传感器原理及应用-第4章

合集下载

电容式传感器原理和应用

电容式传感器原理和应用

2(d)
d0
d0
比较以上式子可见,电容传感器做成差动式之 后,灵敏度提高一倍,而且非线性误差大大降 低了。
4.3 特点及应用中存在的问题
4.3.1 电容式传感器的特点
1.优点: ●温度稳定性好
电容式传感器的电容值一般与电极材料无关, 有利于选择温度系数低的材料,又因本身发热 极小,影响稳定性甚微。而电阻传感器有电阻, 供电后产生热量;电感式传感器有铜损、磁游 和涡流损耗等,易发热产生零漂。 ●结构简单 电容式传感器结构简单,易于制造,易于保证
4.1电容式传感器的工作原理和结构
4.1.2 变面积型电容式传感器
图4-3 变面积型电容传感器原理图
上图是变面积型电容传感器原理结构示意图。 被测量通过动极板移动引起两极板有效覆盖面 积S改变,从而改变电容量。
4.1电容式传感器的工作原理和结构
当动极板相对于定极板延长度a方向平移Δx时,
可得:
图4-1 变极距型电容传感器原理图
4.1电容式传感器的工作原理和结构
若电容器极板间距离由初始值d0缩小Δd,电容量增大
Δ由C式,(则4C -3有)知C0传 感C器d的00输rA出d特C1性0(1(Cdd =0d2)d02f()d)不是(4线3)性关系,
而是如图4-2所示的曲线关系。
C d 1d
(1 )
C0 d0
d0
由此可得出传感器的相对非线性误差δ为:


(d)2 d
100%
d
100%
d
d0
d
由以上三个式可以看出:要提高灵敏度,应减 小起始间隙d0,但非线性误差却随着d0的减小而 增大。在实际应用中,为了提高灵敏度,减小 非线性误差,大都采用差动式结构。

传感器第四章思考题与习题

传感器第四章思考题与习题

第四章 思考题与习题1、如何改善单组式变极距型电容传感器的非线性答:对于变极距单组式电容器由于存在着原理上的非线性,所以在实际应用中必须要改善其非线性。

改善其非线性可以采用两种方法。

(1)使变极距电容传感器工作在一个较小的范围内(μm 至零点几毫米),而且最大△δ应小于极板间距δ的1/5—1/10。

(2)采用差动式,理论分析表明,差动式电容传感器的非线性得到很大改善,灵敏度也提高一倍。

2、单组式变面积型平板形线位移电容传感器,两极板相对覆盖部分的宽度为4mm ,两极板的间隙为,极板间介质为空气,试求其静态灵敏度若两极板相对移动2mm ,求其电容变化量。

(答案为mm,) 已知:b =4mm ,δ=,ε0=×10-12F/m 求:(1)k=;(2)若△a=2mm 时 △C=。

解:如图所示∵ δεδεab S C ==; a Ck ∆∆=;pF mm mmmm mm pF a b b a a ab C 142.05.024/1085.8)(3000=⨯⨯⨯=∆=∆--=∆-δεδεδε mm pF mmpFa C k /07.02142.0=∆∆=3、画出并说明电容传感器的等效电路及其高频和低频时的等效电路。

答:电容传感器的等效电路为:其中:r :串联电阻(引线、焊接点、板极等的等效电阻); L :分布电感(引线、焊接点、板极结构产生的);CP :引线电容(引线、焊接点、测量电路等形成的总寄生电容) C0:传感器本身电容;Rg :漏电阻(极板间介质漏电损耗极板与外界的漏电损耗电阻) 低频时等效电路和高频时等效电路分别为图(a )和图(b):4、设计电容传感器时主要应考虑哪几方面因素答:电容传感器时主要应考虑四个几方面因素:(1)减小环境温度湿度等变化所产生的影响,保证绝缘材料的绝缘性能;(2)消除和减小边缘效应;(3)减小和消除寄生电容的影响;(4)防止和减小外界干扰。

5、何谓“电缆驱动技术”采用它的目的是什么答:电缆驱动技术,即:传感器与测量电路前置级间的引线为双屏蔽层电缆,其内屏蔽层与信号传输线(即电缆芯线)通过1 :1放大器而为等电位,从而消除了芯线与内屏蔽层之间的电容。

传感器原理及应用教程专用学习教案

传感器原理及应用教程专用学习教案

传感器原理及应用教程专用学习教案一、教学内容本教案依据《传感器原理及应用》教材第四章“压力传感器”展开。

详细内容包括:压力传感器的工作原理、类型及应用场景;压力传感器的性能参数及其影响;压力传感器在工程实践中的安装与调试。

二、教学目标1. 理解压力传感器的工作原理,掌握不同类型的压力传感器及其应用场景。

2. 学会分析压力传感器的性能参数,并了解其影响因素。

3. 能够在实际工程中正确安装和调试压力传感器。

三、教学难点与重点教学难点:压力传感器性能参数的理解与分析。

教学重点:压力传感器的工作原理、类型及其应用场景。

四、教具与学具准备1. 教具:压力传感器实物、PPT课件、实验设备。

2. 学具:笔记本、教材、实验报告册。

五、教学过程1. 实践情景引入(10分钟):通过展示压力传感器在生活中的应用案例,激发学生的学习兴趣。

2. 理论知识讲解(25分钟):介绍压力传感器的工作原理、类型及其应用场景。

3. 例题讲解(20分钟):讲解一个压力传感器性能参数分析的例题,指导学生掌握分析方法。

4. 随堂练习(15分钟):让学生独立分析一个压力传感器性能参数的实例,巩固所学知识。

5. 实验演示与操作(20分钟):演示压力传感器的安装与调试过程,并指导学生进行实际操作。

六、板书设计1. 压力传感器工作原理2. 压力传感器类型及应用场景3. 压力传感器性能参数及其影响因素4. 压力传感器的安装与调试方法七、作业设计1. 作业题目:分析一个具体应用场景,选择合适的压力传感器,并说明原因。

答案:根据实际应用场景,选择合适的压力传感器,分析其性能参数,并解释选择该传感器的原因。

2. 作业题目:简述压力传感器在工程实践中的安装与调试步骤。

答案:步骤包括:传感器选型、安装位置确定、连接线路、调试传感器至最佳工作状态。

八、课后反思及拓展延伸本节课通过实践情景引入、理论知识讲解、例题讲解、随堂练习等环节,使学生掌握了压力传感器的工作原理、类型、性能参数及其应用。

《传感器及其应用》第四章习题答案

《传感器及其应用》第四章习题答案

第四章 思考题与习题1、简述磁电感应式传感器的工作原理。

磁电感应式传感器有哪几种类型?答:磁电感应式传感器是以电磁感应原理为基础的,根据法拉第电磁感应定律可知,N 匝线圈在磁场中运动切割磁力线或线圈所在磁场的磁通量变化时,线圈中所产生的感应电动势e 的大小取决于穿过线圈的磁通φ的变化率,即:dtd Ne Φ-= 根据这个原理,可将磁电感应式传感器分为恒定磁通式和变磁通式两类。

2、某些磁电式速度传感器中线圈骨架为什么采用铝骨架?答:某些磁电式速度传感器中线圈采用铝骨架是因为线圈在磁路系统气隙中运动时,铝骨架中感应产生涡流,形成系统的电磁阻尼力,此阻尼起到衰减固有振动和扩展频率响应范围的作用。

3、何谓磁电式速度传感器的线圈磁场效应,如何补偿?答:线圈磁场效应是指磁电式速度传感器的线圈中感应电流产生的磁场对恒定磁场作用,而使其变化。

如公式v BlN e 0-=知,由于B 的变化而产生测量误差。

补偿方法通常是采用补偿线圈与工作线圈串接,来抵消线圈中感应电流磁场对恒定磁场的影响。

4、为什么磁电感应式传感器在工作频率较高时的灵敏度,会随频率增加而下降? 答:由理论推到可得传感器灵敏度与频率关系是:42020220220)(1)(1)2()1()(ωωωωξωωξωωωω-===+-=NBl v e k v NBl e v 取 当振动频率低于传感器固有频率时,这种传感器的灵敏度是随振动频率变化;当振动频率远大于固有频率时,传感器的灵敏度基本上不随振动频率而变化,而近似为常数;当振动频率更高时,线圈阻抗增大,传感器灵敏度随振动频率增加而下降。

5、变磁通式传感器有哪些优缺点?答:变磁通式传感器的优点是对环境条件要求不高,能在-150—+900C 的温度条件下工作,而不影响测量精度,也能在油、水雾、灰尘等条件下工作。

缺点主要是它的工作频率下限较高,约为50Hz ,上限可达100kHz ,所以它只适用于动态量测量,不能测静态量。

传感器与检测技术-第4章 电容式传感器

传感器与检测技术-第4章 电容式传感器

4.1 电容式传感器的工作原理和类型
平板电容器是由金属极板及板间电介质构成的。若忽略边缘效应,其 电容量为
改变电容器电容C的方法: 一是为改变介质的介电常数ε; 二是改变形成电容的有效面积S; 三是改变两个极板间的距离d。
电容式传感器基本类型
通过改变电容得到电参数的输出为电容值的增量ΔC,从
• 4.2.1 电容式传感器的等效电路
• 在低频时,传感器电容的阻抗非常大,因此L和r的影响可以忽略。
• 其等效电路可简化为图 b,其中等效电容Ce=C0 + CP,等效电阻Re≈Rg。 • 在高频时,传感器电容的阻抗就变小了,因此L和r的影响不可忽略,而漏电
阻的影响可以忽略。
• 其等效电路可简化为图c,其中等效电容Ce=C0+CP,而等效电阻re ≈ rg。
• 在实际应用中,为了提高测量精度,减动极板与定极板之间 的相对面积变化而引起的测量误差,大都采用差动式结构。
• 3.变介电常数型电容传感器
• 变介电常数式电容传感器的极距、有效作用面积不变,被测量 的变化使其极板之间的介质情况发生变化。
• 传感器的总电容量C为两个电容C1和C2的并联结果,即
若传感器的极板为两同心圆筒,传感器的总电容C等于上、下部分电容C1 和C2的并联,即
2.变面积型电容传感器
与变极距型相比,它们的测量范围大。可测较大的线位移或角位移。 平板型电容传感器两极板间的电容量为
• 可见,变面积型电容传感器的输出特性是线性的,适合测量较 大的位移
• 增大极板长度b,减小间距d,可使灵敏度提高
• 极板宽度a的大小不影响灵敏度,但也不能太小,否则边缘影 响增大,非线性将增大。
而完成由被测量到电容量变化的转换。

传感器原理及应用第四章 电容式传感器

传感器原理及应用第四章 电容式传感器

11
电容式油量表
电容 传感器
油箱
液 位 传 感 器
12
同轴连接器 刻度盘
伺服电动机
电容式压差传感器




应Leabharlann 用1-硅油 2-隔离膜 3-焊接 密封圈 4-测量膜片(动电
测 量 液
极) 5-固定电极

13
电容式加速度传感器
结构 1-定极板 2-质量块 3-绝缘体 4-弹簧片
钻地导弹
14
轿车安全气囊
ΔC U0 C0 U
差动脉冲调宽测量转换电路
初始时,C1=C2,输出电压平均值为零。 测量时, C1≠C2 ,输出电压Uo与电容的
差值成正比。
7
差动脉冲调宽测量转换电路
与电桥电路相比,差动脉宽电路只采用 直流电源,不需要振荡器,只要配一个 低通滤波器就能工作,对矩形波波形质 量要求不高,线性较好,不过对直流电 源的电压稳定度要求较高。
16
指纹识 别手机
汽车防盗 指纹识别
趣味小制作-电容式接近开关
电阻 电容 三极管 二极管 电感 继电器 电极片 电源 开关、导线。
17
制作提示
为了较好地演示制作好的电路,将继电 器触点(虚线所连的触点)所在的控制 电路接上,为了直观,控制对象可选择 灯或喇叭。 接近开关的检测物体,并不限于金属导 体,也可以是绝缘的液体或粉状物体。 制作时要考虑环境温度、电场边缘效应 及寄生电容等不利因素的存在。
8
运算放大器式测量转换电路
输出电压
Uo
C Cx
Ui
如果传感器为平板形
电容器,则
Uo
CU i
A
d
此电路能解决变极距型电容式传感器的

04第四章 电涡流传感器

04第四章 电涡流传感器

第四节 电涡流传感器的应用
一、位移测量
电涡流位移传感器是一种输出为 模拟电压 的电子器 件。接通电源后,在电涡流探头的有效面(感应工作面) 将产生一个 交变磁场 。当金属物体 接近此感应面时,金 属表面将 吸取 电涡流探头中的高频振荡能量,使振荡器 的输出幅度线性地 衰减,根据衰减量的变化,可地计算 出与被检物体的距离、振动等参数。这种位移传感器属 于非接触测量 ,工作时不受灰尘等非金属因素的影响, 寿命较长,可在各种恶劣条件下使用。
当电涡流线圈与 金属板的距离 x 减小 时,电涡流线圈的等 效电感L 减小,等效 电阻R 增大。感抗XL 的变化比 R 的变化大 得多,流过电涡流线 圈的 电流 i1增大 。
电涡流式传感器原理图
上图为电涡流式传感器的原理图,该图由传感器线
圈和被测导体组成线圈 —导体系统。当传感器线圈通以
交变电流
1、位移测量仪
位移测量:偏心、间隙、位置、倾斜、弯曲、变形、移动、圆度、 冲击、偏心率、冲程、宽度等。来自不同应用领域的许多量都可 归结为位移或间隙变化。
电流 型电 涡流 位移 传感 器
V系列齐 平式传感 器安装时 可以不高 出安装面, 不易被损 害。
V系列电涡流位移传感器性能一览表
V系列电涡流位移传感器机械图
并联谐振回路的谐振频率:
设电涡流线圈的电感量 L=0.8mH ,微调电容 C0=200pF,求振荡器的频率 f 。
鉴频器特性
使用鉴频器可以将 ? f 转换为电压 ? Uo
鉴输出电压与输入频率成正比
设电路参数如上图,计算电涡流线圈未接近金属时的 鉴频器输出电压 Uo;若电涡流线圈靠近金属后,电涡流 探头的输出频率 f上升为500kHz ,? f为多少?输出电压 Uo又为多少?

传感器原理及应用-第4章-4.1变磁阻式电感传感器

传感器原理及应用-第4章-4.1变磁阻式电感传感器

§4.1 变磁阻式电感传感器
一、变磁阻式传感器工作原理
变磁阻式传感器即自感式电感传感器:
利用线圈自感量的变化来实现测量的。
铁芯
传感器结构:线圈、铁芯和衔铁三部
线圈
分组成。
工作原理:铁芯和衔铁由导磁材料如
硅钢片或坡莫合金制成,在铁芯和衔铁之间 衔铁 有气隙,气隙厚度为δ,传感器的运动部分
与衔铁相连。当被测量变化时,使衔铁产生
3
差动变
2 截面式
4
§4.1 变磁阻式电感传感器
一、变磁阻式传感器工作原理 二、变磁阻式传感器基本类型 三、变截面式自感传感器输出特性 四、变间隙式自感传感器输出特性 五、差动式自感传感器 六、自感式传感器的等效电路 七、自感式传感器的测量电路
§4.1 变磁阻式电感传感器
六、自感式传感器的等效电路
L U L2
~
I
C

U
Z1
2
A

U 2
Z2
U 0
D
B
U o

Z2 Z1 Z1 Z2
U 2

Z Z
U 2

L U L2
当衔铁上下移动相同距 离时,电桥输出电压大小相 等而相位相反。
§4.1 变磁阻式电感传感器
七、自感式传感器的测量电路
2、变压器式交流电桥
§4.1 变磁阻式电感传感器
§4.1 变磁阻式电感传感器
五、差动式自感传感器
三种基本类型: 在实际使用中,常采用两个相同的传感线
圈共用一个衔铁,构成差动式自感传感器。
44
3
差动结构的特点:
(1)改善线性、提高灵敏度外;
(2)补偿温度变化、电源频率变化等的 影响,从而减少了外界影响造成的误差。

第4章 电感式传感器

第4章 电感式传感器
(c) 四节式
3
(d) 五节式
图4.12 差动变压器线圈各种排列形式 1 一次线圈;2 二次线圈;3 衔铁
三节式的零点电位较小,二节式比三节式灵敏度高、线性范 围大,四节式和五节式改善了传感器线性度。
2.2 工作原理
以三节式差动变压器为例,将两个匝数相等的次级绕组的 同名端反向串联,当初级绕组W1加以激磁电压时,根据变压器 的作用原理在两个次级绕组W2a和W2b中就会产生感应电势,如 果工艺上保证变压器结构完全对称,则当活动衔铁处于初始平 衡位置时,输出电压为零。
U1 U 2 j ( M 1 M 2 ) R1 jL1 其有效值为: (M1 M 2 )U1 U2 R12 (L1 ) 2
.
E 21 jM 1 I.1 . E 22 jM 2 I1
.
.
R1
M1
.
. U1 ~ M2
L21 L22 R22
U2
. ~ E22
(c)、(d) 螺线管式差动变压器
(e)、(f) 变面积式差动变压器
二次绕组
二次绕组 衔铁
一次绕组
图4.11 螺线管式差动变压器的结构示意图
螺管型差动变压器根据初、次级排列不同有二节式、三节 式、四节式和五节式等形式。 1 1 1 1 2 1 2 1 2 1 2
2
(a) 二节式
3
(b) 三节式
2
II. 变面积型灵敏度较小,但线性较好,量程较大; III.螺管型灵敏度较低,但量程大且结构简单。
1.4 差动式自感传感器
由于线圈中通有交流励磁电流,因而衔铁始终承受电 池吸力,会引起振动和附加误差,而且非线性误差较大。 外界的干扰、电源电压频率的变化、温度的变化都会 使输出产生误差。

传感器原理及工程应用第4章

传感器原理及工程应用第4章
输出电压为:
Z2 Z4 U0 U AC U AC Z1 Z 2 Z3 Z 4

Z3 Z 4 R0
Z2 1 U0 U AC U AC Z1 Z 2 2 Z 2 Z1 U AC Z1 Z 2 2
所以:
第4章 电感式传感器
传感器原理及应用
4.1变磁阻式传感器(自感式) 4.1.3 测量电路(转换电路) (1)交流电桥式
U
Ui
(a)残余电压的波形
1
UZ t
UZ
2
3
4 5 t
(b)波形分析
1 基波正交分量 2 基波同相分量 3 二次谐波 4 三次谐波5 电磁干扰
零点残余电压产生原因: ①基波分量 由于差动变压器两个次级绕组不可能完 全一致,因此它的等效电路参数(互感M、 自感L及损耗电阻R)不可能相同,从而使两 个次级绕组的感应电动势数值不等。又因初 级线圈中铜损电阻及导磁材料的铁损和材质 的不均匀,线圈匝间电容的存在等因素,使 激励电流与所产生的磁通相位不同。
衔铁气隙增大Δσ时,电感的相对减小量为
L 2 2 3 [1 ( ) ] ( ) ( ) L0 0 0 0 0 0 0
第4章 电感式传感器
传感器原理及应用
4.1变磁阻式传感器(自感式) 4.1.2 输出特性 对上式作线性处理忽略高次项时
L1 L2 2 K0 L0 0
第4章 电感式传感器
传感器原理及应用
4.1变磁阻式传感器(自感式) 4.1.2 输出特性 讨论: • 比较单线圈,差动式的灵敏度提高了一倍; • 差动式非线性项比单线圈多乘了(Δσ/σ)因子; • 不存在偶次项,因Δσ/σ<<1,线性度得到改善。 • 差动式的两个电感结构,可抵消温度、噪声干扰 的影响。

传感器原理与应用习题第4章电容式传感器 (1)

传感器原理与应用习题第4章电容式传感器 (1)

《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案 教材:传感器技术(第3版)贾伯年主编,及其他参考书第4章 电容式传感器4-1 电容式传感器可分为哪几类?各自的主要用途是什么?答:(1)变极距型电容传感器:在微位移检测中应用最广。

(2)变面积型电容传感器:适合测量较大的直线位移和角位移。

(3)变介质型电容传感器:可用于非导电散材物料的物位测量。

4-2 试述变极距型电容传感器产生非线性误差的原因及在设计中如何减小这一误差?答:原因:灵敏度S 与初始极距0δ的平方成反比,用减少0δ的办法来提高灵敏度,但0δ的减小会导致非线性误差增大。

采用差动式,可比单极式灵敏度提高一倍,且非线性误差大为减小。

由于结构上的对称性,它还能有效地补偿温度变化所造成的误差。

4-3 为什么电容式传感器的绝缘、屏蔽和电缆问题特别重要?设计和应用中如何解决这些问题?答:电容式传感器由于受结构与尺寸的限制,其电容量都很小,属于小功率、高阻抗器,因此极易受外界干扰,尤其是受大于它几倍、几十倍的、且具有随机性的电缆寄生电容的干扰,它与传感器电容相并联,严重影响传感器的输出特性,甚至会淹没没有用信号而不能使用。

解决:驱动电缆法、整体屏蔽法、采用组合式与集成技术。

4-4 电容式传感器的测量电路主要有哪几种?各自的目的及特点是什么?使用这些测量电路时应注意哪些问题?4-5 为什么高频工作的电容式传感器连接电缆的长度不能任意变动?答:因为连接电缆的变化会导致传感器的分布电容、等效电感都会发生变化,会使等效电容等参数会发生改变,最终导致了传感器的使用条件与标定条件发生了改变,从而改变了传感器的输入输出特性。

4-6 简述电容测厚仪的工作原理及测试步骤。

4-7 试计算图P4-1所示各电容传感元件的总电容表达式。

4-8如图P4-2所示,在压力比指示系统中采用差动式变极距电容传感器,已知原始极距1δ=2δ=0.25mm ,极板直径D =38.2mm ,采用电桥电路作为其转换电路,电容传感器的两个电容分别接R =5.1k Ω的电阻后作为电桥的两个桥臂,并接有效值为U1=60V 的电源电压,其频率为f =400Hz ,电桥的另两桥臂为相同的固定电容C =0.001μF 。

传感器原理及应用-第4章 - 4.2 差动变压器式电感传感器

传感器原理及应用-第4章 - 4.2 差动变压器式电感传感器

§4.2 差动变压器式电感传感器
二、变隙式差动变压器
2、变隙式差动变压器输出特性
在忽略铁损(即涡流与磁滞损耗 忽略不计)、漏感以及变压器次级开 路(或负载阻抗足够大)的条件下的 等效电路。 不考虑铁芯与衔铁中的磁阻影响 时,变隙式差动变压器输出电压为
b a W2 U U 2 b a W1 1
M
基本种类
有变隙式、变面积式和螺线管式等。 应用最多的是螺线管式差动变压器。
初1 级 线 圈
3
次 级 线 圈
2
4
§4.2 差动变压器式电感传感器
一、螺线管式差动变压器
二、变隙式差动变压器
三、差动变压器式传感器测量电路
§4.2 差动变压器式电感传感器
一、螺线管式差动变压器
1、螺线管式差动变压器结构与原理
U2 r1 L1
2 2
§4.2 差动变压器式电感传感器
一、螺线管式差动变压器
2、螺线管式差动变压器输出特性
U2
M a M b U 1
r1 L1
2 2
§4.2 差动变压器式电感传感器
一、螺线管式差动变压器
二、变隙式差动变压器
三、差动变压器式传感器测量电路
根据电磁感应原理有
E E 2a 2b
变压器两次级绕组反 向串联,则差动变压器输 出电压为零。
§4.2 差动变压器式电感传感器
一、螺线管式差动变压器
2、螺线管式差动变压器输出特性
当次级两绕组反向串 联、次级开路时差动变压 器输出电压为 差动变压器输出电动势的大小和相 位可知道衔铁位移的大小和方向。
二、变隙式差动变压器
2、变隙式差动变压器输出特性

部分习题参考答案(传感器原理及应用,第4章)

部分习题参考答案(传感器原理及应用,第4章)

部分习题参考答案第4章 电容式传感器如何改善单极式变极距型电容传感器的非线性答:非线性随相对位移0/δδ∆的增加而增加,为保证线性度应限制相对位移的大小;起始极距0δ与灵敏度、线性度相矛盾,所以变极距式电容传感器只适合小位移测量;改善方法:(1) 使用运算放大器构成的基本测量电路(2)变极距式电容传感器一般采用差动结构。

为什么高频工作时的电容式传感器连接电缆的长度不能任意变化 低频时容抗c X 较大,传输线的等效电感L 和电阻R 可忽略。

而高频时容抗c X 减小,等效电感和电阻不可忽略,这时接在传感器输出端相当于一个串联谐振,有一个谐振频率0f 存在,当工作频率0f f ≈谐振频率时,串联谐振阻抗最小,电流最大,谐振对传感器的输出起破坏作用,使电路不能正常工作。

通常工作频率10MHz 以上就要考虑电缆线等效电感0L 的影响。

差动式变极距型电容传感器,若初始容量1280C C pF ==,初始距离04mm δ=,当动极板相对于定极板位移了0.75mm δ∆=时,试计算其非线性误差。

若改为单极平板电容,初始值不变,其非线性误差有多大解:若初始容量1280C C pF ==,初始距离04mm δ=,当动极板相对于定极板位移了0.75mm δ∆=时,差动电容式传感器非线性误差为:2200.75()100%()100% 3.5%4L δγδ∆=⨯=⨯= 改为单极平板电容,初始值不变,其非线性误差为:00.75100%100%18.75%4L δγδ∆=⨯=⨯= 电容式传感器有哪几类测量电路各有什么特点差动脉冲宽度调制电路用于电容传感器测量电路具有什么特点答:参照课件和讲课内容自己回答,要求掌握。

一平板式电容位移传感器如图4-5所示,已知:极板尺寸4a b mm ==,极板间隙00.5mm δ=,极板间介质为空气。

求该传感器静态灵敏度;若极板沿x 方向移动2mm ,求此时电容量。

动极板2图4-5 平板电容器基本原理 解:对于平板式变面积型电容传感器,它的静态灵敏度为:012111088.85107.0810g C b k Fm a εδ---===⨯⨯=⨯ 极板沿x 方向相对移动2mm 后的电容量为:12130()8.85100.0042 1.416100.5b a x C F εδ---∆⨯⨯⨯===⨯ 已知:圆盘形电容极板直径D=50mm ,间距δ0=0.2mm ,在电极间置一块厚0.1mm 的云母片(εr=7),空气(εr=1)。

第四章 常用传感器原理及应用

第四章 常用传感器原理及应用
q
Ca
Cc
R0
★ 由于后继电路的输入阻抗不可能为无穷大,而且压 电元件本身也存在漏电阻,极板上的电荷由于放电而无 法保持不变,从而造成测量误差。因此,不宜利用压电 式传感器测量静态或准静态信号,而适宜做动态测量。
★ 压电晶片有方形、圆形、圆环形等各种,而且往往 是两片或多片进行串联或并联。
+
并联:适于测缓变信号和以电荷为 输出量的场合
3、介电常数变化型 此类传感器可用来测量液体的液位和材料的厚度等。
两圆筒间的电容为:空气的介
21 L C ln(R r )
外电极 内半径
电常数
电极 长度
内电极 内半径
如果电极的一部分被非导电性液 体所浸没时,则会有电容量的增 量∆C产生:
2 ( 2 1 )l C ln(R r )
线圈
铁芯
衔铁
由于 δ 很小,可认为气隙磁场是均匀的 ,若忽略磁路的铁损,则总磁阻为:
线圈 铁芯
衔铁
l 2 Rm A 0 A0
由于铁心磁阻与气隙相比要小得多,可以忽略
2 Rm 0 A0
N 0 A0 L 2
传感器灵敏度: K
2
dL
N 2 0 A0 2
2
d
N 2 0 A0 2 2
这种传感器适用于较小位移 的测量,测量范围约在 0.001~1mm左右。
2、变面积式 原理:气隙长度不变,铁心与衔铁之间相 对而言覆盖面积随被测量的变化而改,导致 线圈的电感量发生变化。 特点:灵敏度比变气隙型的低,但其灵敏 度为一常数,因而线性度较好,量程范围可 取大些,自由行程可按需要安排,制造装配 也较方便,因而应用较为广泛。 3、螺管式 原理:衔铁随被测对象移动,线圈 磁力线路径上的磁阻发生变化,线圈 电感量也因此而变化。 特点:灵敏度更低,但测量范围大 ,线性也较好,同时自由行程可任意 安排,制造装配方便,应用较广泛。

传感器原理及工程应用5

传感器原理及工程应用5

δ0
当∆δ/δ01时, 可将上式用台劳级数展开成级数形式为 L = L0+∆L = L0 [1 + (
∆δ
δ0
)+(
∆δ
δ0
) +(
2
∆δ
δ0
)3 + ...]
由上式可求得电感增量∆L和相对增量∆L/ L0的表达式, 即
第4章 电感式传感器
∆L = L0
∆δ
δ0 δ0 δ0 ∆L ∆δ ∆δ ∆δ 2 = ⋅ [1 + ( )+( ) + ...] L0 δ0 δ0 δ0
第4章 电感式传感器

(4 - 6) 上式表明, 当线圈匝数为常数时, 电感L仅仅是磁路中磁阻 Rm的函数, 只要改变δ或S0均可导致电感变化, 因此变磁阻式 传感器又可分为变气隙厚度δ的传感器和变气隙面积S0的传 感器。使用最广泛的是变气隙厚度δ式电感传感器。 输出特性 二、 输出特性 设电感传感器初始气隙为δ0, 初始电感量为L0, 衔铁 位移引起的气隙变化量为∆δ, 从式(4 - 6)可知L与δ之间是非 线性关系, 特性曲线如图(4 -2)表示,初始电感量为




式中: L0——衔铁在中间位置时单个线圈的电感; ∆L——单线圈电感的变化量。

将∆L=L0(∆δ/δ0)代入式(4 - 19)得 电压与∆δ有关。
U0 = (∆δ/δ0), 电桥输出
第4章 电感式传感器
2. 变压器式交流电桥 变压器式交流电桥 变压器式交流电桥测量电路如图 4 - 5所示, 电桥两臂Z1、 Z2为传感器线圈阻抗, 另外两桥臂为交流变压器次级线圈的 1/2 阻抗。当负截阻抗为无穷大时, 桥路输出电压

第四章 位移传感器

第四章 位移传感器

第一节 电容式传感器 (capacitive sensors) 特点:结构简单、灵敏度高、动态响应好、可实现非接触 测量、具有平均效应,能在高温、辐射等恶劣条件工作。 应用:可用来检测位移 、压力等参量。 一、工作原理 从结构上来分有:平板式、园柱式电容器。以平板式电容 器为例:平板电容器的容量
C r 0
螺管式 L=KX 几十毫米 线性灵敏度小
二、互感式传感器(差动变压器) (LVDT) 1.原理: 衔铁位移x变化=>互感(M1,M2)变化,如图所示。
I 1 + U 1 L1
x
R1
M1 L21 + U - 21 + U o L22 M2 + U 22 -
说明: (1)与变压器的区别:变压器:闭合磁路,M 为常数; M f ( x) 。 差动变压器:开磁路, (2)输出端采用“反向串联”:其输出为电压,和差动电 桥方式相比,后者灵敏度低一倍: 反向串联与交流电桥的比较如图所示。
(2)相敏检波电路 交流电桥输出的相量可反映被测量的大小和方向,但用一般 的指示仪表却丢失了方向信号。 当衔铁居中时,Z1=Z2。当Z1↑,Z2↓时:
正半周 Ua正,Ub负 VD1、VD4导通 Ua负,Ub正 VD2、VD3导通
AECB支路: Uc↓ AFDB支路: Ud↑ BCFA支路: ↓ BDEA支路: ↑
E Z1 A +
Z2 U
u0 负 u0
u0 负
负半周

同理,当Z1↓,Z2↑时, UO 为正。故UO不仅反映线 圈阻抗变化大小,还能反映 变化方向。
VD1 VD2
C Z3 + B U o Z4 D -
A VD3 F VD4

传感器原理与应用习题第4章电容式传感器

传感器原理与应用习题第4章电容式传感器

《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案教材:传感器技术(第3版)贾伯年主编,及其他参考书第4章 电容式传感器4-1 电容式传感器可分为哪几类?各自的主要用途是什么? 答:(1)变极距型电容传感器:在微位移检测中应用最广。

(2)变面积型电容传感器:适合测量较大的直线位移和角位移。

(3)变介质型电容传感器:可用于非导电散材物料的物位测量。

4-2 试述变极距型电容传感器产生非线性误差的原因及在设计中如何减小这一误差?答:原因:灵敏度S 与初始极距0δ的平方成反比,用减少0δ的办法来提高灵敏度,但0δ的减小会导致非线性误差增大。

采用差动式,可比单极式灵敏度提高一倍,且非线性误差大为减小。

由于结构上的对称性,它还能有效地补偿温度变化所造成的误差。

4-3 为什么电容式传感器的绝缘、屏蔽和电缆问题特别重要?设计和应用中如何解决这些问题? 答:电容式传感器由于受结构与尺寸的限制,其电容量都很小,属于小功率、高阻抗器,因此极易受外界干扰,尤其是受大于它几倍、几十倍的、且具有随机性的电缆寄生电容的干扰,它与传感器电容相并联,严重影响传感器的输出特性,甚至会淹没没有用信号而不能使用。

解决:驱动电缆法、整体屏蔽法、采用组合式与集成技术。

4-4 电容式传感器的测量电路主要有哪几种?各自的目的及特点是什么?使用这些测量电路时应注意哪些问题?4-5 为什么高频工作的电容式传感器连接电缆的长度不能任意变动?答:因为连接电缆的变化会导致传感器的分布电容、等效电感都会发生变化,会使等效电容等参数会发生改变,最终导致了传感器的使用条件与标定条件发生了改变,从而改变了传感器的输入输出特性。

4-6 简述电容测厚仪的工作原理及测试步骤。

4-7 试计算图P4-1所示各电容传感元件的总电容表达式。

4-8如图P4-2所示,在压力比指示系统中采用差动式变极距电容传感器,已知原始极距1δ=2δ=0.25mm ,极板直径D =38.2mm ,采用电桥电路作为其转换电路,电容传感器的两个电容分别接R =5.1k Ω的电阻后作为电桥的两个桥臂,并接有效值为U1=60V 的电源电压,其频率为f =400Hz ,电桥的另两桥臂为相同的固定电容C =0.001μF 。

精品文档-传感器原理及应用(郭爱芳)-第4章

精品文档-传感器原理及应用(郭爱芳)-第4章
第4章 电容式传感器
第4章 电容式传感器
4.1 工作原理及结构类型 4.2 信号调理电路 4.3 电容式传感器的应用 4.4 容栅式传感器 4.5 电容式集成传感器 思考题与习题
第4章 电容式传感器
4.1 工作原理及结构类型 4.1.1 工作原理
电容式传感器实质上是一个可变参数的电容器。由物理学 可知,用绝缘介质分开的两个平行金属板组成的平板电容器 (如图4.1所示),当忽略边缘效应时,电容量可表示为
(b)为变极距式,图4.2(c)~(h)为变面积式,而图4.2(i)~ (l)则为变介电常数式。
第4章 电容式传感器 图4.2 电容式传感器的结构形式
第4章 电容式传感器
1. 变极距式 图4.3(a)为变极距式电容式传感器的原理图。图中下极 板固定不动,当上极板随被测量的变化上下移动时,两极板之 间的距离δ相应变化,从而引起电容量发生变化。 当传感器的ε和A为常数、初始间距为δ0时,由式(4.1) 可知初始电容量C0
C
A
g 0
(4.15)
0g 0
式中:εg——固体介质的相对介电常数(云母εg=7);
δg、δ0——固体介质和空气隙的厚度。
第4章 电容式传感器 图4.5 放置固体介质的电容器
第4章 电容式传感器
2. 变面积式 图4.6为变面积式位移电容传感器的结构示意图。图 4.6(a)为直线位移型平板电容器的原理图,当两极板完全重 叠时,其电容量C0=εab/δ。当动极板移动Δx时,两极 板重叠面积减小,电容量也将减小。如果忽略边缘效应,可得 传感器的特性方程为
C0
A 0
(4.2)
第4章 电容式传感器 图4.3 变极距式电容传感器原理图及特性曲线
第4章 电容式传感器

第4章_常用传感器原理及应用素材

第4章_常用传感器原理及应用素材

1、变气隙式
L 与δ呈非线性(双曲线)关系。传感器的灵敏度为
灵敏度S与气隙长度δ的平方成反比,δ愈小,灵敏度S愈高。 这种传感器适用于较小位移的测量,一般约为0.001~1 mm。
2、变面积式
自感L与S0 呈线性关系,这种传感器灵敏度较低。
3、螺管式
单螺管线圈型,当铁芯在线圈中运动时, 将改变磁阻,使线圈自感发生变化。这 种传感器结构简单、制造容易,但灵敏 度低,适用于较大位移(数毫米)测量。
2. 面积变化型电容式传感器 面积变化型电容传感器的工作原理是在被测参数的作用下 来变化极板的有效面积,常用的有角位移型和线位移型两种。
由于平板型传感器的可动极板稍有极距方向移动会影响测量精度。
上述可知,面积变化型电容传感器的优点是输出与输入成 线性关系,但与极板变化型相比,灵敏度较低,适用于较大角 位移及直线位移的测量。
测力计
温度计 压力计
二、传感器的组成 传感器通常由三部分组成: 敏感元件: 直接感受被测量,输出与被测量成确定关系。 转换元件: 敏感元件的输出就是转换元件的输入,它把输入转 换成电量参量 。 转换电路: 把转换元件输出的电量信号转换为便于处理、显 示、记录或控制的有用的电信号的电路。
三、传感器的类型 1、按被测对象分:位移传感器、压力传感器和压力传感器等; 2、按工作原理分:电阻应变式、电感式、电容式和压电式等;
明显呈现压电效应的敏感功能材料叫压电材料。 常用的压电材料有:压电单晶体,如石英、酒石酸钾钠等;多晶压 电陶瓷,如钛酸钡、锆钛酸铅、铌镁酸铅等,又称为压电陶瓷。此 外,聚偏二氟乙烯(PVDF)作为一种新型的高分子物性型传感材料得 到广泛的应用。(新型材料)
二、等效电路
压电元件等效为一个电荷源Q和一个电容器C0并联的等效电路。 也可等效为一个电压源U和一个电容器C0串联的等效电路 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
衔 铁 移 线圈 铁芯 衔铁 动 方 向 螺管 式
EXIT
《传感器原理及应用》 传感器原理及应用》
物理科学与技术学院 王殿生 制作
§4.1 变磁阻式电感传感器
一、变磁阻式传感器工作原理 二、变磁阻式传感器基本类型 三、变截面式自感传感器输出特性 四、变间隙式自感传感器输出特性 五、差动式自感传感器 六、自感式传感器的等效电路 七、自感式传感器的测量电路
N µ 0 ( A0 + ∆ A ) L = L0 + ∆ L = 2δ
2
N 2µ 0∆A ∆L = 2δ
∆L ∆A = L0 A0
因此, 因此,输出电感的变化与截面面积 的变化成线性关系。 的变化成线性关系。
EXIT
《传感器原理及应用》 传感器原理及应用》
物理科学与技术学院 王殿生 制作
§4.1 变磁阻式电感传感器
§4.1 变磁阻式电感传感器
一、变磁阻式传感器工作原理
变磁阻式传感器即自感式电感传感器: 变磁阻式传感器即自感式电感传感器 : 利用线圈自感量的变化来实现测量的。 利用线圈自感量的变化来实现测量的。 传感器结构: 线圈、 传感器结构 : 线圈 、 铁芯和衔铁三部 分组成。 分组成。 工作原理: 工作原理 : 铁芯和衔铁由导磁材料如 硅钢片或坡莫合金制成, 硅钢片或坡莫合金制成,在铁芯和衔铁之间 衔铁 有气隙,气隙厚度为δ 有气隙,气隙厚度为δ,传感器的运动部分 与衔铁相连。当被测量变化时, 与衔铁相连。当被测量变化时,使衔铁产生 位移,引起磁路中磁阻变化, 位移,引起磁路中磁阻变化,从而导致电感 线圈的电感量变化。 线圈的电感量变化。 因此只要能测出这种电感量的变化, 因此只要能测出这种电感量的变化 , 就能确定衔铁位移量的大小和方向 衔铁位移量的大小和方向。 就能确定衔铁位移量的大小和方向。
∆L L0 1 = = ∆δ δ0
变间隙式电感传感器的测量范围与灵敏度及线性度相矛盾, 变间隙式电感传感器的测量范围与灵敏度及线性度相矛盾 , 因 此变间隙式电感式传感器适用于测量微小位移的场合。 此变间隙式电感式传感器适用于测量微小位移的场合。 动态测量范围: 动态测量范围:0.001 ~ 1mm。 。 为了减小非线性误差, 为了减小非线性误差 , 实际测量中广泛采用差动变隙式电感传 感器。 感器。
3 + L
∆L ∆δ ∆δ ∆δ 1 + = + L0 δ0 δ0 δ0
EXIT
2 + L
《传感器原理及应用》 传感器原理及应用》
物理科学与技术学院 王殿生 制作
§4.1 变磁阻式电感传感器
四、变间隙式自感传感器输出特性
《传感器原理及应用》 传感器原理及应用》
§4.1 变磁阻式电感传感器
一、变磁阻式传感器工作原理 二、变磁阻式传感器基本类型 三、变截面式自感传感器输出特性 四、变间隙式自感传感器输出特性 五、差动式自感传感器 六、自感式传感器的等效电路 七、自感式传感器的测量电路
传感器原理及应用
Principles and Applications of Sensors
主讲:王殿生 教授
EXIT
《传感器原理及应用》 传感器原理及应用》
物理科学与技术学院 王殿生 制作


第四章 第二版教材86-87页 第二版教材86-87页: 86 练习题: 练习题:4-2,4-4,4-9 第三版教材84 85页 84第三版教材84-85页: 练习题: 练习题:4-2,4-4,4-10
EXIT
铁芯 线圈 δ ∆δ
线圈中电感量: 线圈中电感量:
NΦ IN L= = I RM
总磁阻
物理科学与技术学院 王殿生 制作
线圈匝 数
《传感器原理及应用》 传感器原理及应用》
§4.1 变磁阻式电感传感器
一、变磁阻式传感器工作原理
L = IN NΦ Φ = I RM
l1 铁芯 线圈 l2 衔铁 ∆δ δ
EXIT
《传感器原理及应用》 传感器原理及应用》
物理科学与技术学院 王殿生 制作
第4章 电感式传感器
电感式传感器的优点 ① 结构简单、可靠 结构简单、 ② 分辨率高 机械位移0 μm,甚至更小;角位移0 角秒。 机械位移0.1μm,甚至更小;角位移0.1角秒。 输出信号强,电压灵敏度可达数百mV/mm 输出信号强,电压灵敏度可达数百mV/mm 。 ③ 重复性好,线性度优良 重复性好, 在几十μm到数百mm的位移范围内,输出特性的线性度较好, μm到数百mm的位移范围内 在几十μm到数百mm的位移范围内,输出特性的线性度较好, 且比较稳定。 且比较稳定。 能实现远距离传输、记录、 ④ 能实现远距离传输、记录、显示和控制 电感式传感器的不足 存在交流零位信号,不宜高频动态测量。 存在交流零位信号,不宜高频动态测量。
输出电感灵敏度与初始截面面积的 成反比关系。 成反比关系。
EXIT
《传感器原理及应用》 传感器原理及应用》
物理科学与技术学院 王殿生 制作
§4.1 变磁阻式电感传感器
三、变截面式自感传感器的输出特性
EXIT
《传感器原理及应用》 传感器原理及应用》
物理科学与技术学院 王殿生 制作
§4.1 变磁阻式电感传感器
§4.1 变磁阻式电感传感器
一、变磁阻式传感器工作原理 二、变磁阻式传感器基本类型 三、变截面式自感传感器输出特性 四、变间隙式自感传感器输出特性 五、差动式自感传感器 六、自感式传感器的等效电路 七、自感式传感器的测量电路
EXIT
《传感器原理及应用》 传感器原理及应用》
物理科学与技术学院 王殿生 制作
物理科学与技术学院 王殿生 制作
R δ
2 δ = µ0 A
EXIT
《传感器原理及应用》 传感器原理及应用》
§4.1 变磁阻式电感传感器
一、变磁阻式传感器工作原理 二、变磁阻式传感器基本类型 三、变截面式自感传感器输出特性 四、变间隙式自感传感器输出特性 五、差动式自感传感器 六、自感式传感器的等效电路 七、自感式传感器的测量电路
4 4
3
2 1
差动变间隙式传感器 1-线圈 2-铁芯 线圈 铁芯 3-衔铁 4-导杆 衔铁 导杆
2) 补偿温度变化、 ( 2 ) 补偿温度变化 、 电源频率变化等的 影响,从而减少了外界影响造成的误差。 影响,从而减少了外界影响造成的误差。
3 4 1
差动变 截面式 差动螺 管式
1 3 2
EXIT
4
物理科学与技术学院 王殿生 制作
EXIT
《传感器原理及应用》 传感器原理及应用》
物理科学与技术学院 王殿生 制作
§4.1 变磁阻式电感传感器
五、差动式自感传感器
在实际使用中, 在实际使用中 , 常采用两个相同的传感线 圈共用一个衔铁,构成差动式自感传感器。 圈共用一个衔铁,构成差动式自感传感器。 差动结构的特点: 差动结构的特点: (1)改善线性、提高灵敏度外; )改善线性、提高灵敏度外; 三种基本类型: 三种基本类型:
QR << R δ F
Rm ≈ Rδ = 2δ
RM = RF + R δ
l1 l2 RF = + µ1 A µ2 A2 1
磁导率 H/m
µ0A
N 2 µ0 AN2 ∴L ≈ = Rδ 2δ
气隙截面积A保持不变, 气隙截面积A保持不变,则L为δ的单值函 构成变气隙厚度式自感传感器 变气隙厚度式自感传感器。 数,构成变气隙厚度式自感传感器。 保持气隙间距δ 不变, 随被测量( 保持气隙间距 δ 不变 , A 随被测量 ( 如位 变化,构成变气隙面积式自感传感器 变气隙面积式自感传感器。 移)变化,构成变气隙面积式自感传感器。
2 3
忽略高次项 线性处理
∆L ∆δ = ± L0 δ0
因此既可确定衔铁位移量的大小又可 确定方向。 确定方向。
EXIT
《传感器原理及应用》 传感器原理及应用》
物理科学与技术学院 王殿生 制作
§4.1 变磁阻式电感传感器
四、变间隙式自感传感器输出特性 ∆L ∆δ = ± L0 δ0
电感灵敏度
K
0
铁芯 线圈 δ 衔铁 ∆δ
∆L ∆δ ∆δ ∆δ 1 + = + L0 δ0 δ0 δ0 + L
2
铁芯 线圈 δ 衔铁 ∆δ
当衔铁随被测体的初始位置向下移动 ∆δ时,同理有 时
∆L ∆δ ∆δ 1 − =− L0 δ0 δ0 ∆δ ∆δ + − + L δ δ 0 0
EXIT
《传感器原理及应用》 传感器原理及应用》
物理科学与技术学院 王殿生 制作
§4.1 变磁阻式电感传感器
一、变磁阻式传感器工作原理 二、变磁阻式传感器基本类型 三、变截面式自感传感器输出特性 四、变间隙式自感传感器输出特性 五、差动式自感传感器 六、自感式传感器的等效电路 七、自感式传感器的测量电路
EXIT
《传感器原理及应用》 传感器原理及应用》
物理科学与技术学院 王殿生 制作
§4.1 变磁阻式电感传感器
二、变磁阻式传感器基本类型
变磁阻式传感器即自感式电感传感器 的基本类型: 的基本类型: (1)变气隙厚度式 (2)变气隙面积式
变气 隙截 面式 变气隙 厚度式 衔铁 铁芯 线圈 δ ∆δ
变截面式和螺管式
EXIT
《传感器原理及应用》 传感器原理及应用》
物理科学与技术学院 王殿生 制作
第4章 电感式传感器
被测非电量 自感系数L 自感系数L
电磁 感电路
U、I、f
电感式传感器的定义 一种利用线圈自感和互感的变化实现非电量电测的装置。 一种利用线圈自感和互感的变化实现非电量电测的装置。 电感式传感器的感测量 位移、振动、压力、应变、流量、比重等。 位移、振动、压力、应变、流量、比重等。 电感式传感器的种类 根据转换原理:自感式 ( 変磁阻式 ) 、 互感式 ( 差动变压 根据转换原理: 自感式(変磁阻式) 互感式( 器式) 电涡流式三种; 器式)、电涡流式三种; 根据结构形式:气隙型、面积型和螺管型。 根据结构形式:气隙型、面积型和螺管型。
相关文档
最新文档