巩固知识、 。 教师 活动 让学生 展示作 品,发 表 见。 意 学生 活动 踊跃展 示自己 的 作 设 意 计 图
通 过 展 示,打开 学生学习 的信心, 并为本节 课的学习 作 好 准
品,并 回答问 题。
1 1 2 2 y=- 2 x , y=- 2 (x+1) 的函数图象,并展示一下自
1 2
2
应 用 所 学,加深 理解,巩 固新知。
实践应 用
面直角坐标系,在自主学习得到点的坐标、求出函 数解析式、解决问题的具体过程中,深入领会运用 二次函数的知识解决简单的实际问题,感受主体地
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重点难点
能确定抛物线的开口方向、对称轴与顶点坐标及其性质
授课内容
一、回顾
抛物线
开口方向
对称轴
顶点坐标
y=-0.5x2
开口向下
y=-0.5x2+1
y=-0.5x2-1
抛物线
开口方向
对称轴
顶点坐标
y=2x2
y=2(x-1)2
y=2(x+1)2
二、新知
1.用描点法在同一坐标系中画出y=﹣ x2. y=﹣ x2-1,y=﹣ (x+1)2-1的图像
x

﹣3
﹣2
﹣1
0
1
2
3

y=﹣ x2


y=﹣ x2-1


y=﹣ (x+1)2-1


通过图像可知:抛物线y=﹣ (x+1)2-1的开口,顶点坐标为,对称轴为,它可以看成把抛物线y=﹣ x2向平移个单位,再向平移个单位得到。
2.通过以上的作图,我们可以总结出函数y=a(x-h)2+k(a≠0)的图像:
(1)当a>0时,开口,当a<(3)当h>0,k>0时,抛物线y=a(x-h)2+k可看成由抛物线y=ax2向平移个单位,再向平移个单位得到的。
三、例题
例1、指出下列函数的开口方向,对称轴,顶点坐标,并说明是由哪个抛物线通过怎么样的平移得到的?
(1)y=2(x+3)2+5(2)y=﹣3(x-1)2-2
学科主任批阅意见:
授课教学案
学生姓名:授课教师:耿晖班主任:科目:初中数学
上课时间:年月日时—时
跟踪上次授课情况
上次授课回顾
○完全掌握○基本掌握○部分掌握○没有掌握
作业完成情况
○全部完成○基本完成○部分完成○没有完成
本次授课内容
授课标题
二次函数顶点式图像性质
学习目标
会用描点法画出二次函数顶点式的图像,能结合图像确定抛物线的开口方向、对称轴与顶点坐标及其性质
四、练习
1、对称轴是直线x=-2的抛物线是()
A y=-2x2-2 B y=2x2-2Cy= -1/2(x+2)2-2 D y= -5(x-2)2-6
2、抛物线的顶点为(3,5),此抛物线的解析式可设为()
A y=a(x+3)2+5 B y=a(x-3)2+5Cy=a(x-3)2-5 D y=a(x+3)2-5
相关文档
最新文档