4.3.1 角的概念和度量练习题及答案人教版七年数学上册
人教版数学七年级上册4.3.1《角》同步练习(有答案)
人教版数学七年级上册 4.3.1《角》同步练习(有答案)《角》同步练习一、选择题1.下列关于角的说法正确的是( )A .两条射线组成的图形叫角B .角的大小与这个角的两边长短无关C .延长一个角的两边D .角的两边是射线,所以角不可以度量2.关于平角、周角的说法正确的是( )A .平角是一条直线B .周角是一条射线C .反向延长射线OA ,就成一个平角D .两个锐角的和不一定小于平角3.在钝角∠AOB 内部引出两条射线OC 、OD ,则图中共有角( )A .3个B .4个C .5个D .6个4.如图所示,下列表示β∠的方法中,正确的是( )A .C ∠B .D ∠C .ADB ∠D .BAC ∠5.下列各角中,是钝角的是( )A .41平角B .32平角C .31平角D .41周角 6.如图下列表示角的方法,错误的是( ).A .1∠与AOB ∠表示同一个角B .AOC ∠也可用O ∠来表示C .图中AOB ∠、AOC ∠、BOC ∠D .β∠表示的是BOC ∠5.用度、分、秒表示52.73°为____度____分____秒.6.15°48′36″=_____________°.7.在图中,用三个大写字母表示1 ∠为________;2 ∠为________;3 ∠为________;4 ∠为________.8.在AOB ∠内部过顶点O 引3条射线,则共有___________个角,如果引出99条射线,则共有_____________个角.9.计算90°-57°34′44″的结果为_______________.10.如图,AOB ∠是直角,2:1:,38=∠∠︒=∠COB COD AOC ,则____=∠DOB 度.11.在图中,A 、B 、C 三点分别代表邮局,医院、 学校中的某一处,邮局和医院分别在学校的北偏 西方向,邮局又在医院的北偏东方向,那么图中A 点应该是___________,B 点是_________,C 点是_________.三、解答题1.钟表2时15分时,你知道时针与分针的夹角是多少度吗?2.用剪刀沿直线剪掉长方形的一个角,数一数,还剩多少个角?3.如图,从一点O 出发引射线OA 、OB 、OC 、OD 、OE ,请你数一数图中有多少个角.4.计算:(1)77°52′+32°43′-21°17′;(2)37°15′×3;(3)175°52′÷3.(4)23°45′+24°16′(5)53°25′28″×5(6)15°20′÷65.如图,在AOB∠内部,从顶点O引出3条射线OC、OD、OE,则图形中共有几个角?如果从O点引出几条射线,有多少个角?你能找出规律吗?6.如图,已知OE是AOC∠的平分线.∠的角平分线,OD是BOC(1)若︒,AOC,求DOE∠20110BOC==∠︒∠的度数;(2)若︒∠的度数.AOB,求DOE∠90=7.如图,指出OA表示什么方向的一条射线?并画出表示下列方向的射线:(1)南偏东60°(2)北偏西40°(3)南北方向8.时钟的时针从2点半到2点54分共转了多大角度?9.已知线段a、b、∠α用尺规画一个△ABC,使αBCaAB,,.b=B=∠=∠10.小明在宾馆大厅内看到反映世界几个大城市当前时刻的时钟如下(如图),请你分别写出每个钟面上时针和分针的夹角.11.一天24小时,时钟的分针与时针共组成多少次平角?多少次周角?12.如图,若放置一枝铅笔,使笔尖朝AB方向并重合于AB,以A为旋转中心,按逆时针方向旋转∠A的大小,与AF重合;再以F为中心,按逆时针方向旋转F的大小,与EF重合……这样连续都按逆时针方向旋转过去,最后与AB重合,这时笔尖的方向仍是朝向AB,你知道铅笔一共转过了多少度吗?这个实验能说明六边形内角和的度数吗?13.你知道下图中有多少三角形吗?参考答案一、选择题1.B 2.C 3.D 4.C 5.B 6.B 7.C 8.B 9.C 10.D11.D二、填空题1.1°,60′,60″2.153.954.4,45,05.52,43,486.15.817.∠BDE ;∠DBE ;∠ABC ;∠ACB8.10 50509.32°25′16″10.26°11.邮局,医院,学校三、解答题1.22.5°2.3个或4个或5个3.10个4.(1)89°18′;(2)112°45′;(3)58°38′(4)48°1′ (5)267°7′20″ (6)2°33′20″5.共有10个角;从O 点出发引出几条射线,能组)1(-n 个基本角,则共有角的个数为:)1(21123)2()1(-=++++-+-n n n n 个角. 6.(1)先求︒=∠=∠︒=∠1021,55BOC COD COE 故︒=︒-︒=∠451055DOE (2)有BOC COD AOC COE ∠=∠∠=∠21,21 则︒=∠=∠-∠=∠4521)(21AOB BOC AOC DOE 7.北偏东60°(图略)8.12°9.略10.从左至右依次为:150°、120°、30°,120°、90°、60°11.22次,22次12.720°,六边形内角和为720°13.78个《角的度量》典型例题例1 如图,你知道以A为顶点的角有哪些吗?除了以A为顶点的角外,图中还有哪些角?你会将它们表示出来吗?例2(1)下图中能用一个大写字母表示的角是___________.(2)以A为顶点的角有_____________个,它们是________________.例3 (1)把25.72°分别用度、分、秒表示.(2)把45°12′30″化成度.例4 计算:(1)53°39′+36°40′;(2)92°3′-48°34′;(3)53°25′28″×5;(4)15°20′÷6.例5 当时钟表面3时25分时,你知道时针与分针所夹角的度数是多少?参考答案例1解:以A为顶点的角有∠∠∠、、、,其他的角有∠、、DACEAC∠DAEBACBAD∠BAEα∠β、2、1C、B.∠∠∠∠、∠、说明:(1)在数以A为顶点的角的个数时,先选定一边为始边(如AB),确定以始边为一边的角的个数,再依次把后面的边看作起始边,数出角的个数,相加即可得角的总数.本题中以AB为始边的角有3个(如图1),以AD为始边的角有两个(如图2),以AE为始边的角有1个(如图3),在数角时注意要向同一个方向数,以免重复,这与线段的数法类似;(2)目前我们所说的角一般都是指小于平角的角.所以以D为顶点的平角和以E为顶点的平角不包括在内.(3)角的表示方法共有四种,可根据需求灵活选定;①用三个大写字母表示角,此时表示角的顶点的字母应写在中间(如∠BAD);②用一个大写字母表示角,适用于以某一点为顶点的角只有一个(如∠B或∠C);③用希腊字母α、γβ、等表示角,此时要在所表示的角的顶点处加上连接两边的弧线,以明确所表示的是图中的哪个角(如∠α或∠β);④用数字表示角(如∠1或∠2).图1 图2 图3例2 分析:第(1)题中,能用一个大写字母表示的这个角必须是独立的一个角,所以只能是C∠、;第(2)题中,以A为顶点的角,必须含A,而且AB∠为公共端点,这样的角有6个,以AC为一边的角:CAB∠、,∠、CAE∠CAD以AE为边且不重复的角:EAB∠、,以AD为边且不重复的角:DABEAD∠∠.答案:(1)C∠、;B∠(2)6个DAB EAB EAD CAB CAD CAE ∠∠∠∠∠∠、、、、、.说明:要正确写出答案,首先要弄清角的定义是什么,其次是熟悉表示角的方法,特别对于(2),还要仔细、认真地找出所有的角.例3 分析:第(1)题中25.72°含有两部分25°和0.72°,只要把0.72°化成分、秒即可,第(2)题中,45°21′30″含有三部分45°,12′和30″,其中45°已经是度,只要把12′和30″化成度即可.解:(1)0.72°=0.72×61′=43.2′0.2′=0.2×60″=12″所以25.72°=25°43′12″(2)5.0)601(3003'='⨯='' 21.0)601(5.125.12≈⨯=' 所以45°12′30″=45.21°说明:①是由高级单位向低级单位化:②是由低级单位向高级单位化.它们都必须是逐级进行的,“越级”化单位容易出错而且还要熟记他们之间的换算关系.例4 解:(1)53°39′+36°40′=89°+79=90°19′;(2)92°3′-48°34′=91°63′-48°34′=43°29′;(3)53°25′28″×5=265°+125′+140″=267°7′20″;(4)15°20′÷6=2°+(3×60′+20′)÷6=2°33′20″.说明:角度的运算规律为:(1)加减法时将同一单位进行加减,加法够60进1,减法不够减要借1为60;(2)乘法时将数与度、分、秒分别相乘,然后从小到大逢60进1;(3)除法时用度先除,把余数化为分,再加上原来的分,用这个数除以除数,把余数化成秒,再加上原来的秒,再用这个数除以除数,如果除不尽就按题意要求,进行四舍五入;(4)度、分、秒之间的互化有:由低级单位向高级单位转化,使用的公式是'⎪⎭⎫ ⎝⎛=''︒⎪⎭⎫ ⎝⎛='6011,6011.例如30°42′,可化为30.7°;另一种是由高级单位向低级单位转化,使用的公式是1°=60′,11 / 111′=60″,例如2.45°可化为2°27′,在度、分、秒的互化过程中要逐级进行,不要“跳级”,以免出错.例5 解:法一:从3时整开始,分针转过了6°×25=150°,时针转过了0.5°×25= 5.12,因为3点整时两针夹角为90°,所以3时25分时两针夹角为150°-90°-12.5°= 5.47.法二:3时25分时,分针在钟面“5”字上,时针从“3”字转过了0.5°×25= 5.12.又“3”、“5”两字之间夹角为60°,所以3时25分时两针夹角为60°-12.5°= 5.47.法三:设所求夹角度数为x °,将分针视作在追赶并超过时针,它们的速度分别是 6/min 和0.5°/min ,则由题意,得方程x +=⨯-9025)5.06(,5.47=x .说明:(1)此题是角的度量的实际应用,它能加深我们对角的意义的理解.解题的关键是明确钟面上分针1分钟转过的角度是6°,时针1分钟转过的角度是分针转过角度的121,即0.5°;(2)解题时要注意分针在运动时,时针也在运动,而不能认为时针静止;(3)这类题型可视作时针和分针在作相对运动,可以参照环形线路上的行程问题列方程(组)求解,也可以以钟面上“格”作单位,即分针和时针每分钟走1格和121格.。
(新版人教版)七年级上册数学:4.3.1《角的概念和度量》练习题及答案
角的观点和胸怀【知能点分类训练】知能点 1角的观点与角的表示方法1.以下图中表示∠ABC的图是().2.以下对于角的说法正确的选项是().A.两条射线构成的图形叫做角;C.角的两边是射线,因此角不可以够胸怀;3.以下语句正确的选项是().A.由两条射线构成的图形叫做角B.如图,∠ A 就是∠ BACC.在∠ BAC的边 AB 延伸线上取一点D;B.延伸一个角的两边;D.角的大小与这个角的两边长短没关D.对一个角的表示没有要求,可随意书定4.如下图,能用∠AOB,∠ O,∠ 1 三种方法表示同一个角的图形是().5.如下图,图中能用一个大写字母表示的角是______;以A?为极点的角有_______个,它们分别是________________ .6.从一个钝角的极点,在它的内部引 5 条互不同样的射线,?则该图中共有角的个数是().A .28B.21C.15D.6知能点 2平角与周角的观点7.以下各角中,是钝角的是().A.1 周角B.2 周角C.2 平角D.1 平角43348.以下对于平角、周角的说法正确的选项是().A .平角是一条直线B.周角是一条射线C .反向延伸射线OA,就形成一个平角D.两个锐角的和不必定小于平角9.一天 24 小时中,时钟的分针和时针共组合成_____次平角, ______次周角.知能点 3角的胸怀10.已知∠ α =18°18′,∠ β =18.18 °,∠ γ=18.3 °,以下结论正确的选项是().A.∠ α =∠ β B .∠ α <∠ β C .∠ α =∠ γ D .∠ β >∠ γ11.( 1)把周角均匀分红360 份,每份就是_____的角, 1° =_____, 1′ =_______.(2) 25. 72° =______° ______′_______″.(3) 15° 48′ 36″ =_______°.(4) 3600″ =______′=______ °.12.如下图,将一个矩形沿图中的虚线折叠,请用量角器丈量一下其中的α,β,得α ________β.13.计算以下各题:( 1) 153° 19′ 42″ +26° 40′ 28″(2)90°3″ -57°21′ 44″(3) 33° 15′ 16″× 5(4) 175° 16′ 30″ -47 °30′÷ 6+4° 12′ 50″× 3【综合应用提升】14.( 1)1 点 20 分时,时钟的时针与分针的夹角是几度? 2 点 15 分时, ?时钟的时针与分针的夹角又是几度?(2)从 1 点 15 分到 1 点 35 分,时钟的分针与时针各转过了多大角度?(3)时钟的分针从 4 点整的地点起,按顺时针方向旋转多少度时才能与时针重合?15.如下图,已知∠α和∠ β(∠ α>∠ β),求作:( 1)∠α +∠ β;( 2)∠α - ∠ β.16.如下图,指出OA是表示什么方向的一条射线,?并画出表示以下方向的射线:( 1)南偏东60°;( 2)北偏西 70°;( 3)西南方向(即南偏西45°).【开放探究创新】17.( 1)用 10 倍放大镜看30°的角,你察看到的角是_______.( 2)用 10 倍放大镜看 50°的角, 60°的角,你察看到的角是 ______ ,______.由( 1),( 2),你能获得什么结论?请把你的结论让同学们进行考证,看能否正确.【中考真题实战】18.(北京)在图中一共有几个角?它们应怎样表示?19.(广州)( 1) 3.76 ° =______度 _____分 _______秒.( 2) 3.76 ° =______分 =______秒.( 3)钟表在 8:30 时,分针与时针的夹角为 ______度.答案 :1. C (点拨:用三个大写字母表示角,表示角极点的字母在中间) 2. D3. B (点拨:依据定义知 A , C 不正确,依据角的表示方法知D 不正确)4.D (点拨:∠ O 是一个独自的大写英文字母,它只好表示独立的一个角,?而∠ O 还可用∠ 1 或∠ AOB 表示)5.∠ B ,∠ C 6 个 ∠ CAD ,∠ CAE ,∠ CAB ,∠ DAE ,∠ DAB ,∠ EAB6. B [ 点拨:有公共极点的 n 条射线,所构成的角的个数,一共是1n ( n-1 )个 ]27. C (点拨:平角 =180°,钝角大于 90°而小于 180°, 2 平角 =2× 180° =120°, ?故33选 C )8.C (点拨:依据定义可知 A ,B 不正确;锐角大于 0°而小于 90°, ?因此两个锐角的和小于 180°, D 不正确;反向延伸射线OA ,O 成为角的极点,应选 C )9. 24 24(点拨:分针每小时转动一周与时针形成一次平角,一次周角)10. C [ 点拨: 1° =60′,∴ 18′ =(18)° =0.3 °,∴ 18° 18′ =18° +0.3 ° =18.3 °,60即∠ α=∠ γ ]11.(1)1 度 60 ′ 60 ″( 2)25 43 12( 3)15.81 (点拨:依据度、分、秒互化)( 4)60 1 12. =13.( 1) 153° 19′42″ +26° 40′ 28″=179 °+59′ +70″ =179 °+60′ +10″ =180 °10″( 2) 90° 3″ -57 ° 21′44″ =89 °59′ 63″-57 ° 21′ 44″ =32 °38′ 19″( 3) 33° 15′ 16″× 5 =165 °+75′ +80″ =165 °+76′ +20″ =166 °16′ 20″( 4) 175° 16′ 30″ -47 ° 30′÷ 6+4° 12′ 50″× 3 =175 °16′ 30″-330 ′÷ 6+12° 36′ 150″=175 °16′ 30″-7 ° -55 ′ +12° 38′ 30″ =187 °54′ 60″-7 ° 55′=180 °14.解:∵分针每分钟走 1 小格,时针每分钟走1小格.12∴ 1 点 20 分时,时针与分针的夹角是[20-(5+1×20) ] ×360=80°.12 60 2点 15 分时,时针与分针的夹角是 [15- ( 10+ 1×15) ] ×360=22.5 °.1260( 2)从 1 点 15 分到 1 点 35 分,时钟的分针共走了20 小格.∴分针转过的角度是( 35-15 )×360=120°,60时针转过的角度是1× 120° =10°.12( 3)设分针需要按顺时针方向旋转x 度,才能与时针重合, 则时针按顺时针方向旋转了1x 度.121依据题意,得 x- x=12012解得 x=1301011∴分针按顺时针旋转( 13010)°时,才能与时针重合.1115.作法:( 1)作∠ AOC=∠ α.以点 O 为极点,射线 OC 为边,在∠ AOC 的外面作∠ COB=∠ β ,则∠ AOB 就是所求的角.( 2)作∠ AOC=∠ α,以点 O为极点,射线OC为边,在∠ AOC的内部作∠ COB=∠ β.则∠ AOB就是所求的角.16.略17.( 1) 30°( 2)50° 60 °角度不变.(点拨:放大镜只有把图形放大,但不可以把角度放大)18. 3 个角,∠ ABC,∠ 1,∠ 2.19.( 1) 3 4536(2)225.613536(3)75.。
人教版七年级上册数学角练习题及答案
4.3.1 角一、单选题1、如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠CON=55°,则∠AOM的度数为()A、35°B、45°C、55°D、65°2、如图,将长方形纸片ABCD的角C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部点E处,若FH平分∠BFE,则∠GFH的度数α是()A、90°<α<180°B、0°<α<90°C、α=90°D、α随折痕GF位置的变化而变化3、如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC:∠EOD=1:2,则∠BOD等于()A、30°B、36°C、45°D、72°4、下列说法中正确的是()A、两点之间线段最短B、若两个角的顶点重合,那么这两个角是对顶角C、一条射线把一个角分成两个角,那么这条射线是角的平分线D、过直线外一点有两条直线平行于已知直线5、两条平行线被第三条直线所截,则下列说法错误的是()A、一对邻补角的平分线互相垂直B、一对同位角的平分线互相平行C、一对内错角的平分线互相平行D、一对同旁内角的平分线互相平行6、如图,AB∥CD,CE⊥BD,则图中与∠1互余的角有()A、1个B、2个C、3个D、4个7、如图,已知AB∥CD,直线EF分别交AB,CD于点E、F,EG平分∠AEF,若∠2=40°,则∠1的度数是()A、70°B、65°C、60°D、50°8、如图,已知l1∥l2, AC、BC、AD为三条角平分线,则图中与∠1互为余角的角有()A、1个B、2个C、3个D、4个9、如图所示,用量角器度量几个角的度数,下列结论中正确的是()A、∠BOC=60°B、∠COA是∠EOD的余角C、∠AOC=∠BODD、∠AOD与∠COE互补二、填空题10、如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为________.11、如图,AB、CD相交于O,OE⊥AB,若∠EOD=65°,则∠AOC=________.12、如图,FE∥ON,OE平分∠MON,∠FEO=28°,则∠MFE=________度.13、如图,已知直线AE∥BC,AD平分∠BAE,交BC于点C,∠BCD=140°,则∠B的度数为________三、解答题14、已知:OA⊥OC,∠AOB:∠AOC=2:3,画出图形,并求∠BOC的度数.15、如图,AB∥CD,点G、E、F分别在AB、CD上,FG平分∠CFE,若∠1=40°,求∠FGE的度数.16、如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=28°,求∠BOD的度数.17、如图,在四边形ABCD中,∠A=∠C=90°,∠ABC,∠ADC的平分线分别与AD,BC相交于E,F两点,FG⊥BE于点G,∠1与∠2之间有怎样的数量关系?为什么?四、综合题18、如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=150°,求∠AFG的度数.19、综合题(1)已知n正整数,且,求的值;(2)如图,AB、CD交于点O,∠AOE=90°,若∠AOC︰∠COE=5︰4,求∠AOD的度数.20、仅用无刻度的直尺作出符合下列要求的图形.(1)如图甲,在射线OP、OQ上已截取OA=OB,OE=OF.试过点O作射线OM,使得OM将∠POQ平分;(2)如图乙,在射线OP、OQ、OR上已截取OA=OB=OC,OE=OF=OG(其中OP、OR在同一根直线上). 试过点O作射线OM、ON,使得OM⊥ON.答案解析部分一、单选题1、【答案】A【考点】角平分线的定义,对顶角、邻补角,垂线【解析】【解答】解:∵ON⊥OM,∴∠NOM=90°,∵∠CON=55°,∴∠COM=90°﹣55°=35°,∵射线OM平分∠AOC,∴∠AOM=∠COM=35°,故选A.【分析】根据垂直得出∠NOM=90°,求出∠COM=35°,根据角平分线定义得出∠AOM=∠COM,即可得出答案.2、【答案】C【考点】角的计算【解析】【解答】解:∵∠CFG=∠EFG且FH平分∠BFE.∠GFH=∠EFG+∠EFH∴∠GFH=∠EFG+∠EFH= ∠EFC+ ∠EFB= (∠EFC+∠EFB)= ×180°=90°.故选C.【分析】根据折叠的性质可以得到△GCF≌△GEF,即∠CFG=∠EFG,再根据FH平分∠BFE即可求解.3、【答案】A【考点】角平分线的定义,对顶角、邻补角【解析】【解答】解:∵∠EOC:∠EOD=1:2,∴∠EOC=180°×=60°,∵OA平分∠EOC,∴∠AOC= ∠EOC= ×60°=30°,∴∠BOD=∠AOC=30°.故选:A.【分析】根据邻补角的定义求出∠EOC,再根据角平分线的定义求出∠AOC,然后根据对顶角相等解答.4、【答案】A【考点】线段的性质:两点之间线段最短,角平分线的定义,对顶角、邻补角,平行公理及推论【解析】【解答】解:A、两点之间线段最短,是线段的性质公理,故本选项正确; B、应为若两个角的顶点重合且两边互为反向延长线,那么这两个角是对顶角,故本选项错误;C、应为一条射线把一个角分成两个相等的角,那么这条射线是角的平分线,故本选项错误;D、应为过直线外一点有且只有一条直线平行于已知直线,故本选项错误.故选A.【分析】根据线段的性质,对顶角的定义,角平分线的定义,平行公理对各选项分析判断后利用排除法求解.5、【答案】D【考点】角平分线的定义,平行线的性质【解析】【解答】解:A、两条平行线被第三条直线所截,一对邻补角的平分线互相垂直,故本选项正确;B、两条平行线被第三条直线所截,同位角的平分线互相平行,故本选项正确;C、两条平行线被第三条直线所截,内错角的平分线互相平行,故本选项正确;D、两条平行线被第三条直线所截,同旁内角的平分线互相垂直,故本选项错误;故选:D.【分析】由两条平行线被第三条直线所截,内错角的平分线互相平行、同旁内角的平分线互相垂直、内错角的平分线互相平行、同位角的平分线互相平行,即可求得答案.6、【答案】C【考点】余角和补角,垂线,平行线的性质【解析】【解答】解:∵CE⊥BD,∴∠CBD=∠EBD=90°,∴∠ABC+∠1=90°,∠1+∠EBF=90°,即∠ABC、∠EBF与∠1互余;∵AB∥CD,∴∠1=∠D,∵∠C+∠D=90°,∴∠C+∠1=90°,即∠C与∠1互余;图中与∠1互余的角有3个,故选:C.【分析】由垂线的定义得出∠ABC+∠1=90°,∠1+∠EBF=90°,得出∠ABC、∠EBF与∠1互余;由平行线的性质和余角关系得出∠C+∠1=90°,得出∠C与∠1互余.7、【答案】A【考点】角平分线的定义,平行线的性质【解析】【解答】解:∵直线AB∥CD,∠2=40°,∴∠AEG=∠1,∠AEF=140°,∵EG平分∠AEF交CD于点G,∴∠AEG=∠GEF=70°,∴∠1=70°.故选:A.【分析】利用平行线的性质得出∠AEG=∠1,∠AEF=140°,再利用角平分线的性质得出∠AEG=∠GEF=70°,即可得出答案.8、【答案】D【考点】角平分线的定义,平行线的性质【解析】【解答】解:∵l1∥l2,且AC、BC、AD为三条角平分线,∴∠1+∠2= ×180°=90°,∴∠1与∠2互余,又∵∠2=∠3,∴∠1与∠3互余,∵∠CAD=∠1+∠4= ×180°=90°,∴∠1与∠4互余,又∵∠4=∠5,∴∠1与∠5互余,故与∠1互余的角共有4个.故选:D.【分析】根据平行线的性质,以及角平分线的定义,可得∠1与∠2互余,∠1与∠3互余,∠1与∠4互余,∠1与∠5互余.9、【答案】D【考点】角的计算,余角和补角【解析】【解答】解:A. ∠BOC=120°,故A错误;B. ∠COA=60°, ∠EOD=60,它们的大小相等,故B错误;C. ∠AOC=60∘,∠BOD=30∘,它们的大小不相等,故C错误;D. ∠AOD=150°, ∠COE=30°,它们互补,故D正确。
2020年秋人教版七年级数学上册课时训练:4.3.1《角》 含答案
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯2020年人教版七年级数学上册课时训练:4.3.1《角》一.选择题1.已知∠A=30°45',∠B=30.45°,则∠A()∠B.(填“>”、“<”或“=”)A.>B.<C.=D.无法确定2.用度、分、秒表示21.24°为()A.21°14'24″B.21°20'24″C.21°34'D.21°3.下列各角中,()是钝角.A.周角B.平角C.平角D.平角4.如图,射线OA表示的方向是()A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°5.下列度分秒运算中,正确的是()A.48°39′+67°31′=115°10′B.90°﹣70°39′=20°21′C.21°17′×5=185°5′D.180°÷7=25°43′(精确到分)6.11点40分,时钟的时针与分针的夹角为()A.140°B.130°C.120°D.110°7.在下列说法中:①钟表上九点一刻时,时针和分针形成的角是平角;②钟表上六点整时,时针和分针形成的角是平角;③钟表上差一刻六点时,时针和分针形成的角是直角;③钟表上九点整时,时针和分针形成的角是直角.其中正确的个数是()A.1B.2C.3D.48.当钟表上显示1点30分时,时针与分针所成夹角的度数为()A.130°B.135°C.150°D.210°二.填空题9.35.48°=度分秒.10.计算:18°13′×5=.11.已知∠A=30°45',∠B=30.45°,则∠A∠B.(填“>”、“<”或“=”)12.4点30分时,时钟的时针与分针所夹的锐角是度.13.A、B两城市的位置如图所示,那么B城市在A城市的位置.三.解答题14.计算:(1)131°28′﹣51°32′15″(2)58°38′27″+47°42′40″(3)34°25′×3+35°42′15.如图,在一次活动中,位于A处的1班准备前往相距5km的B处与2班会合,请用方向和距离描述1班相对于2班的位置:方向:,距离.16.(1)钟表上2时15分时,时针与分针所成的锐角的度数是多少?(2)若时针由2点30分走到2点55分,问分针转过多大的角度?17.观察下图,回答下列问题:(1)在图①中有几个角?(2)在图②中有几个角?(3)在图③中有几个角?(4)以此类推,如图④所示,若一个角内有n条射线,此时共有多少个角?18.知识的迁移与应用问题一:甲、乙两车分别从相距180km的A、B两地出发,甲车速度为36km/h,乙车速度为24km/h,两车同时出发,同向而行(乙车在前甲车在后),后两车相距120km?问题二:将线段弯曲后可视作钟表的一部分,如图,在一个圆形时钟的表面上,OA表示时针,OB表示分针(O为两针的旋转中心).下午3点时,OA与OB成直角.(1)3:40时,时针与分针所成的角度;(2)分针每分钟转过的角度为,时针每分钟转过的角度为;(3)在下午3点至4点之间,从下午3点开始,经过多少分钟,时针与分针成60°角?参考答案一.选择题1.解:30.45°=30°+0.45×60′=30°27′,∵30°45′>30°27′,∴30°45'>30.45°,∴∠A>∠B,故选:A.2.解:21.24°=21°+0.24×60′=21°+14′+0.4×60″=21°14′24″,故选:A.3.解:平角=180°,钝角大于90°而小于180°,平角=×180°=120°,是钝角.故选:B.4.解:射线OA表示的方向是南偏东65°,故选:C.5.解:48°39'+67°31'=115°70'=116°10',故A选项错误;90°﹣70°39'=19°21',故B选项错误;21°17'×5=105°85'=106°25',故C选项错误;180°÷7=25°43',故D选项正确.故选:D.6.解:11点40分时针与分针相距3+=(份),30°×=110°,故选:D.7.解:①钟表上九点一刻时,时针和分针形成的角是180°﹣30°÷4,不是平角,原说法错误;②钟表上六点整时,时针指向6,分针指向12,形成的角是平角,原说法正确;③钟表上差一刻六点时,时针和分针形成的角是90+30°÷4,不是直角,原说法错误;④钟表上九点整时,时针指向9,分针指向12,形成的角是直角,原说法正确.∴正确的个数是2个.故选:B.8.解:∵1点30分,时针指向1和2的中间,分针指向6,中间相差4大格半,钟表12个数字,每相邻两个数字之间的夹角为30°,∴1点30分分针与时针的夹角是30°×4.5=135°,故选:B.二.填空题9.解:0.48°=(0.48×60)′=28.8′,0.8′=(0.8×60)″=48″,所以35.48°=35°28′48″.故答案为:35,28,48.10.解:原式=90°+65′=91°5′.故答案是:91°5′.11.解:∵∠A=30°45'=30.75°,∠B=30.45°,30.75°>30.45°,∴∠A>∠B.故答案为:>.12.解:因为4点30分时针与分针相距1+=,所以4点30分时针与分针所夹的锐角是30°×=45°,故答案为:45.13.解:A、B两城市的位置如图所示,那么B城市在A城市的南偏东30°位置,故答案为南偏东30°.三.解答题14.解:(1)131°28′﹣51°32′15″=79°55′45″;(2)58°38′27″+47°42′40″=106°21′7″;(3)34°25′×3+35°42′=103°15′+35°42′=138°57′.15.解:1班相对于2班的位置:方向:北偏东60°,距离:5千米;故答案为:北偏东60°,5千米.16.解:(1)2点15分时分针指向数字3,而时针从数字2开始转动的角度为15×0.5°=7.5°,所以钟表上2时15分时,时针与分针所成的锐角的度数为30°﹣7.5°=22.5°;(2)分针转过的角度为25×6°=150°.17.解:由分析知:(1)①图中有2条射线,则角的个数为:=1(个);(2)②图中有3条射线,则角的个数为:=3(个);(3)③图中有4条射线,则角的个数为:=6(个);(4)由前三问类推,角内有n条射线时,图中共有(n+2)条射线,则角的个数为个.18.解:问题一:设xh后两车相距120km,若相遇前,则36x﹣24x=180﹣120,解得x=5,若相遇后,则36x﹣24x=180+120,解得x=25.故两车同时出发,同向而行(乙车在前甲车在后),5或25后两车相距120km;(1)30°×(5﹣)=130°.故3:40时,时针与分针所成的角度130°;(2)分针每分钟转过的角度为6°,时针每分钟转过的角度为0.5°;(3)设在下午3点至4点之间,从下午3点开始,经过x分钟,时针与分针成60°角.①当分针在时针上方时,由题意得:(3+)×30﹣6x=60,解得:x=;②当分针在时针下方时,由题意得:6x﹣(3+)×30=60,解得:x=.答:在下午3点至4点之间,从下午3点开始,经过或分钟,时针与分针成60°角.故答案是:5或25;130°;6°;0.5°.。
人教版七年级上册数学4.3.1角同步练习题(含答案)
4.3.1 角知识点1 角的定义及表示方法 1.下列说法正确的是( )A .两条射线组成的图形叫做角B .在∠ADB 一边的延长线上取一点DC .∠ADB 的边是射线DA ,DBD .直线是一个角2.下图中表示∠ABC 的图是()3.如图所示,下列表示角的方法错误的是( )A .∠1与∠AOB 表示同一个角 B .∠β表示的是∠BOC C .图中共有三个角:∠AOB ,∠AOC ,∠BOCD .∠AOC 也可用∠O 来表示 4.若∠1=25°12′,∠2=25.12°,∠3=25.2°,则下列结论正确的是( )A .∠1=∠2B .∠2=∠3C .∠1=∠3D .∠1=∠2=∠3 5.填空:45°= 直角= 平角= 周角. 知识点2 角的度量 6. 1周角= °,1平角= °,1°= ′,1′= ″.以度、分、秒为单位的角的度量制,叫做角度制. 7.小明每天下午5:30回家,这时分针与时针所成的角的度数为 度 8.计算:(1)57.18°= ° ′ ″;(2)360″= °= ′;(3)12′= °= ″. 9.将右图中的角用不同的方法表示出来,填入下表:综合训练10.如图,点O 在直线AB 上,则在此图中小于平角的角有()A .4个B .5个C .6个D .7个11.钟表在1点30分时,它的时针和分针所成的角度是( )A .135°B .125°C .145°D .115°12.如图,写出符合下列条件的角(图中所有的角均指小于平角的角).(1)能用一个大写字母表示的角; (2)以点A 为顶点的角;(3)图中所有的角(可用简便方法表示).4.3.1 角 答案知识点1 角的定义及表示方法1.下列说法正确的是( C )A .两条射线组成的图形叫做角B .在∠ADB 一边的延长线上取一点DC .∠ADB 的边是射线DA ,DBD .直线是一个角2.下图中表示∠ABC 的图是( C)3.如图所示,下列表示角的方法错误的是( D )A .∠1与∠AOB 表示同一个角 B .∠β表示的是∠BOC C .图中共有三个角:∠AOB ,∠AOC ,∠BOCD .∠AOC 也可用∠O 来表示 4.若∠1=25°12′,∠2=25.12°,∠3=25.2°,则下列结论正确的是( C )A .∠1=∠2B .∠2=∠3C .∠1=∠3D .∠1=∠2=∠3 5.填空:45°=2 直角= 4 平角= 8周角. 知识点2 角的度量6. 1周角= 360 °,1平角= 180 °,1°=60′,1′= 60 ″.以度、分、秒为单位的角的度量制,叫做角度制. 7.小明每天下午5:30回家,这时分针与时针所成的角的度数为 15 度 8.计算:(1)57.18°= 57 ° 10 ′ 48″;(2)360″=0.1 °= 6 ′;(3)12′= 0.2 °= 720 ″. 9.将右图中的角用不同的方法表示出来,填入下表:综合训练10.如图,点O 在直线AB 上,则在此图中小于平角的角有( B )A .4个B .5个C .6个D .7个 11.钟表在1点30分时,它的时针和分针所成的角度是( A )A .135°B .125°C .145°D .115° 12.如图,写出符合下列条件的角(图中所有的角均指小于平角的角).(1)能用一个大写字母表示的角; (2)以点A 为顶点的角;(3)图中所有的角(可用简便方法表示). 解:(1)∠B ,∠C.(2)∠CAD ,∠BAD ,∠BAC.(3)∠C ,∠B ,∠1,∠2,∠3,∠4,∠CAB.。
人教版七年级上册数学4.3.1角的概念练习题
2019年12月04日初中数学组卷参考答案与试题解析一.选择题(共31小题)1.如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是()A.60°B.90°C.120° D.150°【分析】根据点O在直线AB上,∠BOC=60°,即可得出∠AOC的度数.【解答】解:∵点O在直线AB上,∴∠AOB=180°,又∵∠BOC=60°,∴∠AOC=120°,故选:C.【点评】本题主要考查了角的概念以及平角的定义的运用,解题时注意:平角等于180°.2.用量角器测得∠MON的度数,下列操作正确的是()A.B.C.D.【分析】根据量角器的使用方法进行选择即可.【解答】解:量角器的圆心一定要与O重合,故选C.【点评】本题考查了角的概念,掌握量角器的使用方法是解题的关键.3.如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为()A.45°B.55°C.135° D.145°【分析】由图形可直接得出.【解答】解:由图形所示,∠AOB的度数为135°,故选C.【点评】本题主要考查了角的度量,量角器的使用方法,正确使用量角器是解题的关键.4.如图,O是直线AB上一点,∠AOC=50°,则∠BOC的度数是()A.120°B.130°C.140° D.150°【分析】直接利用平角的定义分析得出答案.【解答】解:∵O是直线AB上一点,∠AOC=50°,∴∠BOC的度数是:180°﹣50°=130°.故选:B.【点评】此题主要考查了邻补角的定义,正确把握邻补角的定义是解题关键.5.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A. B.C.D.【分析】根据角的表示方法和图形选出即可.【解答】解:A、图中的∠AOB不能用∠O表示,故本选项错误;B、图中的∠1和∠AOB不是表示同一个角,故本选项错误;C、图中的∠1和∠AOB不是表示同一个角,故本选项错误;D、图中∠1、∠AOB、∠O表示同一个角,故本选项正确;故选D.【点评】本题考查了角的表示方法的应用,主要考查学生的理解能力和观察图形的能力.6.如图,下列表示角的方法中,不正确的是()A.∠A B.∠E C.∠αD.∠1【分析】先表示出各个角,再根据角的表示方法选出即可.【解答】解:图中的角有∠A、∠1、∠α、∠AEC,即表示方法不正确的有∠E,故选B.【点评】本题考查了对角的表示方法的应用,主要考查学生对角的表示方法的理解和掌握.7.下列语句正确的是()A.一条直线可以看成一个平角B.周角是一条射线C.角是由一条射线旋转而成的D.角是由公共端点的两条射线组成的图形【分析】根据角的概念即可求出答案.【解答】解:具有公共端点的两条射线组成的图形叫做角,故选(D)【点评】本题考查角的概念,解题的关键是正确理解角的概念,本题属于基础题型.8.下列图形中,能用∠ABC,∠B,∠1表示同一个角的是()A.B. C.D.【分析】根据角的表示方法分别进行分析即可.【解答】解:A、以B为顶点的角不是一个,因此∠1不能表示为∠B,故此选项错误;B、以B为顶点的角不是一个,因此∠1不能表示为∠B,故此选项错误;C、以B为顶点的角不是一个,因此∠1不能表示为∠B,故此选项错误;D、能用∠ABC,∠B,∠1表示同一个角,故此选项正确;故选:D.【点评】此题主要考查了角的概念,关键是掌握角的表示方法.9.能用∠α、∠AOB、∠O三种方式表示同一个角的图形是()A.B.C.D.【分析】根据角的表示方法进行逐一分析,即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.【解答】解:A、因为顶点O处有四个角,所以这四个角均不能用∠O表示,故本选项错误;B、因为顶点O处只有一个角,所以这个角能用∠O、∠α及∠AOB表示,故本选项正确;C、因为顶点O处有三个角,所以这三个角均不能用∠O表示,故本选项错误;D、因为∠O与∠α表示的不是同一个角,故本选项错误.故选B.【点评】本题考查的是角的表示方法,熟知角的三种表示方法是解答此题的关键.10.如图,∠AOB为平角,且∠AOC=∠BOC,则∠BOC的度数是()A.140°B.135°C.120° D.40°【分析】设∠BOC=x,根据∠AOC=∠BOC,则∠AOC=x,列出方程即可求解.【解答】解:设∠BOC=x,根据∠AOC=∠BOC,则∠AOC=x,∵∠AOB为平角,故x+x=180°,解得:x=140°.故选A.【点评】本题考查了角的计算,属于基础题,关键是根据题意列出方程再进行求解.11.下列说法中错误的有()①n棱柱有n个面,2n个顶点,3n条棱;②用一个平面截圆锥,截面可能是三角形;③有公共点的两个直角组成平角;④如果线段AB=BC,则点B是线段AC的中点.A.1个 B.2个 C.3个 D.4个【分析】直接利用两点之间的距离以及截一个几何体的性质和角的概念分别分析得出答案.【解答】解:①一个n棱柱有2n个顶点,n+2个面,3n条棱,故此选项错误;②用一个平面截圆锥,截面可能是三角形,正确;③有公共点的两个直角组成平角,错误;④如果线段AB=BC,则点B是线段AC的中点,错误.故选:C.【点评】此题主要考查了两点之间的距离以及截一个几何体的性质和角的概念,正确把握相关性质是解题关键.12.下列四个图形中,能用∠1、∠AOB、∠O三种方法表示同一个角的图形是()A.B.C.D.【分析】根据角的表示方法,可得答案.【解答】解:能用∠1、∠AOB、∠O三种方法表示同一个角的图形是A中的图,B,C,D中的图都不能用∠1、∠AOB、∠O三种方法表示同一个角的图形,故选:A.【点评】本题考查了角的概念,熟记角的表示方法是解题关键.13.下列四个图形中,能用∠1,∠AOB,∠O三种方法表示同一个角的是()A.B. C.D.【分析】根据角的表示方法进行逐一分析,即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.【解答】解:A、因为顶点O处有四个角,所以这四个角均不能用∠O表示,故本选项错误;B、因为顶点O处只有一个角,所以这个角能用∠1,∠AOB,∠O表示,故本选项正确;C、因为顶点O处有三个角,所以这三个角均不能用∠O表示,故本选项错误;D、因为顶点O处有三个角,所以这三个角均不能用∠O表示,故本选项错误.故选B.【点评】本题考查的是角的表示方法,熟知角的三种表示方法是解答此题的关键.14.如图,下列表示角的方法,错误的是()A.∠1与∠AOB表示同一个角B.∠AOC也可用∠O来表示C.图中共有三个角:∠AOB、∠AOC、∠BOCD.∠β表示的是∠BOC【分析】A:根据角的表示方法判断即可.B:只有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,所以∠AOC不能∠O来表示,据此判断即可.C:根据角的概念,判断出图中一共有多少个角即可.D:根据角的表示方法判断即可.【解答】解:∵∠1与∠AOB表示同一个角,∴选项A正确.∵只有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,∴∠AOC不能∠O来表示,∴选项B错误.∵图中共有三个角:∠AOB、∠AOC、∠BOC,∴选项C正确.∵∠β表示的是∠BOC,∴选项D正确.故选:B.【点评】此题主要考查了角的表示方法,要熟练掌握,解答此题的关键是要明确:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.15.如图所示,下列表示角的方法错误的是()A.∠1与∠AOB表示同一个角B.∠β表示的是∠BOCC.图中共有三个角:∠AOB,∠AOC,∠BOCD.∠AOC也可用∠O来表示【分析】根据角的表示方法表示各个角,再判断即可.【解答】解:A、∠1与∠AOB表示同一个角,正确,故本选项错误;B、∠β表示的是∠BOC,正确,故本选项错误;C、图中共有三个角:∠AOB,∠AOC,∠BOC,正确,故本选项错误;D、∠AOC不能用∠O表示,错误,故本选项正确;故选D.【点评】本题考查了对角的表示方法的应用,主要检查学生能否正确表示角.16.如图,射线AB与AC所组成的角的表示方法不正确的是()A.∠1 B.∠BAC C.∠CAB D.∠A【分析】根据角的表示方法,可得答案.【解答】解:射线AB与AC所组成的角的表示为∠1,∠BAC,∠CBA,故A、B、C正确;故D错误;故选:D.【点评】本题考查了角的概念,注意以同一个顶点为的角有多个时,不能用一个顶点字母表示.17.下列说法正确的是()A.平角是一条直线 B.角的边越长,角越大C.大于直角的角叫做钝角D.两个锐角的和不一定是钝角【分析】直接利用角的定义以及钝角的定义分别分析得出答案.【解答】解:A、平角是两条射线组成的一条直线,故此选项错误;B、角的边越长,与角的大小无关,故此选项错误;C、大于直角且小于180°的角叫做钝角,故此选项错误;D、两个锐角的和不一定是钝角,正确.故选:D.【点评】此题主要考查了角的定义以及钝角的定义,正确把握定义是解题关键.18.下列说法中正确的个数是()①射线AB与射线BA是同一条射线;②两点确定一条直线;③两条射线组成的图形叫做角;④两点之间直线最短;⑤若AB=BC,则点B是AC的中点.A.1个 B.2个 C.3个 D.4个【分析】有公共端点是两条射线组成的图形叫做角,经过两点有且只有一条直线,两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.【解答】解:①射线AB与射线BA不是同一条射线,故①错误;②两点确定一条直线,故②正确;③两条端点重合的射线组成的图形叫做角,故③错误;④两点之间线段最短,故④错误;⑤若AB=BC,则点B不一定是AC的中点,故⑤错误.故选:A.【点评】本题主要考查了角的定义,中点的定义,直线的性质以及线段的性质,解题时注意:角可以看成一条射线绕着端点旋转而成.19.下列四个图形中,能同时用∠1,∠ABC,∠B三种方法表示同一个角的图形是()A.B.C.D.【分析】根据角的表示方法对四个选项逐个进行分析即可.【解答】解:A、由于B为顶点的角有四个,不可用∠B表示,故本选项错误;B、由于B为顶点的锐角有一个,可用∠ABC,∠B,∠1三种方法表示同一个角,故本选项正确;C、由于B为顶点的锐角有三个,不可用∠B表示,故本选项错误;D、由于B为顶点的有二个,不可用∠B表示,故本选项错误.故选:B.【点评】本题考查了角的概念,要熟悉角的三种表示方法所适用的条件.20.如图,图中可以只用一个大写字母表示的角有()A.1个 B.2个 C.3个 D.4个【分析】根据角的表示方法,可得答案.【解答】解:可以只用一个大写字母表示的角有∠A,∠C,故选:B.【点评】本题考查了角的概念,角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.21.下列各角是锐角的是()A.周角B.平角C.平角D.直角【分析】直接利用角的定义分别分析得出答案.【解答】解:A、周角=×360°=90°,故此选项不合题意;B、平角=×180°=150°,故此选项不合题意;C、平角=×180°=90°,故此选项不合题意;D、直角=×90°=60°,符合题意.故选:D.【点评】此题主要考查了角的概念,正确掌握平角和周角的概念是解题关键.22.如图,下列表示角的方法,错误的是()A.∠1与∠AOB表示同一个角B.∠AOC也可以用∠O来表示C.∠β表示的是∠BOCD.图中共有三个角:∠AOB,∠AOC,∠BOC【分析】根据角的概念即可求出答案.【解答】解:由于顶点O处,共有3个角,所以∠AOC不可以用∠O来表示,故B错误故选(B)【点评】本题考查角的概念,解题的关键是正确理解角的表示方法,本题属于基础题型.23.下图中能用一个字母表示的角()A.三个B.四个C.五个D.没有【分析】只有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角,据此判断出图中能用一个字母表示的角有几个即可.【解答】解:∵只有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,∴图中能用一个字母表示的角有三个:∠A、∠B、∠C.故选:A.【点评】此题主要考查了角的表示方法,要熟练掌握,解答此题的关键是要明确:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.24.下列角中,能用∠1,∠ACB,∠C三种方法表示同一个角的是()A.B. C.D.【分析】角的表示方法有三种:①用三个字母及符号“∠”来表示,中间的字母表示顶点,其它两个字母分别表示角的两边上的点.②用一个数字表示一个角.③用一个字母表示一个角.具体用哪种方法,要根据角的情况进行具体分析.【解答】解:在选项A、B、D中,如果用∠C表示,容易使人产生歧义,无法让人明确到底表示哪个角;只有选项C能用∠1,∠ACB,∠C三种方法表示同一个角,不会使人产生歧义.故选:C.【点评】此题主要考查学生对角的概念和角的表示方法的理解和掌握.解题时注意:唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.25.下列说法正确的是()A.角的大小与角的两边的长度有关B.两条射线组成的图形叫做角C.直线就是平角D.右图中∠ABC可记作∠B【分析】根据角的定义(有公共端点的两条射线组成的图形叫角)判断即可.【解答】解:A、角的大小与角的两边的长度无关,错误;B、有公共端点的两条射线组成的图形叫角,错误;C、直线不是平角,错误;D、右图中∠ABC可记作∠B,正确;故选D【点评】本题考查了对角的定义的应用,注意:有公共端点的两条射线组成的图形叫角,角的大小和角的张开程度有关,和角的两边的长短无关.26.下列结论正确的是()A.直线比射线长B.过两点有且只有一条直线C.过三点一定能作三条直线D.一条直线就是一个平角【分析】根据概念和公理,利用排除法求解.【解答】解:A、直线和射线长都没有长度,错误;B、过两点有且只有一条直线,是公理,正确;C、过三点不一定能作三条直线,如果三点共线就只能做一条,错误;D、直线不是角,是两个不同的概念,错误.故选B.【点评】相关概念:直线:是点在空间内沿相同或相反方向运动的轨迹.向两个方向无限延伸.射线:直线上的一点和它一旁的部分所组成的图形称为射线,可向一方无限延伸.过两点有且只有一条直线.平角:如果角的两边在同一条直线上,那么所组成的角叫平角.27.如图,能用∠1,∠ACB,∠C三种方法表示同一个角的是()A.B.C. D.【分析】角的表示方法有三种:(1)用三个字母及符号“∠”来表示.中间的字母表示顶点,其它两个字母分别表示角的两边上的点.(2)用一个数字表示一个角.(3)用一个字母表示一个角.具体用哪种方法,要根据角的情况进行具体分析,总之表示要明确,不能使人产生误解.【解答】解:在选项A、B、D中,如果用∠C表示,容易使人产生歧义,无法让人明确到底表示哪个角;只有选项C能用∠1,∠ACB,∠C三种方法表示同一个角,不会使人产生歧义.故选C.【点评】此题主要考查学生对角的概念和角的表示方法的理解和掌握.通过练习,使学生学会角的表示方法,为今后的学习奠定基础.28.下列四个图形中,能用∠1、∠AOB、∠O三种方法表示同一个角的图形是()A.B. C.D.【分析】根据角的表示方法和图形逐个判断即可.【解答】解:A、不能用∠1,∠AOB,∠O三种方法表示同一个角,故本选项错误;B、能用∠1,∠AOB,∠O三种方法表示同一个角,故本选项正确;C、不能用∠1,∠AOB,∠O三种方法表示同一个角,故本选项错误;D、不能用∠1,∠AOB,∠O三种方法表示同一个角,故本选项错误;故选B.【点评】本题考查了角的表示方法的应用,主要考查学生的理解能力和判断能力.29.如图,从点O出发的五条射线,可以组成()个角.A.4 B.6 C.8 D.10【分析】先以OA为角的一边,依次得到以OB、OC、OD、OE为另一边的五个角,然后利用同样的方法得到其他角.【解答】解:点O出发的五条射线,可以组成的角有:∠AOB,∠AOC,∠AOD,∠AOE,∠BOC,∠BOD,∠BOE,∠COD,∠COE,∠DOE.故选D.【点评】本题考查了角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边.角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.30.如图,在∠AOB内部从O点引出两条射线OC、OD,则图中小于平角的角共有()个.A.6 B.5 C.4 D.3【分析】按一定的规律数平角的个数:先数出以一条射线为一边的角,再数出以其余三条射线为一边的角,然后把他们加起来;或者根据公式来计算.【解答】解:先数出以OA为一边的角,再数出以OB、OC、OD为一边的角,把他们加起来.也可根据公式:来计算,其中,n指从点O发出的射线的条数.∵图中共有四条射线,∴图中小于平角的角共有=6个.故选A.【点评】本题通过数角的个数,考查了同学们总结规律的能力或公式应用的能力,难度适中.31.如图,下列表示不正确的是()A.∠1+∠2=∠F B.EM=EC﹣MCC.∠E=∠3 D.∠FME=180°﹣∠FMC【分析】根据角的表示方法:以F为顶点的角不是1个,应用∠EFC表示可得A 选项表示错误;根据线段的和差关系可得B表示正确;根据角的表示方法可得C 表示正确,根据角的和差关系可得D表示正确.【解答】解:A、∠1+∠2=∠F,表示错误,以F为顶点的角不是1个,应用∠EFC 表示,故此选项符合题意;B、EM=EC﹣MC,表示正确,故此选项不符合题意;C、∠E=∠3,表示正确,故此选项不符合题意;D、∠FME=180°﹣∠FMC,表示正确,故此选项不符合题意.故选:A.【点评】此题主要考查了角的表示方法,以及角和线段的和差关系,关键是掌握角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.二.填空题(共3小题)32.如图,∠1、∠2表示的角可分别用大写字母表示为∠ABC,∠BCN;∠A也可表示为∠BAC,还可以表示为∠MAN.【分析】根据角的表示方法解答:在本题中,当顶点处只有一个角时,可用一个大写字母表示,也可用三个大写字母表示;顶点处有多个角时,不能只用一个大写字母表示.【解答】解:∵∠1、∠2处有多个角,∴可用三个大写字母表示为∠ABC、∠BCN;∠A可有多种表示方法,∠MAN、∠BAC、∠CAM等均可.故答案为:∠ABC、∠BCN;∠BAC,∠MAN.【点评】此题考查了角的表示方法,在用三个大写英文字母表示角时,表示顶点的字母应位于中间位置.33.如图所示的七巧板中,三角形有5块,正方形有1块,45°角的有12个,90°的角有12个,135°的角有2个.【分析】根据正方形的性质和图形直接得出结果.【解答】解:观察图形,可知:三角形有5块;正方形有1块;45°角的有12个;90°的角有12个;135°的角2个.【点评】主要考查了图形的基本形状和角的认识与度量.本题由于是七年级接触到的东西,可通过正方形的对角线平分一组对角得到45度的角,从而求出其他的角度.也可以通过度量的方法求解.34.一副三角板的六个角各是45°,45°,90°,90°,30°,60°.【分析】一副三角板中,每块都有一个角是90°,而其他两个角的和是90°,即30°+60°=90°,45°+45°=90°.【解答】解:45°,45°,90°,90°,30°,60°.【点评】本题考查角的认识与大小.另外此题答案不能带单位.三.解答题(共16小题)35.马路上铺的地砖有很多种图案,如图所示的图案是某街面方砖铺设的示意图,请你用量角器量一下其中出现的所有的角度?【分析】会用量角器,直接测量即可,要分别测量三角形和四边形的每个角.【解答】解:经测量∠1=∠2=∠3=∠5=∠6=60°,∠4=∠7=120°.【点评】此题考查了对角的认识及角的大小的测量,找到角并会利用量角器测量是解题的关键,也体现了同学们的动手能力.36.将图中的角用不同方法表示出来,并填写下表:【分析】一个角可以用一个大写英文字母,也可以用三个大写英文字母,也可以用一个阿拉伯数字,也可以用一个希腊字母,择其适合者解答.【解答】解:由于以B为顶点的角只有一个,所以∠ABC直接用∠B表示;∠α、∠β、∠γ可用三个大写英文字母表示,即∠ADC、∠ADB、∠BAD;∠BAD可用一个希腊字母表示,即∠γ;∠θ也可用三个大写字母表示,即∠CAD.答案分别为:【点评】此题考查了角的表示方法,根据图形特点将每个角用合适的方法表示体现了一个人的数学基本功,必须重视这方面的训练.37.(1)用10倍的放大镜看10°的角,你观察到的角是10°;(2)用10倍的放大镜看30°的角、50°的角,你观察到的角是由(1)、(2),你能得到什么结论?请把你的结论让同学们进行验证,看是否正确.【分析】(1)、(2)根据角的大小与两边张开的程度有关,而与角的两边的长短无关,即可得出答案.【解答】解:(1)用10倍的放大镜看10°的角,你观察到的角是10°.故答案为:10°;(2)用10倍放大镜看30°的角,50°的角,观察到的角是30°,50°,故由(1),(2)可知在放大镜下角度不变.【点评】本题考查的是角的概念,注意:公共端点的两条射线组成的图形叫角,角的大小与两边张开的程度有关,而与角的两边的长短无关.38.如图,在∠AOB的内部:(1)画1条射线OA1,则图中共有几个角?把它表示出来.(2)画2条射线OA1,OA2,则图中共有几个角?画3条呢?(3)画行n条射线OA1,OA2,…,OA n,图中共有几个角?【分析】(1)根据角的定义写出角即可得解;(2)组成图形,然后根据角的定义写出所有的角,再根据角的计算确定出角的个数的求解方法;(3)根据角的个数的计算方法列式计算即可得解.【解答】解:(1)有3个角,分别为∠AOA1,∠A10B,∠AOB;(2)如图,画2条射线有6个角,分别为∠AOA2,∠AOA1,∠AOB,∠A20A1,∠A20B,∠A1OB,共有:3+2+1=6个,画3条射线,共有:4+3+2+1=10个;(3)画n条射线,共有:(n+1)+n+…+2+1=个角.【点评】本题考查了角的概念,角的个数的计算,根据图形确定角时要按照一定的顺序才能做到不重不漏并因此得到角的个数的计算算式.39.小明家刚买一套新房,想在客厅中装饰一个灯池(圆形),周围装一些牛眼灯来点缀,如果把90°的角尺的顶点放在中心的大灯上,并且使角内至少要有4盏小牛眼灯,请你帮小明计算一下,他最少要买20盏这样的牛眼灯.【分析】从90度的角尺,至少要有4盏牛眼灯,即由角度的计算得为16盏.【解答】解:由题意要买的牛眼灯为4×4+4=20(盏).故答案是:20.【点评】本题考查了角的计算,从角度的考虑,按照题意从而很容易算出要买的灯数.40.画∠AOB,在∠AOB的两边上各取一点E、F,连结EF,以点E和点F为顶点的角共有几个?分别写出来.【分析】根据图形可直接写出以点E和点F为顶点的角.【解答】解:以点E为顶点的角∠OEF,∠AEF,∠AEO,以点F为顶点的角∠OFE,∠BFE.∠BFO,以点E和点F为顶点的角共有6个.【点评】此题主要考查了角的概念,关键是掌握角的定义:有公共端点是两条射线组成的图形叫做角.41.由角的旋转的定义可知,平角的两边成一条直线,能不能说直线就是平角?周角两边重合成同一条射线,能不能说周角就是射线?为什么?【分析】因为角和线是两个不同的概念,二者不能混淆,并结合周角、平角的特点,进行分析、进而判断即可.【解答】解:平角的特点是两条边成一条直线,不能说直线是平角;周角的特点是两条边重合成射线,但不能说成周角是一条射线;【点评】本题主要考查角的概念,熟练各种角的概念是解题的关键.。
人教版 数学七年级(上)学期 第4章4.3.1角同步练习(含答案)
人教版数学(七上)第4章 4.3.1 角同步练习一、选择题1. 如图所示,表示∠1的其他方法中,不正确的是( )A.∠ACB B.∠C C.∠BCA D.∠ACD2. 下列四个图形中,能用∠α、∠AOB、∠O三种方法表示同一个角的是( )A. B. C. D.3. 如图,下列说法:①∠1就是∠ABC:②∠2就是∠DBC;③以B为顶点的角有3个,它们是∠1,∠2,∠ABC;④∠ADB也可以表示成∠D;⑤∠BCD也可以表示成∠ACB,还可以表示成∠C,其中说法正确的有( )A.2个B.3个C.4个D.5个4. 一块手表早上8点整的表针的位置如图,那么分针与时针所组成的小于平角的角的度数是( )A.60°B.80°C.120°D.150°5. 下列各式中,正确的角度互化是( )A.63.5°=63°50"B.23°12'36"= 23.48°C.18°18'18"=18.33°D.22.25°=22°15'6. 如图所示,下列说法错误的是( )A.∠DAO就是∠DAC B.∠COB就是∠OC.∠2就是∠OBC D.∠CDB就是∠17.如图,∠AOB的大小可由量角器测得,则∠AOB的度数为( )A.60°B.120°C.30°D.90°8.把2.36°用度、分、秒表示,正确的是( )A.2°21'36”B.2°18'36”C.2°30'60"D.2°3'6''9. 下列说法中正确的是()A.8时45分,时针与分针的夹角是30°B.6时30分,时针与分针重合C.3时30分,时针与分针的夹角是90°D.3时整,时针与分针的夹角是90°10.如图所示,下列表示角的方法错误的是( )A.∠1与∠AOB表示同一个角B.∠β表示的是∠BOCC.图中共有三个角:∠AOB,∠AOC,∠BOCD.∠AOC也可用∠O来表示二、填空题11. 如图,在射线OB上取一点C,过点C作直线MN交OA于点D,则图中小于平角的角共有_______个.12. 如图:(1)图中可以用一个大写字母表示的角有______;(2)以A为顶点的角有________,(3)图中共有____个角(包括平角),它们分别是________.13. (1)用10倍放大镜看30°的角,你观察到的角是____;(2)用10倍放大镜看50°的角,60°的角,你观察到的角是____,____.(3)根据(1)(2),你得到的结论是___________.14. 4时10分,时针和分针的夹角是____度.15. 如图,过直线AB上一点O作射线OC,∠BOC= 29°18’,则∠AOC的度数为________.三、解答题16. 将下列各角用度、分、秒表示出来.(1)32.41°; (2)75.5°; (3).17. 用度表示下列各角.(1)37°36''; (2)51°6'; (3)15°24'36''.18. 如图(1) ∠1表示成∠A,∠2表示成∠D,∠3表示成∠C,这样的表示方法对不对?如果不对,应该怎样改正?(2)图中哪个角可以用一个字母来表示?(3)图中共有几个小于平角的角?19. 从6时到7时,这个小时内钟表表面的时针与分针何时韵夹角为60°?参考答案一、选择题1. 如图所示,表示∠1的其他方法中,不正确的是( )A.∠ACB B.∠C C.∠BCA D.∠ACD【答案】B解析:由题图知,∠ACB,∠BCA与∠ACD所表示的角都是∠1;因为以C为顶点的角不止一个,所以选项B不正确.故选B.2. 下列四个图形中,能用∠α、∠AOB、∠O三种方法表示同一个角的是( )A. B. C. D.【答案】C解析:C选项中,以O为顶点的角只有一个,可以用∠O来表示,且∠α、∠AOB、∠O为同一个角.3. 如图,下列说法:①∠1就是∠ABC:②∠2就是∠DBC;③以B为顶点的角有3个,它们是∠1,∠2,∠ABC;④∠ADB也可以表示成∠D;⑤∠BCD也可以表示成∠ACB,还可以表示成∠C,其中说法正确的有( )A.2个B.3个C.4个D.5个【答案】B解析:①∠1就是∠ABD,故说法①错误;②∠2就是∠DBC,故说法②正确:③以B为顶点的角有3个,它们是∠1,∠2,∠ABC,故说法③正确;④以D为顶点的角不止一个,故∠ADB不能用∠D表示,故说法④错误;⑤∠BCD也可以表示成∠ACB,还可以表示成∠C.故说法⑤正确,故选B.4. 一块手表早上8点整的表针的位置如图,那么分针与时针所组成的小于平角的角的度数是( )A.60°B.80°C.120°D.150°【答案】.C解析:由题图知,表盘被分成12个大格,每格对应的夹角为30°.早上8点,分针与时针所组成的小于平角的角的度数为30°x4= 120°.故选C.5. 下列各式中,正确的角度互化是( )A.63.5°=63°50"B.23°12'36"= 23.48°C.18°18'18"=18.33°D.22.25°=22°15'【答案】D解析:63.5°=63°+0.5°x60’= 63°30’,故A选项错误:23°12'36’’,故B选项错误;,故C选项错误:22.25°=22°+0.25×60’=22°15’,故D选项正确.6. .如图所示,下列说法错误的是( )A.∠DAO就是∠DAC B.∠COB就是∠OC.∠2就是∠OBC D.∠CDB就是∠1【答案】B解析:A.∠DAO与∠DAC的顶点相同,角的两边也相同,则∠DAO就是∠DAC,正确;B.因为以O为顶点的角不止一个,所以说∠COB就是∠O错误:C.∠2与∠OBC的顶点相同,角的两边也相同,则∠2就是∠OBC.正确:D.∠CDB与∠1的顶点相同,角的两边也相同,则∠CDB就是∠1.正确.故选B.7.如图,∠AOB的大小可由量角器测得,则∠AOB的度数为( )A.60°B.120°C.30°D.90°【答案】A解析:直接观察题图可得∠AOB= 60°,故选A.8.把2.36°用度、分、秒表示,正确的是( )A.2°21'36”B.2°18'36”C.2°30'60"D.2°3'6''【答案】A解析:2.36°= 2°+0.36x60'= 2°21’+0.6x60”= 2°21'36’’,故选A.9. 下列说法中正确的是()A.8时45分,时针与分针的夹角是30°B.6时30分,时针与分针重合C.3时30分,时针与分针的夹角是90°D.3时整,时针与分针的夹角是90°【答案】D【解析】A.8时45分时,时针与分针间有60-4560个大格,其夹角为30°×14=7.5°,故8时45分时时针与分针的夹角是7.5°,错误;B.6时30分时,时针在6和7的中间,分针在6的位置,时针与分针不重合,错误;C.3时30分时,时针与分针间有2.5个大格,其夹角为30°×2.5=75°,故3时30分时时针与分针的夹角不为直角,错误;D.3时整,时针与分针的夹角正好是30°×3=90°,正确.10.如图所示,下列表示角的方法错误的是( )A.∠1与∠AOB表示同一个角B.∠β表示的是∠BOCC.图中共有三个角:∠AOB,∠AOC,∠BOCD.∠AOC也可用∠O来表示【答案】D解析:A.∠1与∠AOB表示同一个角,正确,故本选项不符合题意:B.∠β表示的是∠BOC,正确,故本选项不符合题意;C.图中共有三个角:∠AOB,∠AOC,∠BOC,正确,故本选项不符合题意:D.∠AOC不能用∠O表示,错误,故本选项符合.故选D.二、填空题11. 如图,在射线OB上取一点C,过点C作直线MN交OA于点D,则图中小于平角的角共有_______个.【答案】答案9解析符合条件的角中,以点C为顶点的角有∠BCD,∠BCM,∠MCO,∠DCO;以点D为顶点的角有∠ADN,∠MDA,∠MDO,∠NDO;以点D为顶点的角有∠O.故图中符合条件的角共有9个.12. 如图:(1)图中可以用一个大写字母表示的角有______;(2)以A为顶点的角有________,(3)图中共有____个角(包括平角),它们分别是________.【答案】答案(1) ∠B、∠C (2) ∠BAD、∠DAC、∠BAC(3)8;∠B、∠C、∠BAD、∠DAC、∠BAC、∠ADB、∠ADC、∠BDC13. (1)用10倍放大镜看30°的角,你观察到的角是____;(2)用10倍放大镜看50°的角,60°的角,你观察到的角是____,____.(3)根据(1)(2),你得到的结论是___________.【答案】.答案(1) 30°(2)50°;60°(3)在放大镜下角的大小不变解析因为角的大小只与角的两边张开的程度有关,所以角在放大镜下大小不变.14. 4时10分,时针和分针的夹角是____度.【答案】65【解析】4时10分,时针和分针相距2+16=136个大格,30°×136=65°.15. 如图,过直线AB上一点O作射线OC,∠BOC= 29°18’,则∠AOC的度数为________.【答案】答案150°42’解析∵∠BOC+∠AOC=180°,∠BOC=29°18’,∴∠AOC=180°-29°18’=150°42’.三、解答题16. 将下列各角用度、分、秒表示出来.(1)32.41°; (2)75.5°; (3).【答案】.解析(1) 32.41°= 32°+0.41x60’=32°+24.6’= 32°+24’+0.6×60’’= 32°24'36’’.(2)75.5°=75°+0.5x60’= 75°30’.(3).17. 用度表示下列各角.(1)37°36''; (2)51°6'; (3)15°24'36''.【答案】.解析。
人教版2020年七年级上第四章几何图形初步4.3角4.3.1角(含答案解析)
解:A、以O为顶点的角不止一个,不能用∠O表示,故A选项不符合;
B、以O为顶点的角不止一个,不能用∠O表示,故B选项不符合;
C、能用∠1,∠AOB,∠O三种方法表示同一个角,故C选项符合;
D、以O为顶点的角不止一个,不能用∠O表示,故D选项不符合;
故选C.
【点睛】
本题考查了角的表示方法的应用,掌握角的表示方法是解题的关键.
∠ABE
∠1
∠2
∠3
三、解答题
9.关于度、分、秒的换算.
(1) 用度表示;
(2) 用度表示;
(3) 用度、分、秒表示.
10.如图,在钟面上,点 为钟面的圆心,以点 为顶点按要求画出符合下列要求的角(角的两边不经过钟面上的数字):
(1)在图1中画一个锐角,使锐角的内部含有2个数字,且数字之差的绝对值最大;
【详解】
解:根据题意,(1)~(5)中符合要求的角如图所示:
【点睛】
此题考查了钟面角以及有理数的运算,解题的关键是根据题意找出相对应的钟面数字.
7.10
【解析】
根据角的概念,有公共端点的两条射线构成的图形叫做角,可知图形中的角有:∠AOC,∠AOD,∠AOE,∠AOB,∠COD,∠COE,∠COB,∠DOE,∠DOB,∠BOE,共10个.
故答案为:10.
点睛:此题主要考查了角的概念和个数,解题时要抓住角的特点,两条射线,且有公共端点,比较简单,但是容易出错,在查角的个数时要按照某一个顺序,不重不漏是关键.
(3)根据钝角的内部含有4个数字,且数字之和最小可知,这4个数字分别是1,2,3,4,据此画出图形;
(4)根据平角的内部与外部的数字之和相等,又10+11+12+1+2+3=4+5+6+7+8+9,据此可画出平角;
人教版数学七年级上学期4.3.1 角(原卷+解析版)
第四章几何图形初步4.3.1角一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列关于平角、周角的说法正确的是A.平角是一条直线B.周角是一条射线C.反向延长射线OA,就形成一个平角D.两个锐角的和不一定小于平角2.如图,必须用三个大写字母表示且小于180°的角共有A.10个B.15个C.20个D.25个3.如图,下列说法正确的是A.∠1就是∠ABCB.∠2就是∠ADBC.以B为顶点的角有三个,它们是∠1,∠2,∠ABCD.∠ADB也可表示为∠D4.如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为A.45°B.55°C.135°D.145°5.时钟显示为8:30时,时针与分针所夹的角是A.90°B.120°C.75°D.84°6.∠1=45°24′,∠2=45.3°,∠3=45°18′,则A.∠1=∠2 B.∠2=∠3C.∠1=∠3 D.以上都不对二、填空题:请将答案填在题中横线上.7.如图,∠1还可以表示成__________或__________;∠β还可以表示成__________或__________.8.如图所示,能用一个字母表示的角有__________个,以A为顶点的角有__________个,图中所有角有__________个.9.如图,射线OA表示的方向是__________,射线OB表示的方向是__________.10.(1)56°25′12″=__________°;(2)90°–54°48′6″=__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.11.时钟从3时到3时20分,时针转过的角度是多少?分针呢?12.如图,写出全部符合条件的角.(1)能用一个大写字母表示的角;(2)能用一个数字表示的角,并将这些角用字母表示出来;(3)以D为顶点且小于平角的角;(4)以A为顶点且小于平角的角.第四章几何图形初步4. 3.1角一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列关于平角、周角的说法正确的是A.平角是一条直线B.周角是一条射线C.反向延长射线OA,就形成一个平角D.两个锐角的和不一定小于平角【答案】C2.如图,必须用三个大写字母表示且小于180°的角共有A.10个B.15个C.20个D.25个【答案】C【解析】在该题中,以A、B、C、D、E为顶点的角有五个,且该顶点处只有一个小于180度的角,可用一个大写字母表示;以F、G、H、M、N为顶点的角各有四个,只能用三个大写字母表示,共计4×5=20个.故选C.3.如图,下列说法正确的是A.∠1就是∠ABCB.∠2就是∠ADBC.以B为顶点的角有三个,它们是∠1,∠2,∠ABCD.∠ADB也可表示为∠D【答案】C4.如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为A.45°B.55°C.135°D.145°【答案】C【解析】由所示图形可得,∠AOB的度数为135°,故选C.5.时钟显示为8:30时,时针与分针所夹的角是A.90°B.120°C.75°D.84°【答案】C【解析】8点30分时,钟面上时针指向数字8与9的中间,分针指向数字6,所以时针与分针所成的角等于2×30°+12×30°=75°.故选C.6.∠1=45°24′,∠2=45.3°,∠3=45°18′,则A.∠1=∠2 B.∠2=∠3 C.∠1=∠3 D.以上都不对【答案】B【解析】∠2=45.3°=45°18′,∵∠3=45°18′,∴∠2=∠3,故选B.二、填空题:请将答案填在题中横线上.7.如图,∠1还可以表示成__________或__________;∠β还可以表示成__________或__________.【答案】∠ABC、∠B,∠BCD、∠C8.如图所示,能用一个字母表示的角有__________个,以A为顶点的角有__________个,图中所有角有__________个.【答案】0,0,6【解析】图中角只能用三个大写英文字母表示,能用一个字母表示的角有0个,过点A只有一条线段,所以以A为顶点的角有0个,图中角有∠BOD、∠BOC、∠BOA、∠DOC、∠DOA、∠COA.故答案为:0,0,6.9.如图,射线OA表示的方向是__________,射线OB表示的方向是__________.【答案】北偏西30°,南偏西45°【解析】射线OA表示的方向是北偏西30°,射线OB表示的方向是南偏西45°,故答案为:北偏西30°,南偏西45°.10.(1)56°25′12″=__________°;(2)90°–54°48′6″=__________.【答案】56.42°,35°11′54″.【解析】(1)56°25′12″=56.42°;(2)90°–54°48′6″=35°11′54″,故答案为:56.42°,35°11′54″.三、解答题:解答应写出文字说明、证明过程或演算步骤.11.时钟从3时到3时20分,时针转过的角度是多少?分针呢?【解析】时钟从3时到3时20分,时针转过的角度=20×0.5°=10°,分针转过的角度=20×6°=120°.12.如图,写出全部符合条件的角.(1)能用一个大写字母表示的角;(2)能用一个数字表示的角,并将这些角用字母表示出来;(3)以D为顶点且小于平角的角;(4)以A为顶点且小于平角的角.。
人教版数学七年级上册:4.3.1《角》习题课件(附答案)
4.如图,图中共有 3 个角,它们分别是 ∠BOC, ∠AOB,∠AOC .
第4题图
第5题图
5.如图,∠ABC 可以表示成∠ 1 或∠ B ,∠α 可
以表示成 ∠ACB ,∠2 可以表示成 ∠CAD .
6.如图,写出符合下列条件的角(图中所有的角均指 小于平角的角). (1)能用一个大写字母表示的角; (2)以点 A 为顶点的角. 解:(1)能用一个大写字母表示 的角有∠C,∠B. (2)以点 A 为顶点的角有∠CAB, ∠CAD 和∠DAB.
知识点一 角的定义及表示方法 1.下面表示∠ABC 的图是( C )
2.如图,下面四种表示角的方法,其中正确的是
(A) A.∠A B.∠B C.∠C D.∠D
3.下列说法正确的是( B ) ①平角就是直线;②角的大小与边的长短无关;③ 角的两边可以画一样长,也可以画一长一短;④角 的两边是两条线段. A.①② B.②③ C.②④ D.③④
(1)时针每分钟转动的角度为 0.5 °,分针每分钟转 动的角度为 6 °; (2)8 点整,钟面角∠AOB= 120 °,钟面角与此相 等的整点还有 4 点;
(3)如图,设半径 OC 指向 12 点方向,在图中画出 6 点 15 分时半径 OA、OB 的大概位置,并求出此时 ∠AOB 的度数. 解:如图,∠AOB=3×30°+ 15×0.5°=97.5°.
13.如图,点 O 在直线 AB 上,则图中小于平角的角 共有( C ) A.7 个 B.8 个 C.9 个 D.10 个
14.若∠P=25°12′,∠Q=25.12°,∠R=25.2°,则下 列结论:①∠P=∠Q;②∠Q=∠R;③∠P=∠R; ④∠P=∠Q=∠R.其中错误的有 ①②④ (填序号). 15.某校在上午 9:30 开展“大课间”活动,上午 9:30 这一时刻钟面上分针与时针所夹的角等于
人教版数学七年级上册课课练:4.3.1 角(word、含答案)
[角]一、选择题1.[2019·石家庄桥东区期中]下列关于角的说法正确的是()A.角是由两条射线组成的图形B.角的边越长,角越大C.在角一边延长线上取一点D.角可以看作由一条射线绕着它的端点旋转而形成的图形2.如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形是()3.如图所示,用量角器测量∠AOB,可以读出∠AOB的度数为()A.45°B.55°C.125°D.135°4.[2020·唐山乐亭县期中]已知∠A=30°45',∠B=30.45°,则∠A∠B ()A.>B.<C.=D.无法确定5.下列关于平角、周角的说法正确的是()A.平角是一条直线B.周角是一条射线C.一个周角是一个平角的2倍D.两个锐角的和不一定小于平角6.[2020·酒泉金塔县期末]上午9点30分,时钟的时针和分针成的较小的角为()A.105°B.90°C.100°D.120°7.如图所示,点O在直线AB上,图中小于平角的角共有()A.3个B.4个C.5个D.6个二、填空题8.将中的角用不同方法表示出来,并填写下表(注:∠BCA与∠ACB属于同一种表示方法).∠1 ∠3 ∠4∠BCA∠ABC9.(1)把周角平均分成360份,每份就是的角,1°=',1'=″;(2)25.72°=°'″;(3)15°48'36″=°;(4)3600″='=°.10.分别确定四个城市相应钟表上时针与分针所成的小于平角的角的度数,并填在相应的横线上.11.从1:15到1:45,时钟的时针转过了°,分针转过了°.三、解答题12.如图,写出符合下列条件的角(图中所有的角均指小于平角的角).(1)能用一个大写字母表示的角;(2)以点A为顶点的角.13.计算:(1)用度、分、秒表示24.29°;(2)用度表示36°40'30″.14.读句画图,并回答问题:任意画一个角∠AOB,在∠AOB内部任意画射线OC,在射线OC上任意取一点D,过点D任意作一条直线EF与OA,OB边分别交于点E,F.(1)图中一共有多少个小于平角的角?(2)用大写字母表示以点D为顶点的小于平角的角.15.将正方形纸片剪去一个角(剪切线是线段),则纸片剩下的平面图形中有几个角?请你画出剪切后剩下图形的示意图.16.已知:如图,在∠AOB的内部从点O引3条射线OC,OD,OE,图中共有多少个角?若在∠AOB 的内部,从点O引出4条,5条,6条,…,n条不同的射线,可以分别得到多少个不同的角?[方程思想]问题探究:5点和6点之间,时钟上的分针和时针何时成直角?根据对钟表的认识,可知时针每分钟走0.5度,而分针每分钟走6度,12(或24)点时时针和分针的夹角为0°(两针重合),5点时时针和分针的夹角为150°,6点时时针和分针的夹角为180°.根据这些知识,请完成问题的求解过程:解:设从5点开始经过x分钟,时钟上的分针与时针成直角.下面分两种情况讨论:若分针未超过时针,如图①,根据分针的转角+90°=150°+时针的转角,列方程:,解得x=;若分针超过时针,如图图②,根据分针的转角=150°+时针的转角+90°,列方程:,解得x=.综上所述,在或时,时钟上的分针和时针成直角.答案[课堂达标]1.D2.D只有选项D的顶点O处只有一个角,其他选项的顶点O处有多个角,所以能用∠AOB,∠O,∠1三种方法表示同一个角的图形只有D.3.B4.A5.C根据定义可知A,B不正确;锐角大于0°而小于90°,所以两个锐角的和小于180°,D不正确.故选C.6.A7.C分别以OA,OC,OD为始边,按照顺时针的方向数角.以OA为一边的小于平角的角有2个,以OC为一边的小于平角的角有2个,以OD为一边的小于平角的角有1个,一共有5个角.8.表中从左到右依次填:∠BCE∠2∠BAC∠BAD∠B∠BCA与∠BCD,∠BAC与∠BAE都表示同一个角且属于同一种表示方法.9.(1)1度6060(2)254312(3)15.81(4)601(2)25.72°=25°+0.72×60'=25°+43.2'=25°+43'+0.2×60″=25°43'12″;(3)15°48'36″=15°48'+36×160'=15°+48.6'=15°+48.6×160°=15.81°;(4)3600″=3600×160'=60'=60×160°=1°.10.30°120°0°90°11.1518012.解:(1)能用一个大写字母表示的角有∠C,∠B.(2)以点A为顶点的角有∠CAB,∠CAD和∠DAB.13.解:(1)24.29°=24°17'24″.(2)36°40'30″=36.675°.14.解:如图图所示.(1)图中一共有15个小于平角的角.(2)∠ODE,∠ODF,∠CDE,∠CDF.15.解:纸片剩下的平面图形中可能有3个或4个或5个角,剪切后剩下图形的示意图如图图所示.16.顺时针数,以射线OA为边的角有4个,以射线OC为边的角有3个,以射线OD为边的角有2个,以射线OE为边的角有1个,故共有角4+3+2+1=10(个).类似地,引4条射线有角5+4+3+2+1=15(个),引5条射线有角6+5+4+3+2+1=21(个),引6条射线有角7+6+5+4+3+2+1=28(个)……以此类推,引n条射线有角(n+1)+n+(n-1)+…+2+1=(n+2)(n+1)2(个).解:图中共有10个角.若在∠AOB的内部,从点O引出4条,5条,6条,…,n条不同的射线,可以分别得到15,21,28,…,(n+2)(n+1)2个不同的角.[素养提升]90+6x=150+0.5x120116x=150+0.5x+90480115点12011分5点48011分。
新人教数学7年级上同步训练:(4.3.1 角的度量)(含答案)
4.3 角的度量5分钟训练(预习类训练,可用于课前)1.图4-3-1中,角的表示方法正确的个数有( )∠ABC ∠CAB 直线是夹角∠AOB是夹角图4-3-1A.1个B.2个C.3个D.4个1.思路解析:利用三个点表示角时,中间的点必须是角的顶点.答案:B2.45°=______直角=______平角=_______周角.思路解析:直角=90°,平角=180°,周角=360°.答案:1214183.计算:(1)0.12°=()′;(2)24′36″=()°.思路解析:因为度、分、秒之间的进率是60,所以(1)只需把0.12°乘以60就得到分;(2)则需先将秒变成分,再将分变成度,需要两次除以60.答案:(1)7.2 (2)0.4110分钟训练(强化类训练,可用于课中)1.判断:图4-3-2(1)两条射线组成的图形叫做角;( )(2)平角是一条直线,周角是一条射线;( )(3)∠ABC也可以表示为∠ACB;( )(4)如图4-3-2,∠BAC可以表示为∠2;( )(5)两个形状相同的三角尺,则大三角尺中的角就比小三角尺中对应的角大.( )思路解析:熟悉角的有关概念和表示方法是解决本题的关键.答案:(1)×(2)×(3)×(4)√(5)×2.计算:(1)3.15°=______′=______″;(2)36′36″=_______°.思路解析:(1)只需把3.15°乘以60就得到分,再乘以60就得到秒;(2)则需先将秒变成分,再将分变成度,需要两次除以60即可.答案:(1)189 11 340 (2)0.6013.如图4-3-3:(1)以B为顶点的角有几个:把它们表示出来;图4-3-3(2)指出以射线BA 为边的角;(3)以D 为顶点,DC 为一边的角有几个?分别表示出来.思路解析:找角时为避免遗漏,可以按一定的顺序,而且必须注意利用三个点表示角时,中间的点必须是角的顶点.答案:(1)以B 为顶点的角有3个,分别是∠ABD 、∠ABC 、∠DBC.(2)以射线BA 为边的角有2个,分别是∠ABD 和∠ABC.(3)以D 为顶点,DC 为一边的角有2个,分别是∠BDC 和∠CDE.4.图4-3-4是中央电视台部分节目的播出时间,分别确定钟表上时针与分针所成的最小的角的度数.图4-3-4解:钟表一周为360°,每一大格为30°,时针1小时走过30°,1分钟走过0.5°.解决本题时可以先确定钟表上时针与分针所成的角有几个大格,如新闻联播的时间时针与分针所成的角正好有五个大格,所以为150°.而今日说法的时间时针与分针所成的角正好有423个大格,所以为140°.5.在如图4-3-5中的方向坐标中画出表示下列方向的射线:(1)北偏东20°;(2)北偏西50°;(3)南偏东10°;(4)西南方向(即南偏西45°).图4-3-5思路解析:画射线时一定要找准题目中给出的起始线,如北偏东20°,即为以南北方向为起始线,向东偏20°.答案:如图:快乐时光手中有斧头上道德课时,老师说:“华盛顿总统在儿童时代,有一次砍掉了种植园中的一棵樱桃树.由于他勇敢地承认了自己的错误,父亲就没有惩罚他.”接着,老师又问:“为什么犯了错误的华盛顿没有受罚,谁能说说其中的原因吗?”一名男孩站起来说:“这很简单,因为华盛顿手里拿着斧头.”30分钟训练(巩固类训练,可用于课后)1.下列计算错误的是()A.0.25°=900″B.(1.5)°=90′C.1 000″=(518)° D.125.45°=125.45′思路解析:要明确度、分、秒之间的换算,1°=60′,1′=60″,所以125.45°=7 525′. 答案:D2.轮船航行到C处观测小岛A的方向是北偏西48°,那么从A同时观测轮船在C处的方向是()A.南偏东48°B.东偏北48°C.东偏南48°D.南偏东42°思路解析:画出A、C两点的位置并标出方向坐标,可以得出答案.答案:A3.若∠A=20°18′,∠B=20°15′30″,∠C=20.25°,则()A.∠A>∠B>∠CB.∠B>∠A>∠CC.∠A>∠C>∠BD.∠C>∠A>∠B思路解析:将三个角化成统一单位,即可得出答案.答案:A4.(1)如图4-3-6,把图中的角都表示出来;(2)如图4-3-7,用字母A、B、C表示∠α,∠β;(3)如图4-3-8,图中共有几个角,分别用适当的方式表示出来.图4-3-6 图4-3-7 图4-3-8思路解析:角的表示方法有三类:第一类,可以用1个或3个大写字母表示角;第二类,可以用数字表示角;第三类,可以用希腊字母表示角.答案:(1)图中的角有:∠AOB、∠AOC、∠BOC.(2)∠α表示为∠CAB,∠β表示为∠ABC.(3)图中共有13个角,它们是∠1、∠2、∠α、∠β、∠BAD、∠BAE、∠FAE、∠FAD、∠D、∠B、∠C、∠AFC、∠AEC.5.小明用放大镜看一个度数为10度的角,放大的倍数为4倍,小明看到的角的度数为______. 思路解析:放大镜不会改变角的大小.答案:10度6.(1)把3.62°化为用度、分、秒表示的角;(2)50°23′45″化为用度表示的角.思路解析:将大单位化为小单位时乘以60,将小单位化为大单位时除以60.答案:3.62°=3°37′12″,50°23′45″=50.395 8°7.一电视发射塔在学校的东北方向,则学校在电视塔的什么方向?画图说明.思路解析:东北方向即为北偏东45度,所以电视发射塔在学校的北偏东45度,则学校在电视塔南偏西45度.答案:学校在电视塔的西南方.如图所示:8.小明利用星期天搞社会调查活动,早晨8:00出发,中午12:30到家,他出发时和到家时时针和分针的夹角各为多少度?思路解析:可借助手表观察这两个时间时针和分针之间的大格数,即可解决.答案:8:00时针和分针的夹角为120度;12:30时针和分针的夹角为165度.9.观察图4-3-9,完成下列问题:(1)∠AOB内部有一条射线OC,图中有多少个角?(2)∠AOB内部有两条射线OC、OD,图中有多少个角?(3)∠AOB内部有三条射线OC、OD、OE,图中有多少个角?(4)如果∠AOB内部有n条射线,图中有多少个角?图4-3-9思路解析:同线段的识图一样,要按顺序找角,按逆时针方向,以射线OA为角的始边,则图(1)中以射线OC、OB为角的另一边共有两个角∠AOC、∠AOB,以射线OC为始边、射线OB为终边有一个角∠COB,所以(1)中共有角的个数是3=2+1;同理,(2)中角的个数是6=3+2+1;(3)中角的个数是10=4+3+2+1;经过观察,可以发现角内部射线的条数总比第一个加数小1,所以∠AOB内部有n条射线时,角的个数是(n+1)+n+…+3+2+1=(1)(2)2n n++个.答案:(1)3个;(2)6个;(3)10个;(4)(n+1)+n+…+3+2+1=(1)(2)2n n ++个.。
新人教版七年级数学上册§4.3.1角第一课时练习(含参考答案与试题解析)
新人教版七年级数学上册第四章§角课时练习一.选择题〔共5小题〕1.如图所示,对所给图形与说法正确的个数是〔〕A.0B.1C.2D.32.下列关于角的说法正确的是〔〕A.角是由两条射线组成的图形B.角的边越长,角越大C.在角一边延长线上取一点D.角可以看作由一条射线绕着它的端点旋转而形成的图形3.如图,下列说法正确的是〔〕A.∠1与∠OAB表示同一个角B.∠AOC也可以用∠O表示C.图中共有三个角:∠AOB、∠AOC和∠BOCD.∠β表示的是∠COA4.如图,下列说法错误的是〔〕A.∠DAE也可以表示为∠AB.∠1也可以表示为∠ABCC.∠BCE也可以表示为∠CD.∠ABD是一个平角5.如图,∠AOB是直角,OP i〔i=1,2,3,4,5,6〕是射线,则图中共有锐角〔〕A.28个B.27个C.24个D.22个二.填空题〔共7小题〕6.如图,角的顶点是,边是,请你用四种不同的记法表示这个角为、、、.7.把一个周角分成7等份,每份是〔精确到1′〕.8.周角=平角= 直角.9.把15°30′化成度的形式,则15°30′=_________度.10.把角度化为度、分的形式,则20.5°=20°′.11.30.54°=°′″.12.用度表示:26°30′36″=°.三.解答题〔共2小题〕13.如图,写出:〔1〕能用一个字母表示的角:;〔2〕以B为顶点的角:;〔3〕图中共有几个小于平角的角?.14.写出如图的符合下列条件的角.〔图中所有的角均指小于平角的角〕.〔1〕能用一个大写字母表示的角;〔2〕以点A为顶点的角;〔3〕图中所有的角〔可用简便方法表示〕.新人教版七年级数学上册第四章§角课时练习参考答案与试题解析一.选择题〔共5小题〕1.如图所示,对所给图形与说法正确的个数是〔〕A.0B.1C.2D.3考点:角的概念;直线、射线、线段.分析:利用角的定义以与射线、直线、线段的定义分别分析得出即可.解答:解:①应表示为∠BOA,故此选项错误;②应表示为∠COA,∠AOB,∠COA,故此选项错误;③直线不能看作角,故此选项错误;④正确;⑤正确;故选:C.点评:此题主要考查了角的定义以与射线、直线、线段的定义,正确把握相关定义是解题关键.2.下列关于角的说法正确的是〔〕A.角是由两条射线组成的图形B.角的边越长,角越大C.在角一边延长线上取一点D.角可以看作由一条射线绕着它的端点旋转而形成的图形考点:角的概念.分析:根据角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边,角的大小与边的长度无关分别进行分析.解答:解:A、角是由两条射线组成的图形,说法错误;B、角的边越长,角越大,说法错误;C、在角一边延长线上取一点,说法错误,角的边是射线,只有反向延长线;D、角可以看作由一条射线绕着它的端点旋转而形成的图形,说法正确;故选:D.点评:此题主要考查了角的概念,关键是掌握有公共端点是两条射线组成的图形叫做角.3.如图,下列说法正确的是〔〕A.∠1与∠OAB表示同一个角B.∠AOC也可以用∠O表示C.图中共有三个角:∠AOB、∠AOC和∠BOCD.∠β表示的是∠COA考点:角的概念.分析:直接利用角的概念以与角的表示方法,进而分别分析得出即可.解答:解:A、∠1与∠OAB表示同一个角,错误;B、∠AOC也可以用∠O表示,错误;C、图中共有三个角:∠AOB、∠AOC和∠BOC,正确;D、∠β表示的是∠COA,错误.故选:C.点评:此题主要考查了角的概念,正确表示一个角是解题关键.4.如图,下列说法错误的是〔〕A.∠DAE也可以表示为∠AB.∠1也可以表示为∠ABCC.∠BCE也可以表示为∠CD.∠ABD是一个平角考点:角的概念.分析:根据角的表示方法解答:在本题中,当顶点处只有一个角时,可用一个大写字母表示,也可用三个大写字母表示,顶点处有多个角时,不能只用一个大写字母表示,依次推理即可得出结论.解答:解:A、A处就有一个角,∴∠DAE也可以表示为∠A正确,B、∠1也可以表示为∠ABC正确,C、∵C处有多个角,∴∠BCE不可以表示为∠C,故C错误,D、ABD在一条线上,∴∠ABD是一个平角正确,故选C.点评:此题考查了角的表示方法,在用三个大写英文字母表示角时,表示顶点的字母应位于中间位置,难度适中.5.如图,∠AOB是直角,OP i〔i=1,2,3,4,5,6〕是射线,则图中共有锐角〔〕A.28个B.27个C.24个D.22个考点:角的概念.专题:规律型.分析:分别以OP1、OP2等为一边,数出所有角,相加即可.解答:解:以OP1为一边的角有7个,以OP2为一边的角有6个,…以OP6为一边的角1个.∴共有角1+2+3+4+5+6+7=28个.去掉∠AOB〔直角〕,还有27个.故选B.点评:此题考查了角的数法,要以每条边为始边,数出所有角,要注意,不能漏数,也不能多数.二.填空题〔共7小题〕6.如图,角的顶点是O,边是ON,OM,请你用四种不同的记法表示这个角为∠MON、∠1、∠O、∠α.考点:角的概念.分析:根据角是有公共顶点的两条射线组成的图形,可得角的顶点,角的两边,根据角的表示方法,可得角的表示.解答:解:如图:,角的顶点是O,边是ON,OM,请你用四种不同的记法表示这个角为∠MON、∠1、∠O、∠α,故答案为:O,ON,0M,∠MON、∠1、∠O、∠α.点评:本题考查了角的概念,每种角的表示方法都要用角的符号表示,注意利用三个字母表示时,要把顶点的字母写在中间的位置.7.把一个周角分成7等份,每份是51°24′〔精确到1′〕.考点:角的概念.分析:根据1周角=360°即可得出结论.解答:解:∵1周角=360°,∴一个周角分成7等份,每份==51°24′.故答案为:51°24′.点评:本题考查的是角的概念,熟知周角的定义是解答此题的关键.8.周角=平角=1直角.考点:角的概念.分析:1周角=360°,求出周角的度数,根据1平角=180°和1直角=90°即可求出答案.解答:解:∵周角=×360°=90°,∴90°÷180°=,90°÷90°=1,∴周角=平角=1直角,故答案为:,1.点评:本题考查了对角的有关概念的计算,注意:1周角=360°,1平角=180°,1直角=90°.9.把15°30′化成度的形式,则15°30′=15.5度.考点:度分秒的换算.分析:根据度、分、秒之间的换算关系,先把30′化成度,即可求出答案.解答:解:∵30′=0.5度,∴15°30′=15.5度;故答案为:15.5.点评:此题考查了度分秒的换算,掌握1°=60′,1′=60″是解题的关键,是一道基础题.10.把角度化为度、分的形式,则20.5°=20°30′.考点:度分秒的换算.分析:1°=60′,可得0.5°=30′,由此计算即可.解答:解:20.5°=20°30′.故答案为:30.点评:本题考查了度分秒之间的换算,相对比较简单,注意以60为进制即可.11.30.54°=30°32′24″.考点:度分秒的换算.分析:根据度化成分乘以60,分化成秒乘以60,不到一度的化成分,不到一分的化成秒,可得答案.解答:解:30.54°=30°32′24″,故答案为:30,32,24.点评:本题考查了度分秒的换算,不满一度的化成分,不满一分的化成秒.12.用度表示:26°30′36″=26.51°.考点:度分秒的换算.分析:根据度分秒间的进率是60,小的单位化成大的单位除以进率,可得答案.解答:解:26°30′36″=26°330.6′=26.51°,故答案为:26.51.点评:本题考查了度分秒的换算,先把秒化成分,再把分化成度.三.解答题〔共2小题〕13.如图,写出:〔1〕能用一个字母表示的角:∠A,∠C;〔2〕以B为顶点的角:∠ABE,∠ABC,∠EBC;〔3〕图中共有几个小于平角的角?7个.考点:角的概念.分析:根据角的概念和角的表示方法,依题意求得答案.解答:解:〔1〕能用一个字母表示的角有2个:∠A,∠C;〔2〕以B为顶点的角有3个:∠ABE,∠ABC,∠EBC;〔3〕图中小于平角的角有7个:∠A,∠C,∠ABE,∠ABC,∠EBC,∠AEB,∠BEC.故答案是:∠A,∠C;∠ABE,∠ABC,∠EBC;7个.点评:利用了角的概念求解.从一点引出两条射线组成的图形就叫做角.角的表示方法一般有以下几种:1、角+3个大写英文字母;2、角+1个大写英文字母;3、角+小写希腊字母;4、角+阿拉伯数字.14.写出如图的符合下列条件的角.〔图中所有的角均指小于平角的角〕.〔1〕能用一个大写字母表示的角;〔2〕以点A为顶点的角;〔3〕图中所有的角〔可用简便方法表示〕.考点:角的概念.分析:〔1〕利用角的表示方法进而得出答案;〔2〕利用角的表示方法进而得出答案;〔3〕利用角的表示方法进而得出答案.解答:解:〔1〕能用一个大写字母表示的角为:∠B,∠C;〔2〕以点A为顶点的角为:∠CAD,∠BAD,∠BAC;〔3〕图中所有的角有:∠C,∠B,∠1,∠2,∠3,∠4,∠CAB.点评:此题主要考查了角的表示方法,正确把握角的定义是解题关键.。
人教版数学七年级上册同步课时练习:4.3.1 角(word版含答案)
4.3.1 角知识点1角的定义及表示方法1.下列说法中正确的是()A.两条射线所组成的图形叫做角B.有公共端点的两条射线叫做角C.一条射线绕着它的端点旋转叫做角D.一条射线绕着它的端点旋转所成的图形叫做角2.图表示∠ABC的是()3.如图示的四个图中,能用∠1,∠AOB,∠O三种方法表示同一个角的是()知识点2角的度量4.下列说法正确的是()A.平角就是一条直线B.小于平角的角是钝角C.平角的两条边在同一条直线上D.周角的终边与始边重合,所以周角的度数是0°5.[教材练习第2题变式]如果∠α=55.5°,∠β=55°5',那么∠α与∠β之间的大小关系是()A.∠α>∠βB.∠α<∠βC.∠α=∠βD.无法确定6.26.25°=°';57°27'=°.知识点 3 钟面角7.[2019·梧州] 如图钟表上10点整时,时针与分针所成的角是( )A .30°B .60°C .90°D .120°8.若分针指向12,时针这时恰好与分针成120°的角,则此时是() A .9点整 B .8点整C .4点整D .8点整或4点整9.下列各角中,是钝角的是( )A .14周角B .23周角C .23平角D .14平角10.如图示,回答下列问题:(1)写出能用一个字母表示的角;(2)写出以点B 为顶点的角;(3)图中共有几个小于平角的角?11.观察图完成下列问题:(1)如图①,∠AOB内部有一条射线OC,图中有多少个角?(2)如图②,∠AOB内部有两条射线OC,OD,图中有多少个角?(3)如图③,∠AOB内部有三条射线OC,OD,OE,图中有多少个角?(4)如果∠AOB内部有10条射线,那么图中有多少个角?答案1.D2.C3.D4.C5.A 因为∠α=55.5°=55°30',∠β=55°5',所以∠α>∠β.6.26 15 57.457.B8.D 因为钟表上每一个大格之间的夹角是30°,所以当分针指向12,时针恰好与分针成120°时,分针距时针4个格.所以此时是8点整或4点整.故选D .9.C 平角=180°,钝角大于90°而小于180°,23平角=23×180°=120°.故选C . 10. (1)图形中能用一个字母表示的角是∠A ,∠C ;(2)以点B 为顶点的角有三个,分别是∠ABE ,∠EBC ,∠ABC ;(3)图形中小于平角的角有∠A ,∠C ,∠ABE ,∠EBC ,∠ABC ,∠AEB ,∠BEC ,共7个.解:(1)∠A ,∠C.(2)∠ABE ,∠EBC ,∠ABC.(3)7个.11. 按逆时针方向,以射线OA 为角的始边,则题图①中以射线OC ,OB 为角的另一边共有两个角∠AOC ,∠AOB ;以射线OC 为始边,射线OB 为终边有一个角∠COB ,所以题图①中角的个数是3=2+1;同理,题图②中角的个数是6=3+2+1;题图③中角的个数是10=4+3+2+1.经过观察,可以发现角内部射线的条数总比第一个加数小1,所以∠AOB 内部有10条射线时,角的个数是11+10+…+3+2+1=11×(11+1)2=66.解:(1)3个.(2)6个.(3)10个.(4)66个.。
人教版七年级数学上册4.3.1《角》课时练习(含答案)
4.3角4.3.1角能力提升1.下列说法中正确的是()A.两条射线组成的图形叫做角B.角是一条线段绕它的一个端点旋转而成的图形C.有公共端点的两条线段组成的图形叫做角D.角是一条射线绕着它的端点旋转而成的图形2.如图,O是直线AB上一点,图中小于180°的角的个数为()A.7B.9C.8D.103.下午2点30分时(如图),时钟的分针与时针所成角的度数为()A.90°B.105°C.120°D.135°(第2题图)(第3题图)4.若∠1=75°24',∠2=75.3°,∠3=75.12°,则()A.∠1=∠2B.∠2=∠3C.∠1=∠3D.以上都不对5.由2点15分到2点30分,钟表的分针转过的角度是()A.30°B.45°C.60°D.90°6.(1)32.6°=°';(2)10.145°=°'″;(3)50°25'12″=°.7.小明说:我每天下午3:00准时做“阳光体育”活动.则下午3:00这一时刻,时钟上分针与时针所夹的角等于.8.指出图中所示的小于平角的角,并把它们表示出来.★9.如图,从点O引出的5条射线OA,OB,OC,OD,OE组成的图形中共有几个角?创新应用★10.观察下图,回答下列问题.(1)在∠AOB内部任意画1条射线OC,则图①中有个不同的角;(2)在∠AOB内部任意画2条射线OC,OD,则图②中有个不同的角;(3)在∠AOB内部任意画3条射线OC,OD,OE,则图③中有个不同的角;(4)在∠AOB内部任意画10条射线OC,OD,…,则共形成个不同的角.参考答案能力提升1.D2.B3.B时钟上每一大格是30°,2点30分时时针与分针之间是3.5个格,所以夹角为3.5×30°=105°.4.D因为∠1=75°24'=75.4°,所以∠1,∠2和∠3都不相等.5.D6.(1)3236(2)10842(3)50.427.90°8.解:满足条件的角有6个,它们是∠A,∠D,∠ABE,∠ABF,∠DCE,∠DCF.9.解:图形中有∠AOB,∠AOC,∠AOD,∠AOE,∠BOC,∠BOD,∠BOE,∠COD,∠COE,∠DOE,共10个角.创新应用10.(1)3(2)6(3)10(4)66(1)2+1=3;(2)3+2+1=6;(3)4+3+2+1=10;(4)11+10+9+…+3+2+1=66.。
七年级数学上册 4.3.1角的度量(1)同步练习 人教新课标版
导学图(1) §4.3.1角的度量(1)同步练习1)2.正确表示下列的角。
表示为________ 表示为__________ 表示为__________表示为_________或_________3.把图中的角表示成下列形式,哪些是正确?哪些不正确?对的打√,错的打×.(1) ∠ APO ( ) (2)∠AOP ( )(3) ∠ OPC ( ) (4) ∠OCP ( )(5) ∠ O ( ) (6) ∠P ( )4.下列说法中不正确的是 ( )A.∠AOB 的顶点是O 点B.射线BO ,射线AO 分别是∠AOB 的两条边C.∠AOB 的边是两条射线D.∠AOB 与∠BOA 表示同一个角5.如图,下列表示角的方法错误的PC A O A B C DP是 ( )A.∠1与∠AOB 表示同一个角B.∠AOC 可用∠O 来表示C.图中共有三个角∠AOB 、∠AOC 、∠BOCD.∠β表示的是∠BOC 6.下列说法中,正确的是。
( )A .平角是一条直线。
B 。
一条直线是一个周角C .两边成一条直线的角是平角。
D 。
直线是平角7.下列说法中不正确的是 ( )A.∠AOB 的顶点是O 点B.射线BO ,射线AO 分别是∠AOB 的两条边C.∠AOB 的边是两条射线D.∠AOB 与∠BOA 表示同一个角8.如图(1),下列表示角的方法错误的是 ( ) A.∠1与∠AOB表示同一个角B.∠AOC 可用∠O 来表示C.图中共有三个角∠AOB 、∠AOC 、∠BOCD.∠β表示的是∠BOC9.如图(2),用两种方法表示同一个角的是( )β 1ABC O( 1)21 A BC34A.∠1和∠CB.∠2和∠CC.∠3和∠AD.∠4和∠B10.已知如图(3),(1)试用三个大写字母表示:∠1就是 ,∠2就是 ,∠3就是 ,∠4就是 。
(2)图中共有 个角(除去平角),其中可以用一个大写字母表示的角有 个.11.一个正方形纸片沿着一条折痕剪去一个三角形,剩下的那部分将会有 个角。
人教版7年级上册数学同步练习试题及答案第4章第3节 角(1)角的概念和角的比较
七年级数学(人教版上)同步练习第四章第三节角(一)角的概念和角的比较一. 教学内容:角的概念和角的比较二. 重点:角的表示方法、角的和差倍分。
三. 难点:几何语言的理解,角平分线的几何意义和书写证明过程。
四. 本讲技能要求:1. 会比较角的大小,理解角的和差概念,掌握角平分线的概念。
2. 会用直尺、圆规、刻度尺、三角板、量角器等工具画角,角的和差及角的平分线。
3. 逐步掌握学过的几何图形的表示方法,懂得学过的几何语句,能由这些语句准确,整洁地画出图形。
认识学过的图。
五. 知识点讲解1. 角的两种定义:一种是静态的,一种是动态的。
2. 角的表示方法:用“∠”的符号,用三个大写字母、以某一个角的顶点表示、用数字或希腊字母表示。
角的分类:角平分线:反之:【典型例题】例1. 如图,以B为顶点的角有几个?把它们表示出来,以D为顶点的角有几个?把它们表示出来。
解:以B为顶点的角有3个,分别是∠ABD、∠CBD、∠ABC。
以D为顶点的角有4个,分别是∠ADE、∠EDC、∠CDB、∠BDA。
注意:(1)也可以在靠近顶点处加上弧线,标明数字或希腊字母,然后用数字或希腊字母表示。
(2)以D为顶点的角在图形中只有4个,因为除非特别注明,所说的角都是指小于平角的角,所以以D为顶点的4个平角不能算数,即不能说以D为顶点的角有8个。
例2. 已知:如图,在∠AOE的内部从O引出3条射线,求图中共有多少个角?如果引出99条射线,则有多少个角?分析:在∠AOE的内部从O点引出3条射线,那么在图形中,以O为端点的射线共5条。
其中,任意一条射线与其他4条射线都必构成一个角(小于平角的角)。
数角的时候要按一定的顺序,从OE边开始数,这样可得到4+3+2+1个角,所以,这5条射线共组成角的个数为10个角。
公式为:2)1(nn。
同理,如果引出99条射线,那么,以O为顶点的射线共101条,构成的角的个数为5050个。
例3. 直线AB、CD交于点O,且∠BOC =80°,OE平分∠BOC,OF为OE的反向延长线,求:1)∠2和∠3的度数。
【精编】新人教版七年级数学上册同步练习4.3.1 角及答案.doc
A B CA A 1B O B A 1B OC A B O CD A 1B OD4.3.1 角基础检测一、选择:1.下列关于角的说法正确的个数是( )①角是由两条射线组成的图形;②角的边越长,角越大; ③在角一边延长线上取一点D;④角可以看作由一条射线绕着它的端点旋转而形成的图形.A.1个B.2个C.3个D.4个2.下列4个图形中,能用∠1,∠AO B,∠O 三种方法表示同一角的图形是( )3.图中,小于平角的角有( )A.5个B.6个C.7个D.8个 二、填空: 4.将一个周角分成360份,其中每一份是______°的角, 直角等于____°,平角等于______°.5.30.6°=_____°_____′=______′;30°6′=_____′=______°.三、解答题:[来源:]6.计算:(1)49°38′+66°22′; (2)180°-79°19′;(2)22°16′×5; (4)182°36′÷4.7.根据下列语句画图:(1)画∠AOB=100°; (2)在∠AOB 的内部画射线OC ,使∠BOC=50°;(3)在∠AOB 的外部画射线OD,使∠DOA=40°;(4)在射线OD 上取E 点,在射线OA 上取F,使∠OEF=90°.8.任意画一个三角形,估计其中三个角的度数,再用量角器检验你的估计是否准确.9.分别确定四个城市相应钟表上时针与分钟所成的角的度数.10.九点20分时,时钟上时钟与分钟的夹角a等于多少度拓展提高11.马路上铺的地砖有很多种图案,如图所示的图案是某街面方砖铺设的示意图,请你用量角器量一下其中出现的所有的角度12.如图,在∠AOB的内部引一条射线OC,可得几个小于平角的角引两条射线OC、OD呢引三条射线OC、OD、OE呢若引十条射线一共会有多少个角ABO13.请用直线、线段、角等图形设计成表示客观事物的图画,如图, 并为你的图画命名.一盏吊灯一帆风顺4.3.1 角答案:1.A2.B3.D4.1,90,1805.30,36,1836;1806,30.16.(1)116°;(2)100°41′;(3)111°20′;(4)45°39′.9.30°;0°;120°;90°10.160°12. 引1条射线有2+1=3个角;引2条射线有3+2+1=6个角;引3条射线有4+3+2+1=10个角;引10条射线有11+10+9+……+3+2+1=66个角.。
【人教版】七上数学:4.3.1《角》四维训练及答案
4.3角4.3.1角知识点一:角的定义及其表示方法1.下列说法中,正确的是(C)A.两条射线组成的图形叫做角B.有公共端点的两条线段组成的图形叫做角C.角可以看做是由一条射线绕着它的端点旋转而形成的图形D.角可以看做是由一条线段绕着它的端点旋转而形成的图形2.如图,写出图中符合下列条件的角(图中所有的角均指小于平角的角):(1)能用一个大写字母表示的角;(2)以点A为顶点的角.能用一个大写字母表示的角有∠C,∠B.(2)以点A为顶点的角有∠CAB,∠CAD和∠DAB.知识点二:角的度量与换算3.计算16°5'24″=16.09°;47.28°=47°16'48″.拓展点一:钟面角1.时钟显示为8:30时,时针与分针所夹的角是(C)A.90°B.120XXC.75°D.84°2.如图,观察时钟,回答:(1)分针多长时间转一圈?它的转速是多少?(2)从0点(12时)开始到6时整,时针转动了几度?(3)从12时到12时30分,分针转动了几度?分针60分钟转一圈,它的转速是360÷60=6(度/分).(2)从0点(12时)开始到6时整,时针转动了180°;(3)从12时到12时30分,分针转动了180°.拓展点二:与角的个数有关的问题3.如图所示,在∠AOB的内部引出5条射线能组成21个角.4.如图,图中共有8个角.1.(20XX·北京中考)如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为(B)A.45°B.55°C.125°D.135°2.(20XX·福建厦门中考)1°等于(C)A.10'B.12'C.60'D.100'3.导学号19054127(20XX·广西百色中考)下列关系式正确的是(D)A.35.5°=35°5'B.35.5°=35°50'C.35.5°<35°5'D.35.5°>35°5'4.(20XX·河北唐山期末)如图,下列表示角的方法中,不正确的是(B)A.∠AB.∠EC.∠αD.∠15.导学号19054128(20XX·山东单县期末)中午12时15分时,钟面上的时针和分针所成的角是(C)A.90°B.75°C.82.5°D.60°6.(20XX·四川雅安中考)1.45°=87'.7.(20XX·天津河西区校级期末)35.36度=35度21分36秒.8.(20XX·河北邯郸月考)如图所示,把用数字或希腊字母表示的角用三个大写字母表示.1可表示为∠BAC;∠2可表示为∠ADB;∠α可表示∠DBC,∠β可表示为∠ACD.9.(20XX·江苏启东市月考)用度表示下列各角.(1)37°36″;(2)51°6';(3)15°24'36″.36″=37°+'=37°+0.6'=37°+°=37°+0.01°=37.01°;(2)51°6'=51°+°=51°+0.1°=51.1°;(3)15°24'36″=15°24'+'=15°24'+0.6'=15°+24.6'=15°+°=15°+0.41°=15.41°.10.导学号19054129观察常用时钟,回答下列问题:(1)早晨8时整,时针和分针构成多少度的角?(2)时针多长时间转一圈?它转动的速度是每小时多少度?(3)从8:00到8:40,分针转动了多少度?时,时针和分针中间相差4个大格.所以8时,分针与时针的夹角是4×30°=120XX答:早晨8时整,时针和分针构成120XX角.(2)由时钟可知时针12个小时转一圈,360°÷12=30°.答:时针12个小时转一圈,它转动的速度是每小时30度.(3)分针转过的角度为(360°÷60)×40=240°.答:分针转动了240度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.3.1 角的概念和度量
【知能点分类训练】
知能点1 角的概念与角的表示方法 1.下图中表示∠ABC 的图是( ).
2.下列关于角的说法正确的是( ).
A .两条射线组成的图形叫做角;
B .延长一个角的两边;
C .角的两边是射线,所以角不可以度量;
D .角的大小与这个角的两边长短无关 3.下列语句正确的是( ).
A .由两条射线组成的图形叫做角
B .如图,∠A 就是∠BAC
C .在∠BAC 的边AB 延长线上取一点
D ; D .对一个角的表示没有要求,可任意书定
4.如图所示,能用∠AOB ,∠O ,∠1三种方法表示同一个角的图形是( ).
5.如图所示,图中能用一个大写字母表示的角是______;以A•
为顶点的角有_______个,它们分别是________________. 6.从一个钝角的顶点,在它的内部引5条互不相同的射线,•则
该图中共有角的个数是( ). A .28 B .21 C .15 D .6 知能点2 平角与周角的概念
7.下列各角中,是钝角的是( ). A .
14
周角 B .
23
周角 C .
23
平角 D .
14
平角
8.下列关于平角、周角的说法正确的是( ).
A .平角是一条直线
B .周角是一条射线
C .反向延长射线OA ,就形成一个平角
D .两个锐角的和不一定小于平角 9.一天24小时中,时钟的分针和时针共组合成_____次平角,______次周角. 知能点3 角的度量
10.已知∠α=18°18′,∠β=18.18°,∠γ=18.3°,下列结论正确的是( ). A .∠α=∠β B .∠α<∠β C .∠α=∠γ D .∠β>∠γ
11.(1)把周角平均分成360份,每份就是_____的角,1°=_____,1′=_______. (2)25.72°=______°______′_______″.
(3)15°48′36″=_______°.
(4)3600″=______′=______°.
12.如图所示,将一个矩形沿图中的虚线折叠,请用量角器测量一下其
中的α,β,得α________β.
13.计算下列各题:
(1)153°19′42″+26°40′28″(2)90°3″-57°21′44″
(3)33°15′16″×5
(4)175°16′30″-47°30′÷6+4°12′50″×3
【综合应用提高】
14.(1)1点20分时,时钟的时针与分针的夹角是几度?2点15分时,•时钟的时针与分针的夹角又是几度?
(2)从1点15分到1点35分,时钟的分针与时针各转过了多大角度?
(3)时钟的分针从4点整的位置起,按顺时针方向旋转多少度时才能与时针重合?
15.如图所示,已知∠α和∠β(∠α>∠β),求作:新课标第一网
(1)∠α+∠β;(2)∠α-∠β.
16.如图所示,指出OA是表示什么方向的一条射线,•并画出表示下列方向的射线:(1)南偏东60°;(2)北偏西70°;(3)西南方向(即南偏西45°).
【开放探索创新】
17.(1)用10倍放大镜看30°的角,你观察到的角是_______.
(2)用10倍放大镜看50°的角,60°的角,你观察到的角是______,______.
由(1),(2),你能得到什么结论?请把你的结论让同学们进行验证,看是否正确.
【中考真题实战】
18.(北京)在图中一共有几个角?它们应如何表示?
19.(广州)(1)3.76°=______度_____分_______秒.
(2)3.76°=______分=______秒.
(3)钟表在8:30时,分针与时针的夹角为______度.
答案:
1.C (点拨:用三个大写字母表示角,表示角顶点的字母在中间)
2.D
3.B (点拨:根据定义知A,C不正确,根据角的表示方法知D不正确)
4.D (点拨:∠O是一个单独的大写英文字母,它只能表示独立的一个角,•而∠O还可用∠1或∠AOB表示)
5.∠B,∠C 6个∠CAD,∠CAE,∠CAB,∠DAE,∠DAB,∠EAB
6.B [点拨:有公共顶点的n条射线,所构成的角的个数,一共是1
2
n(n-1)个]
7.C (点拨:平角=180°,钝角大于90°而小于180°,2
3
平角=
2
3
×180°=120°,•故
选C)
8.C (点拨:根据定义可知A,B不正确;锐角大于0°而小于90°,•所以两个锐角的和小于180°,D不正确;反向延长射线OA,O成为角的顶点,故选C)
9.24 24 (点拨:分针每小时转动一周与时针形成一次平角,一次周角)
10.C [点拨:1°=60′,∴18′=(18
60
)°=0.3°,∴18°18′=18°+0.3°=18.3°,
即∠α=∠γ]
11.(1)1度 60′ 60″
(2)25 43 12
(3)15.81 (点拨:根据度、分、秒互化)
(4)60 1
12.=
13.(1)153°19′42″+26°40′28″
=179°+59′+70″
=179°+60′+10″
=180°10″
(2)90°3″-57°21′44″
=89°59′63″-57°21′44″
=32°38′19″
(3)33°15′16″×5
=165°+75′+80″
=165°+76′+20″
=166°16′20″
(4)175°16′30″-47°30′÷6+4°12′50″×3 =175°16′30″-330′÷6+12°36′150″
=175°16′30″-7°-55′+12°38′30″
=187°54′60″-7°55′
=180°
14.解:∵分针每分钟走1小格,时针每分钟走
1
12
小格.
∴1点20分时,时针与分针的夹角是 [20-(5+
1
12
×20)]×
360
60
︒
=80°.
2点15分时,时针与分针的夹角是[15-(10+
1
12
×15)]×
360
60
︒
=22.5°.
(2)从1点15分到1点35分,时钟的分针共走了20小格.
∴分针转过的角度是(35-15)×360
60
︒
=120°,
时针转过的角度是
1
12
×120°=10°.
(3)设分针需要按顺时针方向旋转x度,才能与时针重合,
则时针按顺时针方向旋转了
1
12
x度.
根据题意,得x-
1
12
x=120
解得x=13010 11
∴分针按顺时针旋转(13010
11
)°时,才能与时针重合.
15.作法:(1)作∠AOC=∠α.
以点O为顶点,射线OC为边,在∠AOC的外部作∠COB=∠β,则∠AOB就是所求的角.
(2)作∠AOC=∠α,
以点O为顶点,射线OC为边,在∠AOC的内部作∠COB=∠β.则∠AOB就是所求的角.
16.略
17.(1)30°(2)50° 60°角度不变.
(点拨:放大镜只有把图形放大,但不能把角度放大)
18.3个角,∠ABC,∠1,∠2.
19.(1)3 45 36 (2)225.6 13536 (3)75.。