2007年高考.山东卷.文科数学试题及解答
2007年全国高考文科数学试题(山东卷)
19.(本小题满分 12 分) 某公司计划 2008 年在甲、乙两个电视台做总时间不超过 300 分钟的广告,广告总费用不超 过 9 万元,甲、乙电视台的广告收费标准分别为 500 元/分钟和 200 元/分钟.假定甲、乙两个电 视台为该公司所做的每分钟广告,能给公司事来的收益分别为 0.3 万元和 0.2 万元.问该公司如 何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?
1 x
1
.
14.函数 y a ( a 0 , a 1 )的图象恒过定点 A ,若点 A 在直线 mx ny 1 0 ( mn 0 ) 上,则 1 1 的最小值为 . m n 15.当 x (1, 2) 时,不等式 x2 mx 4 0 恒成立,则 m 的取值范围是 .
开始
输入 n
S 0, T 0
10.阅读右边的程序框图,若输入的 n 是 100,则输出的变 量 S 和 T 的值依次是( ) A.2550,2500 B.2550,2550 C.2500,2550 D.2500,2500 11. 设函数 y x3 与 y (1 )x 2 的图象的交点为 (x0, y0) , 则 x0 所 2 在的区间是( ) A. (0, 1) B. (1, 2) C. (2, 3) D. (3, 4)
f (x) f ( y) . 1 f (x) f ( y)
下列函数中不满足其中任何一个等式的是( ) A. f (x) 3x B. f (x) sin x C. f (x) log2 x D. f (x) tan x 3 2 7.命题“对任意的 x R , x x 1 0 ”的否定是( ) 3 2 3 A.不存在 x R , x x 1 0 B.存在 x R , x x2 1 0 3 2 C.存在 x R , x x 1 0 D.对任意的 x R , x3 x2 1 0 频率 8.某班 50 名学生在一次百米测试中,成绩全部介于 13 秒 组距 与 19 秒之间,将测试结果按如下方式分成六组:第一组,成绩 0.36 0.34 大于等于 13 秒且小于 14 秒;第二组,成绩大于等于 14 秒且小 于 15 秒; ……第六组,成绩大于等于 18 秒且小于 19 秒.右图 是按上述分组方法得到的频率分布直方图. 设成绩小于 17 秒的 学生人数占全班总人数的百分比为 x ,成绩大于等于 15 秒且小 0.18 于 17 秒的学生人数为 y ,则从频率分布直方图中可分析出 x 和 y 分别为( ) 0.06 0.04 A.0.9,35 B.0.9,45 0.02 C.0.1,35 D.0.1,45 13 14 15 16 17 第 8 题图
2007年全国统一高考数学试卷(文科)(全国卷一)及答案
2007年全国统一高考数学试卷(文科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设S={x|2x+1>0},T={x|3x﹣5<0},则S∩T=()A.∅B.C.D.2.(5分)α是第四象限角,cosα=,则sinα=()A.B.C.D.3.(5分)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向4.(5分)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.5.(5分)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种B.48种C.96种D.192种6.(5分)下面给出的四个点中,位于表示的平面区域内的点是()A.(0,2) B.(﹣2,0)C.(0,﹣2)D.(2,0)7.(5分)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.8.(5分)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.49.(5分)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件10.(5分)函数y=2cos2x的一个单调增区间是()A.B.C.D.11.(5分)曲线在点处的切线与坐标轴围成的三角形面积为()A.B.C.D.12.(5分)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8二、填空题(共4小题,每小题5分,满分20分)13.(5分)从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为.14.(5分)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=.15.(5分)正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的体积为.16.(5分)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.三、解答题(共6小题,满分80分)17.(10分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA (Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.18.(12分)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获的利润不超过650元的概率.19.(12分)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.20.(12分)设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.21.(12分)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.22.(12分)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P (Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.2007年全国统一高考数学试卷(文科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2007•全国卷Ⅰ)设S={x|2x+1>0},T={x|3x﹣5<0},则S∩T=()A.∅B.C.D.【分析】集合S、T是一次不等式的解集,分别求出再求交集.【解答】解:S={x|2x+1>0}={x|x>﹣},T={x|3x﹣5<0}={x|x<},则S∩T=,故选D.2.(5分)(2007•全国卷Ⅰ)α是第四象限角,cosα=,则sinα=()A.B.C.D.【分析】根据同角的三角函数之间的关系sin2+cos2α=1,得到余弦的值,又由角在第四象限,确定符号.【解答】解:∵α是第四象限角,∴sinα=,故选B.3.(5分)(2007•全国卷Ⅰ)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向【分析】根据向量平行垂直坐标公式运算即得.【解答】解:∵向量,,得,∴⊥,故选A.4.(5分)(2007•全国卷Ⅰ)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.【分析】根据焦点坐标求得c,再根据离心率求得a,最后根据b=求得b,双曲线方程可得.【解答】解.已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则c=4,a=2,b2=12,双曲线方程为,故选A.5.(5分)(2007•全国卷Ⅰ)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种B.48种C.96种D.192种【分析】根据题意,先分析甲,有C42种,再分析乙、丙,有C43•C43种,进而由乘法原理计算可得答案.【解答】解;根据题意,甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,有C42种,乙、丙各选修3门,有C43•C43种,则不同的选修方案共有C42•C43•C43=96种,故选C.6.(5分)(2007•全国卷Ⅰ)下面给出的四个点中,位于表示的平面区域内的点是()A.(0,2) B.(﹣2,0)C.(0,﹣2)D.(2,0)【分析】本题考查的是不等式所表示的平面区域内点所满足的条件的问题,解决此问题只需将点代入验证即可【解答】解:将四个点的坐标分别代入不等式组,解可得,满足条件的是(0,﹣2),故选C.7.(5分)(2007•全国卷Ⅰ)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.【分析】先通过平移将两条异面直线平移到同一个起点B,得到的锐角∠A1BC1就是异面直线所成的角,在三角形中A1BC1用余弦定理求解即可.【解答】解.如图,连接BC1,A1C1,∠A1BC1是异面直线A1B与AD1所成的角,设AB=a,AA1=2a,∴A1B=C1B=a,A1C1=a,∠A1BC1的余弦值为,故选D.8.(5分)(2007•全国卷Ⅰ)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.4【分析】因为a>1,函数f(x)=log a x是单调递增函数,最大值与最小值之分别为log a2a、log a a=1,所以log a2a﹣log a a=,即可得答案.【解答】解.∵a>1,∴函数f(x)=log a x在区间[a,2a]上的最大值与最小值之分别为log a2a,log a a,∴log a2a﹣log a a=,∴,a=4,故选D9.(5分)(2008•上海)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g (x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件【分析】本题主要是抽象函数奇偶性的判断,只能根据定义,而要否定奇偶性,一般用特值.【解答】解.若“f(x),g(x)均为偶函数”,则有f(﹣x)=f(x),g(﹣x)=g (x),∴h(﹣x)=f(﹣x)+g(﹣x)=f(x)+g(x)=h(x),∴“h(x)为偶函数”,而反之取f(x)=x2+x,g(x)=2﹣x,h(x)=x2+2是偶函数,而f(x),g(x)均不是偶函数”,故选B10.(5分)(2007•全国卷Ⅰ)函数y=2cos2x的一个单调增区间是()A.B.C.D.【分析】要进行有关三角函数性质的运算,必须把三角函数式变为y=Asin(ωx+φ)的形式,要先把函数式降幂,降幂用二倍角公式.【解答】解:函数y=2cos2x=1+cos2x,由﹣π+2kπ≤2x≤2kπ,解得﹣π+kπ≤x≤kπ,k为整数,∴k=1即有它的一个单调增区是,故选D.11.(5分)(2007•全国卷Ⅰ)曲线在点处的切线与坐标轴围成的三角形面积为()A.B.C.D.【分析】(1)首先利用导数的几何意义,求出曲线在P(x0,y0)处的切线斜率,进而得到切线方程;(2)利用切线方程与坐标轴直线方程求出交点坐标(3)利用面积公式求出面积.【解答】解:若y=x3+x,则y′|x=1=2,即曲线在点处的切线方程是,它与坐标轴的交点是(,0),(0,﹣),围成的三角形面积为,故选A.12.(5分)(2007•全国卷Ⅰ)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8【分析】先根据抛物线方程求出焦点坐标和准线方程,进而可得到过F且斜率为的直线方程然后与抛物线联立可求得A的坐标,再由AK⊥l,垂足为K,可求得K的坐标,根据三角形面积公式可得到答案.【解答】解:∵抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A(3,2),AK⊥l,垂足为K(﹣1,2),∴△AKF的面积是4故选C.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2007•全国卷Ⅰ)从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为0.25.【分析】由题意知本题是一个统计问题,需要用样本的概率估计总体中位于这个范围的概率,试验发生包含的事件数时20,袋装食盐质量在497.5g~501.5g之间的可以数出有5,利用概率公式,得到结果.【解答】解:从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为P==0.25.故答案为:0.2514.(5分)(2007•全国卷Ⅰ)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=3x(x∈R).【分析】由题意推出f(x)与函数y=log3x(x>0)互为反函数,求解即可.【解答】解.函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x 对称,则f(x)与函数y=log3x(x>0)互为反函数,f(x)=3x(x∈R)故答案为:3x(x∈R)15.(5分)(2007•全国卷Ⅰ)正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的体积为.【分析】先确定球心位置,再求球的半径,然后可求球的体积.【解答】解:正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的球心恰好是底面ABCD的中心,球的半径是1,体积为.故答案为:16.(5分)(2007•全国卷Ⅰ)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.【分析】先根据等差中项可知4S2=S1+3S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.【解答】解:∵等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,∴a n=a1q n﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为三、解答题(共6小题,满分80分)17.(10分)(2007•全国卷Ⅰ)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.【分析】(1)根据正弦定理将边的关系化为角的关系,然后即可求出角B的正弦值,再由△ABC为锐角三角形可得答案.(2)根据(1)中所求角B的值,和余弦定理直接可求b的值.【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)根据余弦定理,得b2=a2+c2﹣2accosB=27+25﹣45=7.所以,.18.(12分)(2007•全国卷Ⅰ)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获的利润不超过650元的概率.【分析】(1)3位购买该商品的顾客中至少有1位采用一次性付款的对立事件是3位顾客中无人采用一次性付款,根据独立重复试验公式得到3位顾客中无人采用一次性付款的概率,再根据对立事件的公式得到结论.(2)3位顾客每人购买1件该商品,顾客的付款方式为一次性付款和分期付款,且购买该商品的3位顾客中有1位采用分期付款,根据互斥事件的公式得到结果.【解答】解:(Ⅰ)记A表示事件:“3位顾客中至少1位采用一次性付款”,则表示事件:“3位顾客中无人采用一次性付款”.P()=(1﹣0.6)3=0.064,.(Ⅱ)记B表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.B0表示事件:“购买该商品的3位顾客中无人采用分期付款”.B1表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则B=B0+B1.P(B0)=0.63=0.216,P(B1)=C31×0.62×0.4=0.432.P(B)=P(B0+B1)=P(B0)+P(B1)=0.216+0.432=0.648.19.(12分)(2007•全国卷Ⅰ)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.【分析】解法一:(1)作SO⊥BC,垂足为O,连接AO,说明SO⊥底面ABCD.利用三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,设AD∥BC,连接SE.说明∠ESD为直线SD与平面SBC所成的角,通过,求出直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,通过证明,推出SA⊥BC.(Ⅱ).与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC 的法向量,利用α与β互余.通过,,推出直线SD与平面SBC所成的角为.【解答】解法一:(1)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥底面ABCD.因为SA=SB,所以AO=BO,又∠ABC=45°,故△AOB为等腰直角三角形,AO⊥BO,由三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,依题设AD∥BC,故SA⊥AD,由,,.又,作DE⊥BC,垂足为E,则DE⊥平面SBC,连接SE.∠ESD为直线SD与平面SBC所成的角.所以,直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥平面ABCD.因为SA=SB,所以AO=BO.又∠ABC=45°,△AOB为等腰直角三角形,AO⊥OB.如图,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,因为,,又,所以,,.S(0,0,1),,,,所以SA⊥BC.(Ⅱ),.与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,所以α与β互余.,,所以,直线SD与平面SBC所成的角为.20.(12分)(2007•全国卷Ⅰ)设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.【分析】(1)依题意有,f'(1)=0,f'(2)=0.求解即可.(2)若对任意的x∈[0,3],都有f(x)<c2成立⇔f(x)max<c2在区间[0,3]上成立,根据导数求出函数在[0,3]上的最大值,进一步求c的取值范围.【解答】解:(Ⅰ)f'(x)=6x2+6ax+3b,因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0.即解得a=﹣3,b=4.(Ⅱ)由(Ⅰ)可知,f(x)=2x3﹣9x2+12x+8c,f'(x)=6x2﹣18x+12=6(x﹣1)(x﹣2).当x∈(0,1)时,f'(x)>0;当x∈(1,2)时,f'(x)<0;当x∈(2,3)时,f'(x)>0.所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.因为对于任意的x∈[0,3],有f(x)<c2恒成立,所以9+8c<c2,解得c<﹣1或c>9,因此c的取值范围为(﹣∞,﹣1)∪(9,+∞).21.(12分)(2007•全国卷Ⅰ)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.【分析】(Ⅰ)设{a n}的公差为d,{b n}的公比为q,根据等比数列和等差数列的通项公式,联立方程求得d和q,进而可得{a n}、{b n}的通项公式.(Ⅱ)数列的通项公式由等差和等比数列构成,进而可用错位相减法求得前n项和S n.【解答】解:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,则依题意有q>0且解得d=2,q=2.所以a n=1+(n﹣1)d=2n﹣1,b n=q n﹣1=2n﹣1.(Ⅱ),,①S n=,②①﹣②得S n=1+2(++…+)﹣,则===.22.(12分)(2007•全国卷Ⅰ)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.【分析】(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,由此可以证出.(Ⅱ)设BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),由题意知|BD|=再求出|AC|=,由此可以求出四边形ABCD的面积的最小值.【解答】证明:(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,所以,.(Ⅱ)(ⅰ)当BD的斜率k存在且k≠0时,BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),则,|BD|=;因为AC与BD相交于点P,且AC的斜率为,所以,|AC|=.四边形ABCD的面积•|BD||AC|=.当k2=1时,上式取等号.(ⅱ)当BD的斜率k=0或斜率不存在时,四边形ABCD的面积S=4.综上,四边形ABCD的面积的最小值为.。
2007年普通高等学校招生全国统一考试文科数学试卷及答案-山东卷
2007年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共50分,在每小题给出的四个选项中,选择一个符合题目要求的选项.1.复数43i1+2i+的实部是( ) A .2- B .2C .3D .42.已知集合11{11}|242x M N x x +⎧⎫=-=<<∈⎨⎬⎩⎭Z ,,,,则M N = ( ) A .{11}-,B .{0}C .{1}-D .{10}-, 3.下列几何体各自的三视图中,有且仅有两个视图相同的是( )A .①②B .①③C .①④D.②④4.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象( ) A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位D .向左平移π6个单位5.已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( ) A .1BC .2D .46.给出下列三个等式:()()()()()()f xy f x f y f x y f x f y =++=,,()()()1()()f x f y f x y f x f y ++=-.下列函数中不满足其中任何一个等式的是( )A .()3xf x = B .()sin f x x =C .2()log f x x =D .()tan f x x =7.命题“对任意的3210x x x ∈-+R ,≤”的否定是( )①正方形 ②圆锥 ③三棱台 ④正四棱锥A .不存在3210x R x x ∈-+,≤ B .存在3210x R x x ∈-+,≤ C .存在3210x R x x ∈-+>,D .对任意的3210x R x x ∈-+>,8.某班50名学生在一次百米测试中,成绩全部介 于13秒与19秒之间,将测试结果按如下方式分成六组:每一组,成绩大于等于13秒且小于14秒;第二 组,成绩大于等于14秒且小于15秒;……第六组, 成绩大于等于18秒且小于等于19秒.右图是按上述 分组方法得到的频率分布直方图,设成绩小于17秒 的学生人数占全班人数的百分比为x ,成绩大于等于15秒且小于17秒的学生人数为y ,则从频率分布直方 图中可以分析出x 和y 分别为( )A .0.935,B .0.945,C .0.135,D .0.145,9.设O 是坐标原点,F 是抛物线22(0)y px p =>的焦点,A 是抛物线上的一点,FA 与x轴正向的夹角为60,则OA为()A .214pB .2C pD .1336p 10.阅读右边的程序框,若输入的n 是100,则输出的变量S 和T 的值依次是( ) A .2550,2500 B .2550,2550 C .2500,2500 D .2500,255011.设函数3y x =与212x y -⎛⎫= ⎪⎝⎭的图象的交点为00()x y ,,则0x 所在的区间是( )A .(01),B .(12),C .(23),D .(34),12.设集合{12}{123}A B ==,,,,,分别从集合A 和B 中随机取一个数和,确定平面上的一个点()P a b ,,记“点()P a b ,落在直线x y n +=上”为事件(25)n C n n ∈N ≤≤,,若事件n C 的概率最大,则n 的所有可能值为( )A .3B .4C .2和5D .3和4秒。
2007年高考文科数学试题及答案(全国卷1)
如果事件 A、B 相互独立,那么 P(A·B)=P(A)·P(B)
如果事件 A 在一次试验中发生的概率是 P,那么 n 次独立重复试验中事件 A 恰好发生 k 次的概率
C
1 n
pk
(1
p) nk
(k
0,1,2,
球的表面积公式 S 4R 2 其中 R 表示球的半径
球的体积公式
一、选择题
V 4 R3 3
1.a 是第四象限角, tan 5 ,则 sin 12
A. 1 5
B. 1 5
2.设 a 是实数,且 a 1 i 是实数,则 a= 1i 2
A. 1 2
B.1
3.已知向量 a=(-5,6),b=(6,5),则 a 与 b
n)
其中 R 表示球的半径
C. 5 13
C. 3 2
2.社会主义本质理论对探索怎样建设3.社19会57主年义2月具,有毛重在要《的关实于践正意确义处。理社人会民主内义2.社部本科会矛质学主盾理的义的论1本本问的.邓质质题提小是的》出平创科讲,提新学话为出,内中我“创涵提们邓社新。出寻始小会的邓(找终平主关小1一代坚义)键平种表持的我2在对能.1中把科本国人社9够国发学质社5才会从4先展社,会年,主更进作会是主,人义深生为主解义毛才本层产执义放制在的质次1力政理生度《成所.认社1的兴论产还论长作.识发会发国和力刚十靠的社展主展的实,刚大教概会才义要第践发建关坚育括主是本求一的展立系2持。,义硬质、,要基生,》以人一,道理发大务本产还重发才方从理论展力是成力没要展资面而,把才促由果,有讲社的源强为把我是进中,消完话会办是调四中发们(硬先国抓灭全中主法第必、国展对2道进共住剥建提三义解一)须科的生社理生产“削立出、经决资采解学社产会,产党什,(代济前源取放技会力主是力的么消还1表基进。从和术主作义)对的执是除不中础科低发是义1为的吧社3发政社两完9国基的学级展.第建发社认二国5会展地会极全先本问技到6生一设展会识、内主,年位主分巩进建题术高产生在才主提发外义是底所义化固生立,实级力产改是义高1展一时中我决,的邓产的是力9,力革硬建到是切间5国定怎最思小力同实和国另3开道设了党积经共对的样终想年平的时行国家一放理的一执极验产农,建达。1一发,改民资方中2,根个政因教党业是设到(月再展我革教本面探是本新兴素训站、对社共2,强要国开育主指索)适任的国都的在手一执会同毛调求的放水义出出第创应务科在的调深时工、政主富1泽,政以平的4了一三造.时,学社第动刻坚代.业发规义裕东中一治来,过2解条节性代符水会一起总持前.和展律”。关社 国个领我始度放发、地主合平阶要来结社列资才认这”于会 社公域们终形和展社提题马。级务为。会,本是识个1总主 会有也党是式发更会9出变克社二关中主保硬的根8路义 主制发的衡。展快主了化思会6、系国义持道深本3线基 义占生一年量所生、义社.的主社发解用工现理化问的本 基主了条,综谓产人的会需义会生决和业金商,题1完制 本体重主邓合国力民根主要基本.主变事所平化向业也,1整度 制,大要小国家的享本9义。本质义化业有方建的是深5的度一变经平力资手受社任原理6本的服问法设根社对刻表确 的个化验年提和本段到会 1务理论第质同务题进与本会党揭一.述立 确共,。出社主社和社主基,的二理时的行社体主实示、:, 立同确苏“会义会目会3义本是提节论,基关改会现义了社.从为 ,富立共社文,社主的主一改矛巩出、的我本键造主和改其社会中当 使裕了二会明就会义。义、造盾固,对重国方是。义根造所会之华代 占,中十主程是主基建中的和和为第社要针这改本基承主一人中 世这国大义度在义本设国基两发进一会意。靠不造要本担义本民国 界是共以财的国基制内成特本类展一节主义的(自仅同求完的本质共一 人我产后富重家本度涵果色完矛社步、义主2己保时。成历质理和切 口们党毛属要直)制的包最伴社成盾会推中本要的证并,史论国发 四必领泽于标接正度确括大随会,的主进国质矛发了举标第的这成展 分须导东人志控确的立(,着主是学义改特理盾展2社。志五需是提立进 之坚的提民。制处确是1.能社义我说采制革色论也。会实着章要对)出,步 一持人出,和理立中够会建国,取度开社的发的践中。马把到奠 的民要社支经,国社充经设强积的放会提生稳证国克解社定 东民“会配济是历会分济道调极必和主出了定明历思放会了 方主以下建4广史主体制路要引然社义变,.史主和主把制 大专苏义的设大上义现度初严导要会二建化而党上义发义对度 国政为的资和劳最的出和步经格、求主设。且坚长的展改企基 进党的鉴致本社动深本对社探济区逐。义确道人极持达重生造业础 入在根社”富主会人刻质资会索结分步现立路民大社数产基的。 了过本会,是义发民最和本经的构过代社的对的会千发力逐本改社渡原主探全经展真伟根主济理发正渡化会初于促主年展概步完造会时则义索民济中正大本义结论生确的建新主步经进义的,括实成和主期。基自共的成任优构成了处方设中义探济了改阶对为现,对义总本己同国一为社务越的果根理式提国基索文社造级于国这人制 社路政的致家系国会性根本两。供的本化会与剥建家是的度 会线治道富资列家变一的本变类中了成制迅主社削设的一改的 ,第制路。本重的革、道变化不国强立度速义会制中社个造建 这三主度。社大主,社路化,同这大,的发事主度国的会过结立 是节要。会义关人也会,1社性场的标重展业义的特本主.渡合极 世、内人主有系解和是主奠我会质巨思志大的的工结(色质义时起大 界社容民义初。决社2义定国主的大想着意需发业束3社0。工期来地 社(会被民原级了会基)世了社义矛而武我义要展化,会(业。,提 会2主概则和3在生本把纪理会经盾深器国同),同实主2化党把高 主对义括专,高一产制资中)论的济,刻。新经遵改总时现义新是在对了 义手制为政第级个资度本国强基阶成在特的通民济循革之并了具民党这资工 运二七度“实一形以料的主又调础级分新别社过主文自4过,举由有主在个本人 动、届 业在一质是式农的.(初义一消,关已民是它会(没主化愿于和的新重主过过主阶 史新社二 的中化上发之民主1步工次灭开系占主要是变4收义不互集平方民(大)义渡渡义级 上民会中 社国三已展)分为人确商划剥阔也绝主正中革官能利中改针主3的用社时时工和 又主全 会的改成生坚。主立)业时削了发对义确国,僚命满、的造,主理和会期期商广 一主义会确”为产持初题正者代,广2生优革处革不资阶足典计解对义论平的.的业大 个义改提立。无,积级资的确改的消阔了势命理命仅√本段人型划决于向和赎五总总搞劳 历革造出 改“产第极形本、分造历除前根,理人的没中而民示体了在社3实买种路路糟动 史命的使 造一阶二领式主落(.析成史两景本社论民具有国形基需党范制诸深会践的经线线成人 性理历中 ,化级是导的义后√ 1农为巨极。的会内体对革成本要的和如刻主意)方济的和为民 的论史国 党”专共、工的中村自变分邓主指部实生命的结建国初实的义积法成主总自的 伟是经“ 和即政同稳家商半国的食。化小义导矛际产在走社束状设家步现社的。极改分体任食积 大以验稳 政社;致步资业殖社革阶其们平。公下盾出力一农会和况。帮构社会转引造—。务其极 胜一毛步 府会人富前本的民会命级力吐对1有,。发的个村主社之加助想会变导资—要.,力性 利、泽地 采主民。进农社地第的必和出社制中(,发以包义会间强的,变革农本社从是的和 。适东由 取义代”的业会半二阶须社了会已国3不展农围的主党原要革中社民主会根)要社创合为农 了工表这方是、主封节级走层会最主成共拘造民城国义矛的则求与保会组义主本从在会造中主业 积大段针国手义建、构农状主终义为产泥成为市营改盾建,2中经持主织工义上全一主性国要极化会话,家工改的.社成村况义达本我党武于破主、经造,设以央济社义起商性改体个义。特代转 领,制成采对业造东会主包,劳到质国领装已��
2007年全国统一高考数学试卷(文科)(全国卷ⅰ)答案与解析
2007年全国统一高考数学试卷(文科)(全国卷Ⅰ)一、选择题(本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.应选D.【解答】解:S={x|2x+1>0}={x|x>﹣},T={x|3x﹣5<0}={x|x<},则S∩T=,故选D.2.应选B.【分析】根据同角的三角函数之间的关系sin2+cos2α=1,得到余弦的值,又由角在第四象限,确定符号.【解答】解:∵α是第四象限角,∴sinα=,故选B.3.应选A.【解答】解:∵向量,,得,∴⊥,故选A.4.应选A.【解答】解.已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则c=4,a=2,b2=12,双曲线方程为,故选A.5.应选C.【解答】解;根据题意,甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,有C42种,乙、丙各选修3门,有C43•C43种,则不同的选修方案共有C42•C43•C43=96种,故选C.6.应选C.【解答】解:将四个点的坐标分别代入不等式组,解可得,满足条件的是(0,﹣2),故选C.【解答】解.如图,连接BC1,A1C1,∠A1BC1是异面直线A1B与AD1所成的角,设AB=a,AA1=2a,∴A1B=C1B=a,A1C1=a,∠A1BC1的余弦值为,故选D.8.应选D.【解答】解.∵a>1,∴函数f(x)=log a x在区间[a,2a]上的最大值与最小值之分别为log a2a,log a a,∴log a2a﹣log a a=,∴,a=4,故选D9.应选B.【解答】解.若“f(x),g(x)均为偶函数”,则有f(﹣x)=f(x),g(﹣x)=g(x),∴h(﹣x)=f(﹣x)+g(﹣x)=f(x)+g(x)=h(x),∴“h(x)为偶函数”,而反之取f(x)=x2+x,g(x)=2﹣x,h(x)=x2+2是偶函数,而f(x),g(x)均不是偶函数”,故选B10.应选D.【解答】解:函数y=2cos2x=1+cos2x,由﹣π+2kπ≤2x≤2kπ,解得﹣π+kπ≤x≤kπ,k为整数,∴k=1即有它的一个单调增区是,故选D.【点评】利用同角三角函数间的关系式、诱导公式、二倍角公式可以化简三角函数式,化简的标准:第一,尽量使函数种类最少,次数最低,而且尽量化成积的形式;第二,能求出值的要求出值;在化简三角函数时,应注意“1”的代换,1=sin2α+cos2α,1=tanα•cotα等,对于函数种类较多的式子,化简时,常用“切化弦法”,遇到象本题高次数的要用二倍角公式降幂.【解答】解:若y=x3+x,则y′|x=1=2,即曲线在点处的切线方程是,它与坐标轴的交点是(,0),(0,﹣),围成的三角形面积为,故选A.12.应选C.【解答】解:∵抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A(3,2),AK⊥l,垂足为K(﹣1,2),∴△AKF的面积是4故选C.二、填空题(共4小题,每小题5分,满分20分)13.0.25【解答】解:从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为P==0.25.故答案为:0.2514.3x(x∈R)【解答】解.函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)与函数y=log3x(x>0)互为反函数,f(x)=3x(x∈R)故答案为:3x(x∈R)15.【解答】解:正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的球心恰好是底面ABCD的中心,球的半径是1,体积为.故答案为:16.【解答】解:∵等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,∴a n=a1q n﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为三、解答题(共6小题,满分80分)17.(10分)【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)根据余弦定理,得b2=a2+c2﹣2accosB=27+25﹣45=7.所以,.18.(12分)【解答】解:(Ⅰ)记A表示事件:“3位顾客中至少1位采用一次性付款”,则表示事件:“3位顾客中无人采用一次性付款”.P()=(1﹣0.6)3=0.064,.(Ⅱ)记B表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.B0表示事件:“购买该商品的3位顾客中无人采用分期付款”.B1表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则B=B0+B1.P(B0)=0.63=0.216,P(B1)=C31×0.62×0.4=0.432.P(B)=P(B0+B1)=P(B0)+P(B1)=0.216+0.432=0.648.19.(12分)【解答】解法一:(1)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥底面ABCD.因为SA=SB,所以AO=BO,又∠ABC=45°,故△AOB为等腰直角三角形,AO⊥BO,由三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,依题设AD∥BC,故SA⊥AD,由,,.又,作DE⊥BC,垂足为E,则DE⊥平面SBC,连接SE.∠ESD为直线SD与平面SBC所成的角.所以,直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥平面ABCD.因为SA=SB,所以AO=BO.又∠ABC=45°,△AOB为等腰直角三角形,AO⊥OB.如图,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,因为,,又,所以,,.S(0,0,1),,,,所以SA⊥BC.(Ⅱ),.与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,所以α与β互余.,,所以,直线SD与平面SBC所成的角为.20.(12分)【解答】解:(Ⅰ)f'(x)=6x2+6ax+3b,因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0.即解得a=﹣3,b=4.(Ⅱ)由(Ⅰ)可知,f(x)=2x3﹣9x2+12x+8c,f'(x)=6x2﹣18x+12=6(x﹣1)(x﹣2).当x∈(0,1)时,f'(x)>0;当x∈(1,2)时,f'(x)<0;当x∈(2,3)时,f'(x)>0.所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.因为对于任意的x∈[0,3],有f(x)<c2恒成立,所以9+8c<c2,解得c<﹣1或c>9,因此c的取值范围为(﹣∞,﹣1)∪(9,+∞).21.(12分)【解答】解:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,则依题意有q>0且解得d=2,q=2.所以a n=1+(n﹣1)d=2n﹣1,b n=q n﹣1=2n﹣1.(Ⅱ),,①S n=,②①﹣②得S n=1+2(++…+)﹣,则===.22.(12分)【解答】证明:(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,所以,.(Ⅱ)(ⅰ)当BD的斜率k存在且k≠0时,BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),则,|BD|=;因为AC与BD相交于点P,且AC的斜率为,所以,|AC|=.四边形ABCD的面积•|BD||AC|=.当k2=1时,上式取等号.(ⅱ)当BD的斜率k=0或斜率不存在时,四边形ABCD的面积S=4.综上,四边形ABCD的面积的最小值为.。
2007年高考文科数学试题及参考答案(山东卷)
2007年高考文科数学试题及参考答案(山东卷)七年级政治复习提纲一.珍惜生命(理解)[七?上P27-32]1.人的生命具有独特性人的生命独特性突出表现在,人类的生命最具有智慧。
人的生命独特性更多地表现在,人的个性品质、人生道路、实现人生价值的方式和途径的多样性。
每个人要根据自己的个性,发挥自己的优势,选择一条适合自己的、独特闪光的成才之路,展示自己的风采,为社会贡献自己的智慧和才能。
2.珍爱我们的生命(1)永不放弃生的希望。
无论何时何地,无论遇到多大的挫折,都不要轻易放弃生的希望。
(2)肯定生命,尊重生命。
每个人的生命都是有价值的。
实现人生的意义,追求生命的价值,要脚踏实地,从现在做起,从一点一滴的小事做起。
每个人对国家、社会和他人都有价值。
在肯定自己的价值,珍爱自己生命的同时,也要尊重他人的生命,善待他人的生命。
当自己的生命受到威胁的时不要轻言放弃,不丧失生的希望;当他人的生命遭遇困境需要帮助的时,尽自己所能伸出援助之手。
(3)延伸生命的价值。
我们要珍爱生命,让有限的生命焕发光彩,并为之不懈努力,不断延伸生命的价值。
二.认识新自我(识记)[七?上P46-53]1.自我认识的必要性人是不断变化发展的,我们需要不断更新、不断完善对自己的认识,才能使自己变得更好和更完美。
2.自我认识的内容全面认识自己,既要认识自己的外在的形象,如外貌、衣着、举止、风度、谈吐等,又要认识自己的内在素质,如学识、心理、道德、能力等;既要看到自己的优点,又要看到自己的缺点。
每个人都是变化发展的,自身的优点、缺点也不是一成不变的。
我们要用发展的目光看待自己,通过不断改正缺点来完善自己。
3.认识自我的途径①通过自我观察认识自己。
②通过他人了解自己。
要重视他人的态度与评价,冷静地分析。
既不能盲从,也不能忽视。
③通过集体了解自己。
一个人在集体中能否与他人友好相处,能否很好地担当自己的责任,会对了解一个人有一定的帮助。
集体往往对一个人的评价更全面、更客观。
2007年高考数学山东文科(详细解答)
2007年普通高等学校招生全国统一考试(山东卷)文科数学逐题详解详析第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共50分,在每小题给出的四个选项中,选择一个符合题目要求的选项.1.复数43i1+2i+的实部是( ) A .2- B .2 C .3 D .42.已知集合11{11}|242x M N x x +⎧⎫=-=<<∈⎨⎬⎩⎭Z ,,,,则M N = ( )A .{11}-,B .{0}C .{1}-D .{10}-,3.下列几何体各自的三视图中,有且仅有两个视图相同的是( ) A .①②B .①③C .①④D .②④4.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( ) A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位 D .向左平移π6个单位5.已知向量(1)(1,)n n ==-,,a b ,若2-a b 与b 垂直,则=a ( )A .1B .2C .2D .46.给出下列三个等式:()()()()()()f xy f x f y f x y f x f y =++=,,()f x y +=()()1()()f x f y f x f y +-.下列函数中不.满足其中任何一个等式的是( ) A .()3xf x = B .()sin f x x =C .2()log f x x =D .()tan f x x =7.命题“对任意的3210x x x ∈-+≤R ,”的否定是( )A .不存在3210x R x x ∈-+≤,B .存在3210x R x x ∈-+≤,C .存在3210x R x x ∈-+>,D .对任意的3210x R x x ∈-+>,8.某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一①正方体 ②圆锥 ③三棱台 ④正四棱锥组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;……第六组,成绩大于等于18秒且小于19秒。
2007年高考数学试题汇编
2007年高考数学试题汇编——排列、组合、二项式1.(全国Ⅰ卷理科第10题)的展开式中,常数项为15,则n= ( D )A.3 B.4 C.5 D.6【解答】的展开式中,常数项为15,则,所以n可以被3整除,当n=3时,,当n=6时,,选D。
2.(全国Ⅰ卷文科第5题)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( C )A.36种 B.48种 C.96种 D.192种【解答】甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有种,选C。
3.(全国Ⅱ卷理科第10题)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( B)A.40种 B.60种 C.100种 D.120种【解答】从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有种,选B。
4.(全国Ⅱ卷文科第10题)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( D)A.10种 B.20种 C.25种 D.32种【解答】5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有25=32种,选D。
5.(北京理科第5题)记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( B )A.1440种B.960种C.720种D.480种【解答】5名志愿者先排成一排,有种方法,2位老人作一组插入其中,且两位老人有左右顺序,共有=960种不同的排法,选B。
6.(北京文科第5题)某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有( A )A.个B.个C.个D.个【解答】某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有个,选A。
2007年山东省高考文科数学试题真题范文
12007年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,选择一个符合题目要求的选项. (1)复数ii2134++的实部是 ( )(A )-2(B )2(C )3(D )4(2)已知集合∈<<=-=+x x N M x ,4221|{},1,1{1Z },则N M = (A ){-1,1} (B ){0} (C ){-1}(D ){-1,0} (3)下列几何体各自的三视图中,有且仅有两个视图相同的是 (A )①② (B )①③ (C )①④ (D )②④(4)要得到函数x y sin =的图象,只需将函数)3cos(π-=x y 的图象(A )向右平移6π个单位 (B )向右平移3π个单位(C )向左平移3π个单位(D )向左平移6π个单位(5)已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则| a |=(A )1(B )2(C )2(D )4(6)给出下列三个等式,=+=++=)(),()()(),()()(y x f y f x f y x f y f x f xy f.)()(1)()(y f x f y f x f -+下列函数中不.满足其中任何一个等式的是 (A )xx f 3)(= (B )x x f sin )(=(C )x x f 2log )(=(D )x x t tan )(=(7)命题“对任意的”∈x R ,nx x 10123≤+-的否定是(A )不存在∈x R ,0123≤+-x x (B )存在∈x R ,0123≤+-x x(C )存在∈x R ,0123>+-x x(D )对任意的∈x R ,0123>+-x x(8)某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组;第 一组,成绩大于等于13秒且小于14秒;第二组,成 绩大于等于14秒且小于15秒;……第六组,成绩大 于等于18秒且小于等于19秒。
山东省2007高考数学样卷(文理各一套)
山东省2007年高考样题数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目、试卷类型(A 或B )用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束后,监考人将本试卷和答题卡一并收回.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1.设集合{}{}6,4,3,2,12≤+==x x x Q P ,则Q P ⋂等于A.{1,2}B. {3,4}C.{1}D. {-2,-1,0,1,2}本小题主要考查不等式的解法及集合的基本运算,考查实数、集合的运算能力. 解答:A 2.一粒骰子,抛掷一次,得到奇数的概率是 A.21 B. 61 C.32 D. 43 本题主要考查互斥事件的概率.解答:A3.下列函数既是奇函数,又在区间[]1,1-上单调递减的是A.x x f sin )(=B.1)(+-=x x fC.()x x a a x f -+=21)(D.x x x f +-=22ln )( 本小题主要考查基本函数及其复合函数的奇偶性与单调性,考查函数基本性质的应用.解答:D4.如果直线l 将圆04222=--+y x y x 平分且不通过第四象限,那么l 的斜率的取值范围是A .⎥⎦⎤⎢⎣⎡21,0B .[]1,0C .[]2,0D .⎪⎭⎫⎢⎣⎡21,0 本小题主要考查直线与圆的位置关系,考查数形结合的能力.解答:C5.已知⎪⎭⎫ ⎝⎛-∈0,2πx ,()54cos -=-x π,则=x 2tan A .247 B .247- C .724 D .724- 本小题主要考查利用同角三角函数关系式与二倍角公式求值,考查运算能力. 解答:D6.已知向量,,且65,2+-=+=,b a CD 27-=,则一定共线的三点是A. A 、B 、DB. A 、B 、CC. B 、C 、DD. A 、C 、D本小题主要考查平面向量的运算与共线向量的概念,考查运算能力.解答:A7.某公司甲、乙、丙、丁四个地区分别有150 个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是A .分层抽样法,系统抽样法B .分层抽样法,简单随机抽样法C .系统抽样法,分层抽样法D .简单随机抽样法,分层抽样法 本小题主要考查随机抽样的三种抽样方法.解答:B8.已知实数a , b 满足等式b a ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛3121,下列五个关系式①0<b<a ②a<b<0 ③0<a<b④b<a<0 ⑤a=b 其中不可能成立的关系式有( ) A .1个 B .2个 C .3个 D .4个本小题主要考查指数式、指对互化以及分类讨论数学思想方法.解答:B9.在x y x y x y y x 2cos ,,log ,222====这四个函数中,当1021<<<x x 时,使()()222121x f x f x x f +>⎪⎭⎫ ⎝⎛+恒成立的函数的个数是 A .0 B .1 C .2 D .3本题主要考查函数的凹凸性,看上去好像超纲,但结合函数的图像准确理解凹凸的含义,不难作出答案.解答:B10.在△ABC 中,若Cc B b A a cos cos cos ==,则ABC ∆是 A.直角三角形 B.等边三角形C.钝角三角形D.等腰直角三角形本题主要考查解三角形的知识,要求对正弦、余弦定理灵活掌握.解答:B11. 变量y x ,满足下列条件:⎪⎪⎩⎪⎪⎨⎧≥≥≤+≥+≥+0,024*********y x y x y x y x ,则使y x z 23+=的值最小的()y x ,是A. ( 4.5 ,3 )B. ( 3,6 )C. ( 9, 2 )D. ( 6, 4 )本小题主要考查一元二次不等式组与平面区域问题以及简单的线性规划问题,考查数形结合的能力.解答:A12.若122=+b a ,222=+c b ,222=+a c ,则ca bc ab ++的最小值为A .213-B .321-C .321--D .321+ 本小题主要考查对代数式的认识,考查综合运用条件解决问题的能力.解答:B第Ⅱ卷(非选择题 共90分)注意事项:1.第Ⅱ卷共7页,用钢笔或圆珠笔直接答在试题卷中.2.答卷前,将密封线内的项目填写清楚.二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.()()=-+++-221111i i i i.本小题主要考查复数的代数运算,考查运算能力.解答:-114.求满足100005312222<++++n 的最大整数解的程序框图A 处应为 .本小题主要考查学生对于基本框图逻辑结构的理解,同时考查学生对于数列求和以及不等式等实际数学问题的具体分析的能力.解答:n -215.已知两个圆:122=+y x ①与()1322=-+y x ②,则由①式减去②式可得上述两圆的对称轴方程,将上述命题在曲线仍为圆()()222r b y a x =-+-和()()222r d y c x =-+-的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为 __________.本小题主要考查圆的方程、圆的公共弦方程的概念,考查抽象思维能力和归纳推广数学命题的能力.解答:()()0222222=--++-+-d c b a y b d x a c .16.已知m 、n 是不同的直线,α、β是不重合的平面,命题p :若βαβα⊂⊂n m ,,//,则n m //命题q :若n m n m //,,βα⊥⊥,则βα//下面的命题中,真命题的序号是 (写出所有真命题的序号). ①“p 或q ”为真;②“p 且q ”为真; ③p 真q 假 ; ④“p ⌝”为真本小题主要考查直线与直线、直线与平面、平面与平面的位置关系以及命题的判断,考查逻辑推理能力和空间想象能力.解答:①④三、解答题(本大题共6小题,共74分.解答应写文字说明;证明过程或演算步骤)(17)(本小题满分12分)甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.(Ⅰ)求甲答对试题数ξ的概率分布及数学期望;(Ⅱ)求甲、乙两人至少有一人考试合格的概率.本小题主要考查概率统计的基础知识,运用数学知识解决问题的能力.解:(Ⅰ)依题意,甲答对试题数ξ的概率分布如下:甲答对试题数ξ的数学期望E ξ=5961321210313010=⨯+⨯+⨯+⨯. (Ⅱ)设甲、乙两人考试合格的事件分别为A 、B ,则P (A )=310361426C C C C +=321202060=+,P (B )=15141205656310381228=+=+C C C C . 因为事件A 、B 相互独立,方法一:∴甲、乙两人考试均不合格的概率为 ()()()45115141321=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=⋅=⋅B P A P B A P ∴甲、乙两人至少有一人考试合格的概率为 ()454445111=-=⋅-=B A P P 答:甲、乙两人至少有一人考试合格的概率为4544. 方法二:∴甲、乙两人至少有一个考试合格的概率为 ()()()454415143215143115132=⨯+⨯+⨯=⋅+⋅+⋅=B A P B A P B A P P 答:甲、乙两人至少有一人考试合格的概率为4544. (18)(本小题满分12分) 已知向量()x x cos ,sin 2=,)cos 2,cos 3(x x =,定义函数 ()()1log -⋅=x f a ()1,0≠>a a(I )求函数()x f 的最小正周期;(II )确定函数()x f 的单调递增区间.本小题主要考查平面向量与三角函数的综合运用.解:(I )因为12cos 2sin 3cos 2cos sin 322++=+=⋅x x x x x n m 所以()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=62sin 2log πx x f a ,故ππ==22T (II )令()⎪⎭⎫ ⎝⎛+=62sin 2πx x g ,则()x g 的单调递增的正值区间是Z k k k ∈⎪⎭⎫ ⎝⎛+-,6,12ππππ, ()x g 的单调递减的正值区间是Z k k k ∈⎪⎭⎫ ⎝⎛++,125,6ππππ 当10<<a 时,函数()x f 的单调递增区间为Z k k k ∈⎪⎭⎫ ⎝⎛++,125,6ππππ 当1>a 时,函数()x f 的单调递增区间为Z k k k ∈⎪⎭⎫ ⎝⎛+-,6,12ππππ (19) (本小题满分12分)如图,在棱长为1的正方体1111D C B A ABCD -中,点E 是棱BC 的中点,点F 是棱CD 上的动点.(Ⅰ)试确定点F 的位置,使得F D 1⊥平面AB 1F ;(Ⅱ)当D 1E ⊥平面AB 1F 时,求二面角C 1―EF ―A 的余弦值;(III )求异面直线D 1E 与BC 1所成的角.本小题主要考查线面关系和正方体等基础知识,考查空间想象能力、运算能力和推理论证能力.利用两平面的法向量求也可.解:(Ⅰ)连结A 1B ,则A 1B 是D 1E 在面ABE 1A 1上的射影.∵AB 1⊥A 1B ,∴D 1E ⊥AB 1于是D 1E ⊥平面AB 1F , D 1E ⊥AF .连接DE ,则DE 是D 1ED 底面ABCD 内的射影.∴D 1E ⊥AF ,DE ⊥AF .∵ABCD 是正方形,E 是BC 的中点,∴当且仅当F 是CD 的中点时,DE ⊥AF , 既当点F 是CD 的中点时,D 1F ⊥平面AB 1F .(Ⅱ)当D 1E ⊥平面AB 1F 时,由(Ⅰ)知点F 是CD 的中点.又已知点E 是BC 的中点,连结EF ,则EF ∥BD .连接AC ;设AC 与EF 交于点H ,则CH ⊥EF .连结C 1H ,则CH 是C 1H 在底面ABCD 内的影.∴C 1H ⊥EF ,既∠C 1HC 上二面角C 1-EF -C 的平面角.在Rt △C 1CH 中,∵C 1C =1,CH =41,AC =42. ∴22421tan 11===∠CH C C HC C . ∴cos ∠C 1HC =31 故二面角C 1-EF -A 的余弦值为31 (III )连结1BC ,取11D A 的中点G ,连接BG ,因为 B E //1GD ,BE =1GD , 则BG //D 1E ,则直线BG 与BC 1所成的角,即为异面直线D 1E 与BC 1所成的角 在△BC 1G 中,由余弦定理得22cos 1=∠GBC ,则所求角为ο45. (20)(本小题满分12分)(I )已知椭圆C 的方程是()012222>>=+b a b y a x ,设斜率为k 的直线l ,交椭圆C 于A 、B 两点,AB 的中点为M . 证明:当直线l 平行移动时,动点M 在一条过原点的定直线上;(Ⅱ)利用(I )所揭示的椭圆几何性质,用作图方法找出下面给定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心.本题主要考查直线与椭圆的位置关系,学生的作图能力.解:(I )设直线l 的方程为m kx y +=,与椭圆C 的交点()11,y x A 、()22,y x B , 则有⎪⎩⎪⎨⎧=++=12222b y ax m kx y , 解得 02)(222222222=-+++b a m a kmx a x k a b , ∵ 0>∆,∴ 2222k a b m +<,即 222222k a b m k a b +<<+-.则 222221212222212,2ka b m b m kx m kx y y k a b km a x x +=+++=++-=+, ∴ AB 中点M 的坐标为⎪⎪⎭⎫ ⎝⎛++-22222222,k a b m b k a b km a .∴ 线段AB 的中点M 在过原点的直线 022=+y k a x b 上. (Ⅱ)如图,作两条平行直线分别交椭圆于A 、B 和C 、D ,并分别取AB 、CD 的中点M 、N ,连接直线MN ;又作两条平行直线(与前两条直线不平行)分别交椭圆于A 1、B 1和C 1、D 1,并分别取A 1B 1、C 1D 1的中点M 1、N 1,连接直线M 1N 1,那么直线MN 和M 1N 1的交点O 即为椭圆中心.21.(本小题满分12分)已知函数()()0,,ln 2≠+-==a bx ax x g x x f(Ⅰ)若2=b ,且()()()x g x f x h -=存在单调递减区间,求a 的取值范围;(Ⅱ)设函数()x f 的图象C 1与函数()x g 图象C 1交于点P 、Q ,过线段PQ 的中点作x 轴的垂线分别交C 1,C 2于点M 、N ,证明C 1在点M 处的切线与C 2在点N 处的切线不平行. 本题综合考察导数在解决函数单调性,函数曲线的切线等问题中的作用.解:(I )x ax x x h b 221ln )(,22--==时,则.1221)(2x x ax ax x x h -+-=--=' 因为函数()x h 存在单调递减区间,所以0)(<'x h 有解.又因为0>x 时,则0122>-+x ax 有0>x 的解.①当0>a 时,122-+=x ax y 为开口向上的抛物线,0122>-+x ax 总有0>x 的解;②当0<a 时,122-+=x ax y 为开口向下的抛物线,而0122>-+x ax 总有0>x 的解;则044>+=∆a ,且方程0122=-+x ax 至少有一正根.此时,01<<-a 综上所述,a 的取值范围为()()+∞⋃-,00,1.(II )证法一 设点P 、Q 的坐标分别是()11,y x P ,()22,y x Q ,210x x <<,则点M 、N 的横坐标为,221x x x += 在C 1点M 处的切线斜率为,2|1212121x x x k x x x +==+= 在C 2点N 处的切线斜率为b x x a b ax k x x x ++=+=+=2)(|212221假设C 1在点M 处的切线与C 2在点N 处的切线平行,则21k k = 即b x x a x x ++=+2)(22121,则)2()(2)()(2)(21212221221222112bx x abx x a x x b x x a x x x x +-+=-+-=+-=1212ln ln x x y y -=- 所以1212121)1(2ln x x x x x x +-= 设12x x t =则1,1)1(2ln >+-=t t t t ① 令1,1)1(2ln )(>+--=t t t t t r ,则22214(1)(),(1)(1)t r t t t t t -'=-=++ 因为1>t 时,0)(>'t r ,所以)(t r 在),1[+∞上单调递增. 故.0)1()(=>r t r 则t t t +->1)1(2ln . 这与①矛盾,假设不成立.故C 1在点M 处的切线与C 2在点N 处的切线不平行. 证法二:同证法一得)(2)ln )(ln (121212x x x x x x -=-+ 因为01>x ,所以)1(2ln )1(121212-=+x x x x x x令12x x t =,得1),1(2ln )1(>-=+t t t t ② 令11ln )(,1),1(2ln )1()(-+='>--+=t t t r t t t t t r 则 因为22111)1(ln t t t t t t -=-='+,所以1>t 时,0)1(ln >'+t t故t t 1ln +在[)+∞,1上单调递增.从而011ln >-+t t ,即0)(>'t r于是)(t r 在[)+∞,1上单调递增.故0)1()(=>r t r 即)1(2ln )1(->+t t t 这与②矛盾,假设不成立. 故C 1在点M 处的切线与C 2在点N 处的切线不平行. 22.(本小题满分14分)已知数列{}n b 是等差数列,100,1103211=+++=b b b b b , (Ⅰ)求数列{}n b 的通项n b ;(Ⅱ)设数列{}n a 的通项⎪⎪⎭⎫ ⎝⎛+=n n ba 11lg ,记n S 是数列{}n a 的前n 项和,试比较n S 与1lg 21+n b 的大小,并证明你的结论. 本题是综合题,主要考查等差数列、数学归纳法、对数函数的性质等基本知识,以及归纳猜想,等价转化和代数式恒等变形的能力,相比之下,对能力的考查,远远高于对知识的考查.解:(Ⅰ)设数列{}n b 的公差为d ,由题意得⎪⎩⎪⎨⎧=-+=1002)110(1010,111d b b 解得⎩⎨⎧==211d b ∴12-=n b n(Ⅱ)由12-=n b n ,知()⎪⎭⎫ ⎝⎛-+++⎪⎭⎫ ⎝⎛+++=1211lg 311lg 11lg n S n()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛++=121131111lg n ,12lg lg 211+=+n b n .因此要比较n S 与1lg 21+n b 的大小,可先比较与12+n 的大小.取1=n ,有()11+>112+⋅,取2=n ,有(1+1)(1+31)>122+⋅,……由此推测(1+1)(1+31)…(1+121-n )>12+n . ①若①式成立,则由对数函数性质可断定:1lg 21+>n n b S 下面用数学归纳法证明①式. (i )当1=n 时已验证①式成立.(ii )假设当k n =()Z k k ∈≥,1时,①式成立,即(1+1)(1+31)…(1+121-k )>12+k .那么,当1+=k n 时,(1+1)(1+31)…(1+121-k )[1+1)1(21-+k ]>12+k (1+121+k )=1212++k k ()22+k , ∵()2221212⎥⎦⎤⎢⎣⎡+++k k k -2)32(+k=012112)384(48422>+=+++-++k k k k k k ,2)k +>=. 因而 .1)1(2)1211)(1211()311)(11(++>++-+++k k k这就是说①式当1+=k n 时也成立.由(i ),(ii )知①式对任何正整数n 都成立. 由此证得:1lg 21+>n n b S山东省2007年高考样题数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目、试卷类型(A 或B )用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上. 3.考试结束后,监考人将本试卷和答题卡一并收回.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1.设P 、Q 为两个非空实数集合,定义集合},5,2,0{},,|{=∈∈+=+P Q b P a b a Q P 若}6,2,1{=Q ,则Q P +中元素的个数是A .9B .8C .7D .6本题主要考查集合概念的理解,以及对知识的迁移能力,对基本知识的掌握要准确、牢固. 解答:B2.一粒骰子,抛掷一次,得到奇数的概率是A.21 B.61 C.32 D. 43本题主要考查考生对于古典概型的理解、运用,互斥事件的概率加法公式. 解答:A3.若b a c b a +===,2,1,且a c ⊥,则向量a 与b的夹角为A.30°B.60°C.120°D.150°本题主要考查向量的内积及运算,向量的内积是解决夹角与距离的工具,应灵活掌握. 解答:C4. 为了得到函数)62s i n (π-=x y 的图象,可以将函数x y 2cos =的图象( )A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度本题 综合考查三角函数诱导公式,三角函数图象变换的知识,以及逻辑分析能力和直觉思维能力. 答案;B5. 在下列关于直线l 、m 与平面α、β的命题中,真命题是 A.若β⊂l 且βα⊥,则α⊥l B.若β⊥l 且βα//,则α⊥l .C.若β⊥l 且βα⊥,则α//lD. 若m =⋂βα且m l //,则α//l . 本题主要考查立体几何初步的有关知识,包括直线与直线、直线与平面、平面与平面的位置关系的知识,要求学生有很好的空间想象能力. 解答:B6.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是 A .②、③都不能为系统抽样 B .②、④都不能为分层抽样C .①、④都可能为系统抽样D .①、③都可能为分层抽样本题主要考查统计中的抽样方法的有关知识,新课程把这部分只是放到了必修内容里,也就是说对于现代公民应必备的知识,反映了我们整个国家的进步,此类题型应该给予重视. 解答:D7. 若过定点)0,1(-M 且斜率为k 的直线与圆05422=-++y x x 在第一象限内的部分有交点,则k 的取值范围是A.50<<kB.05<<-kC. 130<<kD.50<<k 本题主要考查平面解析几何初步知识,包括圆的一般方程、圆的标准方程、直线与圆的交点等知识,但此题考察的解题方法是数形结合的思想方法. 解答:A8 . 向高为H 的水瓶中注水, 注满为止. 如果注水量V 与水深h 的函数关系的图象如右图所示, 那么水瓶的形状是( )解答:B9 . 在△ABC 中,若CcB b A a cos cos cos ==,则△ABC 是 A.直角三角形. B.等边三角形. C.钝角三角形. D.等腰直角三角形.本题主要考查解三角形的知识, 要求对正弦、余弦定理灵活掌握. 解答:B10.已知实数b a ,满足等式,)31()21(b a =下列五个关系式①a b <<0 ②0<<b a ③b a <<0 ④0<<a b⑤b a =其中不可能...成立的关系式有A .1个B .2个C .3个D .4个本小题综合考查指数式、指数式与对数式互化以及指数函数的有关知识,分类讨论数学思想方法. 解答:BhABCD11.在R 上定义运算).1(:y x y x -=⊗⊗若不等式1)()(<+⊗-a x a x 对任意实数x 成立,则A .11<<-aB .20<<aC .2321<<-a D .2123<<-a 本题以一元二次不等式的有关知识为载体,综合考查考生利用已经获取的信息,处理并解决新问题的能力. 解答:C12.在直角坐标系xoy 中,已知A O B ∆三边所在直线方程分别为3032,0,0=+==y x y x则AOB ∆内部和边上整点(即横、纵坐标均为整数的点)的总数是A .95B .91C .88D .75本题主要考查了解析几何必修内容的线性规划. 解答:B第Ⅱ卷(非选择题 共90分)注意事项:1.第Ⅱ卷共7页,用钢笔或圆珠笔直接答在试题卷中. 2.答卷前,将密封线内的项目填写清楚.二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.复数),,,(,R d c b a di c bi a ∈++的积为实数的充要条件是 . 本题主要考查复数和常用逻辑用语的知识. 解答:0=+bc ad14.在一项打鼾与患心脏病的调查中,共调查了1671人,经过计算得63.272=K ,根据这一数据分析,我们有理由认为打鼾与患心脏病是 的(有关,无关)本题主要考查统计案例的有关知识,对828.102>K 就有99.9%理由认为两个量是有关系的.解答:有关.15. 已知n 次多项式()n n n n n a x a x a x a x P ++++=--1110 ,如果在一种算法中,计算kx 0()n k ,4,3,2=的值需要1-k 次乘法,计算()03x P 的值共需要9次运算(6次乘法,3次加法),那么计算()010x P 的值共需要 次运算. 下面给出一种减少运算次数的算法:()()()1100,+++==k k k a x xP x P a x P ,(=k 0, 1,2,…,1-n ).利用该算法,计算()03x P 的值共需要6次运算,计算()010x P 的值共需要 次运算.本题涉及算法的知识,但重在考查考生的合情推理能力和创造性思维能力. 解答:65,2016. 以下四个关于圆锥曲线的命题中:①设A 、B 为两个定点,k 为非零常数,||||PA PB k -=,则动点P 的轨迹为双曲线;②过定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若1(),2OP OA OB =+则动点P 的轨迹为椭圆;③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④双曲线13519252222=+=-y x y x 与椭圆有相同的焦点.其中真命题的序号为 (写出所有真命题的序号).本题通过多选的开放形势,综合考查椭圆和双曲线的概念、简单几何性质,并结合平面向量的知识,考查学生处理简单轨迹问题的能力 . 解答: ③④三、解答题(本大题共6小题,共74分.解答应写文字说明、证明过程或演算步骤)17.(本小题满分12分)已知232,534cos παππα<≤=⎪⎭⎫ ⎝⎛+.求⎪⎭⎫ ⎝⎛+42cos πα的值.本小题考查两角和正、余弦公式,倍角的正弦、余弦公式,同角三角函数的基本关系式以及诱导公式等基础知识,考查基本运算能力.解:……3分47443ππαπ<+≤且0)4cos(>+πα,∴47423ππαπ<+≤………………………………6分从而,……………8分…………………………10分………………………………12分18.(本题满分12分)某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.(I )写出图一表示的市场售价与时间的函数关系P =f (t ); 写出图二表求援 种植成本与时间的函数关系式Q =g (t );(II )认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/210kg ,时间单位:天)300本题主要考查由函数图象建立函数关系式和求函数最大值的问题,考查运用所学知识解决实际问题的能力.解:(I )由图一可得市场售价与时间的函数关系为由图二可得种植成本与时间的函数关系为(II )设t 时刻的纯收益为h (t ),则由题意得 h (t )=f (t )-g (t )即当0≤t ≤200时,配方整理得所以,当t =50时,h (t )取得区间[0,200]上的最大值100; 当200< t ≤300时,配方整理得所以,当t =300时,h (t )取得区间[200,300]上的最大值87.5. 综上,由100>87.5可知,h (t )在区间[0,300]上可以取得最大值100,此时t =50,即从二月一日开始的第50天时,上市的西红柿纯收益最大. 19.(本小题满分12分)如图, 在直三棱柱111C B A ABC -中,3=AC ,5AB =,4=BC ,41=AA ,点D 是AB 的中点, (I )求证:1BC AC ⊥; (II )求证:11//CDB AC 平面.本题考察学生对空间图形中直线与直线,直线与平面相互关系的识别能力,综合考查学生的空间想象能力、逻辑推理能力.证明:(I )直三棱柱111C B A ABC -,底面三边长3=AC ,5=AB ,4=BC∴ BC AC ⊥,又ABC CC 平面⊥1,∴1BC 在平面ABC 内的射影为BC ∴1BC AC ⊥;(II )设1CB 与B C 1的交点为E ,连结DE ,∵ D 是AB 的中点,E 是1BC 的中点,∴ 1//AC DE , ∵ 1CDB DE 平面⊂,11CDB AC 平面⊄,∴11//CDB AC 平面 . 20.(本小题满分12分)设数列{}n a 的前项和为22n S n =,{}n b 为等比数列,且11b a =, ()1122b a a b =-, (Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)设nnn b a c =,求数列{}n c 的前n 项和n T . 本题主要考查等差数列、等比数列基本知识和数列求和的基本方法以及运算能力.解:(Ⅰ)因为当1=n 时,211==S a ,当2≥n 时, ()24122221-=--=-=-n n n S S a n n n ,故{}n a 的通项公式为24-=n a n ,设{}n b 的公比为q ,则11b qd b =,4=d ,所以41=q 故111412--⎪⎭⎫ ⎝⎛⨯==n n n q b b ,即{}n b 的通项公式为142-=n n b(Ⅱ)∵()114124224---=-==n n nn n n n b a c ,∴121214)12(...45431...--++⨯+⨯+=+++=n n n n c c c T ,n n n n n T 4)12(4)32(...4543414132⨯-+⨯-++⨯+⨯+⨯=-,两式相减得()()]54)56[(314124...4442131321+-=-+++++--=-n n n n n n T , ∴]54)56[(91+-=n n n T . 21.(本小题共12分) 已知函数()a x x x x f +++-=9323,(I )求()x f 的单调递减区间;(II )若()x f 在区间[-2,2]上的最大值为20,求它在该区间上的最小值. 本题主要考查导数在研究函数中的应用,会用导数求函数的单调区间、最值. 解:(I )()9632++-='x x x f ,令()0<'x f ,解得1-<x 或3>x ,所以函数()x f 的单调递减区间为(-∞,-1),(3,+∞).(II )因为()a a f +=+-+=-2181282,()a a f +=+++-=22181282, 所以()()22->f f ,因为在(-1,3)上()0>'x f ,所以()x f 在[-1, 2]上单调递增,又由于()x f 在[-2,-1]上单调递减,因此()2f 和()1-f 分别是()x f 在区间[-2,2]上的最大值和最小值,于是有 2022=+a ,解得 2-=a , 故()29323-++-=x x x x f ,因此72931)1(-=--+=-f ,即函数()x f 在区间[-2,2]上的最小值为-7.22.(本题满分14分)已知抛物线)0(22>=p px y 的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5.过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M ,(I )求抛物线方程;(II )过M 作FA MN ⊥,垂足为N ,求点N 的坐标;(Ⅲ)以M 为圆心,MB 为半径作圆M ,当)0,(m K 是x 轴上一动点时,讨论直线AK 与圆M 的位置关系.本题考查抛物线的标准方程和简单几何性质,直线的方程,直线与抛物线、圆的位置关系,以及点到直线的距离公式的等基本知识,综合考查学生运用解析法处理几何问题的能力.解:(I )抛物线2,524,222=∴=+-==p p p x px y 于是的准线为. ∴抛物线方程为x y 42=.(II )∵点A 的坐标是(4,4), 由题意得()4,0B ,()2,0M ,又∵()0,1F , ∴,43,;34-=∴⊥=MN FA k FA MN k 则FA 的方程为()134-=x y ,MN 的方程为x y 432-=-, 解方程组)54,58(5458,432)1(34N y x x y x y ∴⎪⎪⎩⎪⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧-=--=得. (Ⅲ)由题意得,圆M 的圆心是点(0,2),半径为2.当4=m 时,直线AK 的方程为4=x ,此时,直线AK 与圆M 相离,当4≠m 时,直线AK 的方程为),(44m x my --=即为04)4(4=---m y m x , 圆心()2,0M 到直线AK 的距离2)4(16|82|-++=m m d ,令1,2>>m d 解得.1>∴m 当时,直线AK 与圆M 相离; 当1=m 时,直线AK 与圆M 相切;当1<m 时,直线AK 与圆M 相交.。
2007年(全国卷II)(含答案)高考文科数学
2007年普通高等学校招生全国统一考试(2全国Ⅱ卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分) 1.cos330= ( )A .12B .12-C .32D .32-2.设集合{1234}{12}{24}U A B ===,,,,,,,,则()U A B = ð( ) A .{2}B .{3}C .{124},,D .{14},3.函数sin y x =的一个单调增区间是( )A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π ⎪2⎝⎭,4.下列四个数中最大的是( ) A .2(ln 2) B .ln(ln 2)C .ln 2D .ln 25.不等式203x x ->+的解集是( ) A .(32)-, B .(2)+∞, C .(3)(2)-∞-+∞ ,, D .(2)(3)-∞-+∞ ,,6.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( )A .23B .13C .13-D .23-7.已知三棱锥的侧棱长的底面边长的2倍,则侧棱与底面所成角的余弦值等于( ) A .36B .34C .22D .328.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .49.把函数e x y =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( ) A .e 2x +B .e 2x -C .2e x -D .2e x +10.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( ) A .10种B .20种C .25种D .32种11.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .13B .33C .12D .3212.设12F F ,分别是双曲线2219y x +=的左、右焦点.若点P 在双曲线上,且120PF PF =,则12PF PF += ( )A .10B .210C .5D .25二、填空题:本大题共4小题,每小题5分,共20分.13.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .14.已知数列的通项52n a n =-+,则其前n 项和n S = .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.821(12)1x x ⎛⎫++ ⎪⎝⎭的展开式中常数项为 .(用数字作答)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)设等比数列{}n a 的公比1q <,前n 项和为n S .已知34225a S S ==,,求{}n a 的通项公式.18.(本小题满分12分)在ABC△中,已知内角Aπ=3,边23BC=.设内角B x=,周长为y.(1)求函数()y f x=的解析式和定义域;(2)求y的最大值.19.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率()0.96P A=.(1)求从该批产品中任取1件是二等品的概率p;(2)若该批产品共100件,从中任意抽取2件,求事件B:“取出的2件产品中至少有一件二等品”的概率()P B.20.(本小题满分12分)如图,在四棱锥S ABCD-中,底面ABCD为正方形,侧棱SD⊥底面ABCD E F,,分别为AB SC,的中点.(1)证明EF∥平面SAD;(2)设2SD DC=,求二面角A EF D--的大小.A EB CF SD21.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线:43=-y x 相切 (1)求圆O 的方程(2)圆O 与x 轴相交于A 、B 两点,圆内的动点P 使|P A |、|PO |、|PB |成等比数列,求PA PB ∙的取值范围。
2007年高考文科数学试题及参考答案(山东卷)
◆精神损害赔偿数额确定的因素法定因素(1)侵权人的过错程度。
过错作为民事责任的构成要件之一,对于侵权行为是否承担民事责任是至关重要的。
过错包括故意和过失两种情况,区别故意和过失在精神损害赔偿中意义是较大的。
因为侵权人的过错程度一般与损害程度密切相联。
侵害人的主观故意或过失对受害人所产生的精神损害有轻重之别,因此在确定损害赔偿额时将侵害人的主观过错程度作为一个重要的参考因素。
(2)侵害的手段、场合,行为方式等情节。
侵权人侵权的具体情节不同,可以反映出侵权人的主观恶意程度和社会危害性大小的不同。
对受害人来说所造成精神损害肯定有所不同,应区分不同的情节,确定不同数额。
(3)侵权行为所造成的后果。
在有些情况下尽管采用极其恶劣的手段,但尚未造成严重后果,可酌情减少赔偿金的数额。
(4)侵权人的获利情况。
对于侵权人而言,如果其侵权行为获利较多,可酌情增加赔偿金数额。
(5)侵权人承担责任的经济能力。
视侵权人经济能力的不同,酌定不同的赔偿金数额。
(6)受诉法院所在地平均生活水平。
受诉法院所在地平均生活水平是确定赔偿金的重要因素。
可视受诉法院所在地平均生活水平的不同,酌定该地区赔偿金的数额酌定因素:A当事人主体的类别B侵权人的认错态度和受害人谅解程度; C侵权人的实际赔偿能力; D诉讼地的经济状况。
◆最高人民法院将统一精神损害赔偿标准:1111侵害他人生命权的精神损害抚慰金的赔偿数额,可依照该地区上年度职工平均工资标准赔偿20年。
受害人不满16岁的,每小一岁减一年,最低不少于5年;60岁以上的,每增加一岁减少一年,最低不少于5年。
侵害他人健康权的精神损害抚慰金的赔偿数额,参照侵害生命权的精神损害抚慰金的赔偿标准予以酌减,但不以受害人年龄作为参酌因素。
侵害他人身体权的,参照侵害精神性人格权的赔偿标准酌定赔偿数额。
同时,侵害他人精神性人格权的,将根据以下标准酌定赔偿数额:严重精神损害,抚慰金的赔偿数额分为5万元、4万元、3万元、2万元和1万元五个等级;一般性精神损害,抚慰金的赔偿数额分为8000元、6000元、4000元和2000元四个等级。
山东省春季高考数学试题2007年真题(附答案)
封
密
数学试题 第 2 页 共 5 页
线
学校______________班级______________专业______________考试号______________姓名______________
四、三角解答题
(D) y=cos x
12.若直线 y=3 x-b 与圆 x2+y2=10 相切,则实数 b 的值是
(A) -10
(B) -15
(C) 15 或-15
(D) 10 或-10
13.盒内有 9 支铅笔,其中红色铅笔 5 支,蓝色铅笔 4 支,从中任取 2 支,恰好取到相同颜色
铅笔的概率是 1
(A) 6
5 (B) 18
19.已知双曲线
x2 9
+
yk2=1 的离心率是方程 6
x2-13
x+5=0 的一个根,则该双曲线的渐近线
方程是
(A) y=±43 x
(B) y=±53 x
(C) y=±196 x
(D) y=±34 x
20.小王同学利用在职业学校学习的知识,设计了一个利用计算机进行数字变换的游戏:只要
25.有 200 m 长的篱笆材料,如果利用已有的一面墙(设长度够用)作为一边,围成一块矩形 菜地,
28.已知:如图,椭圆的中心在坐标原点 O,焦点在 x 轴上,F1 是椭圆的左焦点,M (0,2) 是 椭圆的一个顶点,且 OF1M=30,过点 F1 作直线 l F1M.(1) 求椭圆的标准方程和直线 l 的 方程; (2) 设直线 l 与椭圆交于 A,B 两点,P 是椭圆上的动点,求△PAB 面积 S 的最大值.
2007年高考真题试卷山东卷数学文科参考答案
2007年普通高等学校招生全国统一考试(山东文卷)答案一、选择题 1.B 2.C 3.D 4.A 5.C 6.B 7.C 8.A 9.B10.A11.B12.D二、填空题 13.1200714.1 15.5m -≤ 16.22(2)(2)2x y -+-=三、解答题 17.解:(1)sin tan 3737cos CC C=∴=, 又22sin cos 1C C +=解得1cos 8C =±.tan 0C >,C ∴是锐角.1cos 8C ∴=. (2)52CB CA =,5cos 2ab C ∴=, 20ab ∴=. 又9a b +=22281a ab b ∴++=. 2241a b ∴+=.2222cos 36c a b ab C ∴=+-=.6c ∴=.18.解:(1)由已知得1231327:(3)(4)3.2a a a a a a ++=⎧⎪⎨+++=⎪⎩,解得22a =.设数列{}n a 的公比为q ,由22a =,可得1322a a q q==,. 又37S =,可知2227q q++=,即22520q q -+=, 解得12122q q ==,. 由题意得12q q >∴=,. 11a ∴=.故数列{}n a 的通项为12n n a -=. (2)由于31ln 12n n b a n +==,,,, 由(1)得3312n n a +=3ln 23ln 2n n b n ∴==又13ln 2n n n b b +-={}n b ∴是等差数列.12n n T b b b ∴=+++1()2(3ln 23ln 2)23(1)ln 2.2n n b b n n n +=+=+=故3(1)ln 22n n n T +=. 19.解:设公司在甲电视台和乙电视台做广告的时间分别为x 分钟和y 分钟,总收益为z 元,由题意得3005002009000000.x y x y x y +⎧⎪+⎨⎪⎩≤,≤,≥,≥目标函数为30002000z x y =+.二元一次不等式组等价于3005290000.x y x y x y +⎧⎪+⎨⎪⎩≤,≤,≥,≥作出二元一次不等式组所表示的平面区域,即可行域.如图:100 200 300100200 300 400500yxlM作直线:300020000l x y +=, 即320x y +=.平移直线l ,从图中可知,当直线l 过M 点时,目标函数取得最大值.联立30052900.x y x y +=⎧⎨+=⎩,解得100200x y ==,.∴点M 的坐标为(100200),.max 30002000700000z x y ∴=+=(元)答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元.20.(1)证明:在直四棱柱1111ABCD A BC D -中, 连结1C D ,1DC DD =,∴四边形11DCC D 是正方形. 11DC DC ∴⊥.又AD DC ⊥,11AD DD DC DD D =⊥,⊥,AD ∴⊥平面11DCC D ,1D C ⊂平面11DCC D ,1AD DC ∴⊥.1AD DC ⊂,平面1ADC ,且AD DC D =⊥,1D C ∴⊥平面1ADC ,又1AC ⊂平面1ADC ,1DC AC ∴1⊥.(2)连结1AD ,连结AE ,设11AD A D M =,BCDA1A1D1C1BB CD A1A1D1C1BMEBD AE N =,连结MN ,平面1AD E平面1A BD MN =,要使1D E ∥平面1A BD , 须使1MN D E ∥, 又M 是1AD 的中点.N ∴是AE 的中点.又易知ABN EDN △≌△, AB DE ∴=.即E 是DC 的中点.综上所述,当E 是DC 的中点时,可使1D E ∥平面1A BD .21.证明:因为2()ln 0f x ax b x ab =+≠,,所以()f x 的定义域为(0)+∞,. ()f x '222b ax b ax x x+=+=.当0ab >时,如果00()0()a b f x f x '>>>,,,在(0)+∞,上单调递增;如果00()0()a b f x f x '<<<,,,在(0)+∞,上单调递减. 所以当0ab >,函数()f x 没有极值点.当0ab <时,222()b b a x x a a f x x⎛⎫⎛⎫+--- ⎪⎪⎝⎭⎝⎭'=令()0f x '=,将1(0)2b x a =--∉+∞,(舍去),2(0)2bx a=-+∞,,当00a b ><,时,()()f x f x ',随x 的变化情况如下表:x02b a ⎛⎫- ⎪ ⎪⎝⎭, 2ba- 2ba ⎛⎫-+∞ ⎪ ⎪⎝⎭,()f x ' -0 +()f x极小值从上表可看出,函数()f x 有且只有一个极小值点,极小值为1ln 222b b b f a a ⎛⎫⎡⎤⎛⎫-=--- ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭.当00a b <>,时,()()f x f x ',随x 的变化情况如下表:x02b a ⎛⎫- ⎪ ⎪⎝⎭, 2ba- 2b a ⎛⎫-+∞ ⎪ ⎪⎝⎭, ()f x ' -0 +()f x极大值从上表可看出,函数()f x 有且只有一个极大值点,极大值为1ln 222b b b f a a ⎛⎫⎡⎤⎛⎫-=--- ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭. 综上所述,当0ab >时,函数()f x 没有极值点; 当0ab <时,若00a b ><,时,函数()f x 有且只有一个极小值点,极小值为1ln 22b b a ⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦.若00a b <>,时,函数()f x 有且只有一个极大值点,极大值为1ln 22b b a ⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦. 22.解:(1)由题意设椭圆的标准方程为22221(0)x y a b a b+=>>,由已知得:31a c a c +=-=,,222213a cb ac ==∴=-=,,∴椭圆的标准方程为22143x y +=.(2)设1122()()A x y B x y ,,,.联立22 1.43y kx m x y =+⎧⎪⎨+=⎪⎩,得 222(34)84(3)0k x mkx m +++-=,则22222212221226416(34)(3)03408344(3).34m k k m k m mk x x k m x x k ⎧⎪∆=-+->+->⎪⎪+=-⎨+⎪⎪-=⎪+⎩,即,, 又22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -=++=+++=+.因为以AB 为直径的圆过椭圆的右顶点(20)D ,,1AD BD k k ∴=-,即1212122y y x x =---.1212122()40y y x x x x ∴+-++=.2222223(4)4(3)1540343434m k m mk k k k --∴+++=+++. 2271640m mk k ∴++=.解得:12227k m k m =-=-,,且均满足22340k m +->.当12m k =-时,l 的方程(2)y k x =-,直线过点(20),,与已知矛盾;当227k m =-时,l 的方程为27y k x ⎛⎫=- ⎪⎝⎭,直线过定点207⎛⎫⎪⎝⎭,. 所以,直线l 过定点,定点坐标为207⎛⎫ ⎪⎝⎭,.。
2007年高考文科数学试题及参考答案(山东卷)
10本科第四学期口语试题Topic group 1 Friendship1.Do you have many friends? How important are they to you?你有很多朋友吗?他们对你有多重要?2.What kind of people do you want to make friends with? Why?你想和什么样的人做朋友吗?为什么?3.How do you think “ A friend in need is a friend indeed”?你怎么认为“患难之交”?4.How do you make friends?你如何处朋友的?5.How can we keep friendship alive?我们在生活中怎样才能保持友谊?6.How valuable is friendship in a person’s life?人生中友谊是多么宝贵?7.“A friend without faults will never be found.” What’s your understanding?“没有缺点的朋友是永远找不到的。
“你有什么看法?8.“A life without a friend is a life without a sun.” Can we live without a friend?“人生在世无朋友,犹如生活无太阳。
“我们生活中可以没有朋友吗?Topic group 2 Cultural differences1.What do cultural differences mean? Can you give some examples?文化差异是什么意思?你能举些例子吗?2.How do people’s cultural backgrounds influence their way of thinking?人们的文化背景如何影响他们的思维方式的?3.What problems may be caused by our failure to recognize cultural differences?什么问题可能是使我们认识的文化有差异呢?4.How can failure to recognize cultural differences hinder communication?怎么可以不承认文化差异阻碍沟通吗?5.How can we deal with cultural differences?我们如何处理文化差异?6.What should we do before visiting other countries to avoid misunderstanding?以后我们访问其他国家如何避免(由于文化差异带来的)误解?我们应该做些什么?ment on the proverb “Do in Rome as the Romans do.”评论这个谚语“入乡随俗”。
2007数学高考山东卷
2007年全国高考数学(山东卷)试卷分析田明泉一.试卷的整体评价2007年是我省实施普通高中新课程后的首次普通高校全国统一招生考试,命题依据教育部《2007年普通高等学校招生全国统一考试大纲(课程标准实验版)》和《2007年普通高等学校招生全国统一考试山东卷考试说明》(以下简称考试说明)的要求,遵循“有利于高等学校选拔新生、有利于中学推进素质教育和课程改革、有利于扩大高校办学自主权、有利于考试科学、公正、安全、规范”的命题原则.努力实现2007年度高考平稳过渡,在稳定的基础上有所创新,基本上延续了前两年我省高考数学自主命题的风格.从试卷整体上看,试题侧重考查中学数学通性通法;突出文理科试题难度的差异及合理搭配;注意考查学生的创新意识和实践能力;重视在知识的交汇点处命题,加强对考生数学能力的综合考查;文理试卷难度设计比较恰当,较去年明显降低,具有较高的区分度、效度和信度.1.实现平稳过渡,突出考查主干知识试卷长度、题型比例配置保持不变,与《考试说明》一致.全卷共22题,其中选择题12个,共60分,占总分的40%;填空题4个,共16分,约占总分的10.7%;解答题6个,共74分,约占总分的49.3%,全卷合计150分.全卷重点考查中学数学主干知识和方法(见表1);侧重于中学数学学科的基础知识和基本方法的考查;侧重于知识交汇点的考查.表1:知识点分布表*:各占一部分内容.2.全力支持课改,凸现新课标新要求从表1不难发现,考试内容体现了新课标的要求.算法与框图、统计、函数的零点、条件概率和常用逻辑用语,以及文科的复数等课标新增内容在试卷中都有所体现(见表2).这个调整变化反映了高考命题的取向,体现“高考支持课程改革”的命题思路,同时又照顾到试卷涵盖的各部分内容的平衡.并注意对这些新增内容的考查把握适当的难度,注意到这部分内容的应用.如利用统计中的直方图考查学生收集、分析和整理数据的能力以及应用数学的意识;利用程序框图简约地表示解决问题的算法过程等.另外,根据《考试说明》的考试要求的变化,对相应内容的考试要求也进行了调整.如文科(20)立体几何题随着考试要求的改变发生了变化,缩减了考试范围,降低了考试要求;文科(21)题,利用导数研究函数的性质,已不再限于多项式函数,扩展到对数函数等.命题注意到文理科学生在数学学习上的差异,对文理科学生提出不同的考查要求.在06年文科试题偏难、分数偏低的情况下,07年数学试卷保持相同题占有比例基本不变(见表3),增加了不同题、减少了姊妹题的个数和分数.如文(9)理(13)题都是解析几何中的抛物线问题,题干完全相同,但文科是选择题,而理科是填空题.由于选择题有选择支可作参考答案,显然文科较理科要求有所降低;理(16)文(14)都是考查基本不等式问题,但是理科题以对数函数图象恒过定点为条件,而文科题以指数函数图象恒过定点为条件,显然文科题要容易一些.另外在应用基本不等式时,理科题更具有技巧性;再如文科第(20)题和理科第(19)题都是立体几何题,虽然几何载体都相同,但是由于文理科考生的考试范围和要求不同,求解的问题和工具也不同,两者化简和运算的难度拉开了档次.不同题更是体现了文理科考生的不同考查要求,如文(21)和对应的理(22)都是利用导数研究函数的性质,但是给出的函数不相同,而且对分类与整合的能力要求也不一样,明显地提高了对理科学生数学能力的考查.这样处理符合新课标对文理科学生有不同学习要求的精神,符合当前中学数学教学以及学生的实际学习状况.4.重视创新意识,保持应用题的考查在数学学习和考试中怎样培养和考查学生的创新意识?怎样避免过多地考查学生死记硬背的内容?命题者在试题结构和解法设计上作了一些尝试,如今年文科立体几何第2小题是一个条件开放的探究性问题;文科15题和理科22题第3小题都需要构造一个函数来求解不等式问题;理(12)题的解法需要构造一个独立重复试验或网格图等,这些构造法要求考生的思维具有一定的灵活性和创新性,以往这种问题只是在数学竞赛中才会出现.应用题是考查实践能力的一个很好的载体,通过设置应用题来考查学生在新的情景中实现知识迁移的能力,应用数学知识解决实际问题,可以体现考生的基本数学素养,更好地实现高考的选拔功能,真正考查出学生的学习潜力.可以更好的实现新课标中倡导的学生实践能力的培养,无疑会对中学数学教学改革起到良好的导向作用.今年高考题文理科均出现一大一小两个应用题(见表4).应用题的数量和分值与去年持平,难度变化不大.今年试卷中文理第(8)题是一个统计应用题.文(19)是一个线性规划的应用题:求解一个公司向两个电视台投放广告获取收益的问题.理(20)是一个正余弦定理的应用题,利用正余弦定理解三角形,求轮船的航速的实际问题.这些应用题涉及到的实际问题,背景公平,学生熟悉,解法灵活多样,难度适中.由此可以让学生平时多去关心周围的社会和生活的世界,培养学生的数学应用意识.表4:应用题分布表5.适度综合考查,提高试题的区分度本次数学试卷的另一个特点是小综合的题目明显增多,很多题目是由多个知识点构成的(见表1打星号的题目).如:理(9)是充要条件与集合运算、函数性质、不等式、函数的零点等知识的综合;文理(10)是程序框图与等差数列求和的综合;文(9)理(13)是抛物线与向量的综合;理(16)是指数函数、直线方程与基本不等式的综合;文(19)是线性规划在实际问题中的应用;文(17)是三角函数与平面向量的综合;文(21)理(22)是导数与函数的综合等.另外,理科第(9)题含有4个小题,是一个拼盘式的多选题,具有一定的覆盖面.通过考查知识的交汇点,对考生的数学能力提出了较高地要求,提高了试题的区分度,体现出高考的选拔功能.应该说这和当前课改的教学要求、中学的教学实际以及学生学习的实际情况是吻合的.6.突出学科特色,彰显数学学科特点 数学试卷要突出数学学科特点,数学学科的主要特点是对数学语言的学习和应用.数学语言包括:符号语言、图形语言和文字语言,命题注意考查学生对数学语言的正确理解与规范使用的程度.如文理科第(6)题、第(7)题和理科第(9)题着重数学符号语言的考查;文理科第(3)题、第(8)题、第(10)题突出数学图形语言理解及应用;文科第(19)题和理科第(20)题强化数学语言之间的转化;文科(20)题和理科(19)题,立体几何的推理与证明是检验学生能否正确地运用数学语言的有效手段.重视考查学生掌握和使用数学语言的能力,体现了数学学科的特点.二.试题分析1.重视“双基”落实,侧重通性通法今年数学试卷与往年相同的一个特点就是“大路题”仍占多数,没有怪题、偏题,学生比较容易上手,特别是选择题和填空题运算量小、整体难度不大.重点考查中学数学的“双基”和通性通法.例1:(理(2)文(2))已知集合11{1,1},{|24,Z}2x M N x x +=-=<<∈,则M N ⋂=(A ){1,1}- (B ) {1}- (C ){0} (D ){1,0}- 解析:本小题主要考查学生集合的概念及运算与指数函数单调性. 化简集合N 得,{1,0}N =-.故答案为(B ).例2:(理(7)文(7))命题“对任意的32R,1x x x ∈-+0≤”的否定是 (A ) 不存在32R,1x x x ∈-+0≤ (B )存在32R,1x x x ∈-+0≤ (C )存在32R,1x x x ∈-+>0 (D )对任意的32R,1x x x ∈-+>0 解析:本小题主要考查否定命题的概念.答案为(C ). 例3:(文(13))设函数1122123(),(),()f x x f x x f x x -===,则123(((2007)))f f f = .解析:本小题主要考查复合函数的概念和分数指数的运算.221123121(((2007)))((2007))(2007)2007f f f f f f --===.2.渗透数学思想,重视数学能力从表1可以看出,今年数学试卷的一个明显的特点是,“小综合”的题目比较多,突出考查学生综合运用知识的能力.同时,还侧重于考查学生正确地运用数学思想方法,分析问题和解决问题的能力,在保证多数考生得到基础分的同时,提高整张试卷的区分度.2.1数形结合的思想例4:(理(8)文(8))某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒; 第六组,成绩大于等于18秒且小于19秒.右图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x ,成绩大于等于15秒且小于17秒的学生人数为y ,则从频率分布直方图中可以分析出x 和y 分别为(A ) 0.9,35 (B )0.9,45 (C ) 0.1,35 (D )0.1,45 解析:本小题主要考查频率分布直方图的概念,考查学生的观察分析图形和数据处理能力.如原图(图略)可知 (0.340.360.180.02)10.90x =+++⨯=,(0.360.34)150y =+⨯⨯=.故答案为(C ).例5:(理(10)文(10))阅读右边的程序框图(略),若输入的n 是100,则输出的变量S 和T 的值依次是(A ) 2500,2500 (B ) 2550,2550 (C ) 2500,2550 (D ) 2550,2500 解析:本小题主要考查程序框图的有关概念和应用以及等差数列求和,考查数形结合的能力.根据循环结构的特点知道,当输入n =100时,10021009825025502S +=+++=⨯= ,991999715025002T +=+++=⨯= .故答案为(D ).例6:(文(11))设函数3y x =与21()2x y -=的图象的交点为00(,)x y ,则0x 所在的区间是(A ) (0,1) (B )(1,2) (C )(2,3) (D )(3,4) 解析:本小题主要考查幂函数与指数函数的图象以及数形结合的数学思想方法.作出两个函数图象不难发现其交点的横坐标0x 落在区间(1,2)内.故答案为(B ).2.2函数与方程的思想 例7:(理(21)文(22))已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :y kx m =+与椭圆C 相交于A 、B 两点(A 、B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.解析:本小题主要考查直线与椭圆的位置关系,考查解析几何的思想方法以及学生运用解析法处理几何问题的能力,考查函数与方程的思想方法.(Ⅰ)由题意,设椭圆的标准方程为22221(0)x y a b a b+=>>,由题设得:3,1a c a c +=-=,解得,2,1a c ==.则2223b a c =-=.所以椭圆C 的标准方程为22143x y +=. (Ⅱ)设A (11,x y )、B (22,x y ),联立22,1.43y kx m x y =+⎧⎪⎨+=⎪⎩ 得222(34)84(3)0k x mkx m +++-=,则 12221228,344(3).34mk x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩2222226416(34)(3)0340m k k m k m ∆=-+->⇒+->. 因为以AB 为直径的圆过椭圆C 的右顶点D (2,0), 0AD BD ∴⋅=,即1122(2,)(2,)0x y x y --⋅--=, 化简得,1212122()40,y y x x x x +-++=①.又22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k-=++=+++=+,代入① 得2222223(4)4(3)1640343434m k m mkk k k--+++=+++.2271640m mk k ∴++=. 解得:1222,7km k m =-=-,且满足22340k m ∆=+->. 当12m k =-时,l 的方程是(2)y k x =-,直线过定点(2,0),与已知矛盾;当227k m =-时,l 的方程是2()7y k x =-,直线过定点(27,0). 所以直线l 过定点,定点坐标是(27,0).2.3分类与整合的思想例8:(文(12))设集合{1,2},{1,2,3}A B ==,分别从集合A 和B 中随机取一个数a 和b ,确定平面上一个点(,)P a b ,记“点(,)P a b 落在直线x y n +=上”为事件(25,N)n C n n ∈≤≤,若事件n C 的概率最大,则n 的所有可能值为(A )3 (B )4 (C )2和5 (D )3和4解析:本小题主要考查古典概型和分类与整合的数学思想方法. 由于11:1,()0C x y P C +=∴= ;221:2,(1,1),()6C x y P P C +=∴=; 3321:3,(1,2),(2,1)()63C x y P P P C +=∴== ; 4421:4,(1,3),(2,2)()63C x y P P P C +=∴== ;551:5,(2,3),()6C x y P P C +=∴= .故答案为(D ).2.4或然与必然的思想 例9:(1)(理(12))位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动五次后位于点(2,3)的概率是 (A ) 51()2(B ) 2551C ()2 (C )3351C ()2 (D )235551C C ()2 解析:本小题主要考查独立事件发生的概率,考查或然与必然的数学思想.解法一:设事件A 为向上移动一个单位,事件B 为向右移动一个单位.则事件A 、B 为相互独立事件,且其发生的概率皆为12.因此,质点P 移动五次后位于点(2,3)的概率是2232555111C ()(1)C ()222P =-=.解法二:本小题可以结合二项展开式系数性质(杨辉三角形)求解.如图质点P 按规则移动五次后到点P (2,3)的不同路线(基本事件数)为10,所有不同路线的总数是(基本事件空间)32,因此,质点P 移动五次后位于点(2,3)的概率是2551051C ()32162P ===.故答案为(B ).2.5特殊与一般的思想例10:(1)(理(16))函数log (3)1(0,1)a y x a a =+->≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则12m n+的最小值为 . 解析:(1)本小题主要考查基本不等式和特殊与一般的数学思想方法.1 1 1 1 11首先可知定点A (2,1--),所以21m n +=.因此,12242448m n m n n mm n m n m n+++=+=++⨯≥,当且仅当4n m m n =⨯,即2n m =,也就是11,42m n ==时,取得最小值8.(2)(文(14))函数1(0,1)x y a a a -=>≠的图象恒过定点A ,若点A 在直线10(0)mx ny mn +-=>上,则11m n+的最小值为 . 解析:(2)本小题和理(16)是姊妹题,主要考查基本不等式和特殊与一般的数学思想方法,解题技巧上要求比理科低一些.仍需要注意条件0mn >.由题设可知定点A (1,1),所以1m n +=.因此,1124m n m n n m m n m n m n +++=+=++≥.当且仅当n mm n =,即n m =,也就是11,22m n ==时,取得最小值4.2.6转化与化归的思想 例11:(理(6)文(6))给出下列三个等式:()()()()(),()()(),()1()()f x f y f xy f x f y f x y f x f y f x y f x f y +=++=+=-.下列函数中不满足其中任何一个等式的是(A )()3x f x = (B )()sin f x x = (C )2()log f x x = (D )()tan f x x = 解析:本小题主要通过三种抽象函数的基本概念和性质,考查学生的转化与化归的数学思想和抽象概括能力.考查学生是否能把平时所学的基本函数的一般性质抽象概括出来,并转化加以应用.因为对数函数满足(恒)等式(1);指数函数满足(2);正切函数满足(3),故答案为(B ).2.7体现六种数学能力例12:(文(18))设{}n a 是公比大于1的等比数列,n S 是数列{}n a 的前n 项和.已知37S =,且1233,3,4a a a ++构成等差数列.(Ⅰ)求数列{}n a 的通项;(Ⅱ)令31ln ,1,2,,n n b a n +== 求数列{}n b 的前n 项和n T .解析:本小题主要考查等差、等比数列的概念、等比数列的通项公式以及等差数列的前n 项和公式,考查学生运算求解和等价转化的能力.(Ⅰ)由已知得12321327, 2.(3)(4)3.2a a a a a a a ++=⎧⎪⇒=⎨+++=⎪⎩设数列{}n a 的公比为q ,由,可得132,2a a q q==,所以2227q q++=,解得1212,2q q ==.由题设1,2q q >∴=,11a =. 故数列{}n a 的通项为 12n n a -=. (Ⅱ)由于331ln ln 23ln 2,n n n b a n +=== 因此 123(1)3(12)ln 2ln 22n n n nT b b b n +=+++=+++=.三.抽样分析今年山东省共有717159名考生参加了普通高校招生考试,其中381050名普通理科考生、204455名普通文科考生、25697名艺术理科考生、94223名艺术文科考生和11734名体育考生.为了了解考生的答卷情况,我们从全省普通理科、普通文科、艺术理科和艺术文科考生的试卷中,各分别抽取了部分样本,进行了抽样分析.抽样结果如下(见表5~表14):表5:卷一解答情况统计表 (样本容量 :普理50000,普文50000)表6:卷一解答情况统计表(样本容量:艺术理10000,艺术文10000)表7:卷一成绩分段统计表(样本容量:普理50000,普文50000)表8:卷一成绩分段统计表(样本容量:艺术理10000,艺术文10000)表9:卷二解答情况统计表(样本容量:普理50000,普文50000)表12:卷二成绩分段统计表(样本容量:艺术理9224,艺术文29602)(注:在表7、8、11、12中,人数和所占比例栏目中的两个数字:前一个表示本段内的实际人数或比例,后一个表示从高分段到本分数段的累计数.表9、10中,第13~16题样本数分别为:普文1372、普理2330、艺术文508、艺术理132)表13:试题难度分布表一表14:试题难度分布表二四.对中学数学教学与学习的启示今年是我省进入新课改后的第一次高考,今年的高考如何顺利地完成过渡,为今后的课程改革和高考改革提供哪些信息?成为人们关注的焦点.高考命题导向在很大程度上决定着中学推行新课改的力度和进程.因此,今年的高考试题和考生答卷情况备受关注.为了更好地进行课程改革和高考复习,需要认真研究和分析学生在高考答题中出现的错误,以反思和促进我们的数学教学与学习.1.坚持课改,相信课改.从全国课改省份的高考试卷(特别是国家考试中心为海南和宁夏命制的高考试卷)可以看出,新课标新增教学内容,均占有较大比例.且解答题中至少有一个大题是新课标增加内容.所以,执行和推广新课标是大势所趋.视图;程序框图;简易逻辑用语;文科的复数和系列4的内容.为了减少教学过程中的盲目性和随意性,增加教学的实效性和计划性,应该认真学习新课标(包括考试说明).特别是对变化的内容和要求更要细心地研讨,根据新课标的变化调整和改变自己的教学理念、教学目标和教学方法.2.打好基础,落实“双基”.从今年包括近几年的试卷统计情况来看,许多不重视“双基”的考生,很难取得高分.虽然我省率先进行了课程改革,但是高考改革需要一个稳定过渡的过程.高考命题总是试图在形式与内容的改革创新和相对稳定之间寻找平衡点,因此,每年试题的框架主体都是考查数学的基础知识和通性通法.如函数的单调性、奇偶性、周期性、零点、图象性质及变换;三角函数的基本性质与图象;向量的基本运算;圆锥曲线的基本概念、性质及应用;数列的基本性质及应用;空间图形的识别及线面的位置关系(包括面积、体积和理科的夹角和距离);古典概型的方法;统计的基本方法(包括散点图、直方图、回归直线方程)等.“双基”也是与时俱进的.新的“双基”内容应该主要包括,一是和“图”有关的内容.如:三视图、统计图、程序框图、函数的图象性质及变换、空间线面位置关系、平面直线与圆锥曲线的位置关系、数形结合的思想方法等;二是与“函数”有关的内容,如函数的性质及围绕研究函数性质的相关知识和方法(导数、三个二次、数列等)、函数与方程的思想方法、特殊与一般的思想方法、转化与化归的思想方法;三是数据的收集、整理、分析和应用,如统计与概率、线性规划等相关的应用问题。
2007年高考试题——数学文(全国Ⅰ卷)
2007年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓号和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3.本卷共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A +B )=P (A )+P (B ) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径 P (A ·B )=P (A )·P (B ) 球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 V =34πR 3 n 次独立重复试验中事件A 恰好发生k 次的概率 P n (k )=C k n P k(1-P )n -k(k =0,1,2,…,n ) 一、选择题(1)设S ={}012>+x x ,T ={}053<-x x ,则S ∩T = (A)Ø (B)⎭⎬⎫⎩⎨⎧-<21x x(C)⎭⎬⎫⎩⎨⎧>35x x (D)⎭⎬⎫⎩⎨⎧<<-3521x x (2)α是第四象限角,cos α=1312,则sin α= (A)135 (B)- 135 (C) 125 (D)- 125 (3)已知向量a =(-5,6),b =(6,5),则a 与b(A )垂直 (B )不垂直也不平行 (C )平行且同向 (D )平行且反向 (4)已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为(A )112422=-y x (B )141222=-y x(C )161022=-y x (C )110622=-y x (5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有(A )36种 (B )48种 (C )96种 (D )192种(6)是表示的平面区域内的点位于下面给出的四个点中⎩⎨⎧>+-<-+01,01,y x y x (A )(0,2) (B)(-2,0) (C)(0,-2) (D)(2,0)(7)如图,正四棱柱ABCD-A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为(A )51 (B )52(C )53(D )54(8)设a>1,函数f(x)=log,x 在区间[a,2a ]上的最大值与最小值之差为,21则a= (A)2 (B )2 (C )22 (D )4(9)f(x),g(x)是定义在R 上的函数,h(x)=f(x)+ g(x),则“f(x),g(x)均为偶函数”,是“h(x)为偶数”的(A )充分条件 (B )充分而不必要的条件 (C )必要而不充分的条件 (D )既不充分也不必要的条件 (10)函数y=2cos 2x 的一个单调增区间是(A )(4,4ππ-) (B )(2,0π) (C )(43,4ππ) (D )(ππ,2) (11)曲线y=x x +331在点(1,34)处的切线与坐标轴围成的三角形面积为(A )91 (B ) 92 (C ) 31 (D )32(12)抛物线y 2=4x 的焦点为F ,准线为l,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK ⊥l,满足为K ,则△AKF 的面积是(A )4 (B )33 (C) 43 (D)82007年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共50分,在每小题给出的四个选项中,选择一个符合题目要求的选项. 1.复数43i1+2i+的实部是( ) A .2- B .2C .3D .42.已知集合11{11}|242x M N x x +⎧⎫=-=<<∈⎨⎬⎩⎭Z ,,,,则M N =( ) A .{11}-,B .{0}C .{1}-D .{10}-,3.下列几何体各自的三视图中,有且仅有两个视图相同的是( )A .①②B .①③C .①④D .②④4.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象( ) A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位D .向左平移π6个单位5.已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( )A .1B C .2D .46.给出下列三个等式:()()()()()()f xy f x f y f x y f x f y =++=,,()()()1()()f x f y f x y f x f y ++=-.下列函数中不满足其中任何一个等式的是( ) A .()3xf x = B .()sin f x x =C .2()log f x x =D .()tan f x x =7.命题“对任意的3210x x x ∈-+R ,≤”的否定是( )A .不存在3210x R x x ∈-+,≤ B .存在3210x R x x ∈-+,≤ C .存在3210x R x x ∈-+>,D .对任意的3210x R x x ∈-+>,①正方形②圆锥 ③三棱台 ④正四棱锥8.某班50名学生在一次百米测试中,成绩全部介 于13秒与19秒之间,将测试结果按如下方式分成六 组:每一组,成绩大于等于13秒且小于14秒;第二 组,成绩大于等于14秒且小于15秒;……第六组, 成绩大于等于18秒且小于等于19秒.右图是按上述 分组方法得到的频率分布直方图,设成绩小于17秒 的学生人数占全班人数的百分比为x ,成绩大于等于 15秒且小于17秒的学生人数为y ,则从频率分布直方 图中可以分析出x 和y 分别为( ) A .0.935, B .0.945,C .0.135,D .0.145,9.设O 是坐标原点,F 是抛物线22(0)y px p =>的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为60,则OA 为( )A .214pB .212p C .136p D .1336p10.阅读右边的程序框,若输入的n 是100,则输出的 变量S 和T 的值依次是( )A .2550,2500B .2550,2550C .2500,2500D .2500,255011.设函数3y x =与212x y -⎛⎫= ⎪⎝⎭的图象的交点为00()x y ,,则0x 所在的区间是( )A .(01),B .(12),C .(23),D .(34), 12.设集合{12}{123}A B ==,,,,,分别从集合A 和B 中 随机取一个数a 和b ,确定平面上的一个点()P a b ,,记“点 ()P a b ,落在直线x y n +=上”为事件(25)n C n n ∈N ≤≤,,若事件n C 的概率最大,则n 的所有可能值为( ) A .3 B .4C .2和5D .3和4第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分,答案须填在题中横线上.13.设函数1()f x =21323()()x f x x f x x -==,,,则123(((2007)))f f f = .14.函数1(01)xy a a a -=>≠,的图象恒过定点A ,若点A 在直线10(0)mx ny mn +-=>上,则11m n+的最小值为 .15.当(12)x ∈,时,不等式240x mx ++<恒成立,则m 的取值范围是 . 16.与直线20x y +-=和曲线221212540x y x y +--+=都相切的半径最小的圆的标准方程是 .0 13 14 15 16 17 18 19秒频率0.020.04 0.06 0.180.340.36三、解答题:本大题共5小题,共74分.解答写出文字说明、证明过程或演算步骤.17.(本小题满分12分)在ABC △中,角A B C ,,的对边分别为tan a b c C =,,,(1)求cos C ;(2)若52CB CA =,且9a b +=,求c . 18.(本小题满分12分)设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列. (1)求数列{}n a 的等差数列.(2)令31ln 12n n b a n +==,,,,求数列{}n b 的前n 项和T .19.(本小题满分12分)本公司计划2008年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?20.(本小题满分12分) 如图,在直四棱柱1111ABCD A B C D -中, 已知122DC DD AD AB ===,AD DC AB DC ⊥,∥. (1)求证:11D C AC ⊥;(2)设E 是DC 上一点,试确定E 的位置,使1D E ∥平面1A BD ,并说明理由.21.(本小题满分12分)设函数2()ln f x ax b x =+,其中0ab ≠.证明:当0ab >时,函数()f x 没有极值点;当0ab <时,函数()f x 有且只有一个极值点,并求出极值. 22.(本小题满分14分) 已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1. (1)求椭圆C 的标准方程;(2)若直线:l y kx m =+与椭圆C 相交于A B ,两点(A B ,不是左右顶点),且以AB 为直径的图过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.BCD A1A 1D 1C 1B2007年普通高等学校招生全国统一考试(山东文卷)答案一、选择题 1.B 2.C 3.D 4.A 5.C 6.B 7.C 8.A 9.B10.A11.B12.D二、填空题 13.1200714.1 15.5m -≤ 16.22(2)(2)2x y -+-=三、解答题 17.解:(1)sin tan cos CC C=∴=又22sin cos 1C C +=解得1cos 8C =±.tan 0C >,C ∴是锐角.1cos 8C ∴=.(2)52CB CA =,5cos 2ab C ∴=,20ab ∴=. 又9a b +=22281a ab b ∴++=.2241a b ∴+=. 2222cos 36c a b ab C ∴=+-=. 6c ∴=.18.解:(1)由已知得1231327:(3)(4)3.2a a a a a a ++=⎧⎪⎨+++=⎪⎩,解得22a =.设数列{}n a 的公比为q ,由22a =,可得1322a a q q==,. 又37S =,可知2227q q++=, 即22520q q -+=,解得12122q q ==,.由题意得12q q >∴=,. 11a ∴=.故数列{}n a 的通项为12n n a -=.(2)由于31ln 12n n b a n +==,,,,由(1)得3312nn a +=3ln 23ln 2n n b n ∴==又13ln 2n n n b b +-={}n b ∴是等差数列.12n n T b b b ∴=+++1()2(3ln 23ln 2)23(1)ln 2.2n n b b n n n +=+=+=故3(1)ln 22n n n T +=.19.解:设公司在甲电视台和乙电视台做广告的时间分别为x 分钟和y 分钟,总收益为z 元,由题意得3005002009000000.x y x y x y +⎧⎪+⎨⎪⎩≤,≤,≥,≥ 目标函数为30002000z x y =+.二元一次不等式组等价于3005290000.x y x y x y +⎧⎪+⎨⎪⎩≤,≤,≥,≥作出二元一次不等式组所表示的平面区域,即可行域. 如图:作直线:300020000l x y +=, 即320x y +=.平移直线l ,从图中可知,当直线l 过M 点时, 目标函数取得最大值.联立30052900.x y x y +=⎧⎨+=⎩,解得100200x y ==,.∴点M 的坐标为(100200),.max 30002000700000z x y ∴=+=(元)答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元.20.(1)证明:在直四棱柱1111ABCD A B C D -中, 连结1C D ,1DC DD =,∴四边形11DCC D 是正方形.11DC D C ∴⊥.又AD DC ⊥,11AD DD DC DD D =⊥,⊥,AD ∴⊥平面11DCC D ,1D C ⊂平面11DCC D ,1AD D C ∴⊥.BCD A1A1D 1C 1Bl1AD DC ⊂,平面1ADC , 且AD DC D =⊥, 1D C ∴⊥平面1ADC ,又1AC ⊂平面1ADC ,1D C AC ∴1⊥.(2)连结1AD ,连结AE ,设11AD A D M =,BD AE N =,连结MN ,平面1AD E 平面1A BD MN =,要使1D E ∥平面1A BD , 须使1MN D E ∥, 又M 是1AD 的中点.N ∴是AE 的中点.又易知ABN EDN △≌△, AB DE ∴=.即E 是DC 的中点.综上所述,当E 是DC 的中点时,可使1D E ∥平面1A BD .21.证明:因为2()ln 0f x ax b x ab =+≠,,所以()f x 的定义域为(0)+∞,. ()f x '222b ax bax x x+=+=. 当0ab >时,如果00()0()a b f x f x '>>>,,,在(0)+∞,上单调递增; 如果00()0()a b f x f x '<<<,,,在(0)+∞,上单调递减. 所以当0ab >,函数()f x 没有极值点.当0ab <时,2()a x x f x x⎛ ⎝⎭⎝⎭'=令()0f x '=,将1(0)x =+∞,(舍去),2)x =+∞,, 当00a b ><,时,()()f x f x ',随x 的变化情况如下表:x0⎛ ⎝⎫+∞⎪⎪⎭ ()f x ' - 0+()f x极小值从上表可看出,BCD A1A1D1C1BME函数()f x有且只有一个极小值点,极小值为1ln 22b b f a ⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦.当00a b <>,时,()()f x f x ',随x 的变化情况如下表: x0⎛ ⎝⎫+∞⎪⎪⎭()f x ' - 0+()f x极大值从上表可看出,函数()f x有且只有一个极大值点,极大值为1ln 22b b f a ⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦. 综上所述,当0ab >时,函数()f x 没有极值点; 当0ab <时,若00a b ><,时,函数()f x 有且只有一个极小值点,极小值为1ln 22b b a ⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦.若00a b <>,时,函数()f x 有且只有一个极大值点,极大值为1ln 22b b a ⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦. 22.解:(1)由题意设椭圆的标准方程为22221(0)x y a b a b+=>>,由已知得:31a c a c +=-=,,222213a cb ac ==∴=-=,,∴椭圆的标准方程为22143x y +=. (2)设1122()()A x y B x y ,,,.联立22 1.43y kx m x y =+⎧⎪⎨+=⎪⎩,得 222(34)84(3)0k x mkx m +++-=,则22222212221226416(34)(3)03408344(3).34m k k m k m mk x x k m x x k ⎧⎪∆=-+->+->⎪⎪+=-⎨+⎪⎪-=⎪+⎩,即,, 又22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -=++=+++=+.因为以AB 为直径的圆过椭圆的右顶点(20)D ,, 1AD BD k k ∴=-,即1212122y y x x =---.1212122()40y y x x x x ∴+-++=.2222223(4)4(3)1540343434m k m mk k k k --∴+++=+++.2271640m mk k ∴++=.解得:12227k m k m =-=-,,且均满足22340k m +->.当12m k =-时,l 的方程(2)y k x =-,直线过点(20),,与已知矛盾; 当227k m =-时,l 的方程为27y k x ⎛⎫=- ⎪⎝⎭,直线过定点207⎛⎫⎪⎝⎭,. 所以,直线l 过定点,定点坐标为207⎛⎫⎪⎝⎭,.。