《直角三角形全等的判定》参考教案
《直角三角形全等的判定》 教案 (公开课获奖)2022浙教版
直角三角形全等的判定〔HL〕一.教学目标1.知识与技能1.1掌握直角三角形的一条直角边和斜边,作直角三角形的方法。
1.2掌握直角三角形全等的判定方法“HL〞。
1.3.能用全等直角三角形的判定方法解决简单问题。
1.4 运用多种方法判定三角形全等、解决简单问题。
2.过程与方法经历探究全等直角三角形判定方法“HL〞的过程,学会用操作确认、归纳发现问题结论的方法。
运用多种方法判定三角形全等、解决简单问题3、情感、态度与价值观3.1.通过操作确认、归纳发现结论,感知实验操作在发现问题结论中的重要作用。
3.2.运用多种方法证明三角形全等、发散思维,掌握构造三角形的技巧、舔辅助线。
学情介绍:这节课是在学生掌握了一般三角形全等的判定方法的根底上,探索直角三角形全等的特殊方法。
由于学生已具备了一定的学习经验,让学生自主探究直角三角形全等的判定方法,符合学生的认知过程。
帮助学生发散思维,稳固本章节的内容。
内容分析:教材首先提出了已经学习的四种判定在角形全等的方法外,对于直角三角形是否还有其他的方法判定两个直角三角形全等问题,然后通过操作发现判定直角三角形全等的另外一种特殊方法“HL〞,最后通过例题和练习加以稳固这种判定方法。
教学重点:直角三角形全等的判定方法。
教学难点:运用全等直角三角形的判定方法解决问题、运用三角形全等的方法二.教学过程:直角三角形全等的判定、情境探究,引入新课. 本单元学习判断三角形全等的方法:1〕SSS 2) SAS 3) ASA 4) AAS思考:对于直角三角形,除了直角相等之外,还要满足什么样的条件,这两个直角三角形全等?〔预设答复:一边和一锐角对应相等或者两条直角边对应相等〕提问:如果满足斜边和一直角边对应相等,这两个三角形全等吗?、动手实践,探索规律活动一:作图任意画一个,使得,一条直角边**C B BC =,斜边**B A AB =。
再把画好的***C B RtA 剪下,放到RtABC 上,两个直角三角形之间有什么样的关系呢?〔形状、大小方面〕让同学展示作品,并给出画图步骤:其他同学是不是这样字画的,你们能得出什么样的结论呢?〔预设答复:两三角形全等〕 斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等。
《直角三角形全等的判定(HL)》教案
《直角三角形全等的判定》教学设计中心发言人:DH教学目标:(1)明确两个直角三角形的全等,可以利用“边边边,边角边,角边角,角角边”来证明;但是由于直角相等,所以两个直角三角形全等的判定,只需要增加两个条件即可。
(2)探索和掌握直角三角形全等的特殊判定方法:斜边和一条直角边对应相等的两个直角三角形全等,并会用“SSS,SAS,ASA,AAS及HL”证明两个直角三角形全等。
教学重点:探索和掌握直角三角形全等的特殊判定方法:斜边和一条直角边对应相等的两个直角三角形全等,并会用“SSS,SAS,ASA,AAS及HL”证明两个直角三角形全等。
教学难点:(1)满足“边边角”分别对应相等的两个三角形不一定全等,但满足“斜边和一条直角边对应相等的两个直角三角形”符合“边边角”的条件,两个直角三角形却是全等的。
(2)要注意用HL直角三角形全等的证明格式集体备教教学过程:1、复习与回顾:(1)判定两个三角形全等的方法是,,,(2)回顾直角三角形的边、角的名称及相关性质。
2、尝试归纳两个直角三角形全等的判定方法:如图,A B⊥BE于B,D E⊥BE于E,(1)若∠A=∠D,AB=DE,则△ABC与△DEF (填“全等”或“不全等”),根据(用简写法)。
(2)若∠A=∠D,BC=EF,则△ABC与△DEF (填“全等”或“不全等”),个性补教AB CE FD根据(用简写法)。
(3)若AB=DE,BC=EF,则△ABC与△DEF (填“全等”或“不全等”),根据(用简写法)。
(4)若∠A=∠D,AC=DF则△ABC与△DEF (填“全等”或“不全等”),根据(用简写法)。
归纳:两个直角三角形全等的类型:ASA ,AAS ,SAS ,AAS (一锐角一直角边,一锐角一斜边,两直角边,共四种情形) 3、探究:一斜边一直角边对应相等,两直角三角形是否全等?(1)情景引入如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由。
《直角三角形全等的判定》教案
全等 .
【课时安排】案
1._____________的两个直角三角形全等 , 可以简写成 “斜边、直角边”或 “_______”.
2. 判断题
①一个锐角和这个锐角的对边对应相等的两个直角三角形全等
.
()
②两直角边对应相等的两个直角三角形全等 .
()
③两边对应相等的两个直角三角形全等 .
()
④两锐角对应相等的两个直角三角形全等 .
()
3. 如图△ ABC中, AB=AC,AD是高,则△ ADB与△ ADC(全等吗?) ___________
4 .两边及其一边的对角对应相等的两个三角形全不全等 的角是直角时,这两个三角形全不全等呢?
? 当其中有一组相等的边所对
1
教案
11.2
三角形全等的判定
----
- 直角三角形全等的判定
【教学目标】
知识技能
1. 掌握已知斜边、直角边画直角三角形的方法
2. 能够运用 HL公理及其他三角形全等的判定方法进行证明和计算
.
数学思考
1. 在探究 HL 公理的过程中发展几何直觉 .
2. 通过公理的初步应用,初步培养学生的逻辑推理能力
.
解决问题
了解 HL公理在生活、生产中的应用,进一步发展学生的推理证明意识和解决问题的能
力.
情感态度
结合实际,创造丰富的情境,提高学生的学习兴趣,让他们在活动中获得成功的体验,
培养学生的探索精神,树立学习的信心 .
【教学重难点】
重点:探究直角三角形全等的条件及应用
难点:灵活应用五种方法( SAS、ASA、AAS、SSS、HL)来判定直角三角形、一般三角形
《直角三角形全等的判定》教案
《直角三角形全等的判定》教案教案:直角三角形全等的判定(Hypotenuse-Leg)I.教学目标:-理解直角三角形的概念及性质;-掌握直角三角形全等判定的法则;-能够应用全等判定法则解决相关问题;-培养学生的逻辑思维和分析问题的能力。
II.教学重点:-直角三角形的性质及定义;- Hypotenuse-Leg法则的理解和应用。
III.教学准备:-幻灯片或黑板;-直角三角形的示例;-练习题。
IV.教学过程:1.引入(10分钟)-引导学生回顾直角三角形的定义,确保学生对直角三角形的属性有一定的了解;-提问:当两个直角三角形有什么相同的特征时,我们可以说这两个三角形全等?2.理论讲解(20分钟)-利用幻灯片或黑板,向学生展示HL法则;-说明HL法则的含义:当一个直角三角形的斜边和一个相应的直角锐角三角形的一条的斜边和另一条边相等时,可以判定这两个三角形全等;-解释理论背后的思路和逻辑。
3.解决问题(30分钟)-给学生提供一些直角三角形的示例,并要求学生根据HL法则判断全等的情况;-引导学生在解决问题时使用正确定义和策略;-解释答案的过程,并帮助学生理解答案的推导过程。
4.巩固练习(20分钟)-给学生一些练习题,让他们运用HL法则判断是否全等;-检查答案的同时,与学生一起讨论解题过程和方法。
V.教学延伸:-引导学生思考,当仅知道一个直角三角形的斜边和一个角时,是否可以利用HL法则判断全等?-考虑如果给出两个直角三角形的斜边和一个角,我们如何确定这两个三角形全等?VI.教学总结(10分钟)-通过复述课上讲解的内容,强调直角三角形全等判定法则(HL);-回顾和总结学习的要点和方法;-解答学生对课堂内容的疑问。
VII.作业布置-给学生布置作业,包括练习题和思考题。
VIII.教学反思-教师总结本节课的教学反思,思考教学的改进和评估学生的学习情况。
八年级数学下册《直角三角形全等的判定》教案、教学设计
(一)导入新课
1.利用多媒体展示生活中常见的直角三角形应用,如楼梯、桥梁等,引导学生观察和思考直角三角形的特征及其在全等判定中的应用。
2.提问:“同学们,我们已经学过全等三角形的判定方法,那么直角三角形有哪些特殊的地方呢?如何判断两个直角三角形全等?”通过问题引导学生回顾旧知,为新课的学习做好铺垫。
3.引入本节课的教学目标,让学生明确学习直角三角形全等判定的意义和作用。
(二)讲授新知
1.通过具体的直角三角形例子,讲解SAS、ASA、AAS和HL四种判定方法,让学生理解并掌握这四种方法的含义和应用。
- SAS:已知两个直角三角形的两边和夹角相等,可以判定这两个三角形全等。
- ASA:已知两个直角三角形的夹角和两边相等,可以判定这两个三角形全等。
三、教学重难点和教学设想
(一)教学重难点
1.重点:直角三角形全等的判定方法(SAS、ASA、AAS和HL)的掌握和应用。
2.难点:
-理解并灵活运用不同的全等判定方法解决实际问题。
-在复杂几何图形中识别直角三角形全等的条件,并运用全等性质进行推理。
-将全等三角形的判定与几何图形的性质相结合,解决综合性的几何问题。
- AAS:已知两个直角三角形的两个角和一边相等,可以判定这两个三角形全等。
- HL:已知两个直角三角形的斜边和直角边相等,可以判定这两个三角形全等。
2.结合具体例题,逐一演示这四种判定方法的应用,让学生在实际操作中理解和掌握。
3.强调直角三角形全等判定中的关键步骤和注意事项,如正确识别对应边、对应角等。
4.小组合作题:布置一道需要小组合作完成的题目,要求学生在小组内部分工合作,共同探究解决问题的策略,提高学生的团队协作能力。
初中数学初二数学上册《直角三角形全等的判定》优秀教学案例
在学生掌握了直角三角形全等的判定方法后,我会组织他们进行小组讨论。讨论的主题包括:
1.举例说明直角三角形全等的判定方法在实际中的应用。
2.探讨除了教材中提到的四种方法外,还有没有其他的判定方法。
3.分享自己在学习直角三角形全等判定过程中的心得体会和困惑。
(四)总结归纳
在小组讨论结束后,我会邀请几名学生代表进行汇报,分享他们的讨论成果。然后,针对学生的讨论内容进行总结归纳,强调直角三角形全等判定方法的要点和注意事项。
2.总结直角三角形全等判定方法的学习心得,以书面形式提交。
3.准备下一节课的预习内容,提前了解三角形全等的判定方法。
五、案例亮点
1.生活情境的巧妙融入
本教学案例的最大亮点是将生活情境与数学知识紧密结合,通过展示生活中常见的直角三角形实例,让学生感受到数学知识的实际应用,从而提高学习兴趣。这种情境创设有助于学生理解抽象的数学概念,培养他们的数学思维能力。
4.反思与评价助力学生成长
本案例注重学生的反思与评价,帮助他们总结学习经验,发现自身不足,从而提高学习效果。同时,教师及时给予鼓励和指导,关注学生的知识掌握程度、学习态度、合作能力和创新能力,助力学生全面发展。
5.系统性的教学内容与过程设计
本案例的教学内容与过程设计系统性强,从导入新课、讲授新知、学生小组讨论、总结归纳到作业小结,环环相扣,层层递进。这种设计有助于学生逐步掌握直角三角形全等的判定方法生进行反思与评价,帮助他们总结学习经验,提高学习效果。
1.让学生自我反思:在学习直角三角形全等的判定过程中,自己掌握了哪些知识,还存在哪些问题,如何改进学习方法等。
2.同伴互评:鼓励学生相互评价,指出对方的优点和不足,相互学习,共同提高。
1.2直角三角形全等的判定(教案)
1.2直角三角形全等的判定(一)知识与技能目标1、运用直角三角形的全等判定定理和其它相关知识的证明角平分线的性质和判定、三角形的三条角平分线交于一点(三角形的内心);2、从简单的数学例子中体会反证法的含义;3、逐步学会分析的思考方法,发展演绎推理的能力。
1、理角和运用角平线分的性质定理及逆定理;角平分线的性质和判定的证明和运用。
2、理解三角形的角平分线交于同一点;3、学习分析的思考方法,体会反证法的含义。
1、评价手册。
2、分层作业A D C PB E O一、自主探究:二、例题讲解1、角平分线上的点到这个角的两边的________相等;2、角的内部到角的两边距离相等的点,在这个角的________上。
1、已知:OC 是∠AOB 的平分线,点P 在OC 上P D ⊥OA ,PE ⊥OB ,垂足分别为D 、E , 求证:PD=PE2、问题一:“角平分线上的点到这个角的两边的距离相等”的逆命题是什么?问题二:你认为这个逆命题是真命题吗?如果是真命题,如何证明? 已知:如图,点P 是∠AOB 内部的一点,PD ⊥OA 于D ,PE ⊥OB 于E ,且PD=PE ,求证:点P 在∠AOB 的平分线上。
问题三:“如果一个点到角的两边的距离不相等,那么这个点不在这个角的平分线上”你认为这个结论正确吗?如果正确,你怎样说明它的正确性?D OE B P A A三、课堂练习1、如图,△ABC的角平分线AD、BE相交于点O,点O到△ABC各边的距离相等吗?点O在∠C的平分线上吗?你能证明吗?们发现的结论吗?AO ED C2、如图所示,△ABC中,AB=AC,M为BC中点,MD⊥AB于D,ME⊥AC于E。
求证:MD=ME。
C P P'B O A四、自我检测四、课堂小结 1、如图在△ABC 中,∠C=90度,点D 在BC 上,DE 垂直平分AB ,且DE=DC.求∠B 的度数。
2、如图,已知点C 是∠AOB 平分线上一点,点P 、P'分别在边OA 、OB 上。
直角三角形全等判定教案
直角三角形全等判定教案教案:直角三角形全等判定一、教学目标:1.知识与技能:学习直角三角形全等的判定方法,掌握直角三角形的性质和特点。
2.过程与方法:通过观察、比较和推理的方法,学会运用直角三角形全等的判定方法进行问题求解。
3.情感态度与价值观:培养学生观察、分析和解决问题的能力,提高学生的逻辑思维能力。
二、教学重点和难点:1.教学重点:直角三角形的全等判定方法。
2.教学难点:运用全等判定方法解决问题。
三、教学过程:步骤一:引入新知识(5分钟)1.激发学生兴趣,通过播放有关直角三角形的视频或图片,引起学生的兴趣和好奇心。
2.提问:你们对直角三角形有什么了解?它有什么特点?步骤二:探究全等判定方法(15分钟)1.教师出示两个直角三角形,并提问学生:观察这两个三角形,你们看出它们有什么相同的地方?2.让学生观察并比较这两个直角三角形的边长、角度等特点。
3.提示学生注意直角、斜边和两条直角边等特征,进一步引导学生总结直角三角形的全等判定方法。
步骤三:全等判定方法的学习(20分钟)1.教师向学生讲解直角三角形的全等判定方法,并通过实例进行解释。
2.学生跟随教师的指导,尝试用全等判定方法来判断一些直角三角形是否全等。
3.教师对学生的思考和解决方法进行点评。
步骤四:巩固和拓展(30分钟)1.教师设计一些练习题,让学生运用全等判定方法判断两个直角三角形是否全等。
2.学生进行小组活动,互相提问和讨论问题,共同解决问题。
3.教师对学生的答案进行点评和讲解,解决学生在解题过程中遇到的问题。
步骤五:归纳总结(10分钟)1.教师和学生共同总结直角三角形的全等判定方法,让学生复习和巩固所学的知识。
2.学生互相分享自己的思考和解题方法,加深对知识的理解和记忆。
步骤六:拓展延伸(10分钟)1.教师提供一些拓展题,让学生运用全等判定方法解决问题。
2.学生进行个人或小组活动,进行探究和解答问题。
3.学生对解题过程进行总结和分享。
《直角三角形全等的判定》教学设计
《直角三角形全等的判定》教学设计一、内容和内容解析(一)内容直角三角形全等的判定:“斜边、直角边”.(二)内容解析本课是在学习了全等三角形的四个判定方法(“边边边”、“边角边”、“角边角”、“角角边”)的基础上,进一步探索两个直角三角形全等的判定方法.直角三角形是三角形中的一类,判定两个直角三角形全等,可以用已学过的所有全等三角形的判定方法,但两个直角三角形中已有一对直角是相等的,因此在判定两个直角三角形全等时,只需另外找到两个条件即可,由于直角三角形的这种特殊性,判定两个直角三角形全等的方法又有别于其它的三角形.教科书首先给出一个“思考”,让学生认识到判定两个直角三角形全等与判定两个普通三角形全等的不同之处.然后通过探究5的作图实验操作,让学生经历探究满足斜边和一条直角边分别相等的两个直角三角形是否全等的过程,然后在学生总结探究出的规律的基础上,直接以定理的方式给出“斜边、直角边”判定方法.最后,教科书给出一个例题,让学生在具体问题中运用“斜边、直角边”证明两个直三角形全等,并得到对应边相等.基于以上分析,本节课的重点是:“斜边、直角边”判定方法的运用.二、目标及目标解析(一)目标1.理解“斜边、直角边”能判定两个直角三角形全等.2.能运用“斜边、直角边”证明两个直角三角形全等,并得到对应边、对应角相等.(二)目标解析1.学生经历探索两个直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.2.学生能从具体的问题中找出符合“斜边、直角边”条件的两个直角三角形,并能证明这两个直角三角形全等.三、教学问题诊断分析由于直角三角形是特殊的三角形,它具备一般三角形所没有的特殊性质.例如,对一般三角形来说,已知两边和其中一边的对角分别相等,不能判定两个三角形全等,而对于直角三角形来说,已知斜边和一直角边分别相等,能够得到两个直角三角形全等.直角三角形的斜边和一直角边确定了,根据勾股定理,得到第三边也是确定的,从而可以利用“边边边”或“边角边”证明满足斜边和一条直角边分别相等的两个直角三角形全等.但是勾股定理是后面学习的内容,在这里不能运用勾股定理来证明这个结论,只能通过实验操作、观察得出定理.基于以上分析本节课的难点是:“斜边、直角边”判定方法的理解.四、教学过程设计(一)引言前面我们学习了全等三角形的四个判定方法(“边边边”“边角边”“角边角”“角角边”),本节课我们继续研究两个直角三角形全等的判定方法.问题1:对于两个直角三角形,除了直角相等的条件外,还要满足哪几个条件,这两个直角三角形就全等了?两个直角三角形满足的条件全等依据方法1两条直角边分别相等“SAS”方法2一个锐角和一条直角边分别相等“ASA”或“AAS”方法3一个锐角和斜边分别相等“AAS”追问:如果满足斜边和一条直角边分别相等,这两个直角三角形全等吗?师生活动:师生共同得出上面的三个判定方法,学生思考猜想:满足斜边和一条直角边分别相等的两个直角三角形是否全等.【设计意图】直接进入本节课学习的内容,培养学生分类讨论的思想.让学生大胆提出猜想.(二)探索新知问题2:探究5任意画出一个RtABC,使∠C=90°,再画一个RtA′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB,把画好的A′B′C′剪下来,放到ABC上,它们全等吗?画法:(1)画∠MC′N=90°;(2)在射线C′M上截取B′C′=BC;(3)以点B′为圆心,AB为半径画弧,交C′N于点A′;(4)连接A′B′.追问:作图的结果反映了什么规律?你能用文字语言和符号语言概括吗?文字语言:斜边和一条直角边分别相等的两个直角三角形全等.(简写成“斜边、直角边”或“HL”)符号语言:在RtABC与RtA′B′C′中,∴RtABCRtA′B′C′(HL).师生活动:师生共同进行尺规作图,学生进行操作,观察是否全等.然后教师引导学生得出“斜边、直角边”判定方法,掌握文字和符号语言.【设计意图】通过作图、剪图、比较图的过程让学生获得“斜边、直角边”的判定方法,培养学生发现问题的能力,锻炼学生用数学语言的能力.(三)应用新知,解决问题问题3:例5:如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证:BC=AD证明:AC⊥BC,BD⊥AD∴∠C与∠D都是直角在RtABC与RtBAD′中,∴RtABCRtBAD(HL).∴BC=AD.追问:若图中AC,BD相交于点E,图中还有全等三角形吗?怎样证明?师生活动:学生先口述理由,然后写出完整的证明过程,教师规范步骤.【设计意图】让学生初步熟悉根据“HL”证明两个直角三角形全等的一般程序.同时意识到,除了“HL”,前面所学的判定也可以用来证明两个直角三角形全等.(四)综合运用,巩固提高问题4:完成教科书第43页练习1、2题.1.如图,C是路段AB的中点,两人从C同时出发,以相同的速度分别沿两条直线行走,并同时到达D,E两地,DA⊥AB,EB⊥AB,D,E与路段AB的距离相等吗?为什么?答:D,E与路段AB的距离相等.证明:由题意可知:DC=EC.DA⊥AB,EB⊥AB,∴∠A与∠B都是直角.又C是路段AB的中点,∴AC=BC.在RtACD与RtBCE中,∴RtACDRtBCE(HL).∴AD=BE.2.如图,AB=CD,AE⊥BC,DF⊥BC,垂足分别为E,F,CE=BF.求证:AE=DF证明:AE⊥BC,DF⊥BC,∴∠AEB与∠DFC都是直角.又CE=BF,∴BE=CF.在RtABE与RtDCF中,∴RtABERtDCF(HL).∴AE=DF.师生活动:学生板演,写出完整的证明过程,教师点评.【设计意图】进一步巩固“斜边、直角边”的应用.(五)小结反思教师和学生一起回顾本节课所学的内容,并请学生回答以下问题:1.这节课我们学习了哪个判定直角三角形全等的方法?2.判定两个直角三角形全等总共有哪些方法?师生活动:教师引导,学生小结.【设计意图】回顾两个直角三角形全等的几种判定方法,形成知识体系.(六)布置作业:教科书习题12.2第7、8题.五、目标检测设计1.如图AB⊥BD,CD⊥BD,AD=BC.求证:AB=DC.【设计意图】本题考查学生寻找“HL”条件证明两个直角三角形全等,并得到对应边相等的能力.2.如图DE⊥BD,DE⊥CE,点A在DE上,AB=AC,BD=AE.求证:AB ⊥AC.【设计意图】本题考查学生寻找“HL”条件证明两个直角三角形全等,并运用全等三角形的性质,进行分析、解决问题的能力.。
《直角三角形全等的判定》参考教案
三角形全等的判定(四)直角三角形全等的判定教学目标1、经历探索直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;2、掌握直角三角形全等的条件,并能运用其解决一些实际问题。
3、在探索直角三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理。
教学重点运用直角三角形全等的条件解决一些实际问题。
教学难点熟练运用直角三角形全等的条件解决一些实际问题。
教学过程Ⅰ.提出问题,复习旧知1、判定两个三角形全等的方法:、、、2、如图,Rt△ABC中,直角边是、,斜边是3、如图,AB⊥BE于C,DE⊥BE于E,(1)若∠A=∠D,AB=DE,则△ABC与△DEF (填“全等”或“不全等” )根据(用简写法)(2)若∠A=∠D,BC=EF,则△ABC与△DEF (填“全等”或“不全等” )根据(用简写法)(3)若AB=DE,BC=EF,则△ABC与△DEF (填“全等”或“不全等” )根据(用简写法)(4)若AB=DE,BC=EF,AC=DF则△ABC与△DEF (填“全等”或“不全等” )根据(用简写法)Ⅱ.导入新课(一)探索练习:(动手操作):已知线段a ,c (a<c) 和一个直角α利用尺规作一个Rt△ABC,使∠C=∠α,AB=c ,CB= a1、按步骤作图: a c①作∠MCN=∠α=90°,②在射线CM上截取线段CB=a,③以B 为圆心,C为半径画弧,交射线CN于点A,α④连结AB2、与同桌重叠比较,是否重合?3、从中你发现了什么?斜边与一直角边对应相等的两个直角三角形全等.(HL)(二)巩固练习:1.如图,△ABC中,AB=AC,AD是高,则△ADB与△ADC (填“全等”或“不全等” )根据(用简写法)2.如图,CE⊥AB,DF⊥AB,垂足分别为E、F,(1)若AC//DB,且AC=DB,则△ACE≌△BDF,根据(2)若AC//DB,且AE=BF,则△ACE≌△BDF,根据(3)若AE=BF,且CE=DF,则△ACE≌△BDF,根据(4)若AC=BD,AE=BF,CE=DF。
《直角三角形全等的判定》教学设计
一、基本信息希沃为课堂教学注入新的活力,使课堂内容更加精彩,设备所选技术及技术应用目的自带的强大资源库,里面囊括了针对不同学科开发的各种音像、图片教育资源,为老师编辑课件及课堂演示储备了海量素材。
教学过程 1.判定两个三角形全等方法,,,,。
2.如图,Rt △ABC 中,直角边、,斜边3.如图,AB ⊥BE 于B ,DE ⊥BE 于E ,(1)若∠A=∠D ,AB=DE ,则△ABC 与△DEF 是否全等______,根据______(用简写法)(2)若∠A=∠D ,BC=EF ,则△ABC 与△DEF 是否全等______,根据______(用简写法)(3)若AB=DE ,BC=EF ,则△ABC 与△DEF 是否全等______,根据______(用简写法)(4)若AB=DE ,BC=EF ,AC=DF ,则△ABC 与△DEF 是否全等______,根据______(用简写法)探究1:如图,舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?方法一:测量斜边和一个对应的锐角.(AAS)方法二:测量没遮住的一条直角边和一个对应的锐角.(ASA)或(AAS)⑵如果他只带了一个卷尺,能完成这个任务吗?工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗?下面让我们一起来验证这个结论。
动手操作:画出一个Rt△ABC,使∠C=90°.再画一个直Rt△A'B'C',使∠C'=90°,B'C'=BC,A'B'=AB.把画好的直角三角形A'B'C'剪下,放到△ABC上,全等吗?作法:(1)画∠MC'N=90°;(2)在射线C'M上截取B'C'=BC;(3)以点B'为圆心,AB为半径画弧,交射线C'N于点A';(4)连接A'B'.想一想:从中你能发现什么规律?归纳:斜边和一条直角边对应相等的两个直角三角形全等。
北师大版数学八年级下册《直角三角形全等的判定》教案1
北师大版数学八年级下册《直角三角形全等的判定》教案1一. 教材分析《直角三角形全等的判定》是北师大版数学八年级下册的一章内容。
本节课主要让学生掌握直角三角形全等的判定方法,并能够运用这些方法解决实际问题。
本节课的内容是学生学习几何知识的重要基础,对于培养学生的逻辑思维能力和空间想象能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经学习了三角形的基本概念、性质和判定方法。
他们具备了一定的逻辑思维能力和空间想象能力,能够理解和掌握新的知识。
但是,对于一些具体的全等判定方法,学生可能还不是很清楚,需要通过实例进行讲解和练习。
三. 教学目标1.让学生掌握直角三角形全等的判定方法。
2.培养学生运用几何知识解决实际问题的能力。
3.培养学生的逻辑思维能力和空间想象能力。
四. 教学重难点1.教学重点:直角三角形全等的判定方法。
2.教学难点:运用直角三角形全等判定方法解决实际问题。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。
通过提出问题,引导学生思考和探索,通过实例讲解和练习,让学生理解和掌握直角三角形全等的判定方法,通过小组合作学习,培养学生的合作精神和团队意识。
六. 教学准备准备相关的教学材料,如PPT、实例图片、练习题等。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生思考和探索直角三角形全等的判定方法。
例如,如何判断两个直角三角形是否全等?2.呈现(10分钟)通过实例讲解和练习,让学生理解和掌握直角三角形全等的判定方法。
例如,演示两个直角三角形全等的情况,让学生观察和分析,引导学生总结全等的条件。
3.操练(10分钟)让学生进行相关的练习题,巩固所学的直角三角形全等判定方法。
例如,给出两个直角三角形,让学生判断它们是否全等。
4.巩固(5分钟)通过小组合作学习,让学生运用直角三角形全等判定方法解决实际问题。
例如,给出一个实际问题,让学生分组讨论和解决。
5.拓展(5分钟)让学生思考和探索直角三角形全等判定方法的应用。
浙教版数学八年级上《直角三角形全等的判定》精品教案
教学目标:1.让学生学会判定直角三角形之间的全等关系。
2.培养学生观察和推理的能力。
3.激发学生学习数学的兴趣。
教学重点:1.掌握直角三角形全等的判定条件。
2.运用所学知识判断直角三角形的全等关系。
教学难点:1.运用所学知识判断复杂的直角三角形的全等关系。
2.运用全等关系解决实际问题。
教学准备:1.教材:浙教版数学八年级上册教材。
2.教具:白板、彩色粉笔、直角三角形的模型、实验器材等。
教学过程:Step 1:导入新课(10分钟)1.引出直角三角形全等的概念,让学生回顾直角三角形的定义和性质。
指导性问题:什么是直角三角形?直角三角形有什么性质?2.引入直角三角形全等的概念。
指导性问题:当两个直角三角形满足什么条件时我们可以说它们是全等的呢?3.师生互动讨论,引导学生总结直角三角形全等的判定条件。
指导性问题:如何判断两个直角三角形是否全等?Step 2:学习新知(30分钟)1.教师板书直角三角形全等的判定条件。
(1)两个直角三角形的对应边长度相等。
(2)一个直角边及其对边的两个直角三角形的另一边相等。
(3)两个直角三角形的斜边和一个锐角边相等。
2.通过示例让学生理解直角三角形全等的判定条件。
指导性问题:请你找出直角三角形中哪些边相等?3.指导学生完成练习题。
Step 3:拓展应用(30分钟)1.引导学生分组进行实验探究。
2.每个小组设计一种方法来判定直角三角形的全等关系。
3.每个小组依次向全班展示自己的实验结果。
4.整理实验结果,总结判定直角三角形全等的通用方法。
Step 4:巩固练习(20分钟)1.让学生独立完成教材上的课堂练习和作业。
2.通过课堂练习和作业检查学生的掌握情况。
3.系统化训练,如给出一些直角三角形,让学生判断它们之间的全等关系。
Step 5:课堂总结(10分钟)1.教师对学生的独立作业进行点评。
2.总结直角三角形全等的判定条件,强调掌握方法和技巧。
3.让学生回答课前设下的问题,并对本节课的内容进行复习总结。
沪教版数学八年级上册19.3《直角三角形全等的判定》教学设计
沪教版数学八年级上册19.3《直角三角形全等的判定》教学设计一. 教材分析《直角三角形全等的判定》是沪教版数学八年级上册19.3节的内容,本节课的主要内容是让学生掌握直角三角形全等的判定方法,并能够运用这些方法解决实际问题。
教材通过引入直角三角形的全等判定,让学生在已有的知识基础上进一步深入理解全等的概念,并能够应用到实际问题中。
二. 学情分析学生在学习本节课之前,已经学习了全等图形的概念,并掌握了一些基本的全等判定方法。
但是,对于直角三角形的全等判定,学生可能还比较陌生。
因此,在教学过程中,我需要引导学生将已有的全等知识与直角三角形相结合,通过实例讲解和练习,让学生理解和掌握直角三角形全等的判定方法。
三. 教学目标1.知识与技能目标:让学生掌握直角三角形全等的判定方法,并能够运用这些方法解决实际问题。
2.过程与方法目标:通过实例讲解和练习,培养学生的观察能力、思考能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和积极进取的精神。
四. 教学重难点1.教学重点:直角三角形全等的判定方法。
2.教学难点:如何运用直角三角形全等的判定方法解决实际问题。
五. 教学方法1.情境教学法:通过实例引入直角三角形全等的概念,让学生在实际情境中理解全等的含义。
2.互动教学法:引导学生进行小组讨论和合作,培养学生的团队合作意识和解决问题的能力。
3.练习法:通过大量的练习题,让学生巩固所学的全等判定方法。
六. 教学准备1.教学课件:制作课件,包括直角三角形全等的判定方法和相关练习题。
2.练习题:准备一些有关直角三角形全等的练习题,用于课堂练习和巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入直角三角形全等的概念,例如:“在三角形ABC中,∠A=90°,AB=3,BC=4,请问AC的长度是多少?”让学生思考并讨论,引出直角三角形全等的判定方法。
2.呈现(15分钟)讲解直角三角形全等的判定方法,包括HL(斜边-直角边)、SAS(边-角-边)和ASA(角-边-角)三种方法。
直角三角形全等的判定数学教案
直角三角形全等的判定数学教案
标题:直角三角形全等的判定
一、教学目标
1. 知识与技能目标:理解并掌握直角三角形全等的判定定理,能够运用这些定理解决相关问题。
2. 过程与方法目标:通过观察、比较、推理等活动,培养学生的逻辑思维能力和空间观念。
3. 情感态度价值观目标:激发学生对几何学习的兴趣,培养他们认真细致的学习态度和严谨的科学精神。
二、教学重点与难点
1. 教学重点:直角三角形全等的判定定理的理解和应用。
2. 教学难点:如何从实际问题中抽象出几何模型,利用直角三角形全等的判定定理解决问题。
三、教学过程
1. 导入新课:通过生活中的实例或者有趣的数学问题引入直角三角形全等的概念,激发学生的学习兴趣。
2. 新课讲解:
(1) 定义和性质:首先介绍什么是直角三角形全等,以及它的一些基本性质。
(2) 判定定理:详细解释并证明SAS、ASA、SSS、AAS、HL这五种直角三角形全等的判定定理。
3. 实例解析:给出一些具体的例子,让学生尝试运用所学知识进行解答,教师进行点评和指导。
4. 练习巩固:设计一些练习题,包括基础题和提高题,让学生进行练习,检查他们的理解和掌握程度。
5. 小结与反思:回顾本节课的内容,引导学生自我反思,总结自己的学习收获和存在的问题。
四、作业布置
设计一些相关的习题,包括复习旧知识和预习新知识的部分,以帮助学生巩固课堂学习的内容。
五、教学评价
通过课堂提问、作业批改等方式,对学生的学习情况进行评价,了解他们的掌握情况,为下一步的教学计划提供参考。
1.2直角三角形全等的判定(HL定理)(教案)
-理解HL定理的适用条件:仅适用于直角三角形,非直角三角形不适用。
-识别全等证明中的已知条件和未知条件,特别是如何从题目中提取关键信息。
-理解全等证明的逻辑顺序,如何从已知条件出发,逐步推导出全等关系。
-解决实际问题时,如何构建直角三角形模型,并将HL定理应用于问题求解。
举例:在解决一个直角三角形的斜边和一条直角边长度已知的问题时,学生可能难以直接联想到使用HL定理。难点在于如何引导学生从问题中识别出这是一个直角三角形全等的问题,并应用HL定理来求解。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“直角三角形全等在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
五、教学反思
在今天的教学中,我尝试了多种方法来帮助学生理解和掌握直角三角形全等的判定方法——HL定理。首先,通过日常生活中的例子导入新课,我发现学生的兴趣被成功激发,他们对于几何学的实际应用表现出了浓厚的兴趣。这一点让我感到欣慰,也让我认识到,将理论知识与生活实际相结合是提高学生学习兴趣的有效途径。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了直角三角形全等的判定方法——HL定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对直角三角形全等的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
初中数学初二数学上册《直角三角形全等的判定》教案、教学设计
-创设轻松愉快的学习氛围,鼓励学生积极参与,勇于提问,敢于表达。
-建立良好的班级纪律,保证课堂教学的有序进行。
-利用学校教学资源,如数学实验室、多媒体教室等,为学生提供丰富的学习资源。
四、教学内容与过程
(一)导入新课
在导入环节,我将采用生活实例引发学生对直角三角形全等判定方法的思考。首先,我会向学生展示一张由两个直角三角形组成的楼梯图片,并提出问题:“如何判断这两个直角三角形是否全等?”让学生在观察图片的基础上,尝试回答问题。接着,我会让学生拿出提前准备好的两个直角三角形纸片,进行实际操作,观察、思考如何判断它们是否全等。
(二)讲授新知
在讲授新知环节,我会按照以下步骤进行:
1.复习全等三角形的判定方法,引导学生回顾SSS、SAS、ASA、AAS等判定方法。
2.引导学生观察直角三角形的特殊性,即有一个角是直角,从而得出直角三角形的全等判定方法。
3.逐一讲解直角三角形全等的五种判定方法(SSS、SAS、ASA、AAS、HL),并结合实例进行说明。
4.教学步骤:
-导入:通过生活中的直角三角形实例,引发学生思考,激发学习兴趣。
-探究:引导学生复习全等三角形的判定方法,自主探究直角三角形全等的判定方法。
-讲解:结合实例,详细讲解五种判定方法的适用条件,帮助学生理解和记忆。
-应用:设计不同难度的练习题,让学生在实际操作中巩固所学知识。
-总结:通过师生共同总结,梳理本节课的知识点,形成知识网络。
此外,初二学生的抽象思维能力逐渐增强,他们对于直观、具体的实例更容易产生兴趣。因此,在本章节的教学中,教师应充分关注学生的认知特点,结合实际情境,激发学生的学习兴趣,帮助他们建立清晰的知识体系。
同时,初二学生正处于青春期,个体差异较大,学习态度、学习习惯等方面存在一定差异。教师需针对不同学生的特点,因材施教,使每个学生都能在原有基础上得到提高,从而提高整体教学效果。在此基础上,注重培养学生的团队合作精神,让学生在交流与合作中共同进步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形全等的判定(四)
直角三角形全等的判定
教学目标
1、经历探索直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;
2、掌握直角三角形全等的条件,并能运用其解决一些实际问题。
3、在探索直角三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理。
新|课|标| 第|一| 网
教学重点
运用直角三角形全等的条件解决一些实际问题。
教学难点
熟练运用直角三角形全等的条件解决一些实际问题。
教学过程
Ⅰ.提出问题,复习旧知
1、、、
2直角边
3
”或“不全
根据(用简写法)
(2)若∠A=∠D,BC=EF,
则△ABC与△DEF (填“全等”或“不全
等” )
根据(用简写法)新|课|标| 第|一| 网
(3)若AB=DE,BC=EF,
则△ABC与△DEF (填“全等”或“不全等” )
根据(用简写法)
(4)若AB=DE,BC=EF,AC=DF
则△ABC与△DEF (填“全等”或“不全等” )
根据(用简写法)
Ⅱ.导入新课
(一)探索练习:(动手操作):已知线段a ,c (a<c) 和一个直角α利用尺规作一个Rt△ABC,使∠C=∠α,
AB=c ,CB= a
1、按步骤作图:
①作∠MCN=∠α=90°,
②在射线CM上截取线段CB=a,
③以B 为圆心,C为半径画弧,交射线
④连结AB
2、与同桌重叠比较,是否重合?
3、从中你发现了什么?
斜边与一直角边对应相等的两个直角三角形全等.(HL)
(二)巩固练习:
1.如图,△ABC中,AB=AC,AD是高,
则△ADB与△ADC (填“全等”或“不全等” )
根据(用简写法)w W w .x K
b 1.
c o M
2.如图,CE⊥AB,DF⊥AB,垂足分别为
E、F,
(1)若AC//DB,且AC=DB,则△ACE≌△BDF,
根据
(2)若AC//DB,且AE=BF,则△ACE≌△BDF,根据
(3)若AE=BF,且CE=DF,则△ACE≌△BDF,根据
(4)若AC=BD,AE=BF,CE=DF。
则△ACE≌△BDF,根据
(5)若AC=BD,CE=DF(或AE=BF),则△ACE≌△BDF,根据
3、判断两个直角三角形全等的方法不正确的有( )
(A ) 两条直角边对应相等 (B )斜边和一锐角对应相等
(C )斜边和一条直角边对应相等 (D )两个锐角对应相等
4、如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E , AB=DC ,BE=CF ,你认为AB 平行于CD 吗?说说你的理由
答:
理由:∵ AF ⊥BC ,DE ⊥BC (已知)
∴ ∠AFB=∠DEC= °(垂直的定义)
在Rt △ 和Rt △ 中
⎩⎨⎧==_________
______________________ ∴ ≌ ( )X k B 1 . c o m
∴∠ = ∠ ( )
∴ (内错角相等,两直线平行)
5、如图,广场上有两根旗杆,已知太阳光线AB 与DE 是平行的,经过测量这两根旗杆在太阳光照射下的影子是一样长的,那么这两根旗杆高度相等吗?说说你的理由。
(三)提高练习:
1、判断题:
(1)一个锐角和这个锐角的对边对应相等的两个直角三角形全等。
( )
(2)一个锐角和锐角相邻的一直角边对应相等的两个直角三角形全等( )
(3)一个锐角与一斜边对应相等的两个直角三角形全等( )
(4)两直角边对应相等的两个直角三角形全等( )
(5)两边对应相等的两个直角三角形全等( )
(6)两锐角对应相等的两个直角三角形全等()
(7)一个锐角与一边对应相等的两个直角三角形全等()
(8)一直角边和斜边上的高对应相等的两个直角三角形全等()2、如图,∠D=∠C=90°,请你再添加一个条件,使△ABD≌△BAC,并在添加的条件后的()内写出判定全等的依据。
(1)()
(2)()
(3)()
(4)()
课时小结新|课|标| 第|一| 网
至此,我们有六种判定三角形全等的方法:
1.全等三角形的定义
2.边边边(SSS)
3.边角边(SAS)
4.角边角(ASA)
5.角角边(AAS)
6.HL(仅用在直角三角形中)
作业1.课本习题11.2 复习巩固6、7、8
新课标第一网系列资料。