渗流数学模型
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液体的状态方程 气体的状态方程 岩石的状态方程
第三节 状态方程
一、液体的状态方程
液体具有压缩性,随着压力降低,体 积膨胀,其特性可用压缩系数来描述:
CL
1 VL
dVL dP
(1)
根据质量守恒原理,在压缩或膨胀时
液体质量M不变,即
M VL (2)
微分上式得:
dVL
理想气体(分子无体积、分子间无 作用力)状态方程为
PV nRT
P—气体压力 V—压力P时的气体总体积 T—绝对温度 R—气体常数 n—气体摩尔数
真实气体的状态方程
PV Z nRT
z—压缩因子,z=f(P,T),在给定温度压力下实际气体占 有的体积与同条件下理想气体占有体积之比。
第三节 状态方程
确性:
0[1 CL (P P0 )] (6)
C流在L中1值0-,是4(1油一/M气个P层变a)温左量度右,大。它致随不温变度,和可压把力C不L同值略看有成改常变数,;在数地量下级渗
渗流过程若是弹性液体,应将液体状态方程列入描述渗流 力学过程的数学模型。
第三节 状态方程
二、气体状态方程
侧面的诸类方程综合联系起来,是数学模型必要的部分)。 以上三类方程是油气渗流数学模型的基本组成部分。 (4)能量守恒方程(只有研究非等温渗流问题时才用到)。 (5)其它附加的特性方程(特殊的渗流问题中伴随发生的物理或化
学现象附加的方程。如物理化学渗流中的扩散方程等)。 (6)有关的边界条件和初始条件(是渗流数学模型必要的内容)。
单相渗流的连续性方程 两相渗流的连续性方程
第四节 质量守恒方程
坐标和时间的关系:
v= f(x,y,z,t,A,B)(对单相流体)
S= f(x,y,z,t,A,B)(对两相流体)
确定伴随渗流过程发生的其它物理化学作用的函数关系 (如能量转换方程、扩散方程等等)
第一节 建立数学模型的原则
4.写出数学模型所需的综合微分方程(组)
用连续性方程做为综合方程,把其它方程都代入连续性方程中, 最后得到描述渗流过程全部物理现象的统一微分方程或微分方程 组。
性压缩系数C、导压系数æ等)和流体的物理参数(如 粘度μ、密度ρ、体积系数B等)
第一节 建立数学模型的原则
2.研究各物理量的条件和状况
过程状况:是等温过程还是非等温过程; 系统状况:是单组分系统还是多组分系统,甚至是凝
析系统; 相态状况:是单相还是多相甚至是混相; 流态状况:是服从线性渗流规律还是服从非线性渗流
M
2
d
(3)
将VL、dVL代入(1)式得:
1 d
CL dP
(4)
第三节 状态方程
大气压力(或 初始压力)
P0下流体 的密度
分离变量,CL取常数,并设P=P0时,ρ=ρ0积分(4)式:
eCL (PP0 ) 0
(5)
将(5)式按麦克劳林级数展开,取其前两项已具有足够的精
v K gradP
或写成:
K P
vx
x
vy
K
P y
vz
K
P z
第三节 状态方程
渗流是一个运动过程,而且也是一个状态不断变化的过程, 由于和渗流有关的物质(岩石、液体、气体)都有弹性。因 此,随着状态变化,物质的力学性质会发生变化。所以,描 述由于弹性而引起力学性质随状态而变化的方程式称为“状 态方程”。
三、岩石的状态方程
岩石的压缩性对渗流的影响:①压力变化会引起孔隙大小
发生变化,故孔隙度是随压力而变化的状态函数; ②由于
孔隙大小变化引起渗透率的变化。
岩石的压缩性用压缩系数描述: C f
△φ —当压力变化ΔP时的孔隙度的改变量
V f Vf
Biblioteka Baidu
1 d
P P dP
分离变量,Cf取常数,并设P=P0时,φ
=
φ
积分
0
0 C f (P P0 )
不同岩石的压缩系数是不同的,一般在1.5×10-4~3×10-41/MPa之间。 在弹性变形外,会产生塑性变形,此时应考虑塑性变形状态方程
第四节 质量守恒方程
渗流过程必须遵循质量守恒定律(又称连续性原理)。 即:在地层中任取一微小单元体,在单元体内若没有源和汇 存在,那么包含在单元体封闭表面之内的液体质量变化应等 于同一时间间隔内液体流入质量与流出质量之差。用质量 守恒原理建立起来的方程叫连续性方程。在稳定渗流时,单 元体内质量应为常数。
规律,是否物理化学渗流或非牛顿液体渗流。
第一节 建立数学模型的原则
3.确定未知数和其它物理量之间的关系
运动方程:速度和压力梯度的关系
vi f
状态方程:物理参数和压力的关系
A,
B,
dP dx
Ai=fi(P,T);Bi=fi(P,T) 连续性方程:渗流速度v和坐标及时间的关系或饱和度与
第一节 建立数学模型的原则
三、建立数学模型的步骤 1.确定建立模型的目的和要求
解决的问题:①压力P的分布②速度v的分布(包括求流 量) ③ 饱和度S的分布④ 分界面移动规律。
自变量:空间和时间,(x,y,z)或(r,θ,z)和时间t 因变量:压力P和速度v;两相或多相流S分布 其它参数:地层物性参数(如渗透率K、孔隙度ф、弹
5.根据量纲分析原则检查所建立的数学模型量纲是否一致 6.确定数学模型的适定性:解的存在、唯一、稳定性问题 7.给出问题的边界条件和初始条件
第二节 运动方程
渗流服从线性规律时,渗流速度为: v K P
L
其微分形式为: v K dP
dL
将上式从均质地层的稳定渗流 推广到非均质地层的不稳定渗流
第二章 油气渗流的数学模型
建立数学模型的原则 运动方程 状态方程 质量守恒方程 数学模型的初边值条件
第一节 建立数学模型的原则
建立数学模型的基础 油气渗流数学模型的一般结构 建立数学模型的步骤
第一节 建立数学模型的原则
二、油气渗流数学模型的一般结构
(l)运动方程(所有数学模型必须包括的组成部分)。 (2)状态方程(在研究弹性可压缩的多孔介质或流体时需要包括)。 (3)质量守恒方程(又称连续性方程,它可以将描述渗流过程各个
第三节 状态方程
一、液体的状态方程
液体具有压缩性,随着压力降低,体 积膨胀,其特性可用压缩系数来描述:
CL
1 VL
dVL dP
(1)
根据质量守恒原理,在压缩或膨胀时
液体质量M不变,即
M VL (2)
微分上式得:
dVL
理想气体(分子无体积、分子间无 作用力)状态方程为
PV nRT
P—气体压力 V—压力P时的气体总体积 T—绝对温度 R—气体常数 n—气体摩尔数
真实气体的状态方程
PV Z nRT
z—压缩因子,z=f(P,T),在给定温度压力下实际气体占 有的体积与同条件下理想气体占有体积之比。
第三节 状态方程
确性:
0[1 CL (P P0 )] (6)
C流在L中1值0-,是4(1油一/M气个P层变a)温左量度右,大。它致随不温变度,和可压把力C不L同值略看有成改常变数,;在数地量下级渗
渗流过程若是弹性液体,应将液体状态方程列入描述渗流 力学过程的数学模型。
第三节 状态方程
二、气体状态方程
侧面的诸类方程综合联系起来,是数学模型必要的部分)。 以上三类方程是油气渗流数学模型的基本组成部分。 (4)能量守恒方程(只有研究非等温渗流问题时才用到)。 (5)其它附加的特性方程(特殊的渗流问题中伴随发生的物理或化
学现象附加的方程。如物理化学渗流中的扩散方程等)。 (6)有关的边界条件和初始条件(是渗流数学模型必要的内容)。
单相渗流的连续性方程 两相渗流的连续性方程
第四节 质量守恒方程
坐标和时间的关系:
v= f(x,y,z,t,A,B)(对单相流体)
S= f(x,y,z,t,A,B)(对两相流体)
确定伴随渗流过程发生的其它物理化学作用的函数关系 (如能量转换方程、扩散方程等等)
第一节 建立数学模型的原则
4.写出数学模型所需的综合微分方程(组)
用连续性方程做为综合方程,把其它方程都代入连续性方程中, 最后得到描述渗流过程全部物理现象的统一微分方程或微分方程 组。
性压缩系数C、导压系数æ等)和流体的物理参数(如 粘度μ、密度ρ、体积系数B等)
第一节 建立数学模型的原则
2.研究各物理量的条件和状况
过程状况:是等温过程还是非等温过程; 系统状况:是单组分系统还是多组分系统,甚至是凝
析系统; 相态状况:是单相还是多相甚至是混相; 流态状况:是服从线性渗流规律还是服从非线性渗流
M
2
d
(3)
将VL、dVL代入(1)式得:
1 d
CL dP
(4)
第三节 状态方程
大气压力(或 初始压力)
P0下流体 的密度
分离变量,CL取常数,并设P=P0时,ρ=ρ0积分(4)式:
eCL (PP0 ) 0
(5)
将(5)式按麦克劳林级数展开,取其前两项已具有足够的精
v K gradP
或写成:
K P
vx
x
vy
K
P y
vz
K
P z
第三节 状态方程
渗流是一个运动过程,而且也是一个状态不断变化的过程, 由于和渗流有关的物质(岩石、液体、气体)都有弹性。因 此,随着状态变化,物质的力学性质会发生变化。所以,描 述由于弹性而引起力学性质随状态而变化的方程式称为“状 态方程”。
三、岩石的状态方程
岩石的压缩性对渗流的影响:①压力变化会引起孔隙大小
发生变化,故孔隙度是随压力而变化的状态函数; ②由于
孔隙大小变化引起渗透率的变化。
岩石的压缩性用压缩系数描述: C f
△φ —当压力变化ΔP时的孔隙度的改变量
V f Vf
Biblioteka Baidu
1 d
P P dP
分离变量,Cf取常数,并设P=P0时,φ
=
φ
积分
0
0 C f (P P0 )
不同岩石的压缩系数是不同的,一般在1.5×10-4~3×10-41/MPa之间。 在弹性变形外,会产生塑性变形,此时应考虑塑性变形状态方程
第四节 质量守恒方程
渗流过程必须遵循质量守恒定律(又称连续性原理)。 即:在地层中任取一微小单元体,在单元体内若没有源和汇 存在,那么包含在单元体封闭表面之内的液体质量变化应等 于同一时间间隔内液体流入质量与流出质量之差。用质量 守恒原理建立起来的方程叫连续性方程。在稳定渗流时,单 元体内质量应为常数。
规律,是否物理化学渗流或非牛顿液体渗流。
第一节 建立数学模型的原则
3.确定未知数和其它物理量之间的关系
运动方程:速度和压力梯度的关系
vi f
状态方程:物理参数和压力的关系
A,
B,
dP dx
Ai=fi(P,T);Bi=fi(P,T) 连续性方程:渗流速度v和坐标及时间的关系或饱和度与
第一节 建立数学模型的原则
三、建立数学模型的步骤 1.确定建立模型的目的和要求
解决的问题:①压力P的分布②速度v的分布(包括求流 量) ③ 饱和度S的分布④ 分界面移动规律。
自变量:空间和时间,(x,y,z)或(r,θ,z)和时间t 因变量:压力P和速度v;两相或多相流S分布 其它参数:地层物性参数(如渗透率K、孔隙度ф、弹
5.根据量纲分析原则检查所建立的数学模型量纲是否一致 6.确定数学模型的适定性:解的存在、唯一、稳定性问题 7.给出问题的边界条件和初始条件
第二节 运动方程
渗流服从线性规律时,渗流速度为: v K P
L
其微分形式为: v K dP
dL
将上式从均质地层的稳定渗流 推广到非均质地层的不稳定渗流
第二章 油气渗流的数学模型
建立数学模型的原则 运动方程 状态方程 质量守恒方程 数学模型的初边值条件
第一节 建立数学模型的原则
建立数学模型的基础 油气渗流数学模型的一般结构 建立数学模型的步骤
第一节 建立数学模型的原则
二、油气渗流数学模型的一般结构
(l)运动方程(所有数学模型必须包括的组成部分)。 (2)状态方程(在研究弹性可压缩的多孔介质或流体时需要包括)。 (3)质量守恒方程(又称连续性方程,它可以将描述渗流过程各个