三角恒等变换综合习题

合集下载

三角恒等变换(试题部分)

三角恒等变换(试题部分)

4.3三角恒等变换探考情悟真题【考情探究】考点内容解读5年考情预测热度考题例如考向关联考点两角和与差的三角函数1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式导出两角差的正弦、正切公式.3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,会用二倍角的正弦、余弦、正切公式,了解它们的内在联系.2021浙江,18,14分两角差的余弦公式任意角的三角函数的定义、诱导公式★★☆2021浙江,16,14分二倍角公式解三角形2021浙江,16,14分二倍角公式正弦定理简单的三角恒等变换能利用两角和与差的三角函数公式以及二倍角公式进行简单的三角恒等变换.2021浙江,18,14分二倍角公式三角函数的性质★★★2021浙江,10,6分三角恒等变换分析解读 1.对本节内容的考查仍以容易题和中等难度题为主.2.主要考查两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,以及运用上述公式进行简单的恒等变换(例:2021浙江,10).3.对三角恒等变换的考查往往与解三角形、向量知识综合在一起.4.预计2021年高考试题中,三角恒等变换仍是考查的重点,复习时应高度重视.破考点练考向【考点集训】考点一两角和与差的三角函数1.(2021浙江台州中学一模,2)计算:sin5°cos55°-cos175°sin55°的结果是()A.-12B.12C.-√32D.√32答案D2.(2021浙江杭州二中期中,15)假设α满足sin(α+20°)=cos(α+10°)+cos(α-10°),那么tanα=.答案 √3考点二 简单的三角恒等变换1.(2021课标全国Ⅱ理,10,5分)α∈(0,π2),2sin 2α=cos 2α+1,那么sin α=( )A.15B.√55C.√33D.2√55答案 B2.(2021浙江镇海中学期中,7)sin (π6-α)=-√23,那么cos 2α+√3sin 2α=( )A.109B.-109C.-59D.59答案 A3.(2021届山东夏季高考模拟,14)cos (α+π6)-sin α=4√35,那么sin (α+11π6)= .答案 -454.(2021届浙江镇海中学期中,18)f(x)=sin x 2·(cos x 2+sin x 2)+a 的最大值为√22.(1)求实数a 的值;(2)假设f (α+π4)+f (α-π4)=√23,求√2sin (2α-π4)+11+tanα的值. 解析 此题考查三角恒等变换以及三角函数式的求值;考查学生运算求解的能力;考查了数学运算的核心素养.(1)f(x)=sin x 2cos x 2+sin 2x 2+a=12(2sin x 2cos x 2)+12(1-cos x)+a=12sin x-12cos x+a+12=√22sin (x -π4)+a+12,当x=2kπ+3π4(k ∈Z)时,sin (x -π4)=1, f(x)取得最大值为√22+a+12,结合条件,可知a=-12.(2)√2sin (2α-π4)+11+tanα=sin2α-cos2α+11+sinαcosα=2sinαcosα+sin 2α-cos 2α+sin 2α+cos 2αcosα+sinαcosα=2sin αcos α①,由(1)知f(x)=√22sin (x -π4),那么f (α+π4)=√22sin α, f (α-π4)=-√22cos α,结合条件,可知sin α-cos α=23, 又因为sin 2α+cos 2α=1,所以2sin αcos α=59②,由①②得√2sin (2α-π4)+11+tanα=59.炼技法 提能力 【方法集训】方法1 三角函数式的化简方法1.tan α=2 018tan π2 018,那么sin (α+2 017π2 018)sin (α+π2 018)=( )A.-1B.1C.-2 0172 019D.2 0172 019答案 C2.化简(sin θ2-cos θ2)√2+2cosθ(0<θ<π)= .答案 -cos θ3.(2021届浙江绍兴一中期中,18)函数f(x)=cos x(msin x+cos x),且满足f (π4)=1.(1)求m 的值;(2)假设x ∈[0,π4],求f(x)的最大值和最小值,并求出相应的x 的值.解析 此题考查三角恒等变换以及三角函数式的化简、三角函数最值的求法;考查数学运算求解的能力;考查了数学运算的核心素养.(1)f (π4)=cos π4(msin π4+cos π4)=√22(√22m +√22)=1⇒m=1.(2)f(x)=cos x(sin x+cos x)=12sin 2x+12cos 2x+12=√22sin (2x +π4)+12,因为x ∈[0,π4],所以2x+π4∈[π4,3π4],因此当2x+π4=π4或2x+π4=3π4时, f(x)min =1,此时x=0或x=π4.当2x+π4=π2时, f(x)max =√2+12,此时x=π8.方法2 三角函数式的求值方法1.(2021浙江台州中学一模,15)α,β为锐角,tan α=43,cos(α+β)=-√55,那么cos 2α= ,tan(α-β)= .答案 -725;-2112.(2021安徽江南十校联考改编,14)sinα·cosα1+3cos 2α=14,且tan(α+β)=13,其中β∈(0,π),那么β的值为 .答案3π43.(2021届浙江慈溪期中,16)α∈(0,π2)且tan 2α=43,那么tan (α+π4)tan (α-π4)的值等于 .答案 -9方法3 利用辅助角公式解决问题的方法1.(2021浙江诸暨期末,18)函数f(x)=-2√3sin 2x+2sin xcos x. (1)求函数f(x)在区间[0,π2]上的值域;(2)设α∈(0,π),f (α2)=12-√3,求cos α的值.解析 (1)f(x)=-2√3·1−cos2x2+sin 2x =sin 2x+√3cos 2x-√3 =2sin (2x +π3)-√3,∵x ∈[0,π2],∴2x+π3∈[π3,4π3], ∴sin (2x +π3)∈[-√32,1],∴f(x)∈[-2√3,2-√3].(2)∵f(α2)=2sin(α+π3)-√3=12-√3,∴sin(α+π3)=14.又∵α∈(0,π),∴α+π3∈(π3,4π3),∴α+π3必在第二象限,∴cos(α+π3)=-√154,∴cosα=cos[(α+π3)-π3]=cos(α+π3)cosπ3+sin(α+π3)sinπ3=-√154×12+14×√32=√3-√158.2.(2021浙江“七彩阳光〞联盟期初联考,18)f(x)=2√3cos2x+sin2x-√3+1(x∈R).(1)求f(x)的单调增区间;(2)当x∈[-π4,π4]时,求f(x)的值域.解析由题可知f(x)=sin2x+√3(2cos2x-1)+1=sin2x+√3cos2x+1=2sin(2x+π3)+1.(1)令2kπ-π2≤2x+π3≤2kπ+π2,k∈Z,即2kπ-5π6≤2x≤2kπ+π6,k∈Z,∴kπ-5π12≤x≤kπ+π12,k∈Z,∴函数f(x)的单调增区间为[kπ-5π12,kπ+π12](k∈Z).(2)∵x∈[-π4,π4],∴2x+π3∈[-π6,5π6],∴sin(2x+π3)∈[-12,1],∴f(x)∈[0,3].3.(2021届浙江湖州、衢州、丽水三地联考,18)平面向量a=(√32sinx,cosx),b=(cos x,0),函数f(x)=|2a+b|(x∈R).(1)求函数f(x)图象的对称轴;(2)当x∈(0,π2)时,求f(x)的值域.解析此题考查平面向量的模的求法、三角恒等变换、辅助角公式的应用;考查学生运算求解的能力;考查了数学运算的核心素养.(1)2a+b=(√3sin x+cos x,2cos x),f(x)=|2a+b|=√(√3sinx+cosx)2+(2cosx)2=√2sin(2x+π6)+4(x∈R).由2x+π6=kπ+π2,k∈Z,得x=kπ2+π6,k∈Z,故函数f(x)图象的对称轴为直线x=kπ2+π6,k∈Z.(2)因为x∈(0,π2),所以2x+π6∈(π6,7π6),所以sin(2x+π6)∈(-12,1],可得f(x)∈(√3,√6],即f(x)的值域为(√3,√6].【五年高考】A组自主命题·浙江卷题组(2021浙江,10,6分)2cos2x+sin2x=Asin(ωx+φ)+b(A>0),那么A=,b=.答案√2;1B组统一命题、省(区、市)卷题组考点一两角和与差的三角函数1.(2021课标全国Ⅲ理,4,5分)假设sinα=13,那么cos2α=()A.89B.79C.-79D.-89答案B2.(2021课标全国Ⅱ,9,5分)假设cos(π4-α)=35,那么sin2α=()A.725 B.15 C.-15 D.-725答案 D 3.(2021江苏,13,5分)tanαtan (α+π4)=-23,那么sin (2α+π4)的值是 .答案√2104.(2021课标全国Ⅰ文,15,5分)α∈(0,π2),tan α=2,那么cos (α-π4)= .答案3√1010考点二 简单的三角恒等变换1.(2021课标全国Ⅲ文,4,5分)sin α-cos α=43,那么sin 2α=( )A.-79B.-29C.29D.79答案 A2.(2021四川,11,5分)cos 2π8-sin 2π8= .答案√22C 组 教师专用题组考点一 两角和与差的三角函数1.(2021课标Ⅰ,2,5分)sin 20°cos 10°-cos 160°sin 10°=( ) A.-√32B.√32C.-12 D.12答案 D2.(2021重庆,9,5分)假设tanα=2tanπ5,那么cos(α-3π10)sin(α-π5)=()A.1B.2C.3D.4答案C3.(2021江苏,5,5分)假设tan(α-π4)=16,那么tanα=.答案754.(2021江苏,8,5分)tanα=-2,tan(α+β)=17,那么tanβ的值为. 答案3考点二简单的三角恒等变换1.(2021山东文,4,5分)cos x=34,那么cos2x=()A.-14B.14C.-18D.18答案D2.(2021四川,12,5分)sin15°+sin75°的值是.答案√623.(2021江苏,16,14分)向量a=(cos x,sin x),b=(3,-√3),x∈[0,π].(1)假设a∥b,求x的值;(2)记f(x)=a·b,求f(x)的最大值和最小值以及对应的x的值.解析(1)因为a=(cos x,sin x),b=(3,-√3),a∥b,所以-√3cos x=3sin x.假设cos x=0,那么sin x=0,与sin2x+cos2x=1矛盾,故cos x≠0.于是tan x=-√33.又x∈[0,π],所以x=5π6.(2)f(x)=a·b=(cos x,sin x)·(3,-√3)=3cos x-√3sin x=2√3cos(x+π6).因为x∈[0,π],所以x+π6∈[π6,7π6],从而-1≤cos(x+π6)≤√32.于是,当x+π6=π6,即x=0时,f(x)取到最大值3;当x+π6=π,即x=5π6时,f(x)取到最小值-2√3.【三年模拟】一、选择题(每题4分,共12分)1.(2021届浙江杭州二中开学考,3)cos(π6-α)=23,那么cos(5π3+2α)的值为()A.59B.19C.-19D.-59答案C2.(2021浙江绍兴一中新高考调研卷五,5)△ABC,有关系式tan C(sin2B-sin A)=cos2B+cos A成立,那么△ABC为()A.等腰三角形B.∠A=60°的三角形C.等腰三角形或∠A=60°的三角形D.等腰直角三角形答案C3.(2021届浙江五校十月联考,9)在△ABC中,sinAsinB +cos C=0,tan A=√24,那么tan B=()A.√2B.2√2C.√23D.√22答案D二、填空题(每空3分,共12分)4.(2021届浙江名校协作体开学联考,12)设函数f(x)=cos2x-sin x,那么f(5π6)=,假设f(x)≥0,那么实数x的取值范围是.答案0;[2kπ-7π6,2kπ+π6](k∈Z)5.(2021届浙江之江教育联盟联考,14)函数f(x)=sin2x-sin2(x-π6),x∈R,那么f(x)的最小正周期为,单调递增区间为.答案π;[-π6+kπ,π3+kπ](k∈Z)三、解答题(共90分)6.(2021届浙江金丽衢十二校联考,18)设函数f(x)=sin x+cos x,x∈R.(1)求f(x)·f(π-x)的最小正周期;(2)求函数g(x)=sin3x+cos3x的最大值.解析此题考查三角恒等变换以及三角函数的性质;考查学生运算求解的能力;考查数学运算的核心素养.(1)f(x)·f(π-x)=(sin x+cos x)(sin x-cos x)=-cos2x.所以最小正周期T=2π2=π.(2)g(x)=sin3x+cos3x=(sin x+cos x)(1-sin xcos x),令sin x+cos x=t,那么t∈[-√2,√2],所以sin x·cos x=t2-12,所以g(t)=t(1−t2-12)=t·3−t22=3t-t32,g'(t)=3−3t22,即g(t)在[-√2,-1]上单调递减,在[-1,1]上单调递增,在[1,√2]上单调递减,所以g(t)max=g(1)=1.7.(2021浙江三校联考,18)函数f(x)=6cos2ωx2+√3sinωx-3(ω>0)的图象上相邻两对称轴之间的距离为4.(1)求ω的值及f(x)的单调增区间;(2)假设f(x0)=6√35,且x0∈(23,143),求f(x0+1)的值.解析(1)f(x)=3cosωx+√3sinωx=2√3sin(ωx+π3).由题意得T=8,所以ω=2π8=π4 ,所以f(x)=2√3sin(πx4+π3).令-π2+2kπ≤πx4+π3≤π2+2kπ,k∈Z,解得-103+8k≤x≤23+8k,k∈Z.所以f(x)的单调增区间为[-103+8k,23+8k],k∈Z.(2)由(1)知f(x0)=2√3sin(πx04+π3)=6√35,即sin(πx04+π3)=35,因为x0∈(23,14 3),所以πx04+π3∈(π2,3π2),所以cos(πx04+π3)=-45.所以f(x0+1)=2√3sin(πx04+π4+π3)=2√3[sin(πx04+π3)cosπ4+cos(πx04+π3)sinπ4]=2√3×(35×√22-45×√22)=-√65.8.(2021浙江杭州高级中学期中,18)函数f(x)=cos2x+√3cos xcos(x+π2).(1)求函数f(x)的最大值及取得最大值时x的值;(2)假设f(x0)=-110,x0∈(π12,π3),求cos2x0的值.解析(1)f(x)=-sin(2x-π6)+12.易知当sin(2x-π6)=-1时,f(x)取得最大值,此时2x-π6=-π2+2kπ,k∈Z,故x=-π6+kπ,k∈Z,所以当x=-π6+kπ,k∈Z时,f(x)max=32.(2)因为f(x0)=-sin(2x0-π6)+12=-110,所以sin(2x0-π6)=35.因为x0∈(π12,π3 ),所以2x0-π6∈(0,π2),故cos(2x0-π6)=45.所以cos2x0=cos[(2x0-π6)+π6]=cos(2x0-π6)cosπ6-sin(2x0-π6)sinπ6=4√3-310.9.(2021浙江高考数学仿真卷(二),18)函数f(x)=-√3sin2x-2cos2x+1.(1)求函数f(x)的振幅和单调递增区间;(2)在△ABC中,C为锐角,满足sin2C+2sin2A=1,假设f(C)=12,求cos2A的值.解析(1)f(x)=-√3sin2x-cos2x=-2sin(2x+π6),∴f(x)的振幅为2.令π2+2kπ≤2x+π6≤3π2+2kπ(k∈Z),那么π6+kπ≤x≤2π3+kπ(k∈Z).∴f(x)的单调递增区间为[π6+kπ,2π3+kπ](k∈Z).(2)∵sin 2C+2sin 2A=1,∴sin 2C=1-2sin 2A=cos 2A=sin (π2+2A),∴2C=π2+2A 或2C+2A+π2=π,所以C-A=π4或C+A=π4.∵C 为锐角,∴2C+π6∈(π6,7π6),∵f(C)=12, ∴-2sin (2C +π6)=12,∴sin (2C +π6)=-14,∴2C+π6∈(π,7π6), ∴C ∈(5π12,π2), ∴C-A=π4,此时cos (2C +π6)=-√154,∴cos 2A=cos [2(C -π4)]=cos (2C -π2)=sin 2C=sin [(2C +π6)-π6]=sin (2C +π6)cos π6-cos (2C +π6)sin π6=-14×√32-(-√154)×12=√15-√38.10.(2021浙江高考信息优化卷(一),18)函数f(x)=2√3sin ωxsin (ωx +π2)-2sin 2ωx+1(ω>0),且f(x)的最小正周期为π.(1)求ω的值以及f(x)在区间[0,π3]上的值域;(2)假设f(α)=2√55,且α∈[π6,π2],求cos 2α的值.解析 (1)f(x)=2√3sin ωxcos ωx+cos 2ωx=√3sin 2ωx+cos 2ωx=2sin (2ωx +π6),∵T=2π2ω=π,∴ω=1, ∴f(x)=2sin (2x +π6),∵x ∈[0,π3],∴2x+π6∈[π6,5π6],∴sin(2x+π6)∈[12,1],∴f(x)∈[1,2].(2)易知f(α)=2sin(2α+π6)=2√55⇒sin(2α+π6)=√55,∵α∈[π6,π2],∴2α+π6∈[π2,7π6],∴cos(2α+π6)=-2√55,∴cos2α=cos[(2α+π6)-π6]=cos(2α+π6)cosπ6+sin(2α+π6)sinπ6=√5-2√1510.11.(2021届浙江Z20联盟开学联考,18)函数f(x)=cos2x+√3sin xcos x.(1)求f(π3)的值;(2)假设f(α2)=1310,α∈(0,π3),求cosα的值.解析此题考查简单的三角恒等变换;考查学生运算求解的能力;考查数学运算的核心素养.(1)因为f(x)=cos2x+√3sin xcos x=1+cos2x2+√32sin2x=12+sin(2x+π6),所以f(π3)=12+sin(2π3+π6)=12+sin5π6=12+12=1.(2)由f(α2)=1310,α∈(0,π3),得sin(α+π6)=45,cos(α+π6)=35,所以cosα=cos(α+π6-π6)=cos(α+π6)cosπ6+sin(α+π6)·sinπ6=3√3+410.。

三角恒等变形-练习题

三角恒等变形-练习题

三角恒等变形-练习题(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--3-1-1两角差的余弦公式一、选择题1.cos39°cos9°+sin39°sin9°等于( )C .-12D .-32 2.cos555°的值为( ) B .-6+243.已知α∈⎝⎛⎭⎫0,π2,sin α=45,则cos ⎝⎛⎭⎫π4-α等于( )2C .-210D .-254.若sin α·sin β=1,则cos(α-β)的值为( ) A .0 B .1 C .±1 D .-1 5.cos75°+cos15°的值是( )6.化简sin(x +y )sin(x -y )+cos(x +y )cos(x -y )的结果是( )A .sin2xB .cos2yC .-cos2xD .-cos2y7.若sin(π+θ)=-35,θ是第二象限角,sin ⎝⎛⎭⎫π2+φ=-255,φ是第三象限角,则cos(θ-φ)的值是( ) A .-558.cos π12+3sin π12的值为( ) A .- 29.已知sin ⎝⎛⎭⎫π6+α=35,π3<α<5π6,则cos α的值是( )10.已知sin α+sin β=45,cos α+cos β=35,则cos(α-β)的值为( ) D .-12 二、填空题11.cos α=35,cos β=513,sin α=-45,sin β=1213,则cos(α-β)=________.12.cos(61°+2α)cos(31°+2α)+sin(61°+2α)sin(31°+2α)=________.13.已知cos ⎝⎛⎭⎫α-π3=cos α,则tan α=________.14.化简2cos10°-sin20°cos20°=________. 三、解答题 15.求值:(1)sin285°;(2)sin460°sin(-160°)+cos560°cos(-280°). 16.已知sin α=13,α∈⎝⎛⎭⎫0,π2,cos β=27,β是第四象限角,求cos(α-β)的值.17.设cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,其中α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2,求cos α+β2.18.若α,β为锐角,且cos α=45,cos(α+β)=-1665,求cos β的值.3-1-2-1两角和与差的正弦、余弦一、选择题1.下列等式成立的是( )A .cos80°cos20°-sin80°sin20°=12 B .sin13°cos17°-cos13°sin17°=12 C .sin70°cos25°+sin25°sin20°=22 D .sin140°cos20°+sin50°sin20°=32 2.cos 5π12的值等于( )3.在△ABC 中,已知sin(A -B )·cos B +cos(A -B )sin B ≥1,则△ABC 是( )A .锐角三角形B .钝角三角形C .直角三角形D .等腰非直角三角形sin ⎝⎛⎭⎫π4-x +6sin ⎝⎛⎭⎫π4+x 的化简结果是( ) A .22sin ⎝⎛⎭⎫5π12+x B .22sin ⎝⎛⎭⎫x -5π12C .22sin ⎝⎛⎭⎫7π12+xD .22sin ⎝⎛⎭⎫x -7π12 5.设a =sin14°+cos14°,b =sin16°+cos16°,c =62,则a 、b 、c 的大小关系是( )A .a <b <cB .a <c <bC .b <a <cD .b <c <a6.已知cos(α+β)=45,cos(α-β)=-45,则cos αcos β的值为( )A .0 C .0或45 D .0或±457.若α、β均为锐角,sin α=255,sin(α+β)=35,则cos β等于( )或2525 D .-2525 8.若α、β为两个锐角,则( )A .cos(α+β)>cos α+cos βB .cos(α+β)<cos α+cos βC .cos(α+β)>sin α+sin βD .cos(α+β)<sin α+sin β9.若sin α-sin β=1-32,cos α-cos β=-12,则cos(α-β)的值是( )D .110.(2012·重庆)sin47°-sin17°cos30°cos17°( ) A .-32 B .-12 二、填空题11.化简:cos(35°-x )cos(25°+x )-sin(35°-x )sin(25°+x )=________.12.若cos(α+β)cos α+sin(α+β)sin α=-45,且450°<β<540°,则sin(60°-β)=________.13.已知α、β为锐角,且tan α=23,tan β=34,则sin(α+β)=________. 的值是________. 三、解答题15.已知π2<β<α<3π4,cos(α-β)=1213,sin(α+β)=-35,求sin2α的值.16.已知sin α=23,cos β=-14,且α,β为相邻象限的角,求sin(α+β)和sin(α-β)的值. 17.求证:sin?2α+β?sin α-2cos(α+β)=sin βsin α.18.(暂时不做)已知向量a =(cos α,sin α),b =(cos β,sin β),|a -b |=255.(1)求cos(α-β)的值;(2)若-π2<β<0<α<π2,且sin β=-513,求sin α的值.3-1-2-2两角和与差的正切一、选择题1.若α、β∈(0,π2)且tan α=12,tan β=13,则tan(α-β)( )A .-17 B .1 C .17 D .152.tan(α+β)=25,tan(α-β)=14,则tan2α=( )3.已知α∈(π2,π),sin α=35,则tan(α+π4)的值等于( )A .-7B .7C .-174.在△ABC 中,若0<tan B tan C <1,则△ABC 是( )A .锐角三角形B .钝角三角形C .直角三角形D .形状不能确定5.化简tan10°tan20°+tan20°tan60°+tan60°tan10°的值等于( )A .1B .2C .tan10°D .3tan20°6.已知tan α,tan β是方程x 2+33x +4=0的两根,且-π2<α<π2,-π2<β<π2,则α+β的值为( )B .-2π3 或-2π3 D .-π3或2π37.(2011~2012·长春高一检测)tan(π6-θ)+tan(π6+θ)+3tan(π6-θ)tan(π6+θ)的值是( )C .2 3 的值为( )A .2+ 3 C .2- 39.已知α、β为锐角,cos α=45,tan(α-β)=-13,则tan β的值为( )10.在△ABC 中,若tan B =cos?C -B ?sin A +sin?C -B ?,则这个三角形是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形 二、填空题11.若tan α=2,tan(β-α)=3,则tan(β-2α)的值为____.12.化简3-tan18°1+3tan18°=________.13.已知tan ⎝⎛⎭⎫α-β2=12,tan ⎝⎛⎭⎫β-α2=-13,则tan α+β2=________.14.不查表求值:tan15°+tan30°+tan15°tan30°=______. 三、解答题15.(2011~2012·学军高一检测)已知△ABC 中,3tan A tan B -tan A -tan B = 3.求C 的大小.16.已知tan α、tan β是方程x 2-3x -3=0的两根,试求sin 2(α+β)-3sin(α+β)cos(α+β)-3cos 2(α+β)的值.17.首先定义向量的乘法:设向量m =()11,x y ,n =()22,x y ,则m·n =1212x x y y ⋅+⋅已知A ,B ,C 是△ABC 的三内角,向量m =(-1,3),n =(cos A ,sin A ),且m ·n =1.(1)求角A ;(2)若tan ⎝⎛⎭⎫π4+B =-3,求tan C .18.是否存在锐角α、β,使得(1)α+2β=2π3,(2)tan α2·tan β=2-3同时成立若存在,求出锐角α、β的值;若不存在,说明理由.3-1-3二倍角的正弦、余弦、正切公式一、选择题1.12-sin 215°的值是( )2.若sin α=1213,α∈⎝⎛⎭⎫π2,π,则tan2α的值为( )C .-60119D .-1201193.若x =π12,则cos 2x -sin 2x 的值等于( )4.已知sin θ=45,sin θcos θ<0,则sin2θ的值为( )A .-2425B .-1225C .-455.已知sin ⎝⎛⎭⎫π4-x =35,则sin2x 的值为( )6.定义向量的模:设向量a =(),x y ,则a 的模为22x y +.现已知向量a =⎝⎛⎭⎫cos θ,12的模为22,则cos2θ等于( )-32 B .-14C .-127.已知等腰三角形底角的余弦值为23,则顶角的正弦值是( )C .-459D .-2598.若sin ⎝⎛⎭⎫π6-α=13,则cos ⎝⎛⎭⎫2π3+2α的值是( ) A .-79 B .-139.(2009·广东)函数y =2cos 2(x -π4)-1是( )A .最小正周期为π的奇函数B .最小正周期为π2的奇函数C .最小正周期为π的偶函数D .最小正周期为π2的偶函数10.(2011·宁夏、海南)3-sin70°2-cos 210°=( )C .2 二、填空题11.3tan π81-tan 2π8=________. 12.在△ABC 中,cos A =513,则sin2A =________.13.设cos2θ=23,则cos 4θ+sin 4θ的值是________.14.2002年北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形接成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值等于________. 三、解答题15.已知cos α=-1213,α∈⎝⎛⎭⎫π,3π2,求sin2α,cos2α,tan2α的值.16.已知cos(x -π4)=210,x ∈(π2,3π4).(1)求sin x 的值. (2)求sin(2x +π3)的值.17.已知sin ⎝⎛⎭⎫π4-x =513,0<x <π4,求cos2x cos ⎝⎛⎭⎫π4+x的值. 18.设函数f (x )=2cos x sin(x +π3)-3sin 2x +sin x cos x ,当x ∈[0,π2]时,求f (x )的最大值和最小值.3-2-1三角恒等变换一、选择题1.设-3π<α<-5π2,则化简1-cos?α-π?2的结果是( )A .sin α2B .cos α2C .-cos α2D .-sin α22.已知cos α=-15,π2<α<π,则sin α2等于( )A .-105 C .-155 ·2cos 2αcos2α等于( )A .tan αB .tan2αC .14.已知钝角α满足cos α=-13,则sin α2等于( )5.化简cos2αtan ⎝⎛⎭⎫π4+α=( ) A .sin α B .cos α C .1+sin2α D .1-sin2α6.函数f (x )=cos ⎝⎛⎭⎫2x +π3+12-12cos2x ,则f (x )可化为( )-32sin2x +32sin2x C .1-3sin2x D .-32sin2x 7.函数f (x )=cos 2x +sin x cos x 的最大值是( )A .28.若cos2αsin ⎝⎛⎭⎫α-π4=-22,则cos α+sin α的值为( ) A .-72 B .-12 C .12 D .729.(山东)若θ∈⎣⎡⎦⎤π4,π2,sin2θ=378,则sin θ=( )10.已知-3π2<α<-π,则12+12·12+12cos2α的值为( )A .-sin α2B .cos α2 C .sin α2 D .-cos α2 二、填空题11.已知tan α2=13,则cos α=________. 12.若tan α=2,则tan α2=________.13.若sin ⎝⎛⎭⎫3π2-2x =35,则tan 2x =________.14.若cos2θ=-34,那么sin 4θ+cos 4θ=________. 三、解答题15.若已知tan θ2=2,求cos θ、sin θ的值.16.化简12sin 2x ·⎝ ⎛⎭⎪⎪⎫1tan x 2-tan x 2+32cos2x 为A sin(ωx +φ)的形式.17.已知sin(2α+β)=5sin β.求证:2tan(α+β)=3tan α. 18.已知函数f (x )=sin 2x +2sin x cos x +3cos 2x ,x ∈.(1)求函数f (x )的最大值及此时自变量x 的集合; (2)求函数f (x )的单调递增区间.3-2-2三角恒等式的应用一、选择题1.函数f (x )=-12sin x cos x 的最大值是( )B .-12 D .-142.函数y =cos 2x 2-sin 2x2的最小值等于( )A .-1B .1 D .23.函数y =sin x1+cos x的周期等于( )B .πC .2πD .3π4.函数y =cos 4x -sin 4x +2的最小正周期是( )A .πB .2π5.函数y =12sin2x +sin 2x 的值域是( )6.已知函数f (x )=sin x +a cos x 的图象的一条对称轴是x =5π3,则函数g (x )=a sin x +cos x 的最大值是( )7.化简1+cos80°-1-cos80°等于( )A .-2cos5°B .2cos5°C .-2sin5°D .2sin5°8.函数y =cos 2ωx -sin 2ωx (ω>0)的最小正周期是π,则函数f (x )=2sin(ωx +π4)的一个单调递增区间是( )A .[-π2,π2]B .[5π4,9π4]C .[-π4,3π4]D .[π4,5π4] 9.(2011·重庆) 首先定义向量的乘法:设向量m =()11,x y ,n =()22,x y ,则m·n =1212x x y y ⋅+⋅.设△ABC 的三个内角为A 、B 、C ,向量m =(3sin A ,sin B ),n =(cos B ,3cos A ),若m ·n =1+cos(A +B ),则C 等于( )10.设M ={平面内的点(a ,b )},N ={f (x )|f (x )=a cos2x +b sin2x },给出M 到N 的映射f :(a ,b )→f (x )=a cos2x +b sin2x ,则点(1,3)的象f (x )的最小正周期为( )A .π2B .π4C .πD .2π 二、填空题11.函数y =2sin x +2cos x 的值域是________.12.已知函数f (x )=3sin ωx cos ωx -cos 2ωx (ω>0)的周期为π2,则ω=________.13.函数f (x )=3sin x -cos x 的单调递增区间是______.14.关于函数f (x )=sin2x -cos2x ,有下列命题:①函数y =f (x )的周期为π;②直线x =π4是y =f (x )的图象的一条对称轴;③点⎝⎛⎭⎫π8,0是y =f (x )的图象的一个对称中心; ④将y =f (x )的图象向左平移π4个单位,可得到y =2sin2x 的图象.其中真命题的序号是________. 三、解答题15.已知函数f (x )=23sin x cos x +2cos 2x -1.(1)求f ⎝⎛⎭⎫π6的值及f (x )的最小正周期; (2)当x ∈⎣⎡⎦⎤0,π2时,求f (x )的最大值和最小值. 16.已知函数f (x )=2sin 2ωx +23sin ωx sin ⎝⎛⎭⎫π2-ωx (ω>0)的最小正周期为π.(1)求ω的值;(2)求函数f (x )在区间⎣⎡⎦⎤0,2π3上的值域. 17.已知函数f (x )=3sin2x -2sin 2x .(1)若点P (1,-3)在角α的终边上,求f (α)的值;(2)若x ∈⎣⎡⎦⎤-π6,π3,求f (x )的值域. 18.某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1m ,求割出的长方形桌面的最大面积(如图).。

高中试卷-专题5.5 三角恒等变换(含答案)

高中试卷-专题5.5   三角恒等变换(含答案)

专题5.5 三角恒等变换(一)两角和与差的正弦、余弦、正切公式1.C (α-β):cos(α-β)=cos αcos β+sin αsin β;C (α+β):cos(α+β)=cos αcos_β-sin_αsin β;S (α+β):sin(α+β)=sin αcos β+cos αsin β;S (α-β):sin(α-β)=sin_αcos_β-cos αsin β;T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.变形公式:tan α±tan β=tan(α±β)(1∓tan αtan β);.sin αsin β+cos(α+β)=cos αcos β,cos αsin β+sin(α-β)=sin αcos β,3.辅助角公式:函数f(α)=acos α+bsin α(a ,b 为常数),可以化为f(α)+φ)或f(α)=-φ),其中φ可由a ,b 的值唯一确定.(二)二倍角的正弦、余弦、正切公式1.S 2α:sin 2α=2sin αcos α;C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;T 2α:tan 2α=2tan α1-tan 2α.2.变形公式:(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,sin αcos α=12sin 2α.(2)升幂公式1+cos α=2cos 2α2;1-cos α=2sin 2α2;1+sin α=(sin α2+cos α2)2;1-sin α=(sin α2-cos α2)2.)4sin(2cos sin πααα±=±(3)配方变形:1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)21±sin α=(sin α2±cos α2)2,1+cos α=2cos 2α2,1-cos α=2sin 2α2(4)sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.tan α2=sin α1+cos α=1-cos αsin α.(三)常见变换规律(1)角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的变换技巧,及半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,(π4+α)+(π4-α)=π2,α2=2×α4等.(2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.一、单选题1.sin 40sin 50cos 40cos50°°-°°等于( )A .1-B .1C .0D .cos10-°【来源】陕西省西安市莲湖区2021-2022学年高一下学期期末数学试题【答案】C【解析】由两角和的余弦公式得:()()sin 40sin 50cos 40cos50cos 40cos50sin 40sin 50cos 4050cos900°°-°°=-°°-°°=-+=-=o o o 故选:C2.已知()5cos 2cos 22παπαæö-=+ç÷èø,且()1tan 3αb +=,则tan b 的值为( )A .7-B .7C .1D .1-【来源】辽宁省沈阳市第一中学2021-2022学年高一下学期第三次阶段数学试题【答案】D【解析】:因为()5cos 2cos 22παπαæö-=+ç÷èø,所以sin 2cos αα=,所以sin tan 2cos ααα==,又()1tan 3αb +=,所以()()()12tan tan 3tan tan 111tan tan 123αb αb αb ααb α-+-=+-===-éùëû+++´.故选:D3.已知,αb 均为锐角,且1sin 2sin ,cos cos 2αb αb ==,则()sin αb -=( )A .35B .45CD .23【来源】辽宁省县级重点高中协作体2021-2022学年高一下学期期末考试数学试题【答案】A【解析】:因为1sin 2sin ,cos cos 2αb αb ==,所有22221sin cos 4sin cos 14ααb b +=+=,则2153sin 44b =,又,αb均为锐角,所以sin b =cos b =所以sin αα==所以()3sin sin cos cos sin 5αb αb αb -=-=.故选:A.4.已知()1sin 5αb +=,()3sin 5αb -=,则tan tan αb 的值为( )A .2B .2-C .12D .12-【来源】内蒙古自治区包头市2021-2022学年高一下学期期末数学试题【答案】B【解析】()()1sin sin cos cos sin 53sin sin cos cos sin 5αb αb αb αb αb αb ì+=+=ïïíï-=-=ïî,解得2sin cos 51cos sin 5αb αb ì=ïïíï=-ïî,所以tan sin cos 2tan cos sin ααbb αb==-.故选:B5.已知sin sin 13πq q æö++=ç÷èø,则tan 6πq æö+=ç÷èø( )ABC .D .【来源】陕西省汉中市六校联考2021-2022学年高一下学期期末数学试题(B 卷)【答案】D【解析】sin sin(13πq q ++=,则1sin sin 12q q q +=,即312q =,1cos 2q q +=sin 6πq æö+ç÷èøcos 6πq æö+==ç÷èø所以tan 6πq æö+==ç÷èø故选:D6.下面公式正确的是( )A .3sin cos 2πq q æö+=ç÷èøB .2cos212cos q q =-C .3cos sin 2πq q æö+=-ç÷èøD .cos(sin 2πq q-=【来源】陕西省宝鸡市渭滨区2021-2022学年高一下学期期末数学试题【答案】D 【解析】对A ,3sin cos 2πq q æö+=-ç÷èø,故A 错误;对B ,2cos 22cos 1q q =-,故B 错误;对C ,3cos sin 2πq q æö+=ç÷èø,故C 错误;对D ,cos()sin 2πq q -=,故D 正确;故选:D7.已知2tan()5αb +=,1tan(44πb -=,则tan()4πα+的值为( )A .16B .322C .2213D .1318【来源】内蒙古自治区呼伦贝尔市满洲里市第一中学2021-2022学年高一下学期期末数学试题【答案】B【解析】:因为2tan()5αb +=,1tan()44πb -=,所以()tan()tan 44ππααb b éùæö+=+--ç÷êúèøëû()()tan tan 41tan tan 4παb b παb b æö+--ç÷èø=æö++-ç÷èø213542122154-==+´.故选:B 8.设1cos102a =o o,22tan131tan 13b =+oo,c =,则a ,b ,c 大小关系正确的是( )A .a b c <<B .c b a <<C .a c b<<D .b c a<<【来源】湖北省云学新高考联盟学校2021-2022学年高一下学期5月联考数学试题【答案】C【解析】()1cos10cos 6010cos 70sin 202a =°=°+°=°=°o ,2222sin132tan13cos132sin13cos13sin 26sin 131tan 131cos 13b °°°===°°=°°+°+°,sin 25c ===o ,因为函数sin y x =在0,2πæöç÷èø上是增函数,故sin 20sin 25sin 26<<o o o ,即a c b <<.故选:C.9.已知sin()6πα+=2cos(2)3πα-=( )A .23-B .13-C .23D .13【来源】海南省海口市第一中学2021-2022学年高一下学期期中考试数学试题(A )【答案】B【解析】:因为sin()6πα+=,所以2cos 2cos 263παππαéùæöæö-=-ç÷ç÷êúèøë+øèû6cos 2πα÷+æö=-çèø212n 6si παéùæö=--ç÷êúøë+èû21123éùæêú=--=-ççêúèëû故选:B10.若11tan ,tan()72b αb =+=,则tan =α( )A .115B .112C .16D .13【来源】北京市房山区2021—2022学年高一下学期期末学业水平调研数学试题【答案】D【解析】:因为11tan ,tan()72b αb =+=,所以()()()11tan tan 127tan =tan 111tan tan 3127αb b ααb b αb b -+-+-===éùëû+++´.故选:D.11.已知3cos 16πααæö--=ç÷èø,则sin 26παæö+=ç÷è( )A .13-B .13C .D【来源】四川省内江市2021-2022学年高一下学期期末数学理科试题【答案】B【解析】:因为3cos 16πααæö--=ç÷èø,即3cos cos sin sin 166ππαααæö-+=ç÷èø,即13sin 12αααö-+=÷÷ø3sin 12αα-=1cos 123παααöæö=+=÷ç÷÷èøø,所以cos 3παæö+=ç÷èø所以sin 2cos 2662πππααæöæö+=-++ç÷ç÷èøèø2cos 22cos 133ππααéùæöæö=-+=-+-ç÷ç÷êúèøèøëû21213éùêú=--=êúëû.故选:B 12.已知4sin 5α=,π5,π,cos ,213αb b æöÎ=-ç÷èø是第三象限角,则()cos αb -=( )A .3365-B .3365C .6365D .6365-【来源】西藏林芝市第二高级中学2021-2022学年高一下学期第二学段考试(期末)数学试题【答案】A【解析】由4sin 5α=,π,π2αæöÎç÷èø,可得3cos 5α===-由5cos ,13b b =-是第三象限角,可得12sin 13b ===-则()3541233cos cos cos sin sin 51351365αb αb αb æöæöæö-=+=-´-+´-=-ç÷ç÷ç÷èøèøèø故选:A13.若sin 2α=()sin b α-=,4απéùÎπêúëû,3,2b ππéùÎêúëû,则αb +的值是( )A .54πB .74πC .54π或74πD .54π或94π【答案】B【解析】,,2,242ππαπαπéùéùÎ\ÎêúêúëûëûQ ,又∵sin 22,,,242πππααπαéùéù=\ÎÎêúêúëûëû,∴cos2α==又∵35,,,224πππb πb αéùéùÎ\-Îêúêúëûëû,∴()cos b α-==于是()()()()cos cos 2cos 2cos sin 2sin αb αb ααb ααb α+=+-=---éùëûææ==ççççèè5,24αb πéù+Îπêúëû,则74αb π+=.故选:B.14.)sin20tan50=oo ( )A .12B .2C D .1【来源】安徽省宣城市泾县中学2021-2022学年高一下学期第一次月考数学试题【答案】D 【解析】原式()()()2sin 20sin 50602sin 20sin 9020cos50cos 9050++===-oooooooo o 2sin 20cos 20sin 401sin 40sin 40===o o o o o.故选:D.15.若1cos ,sin(),0722ππααb αb =+=<<<<,则角b 的值为( )A .3πB .512πC .6πD .4π【来源】陕西省西安中学2021-2022学年高一下学期期中数学试题【答案】A 【解析】∵0,022ππαb <<<<,0αb π\<+<,由1cos 7α=,()sin αb +=sin α=,11cos()14αb +=±,若11cos()14αb +=,则sin sin[()]b αb α=+-sin()cos cos()sin αb ααb α=+-+1110714=-<,与sin 0b >矛盾,故舍去,若11cos()14αb +=-,则cos cos[()]b αb α=+-cos()cos sin()sin αb ααb α=+++111147=-´+12=,又(0,)2πb ÎQ ,3πb \=.故选:A.161712πα<<,且7cos 268παæö+=-ç÷ø,则αö=÷ø( )A .B .CD .14-【来源】河南省南阳地区2021-2022学年高一下学期期终摸底考试数学试题【答案】A【解析】由27cos 212sin 6128ππααæöæö+=-+=-ç÷ç÷èøèø,得215sin 1216παæö+=ç÷èø.因为7171212ππα<<,所以233122πππα<+<,所以sin 12παææö+Î-çç÷çèøè,所以sin 12παæö+=ç÷èø所以5cos cos sin 1221212ππππαααæöæöæöæö-=-+=+=ç÷ç÷ç÷ç÷èøèøèøèø故选:A17.已知sin cos αα-=π£,则sin 2æçè )A C .D 【来源】湖北省新高考联考协作体2021-2022学年高一下学期期末数学试题【答案】D【解析】:因为sin cos αα-=()22sin cos αα-=,即222sin 2sin cos cos 5αααα-+=,即21sin 25α-=,所以3sin 25α=,又sin cos 4παααæö--=ç÷èø即sin 4παæö-=ç÷èø因为0απ££,所以3444πππα-£-£,所以044ππα<-£,即42ππα<£,所以22παπ<£,所以4cos 25α==-,所以sin 2sin 2cos cos 2sin333πππαααæö-=-ç÷èø314525æö=´--=ç÷èø;故选:D18.若10,0,cos ,cos 224342ππππb αb αæöæö<<-<<+=-=ç÷ç÷èøèøcos 2b αæö+=ç÷èø( )A B .C D .【来源】广东省佛山市顺德区乐从中学2021-2022学年高一下学期期中数学试题【答案】C 【解析】cos cos cos cos sin sin 2442442442b ππb ππb ππb ααααéùæöæöæöæöæöæöæö+=+--=+-++-ç÷ç÷ç÷ç÷ç÷ç÷ç÷êúèøèøèøèøèøèøèøëû,因为0,022ππαb <<-<<所以3,444πππαæö+Îç÷èø,,4242πb ππæö-Îç÷èø,因为1cos 43παæö+=ç÷èø,cos 42πb æö-=ç÷èø所以sin 4παæö+=ç÷èø,sin 42πb æö-=ç÷èø则1cos 23b αæö+==ç÷èøC19.已知πcos sin 6ααæö-+ç÷èø,则2πcos 3αæö+ç÷èø的值是( )A .45-B .45C .D 【来源】广东省汕尾市2021-2022学年高一下学期期末数学试题【答案】A【解析】由πcos sin 6ααæö-+=ç÷èøππ3πcos cossin sin sin sin 6623ααααααæö++=+=-=ç÷èø所以,π4cos 35αæö-=ç÷èø,所以,2πππ4cos cos πcos 3335αααæöæöæöæö+=--=--=-ç÷ç÷ç÷ç÷èøèøèøèø.故选:A.20.已知,2παπæöÎç÷ø,且25,则cos()α-=( )A B C D 【来源】陕西省商洛市2021-2022学年高一下学期期末数学试题【答案】C【解析】因为,2παπæöÎç÷èø,所以35,444πππαæö+Îç÷èø.又2sin 45παæö+=ç÷èø,所以cos 4παæö+==ç÷èøcos()cos cos cos cos sin sin 444444ππππππαααααéùæöæöæö-==+-=+++=ç÷ç÷ç÷êúèøèøèøëû故选:C.二、多选题21.对于函数()sin 22f x x x =,下列结论正确的是( )A .()f x 的最小正周期为πB .()f x 的最小值为2-C .()f x 的图象关于直线6x π=-对称D .()f x 在区间,26ππæö--ç÷èø上单调递增【来源】湖北省部分普通高中联合体2021-2022学年高一下学期期中联考数学试题【答案】AB【解析】()1sin 222(sin 22)2sin(223f x x x x x x π==+=+,22T ππ==,A 正确;最小值是2-,B 正确;()2sin()0633f πππ-=-+=,C 错误;(,)26x ππÎ--时,22(,0)33x ππ+Î-,232x ππ+=-时,()f x 得最小值2-,因此函数不单调,D 错误,故选:AB .22 )A .222cos2sin 1212ππ-B .1tan151tan15+°-°C .cos 75°°D .cos15°°【来源】江西省南昌市第十中学2021-2022学年高一下学期期中考试数学试题【答案】ABC【解析】A :222cos 2sin 2cos12126πππ-==B :1tan15tan 45tan15tan 601tan151tan 45tan15+°°+°==°=-°-°°C :cos 75sin1530°°=°°=°=,符合;D :cos152sin(3015)2sin15°°=°-°=°¹.故选:ABC23.已知函数2()cos sin 222x x xf x =-,则下列结论正确的有( )A .()f x 的最小正周期为4πB .直线23x π=-是()f x 图象的一条对称轴C .()f x 在0,2πæöç÷èø上单调递增D .若()f x 在区间,2m πéù-êúëû上的最大值为12,则3m π³【来源】江苏省南京师范大学附属中学2021-2022学年高一下学期期中数学试题【答案】BD【解析】:()21cos 1cos sin sin 222262x x x x f x x x π-æö=-=-=+-ç÷èø,所以()f x 的最小正周期为2,π故A 不正确;因为2362πππ-+=-,所以直线23x π=-是()f x 图象的一条对称轴,故B 正确;当02x π<<时,2+663x πππ<<,而函数sin y x =在2,63ππæöç÷èø上不单调,故C 不正确;当2x m π-££时,++366x m πππ-££,因为()f x 在区间,2m πéù-êúëû上的最大值为12,即11sin 622x πæö+-£ç÷èø,所以sin 16x πæö+£ç÷èø,所以+62m ππ³,解得3m π³,故D 正确.故选:BD.24.已知函数22()cos cos sin (0)f x x x x x ωωωωω=+->的周期为π,当π[0]2x Î,时,()f x 的( )A .最小值为2-B .最大值为2C .零点为5π12D .增区间为π06éùêúëû,【来源】江苏省徐州市2021-2022学年高一下学期期中数学试题【答案】BCD【解析】22()cos cos sin (0)f x x x x x ωωωωω=+->2cos 2x xωω=+2sin 26x πωæö=+ç÷èø,因为()f x 的周期为π,所以22ππω=,得1ω=,所以()2sin 26f x x πæö=+ç÷èø,当π[02x Î,时,72,666x πππéù+Îêúëû,所以1sin 2126x πæö-£+£ç÷èø,所以12sin 226x πæö-£+£ç÷èø,所以 ()f x 的最小值为1-,最大值为2,所以A 错误,B 正确,由()2sin 206f x x πæö=+=ç÷èø,72,666x πππéù+Îêúëû,得26x ππ+=,解得512x π=,所以()f x 的零点为5π12,所以C 正确,由2662x πππ£+£,得06x π££,所以()f x 的增区间为π06éùêëû,,所以D 正确,故选:BCD25.关于函数()cos 2cos f x x x x =-,下列命题正确的是( )A .若1x ,2x 满足12πx x -=,则()()12f x f x =成立;B .()f x 在区间ππ,63éù-êúëû上单调递增;C .函数()f x 的图象关于点π,012æöç÷èø成中心对称;D .将函数()f x 的图象向左平移7π12个单位后将与2sin 2y x =的图象重合.【来源】广东省佛山市顺德区第一中学2021-2022学年高一下学期期中数学试题【答案】ACD【解析】()1cos 2cos cos 222cos 222f x x x x x x x x æö=-==ç÷ç÷èøπ2cos 23x æö=+ç÷èø,对于A ,若1x ,2x 满足12πx x -=,则()()()1222ππ2cos 2π2cos 233f x x x f x éùæö=++=+=ç÷êúëûèø成立,故A 正确;对于B ,由ππ2π22π2π,3k x k k Z +£+£+Î,得:π5πππ,36k x k k +££+ÎZ ,即()f x 在区间π5π,36éùêúëû上单调递增,故B 错误;对于C ,因为πππ2cos 2012123f æöæö=´+=ç÷ç÷èøèø,所以函数()f x 的图象关于点π,012æöç÷èø成中心对称,故C 正确;对于D ,将函数()f x 的图象向左平移7π12个单位后得到7π7ππ3π2cos 22cos 22sin 2121232y f x x x x éùæöæöæö=+=++=+=ç÷ç÷ç÷êèøèøèøëû,其图象与2sin 2y x =的图象重合,故D 正确.故选:ACD三、解答题26.求下列各式的值(1)cos54cos36sin54sin36×-×o o o o (2)sin7cos37cos(7)sin(37)×+-×-o o o o (3)ππcos sin 1212×(4)22ππsincos 88-【来源】黑龙江省鸡西市第四中学2021-2022学年高一上学期期末考试数学试题【答案】(1)0;(2)12-;(3)14;(4)【解析】(1)cos54cos36sin54sin36cos(5436)cos900×-×=+==o o o o o o o .(2)sin7cos37cos(7)sin(37)sin7cos37cos7sin37×+-×-=×-×o o o o o o o o1sin(737)sin(30)2=-=-=-o o o .(3)ππ1π1cossin sin 1212264×==.(4)22πππsin cos cos 884-=-=27.已知3sin 5α=,其中2απ<<π.(1)求tan α;(2)若0,cos 2πb b <<=()sin αb +的值.【来源】广东省珠海市2021-2022学年高一下学期期末数学试题(A 组)【答案】(1)34-(2)【解析】(1)由3sin 5α=可得4cos 5α==±,因为2απ<<π,故4cos 5α=-,进而sintan cos ααα==(2)π0,cos 2b b <<,故sinb =;()34sin =sin cos cos sin 55αb αb αb ++=28.已知角α为锐角,2πb απ<-<,且满足1tan23=α,()sin b α-(1)证明:04πα<<;(2)求b .【来源】江西省名校2021-2022学年高一下学期期中调研数学试题【答案】(1)证明见解析(2)3.4πb =【解析】(1)证明:因为1tan23α=,所以2122tan332tan 1tan 1441tan 129απαα´===<=--,因为α为锐角且函数tan y x =在0,2πæöç÷èø上单调递增,所以04πα<<(2)由22sin 3tan cos 4sin cos 1αααααì==ïíï+=î,结合角α为锐角,解得3sin 5α=,4cos 5α=,因为2πb απ<-<)=所以()cos b α-==()()()sin sinsin cos cos sin b αbααb ααbαéù=+-=-+-ëû3455æ=´+=çè又5224πππαb πα<+<<+<,所以3.4πb =29.已知α,b 为锐角,πsin 3αæö-=ç÷èø()11cos 14αb +=-.(1)求cos α的值;(2)求角b .【来源】江苏省南京市六校联合体2021-2022学年高一下学期期末数学试题【答案】(1)17(2)π3【解析】(1)因为π0,2αæöÎç÷èø,所以ππ336παæö-Îç÷ø-,,又πsin 3αæö-=ç÷èø所以π13cos 314αæö-===ç÷èø所以ππcos =cos +33ααéùæö-ç÷êúèøëûππππ1cos cos sin sin =33337ααæöæö=---ç÷ç÷èøèø(2)因为α,b 为锐角,所以0αb <+<π,则()sin 0αb +>,因为()11cos 14αb +=-,所以()sin αb +==又α为锐角,1cos 7α=,所以sin α==故()()()sin sin sin cos cos sin b αb ααb ααb α=+-=+-+éùû111714=+=因为b 为锐角,所以π3b =.30.已知sincos22αα-=(1)求sin α的值;(2)若αb ,都是锐角,()3cos 5αb +=,求sin b 的值.【来源】湖北省部分市州2021-2022学年高一下学期7月期末联考数学试题【答案】(1)12【解析】(1)解:2221sin cos sin 2sin cos cos 1sin 2222222a ααααααæö-=-+=-=ç÷èø,1sin 2a =.(2)因为αb ,都是锐角,所以0αb <+<π,()4sin 5αb +==,1sin cos 2a a =Þ=,()()()43sin cos c s 1si o 55n sin sin 2αb ααb ααb b α=+=+-=+-=´éùëû31.已知tan ,tan αb 是方程23570x x +-=的两根,求下列各式的值:(1)()tan αb +(2)()()sin cos αb αb +-;(3)()cos 22αb +.【来源】江苏省泰州市兴化市楚水实验学校2021-2022学年高一下学期阶段测试一数学试题【答案】(1)12-(2)54(3)35【解析】(1)由题意可知:57tan tan ,tan tan 33αb αb +=-=-()5tan tan 13tan 71tan tan 213αb αb αb -++===--+(2)()()5sin sin cos cos sin tan tan 537cos cos cos sin sin 1tan tan 413αb αb αb αb αb αb αb αb -+++====-++-(3)()22222211cos ()sin ()1tan ()34cos 221cos ()sin ()1tan ()514αb αb αb αb αb αb αb -+-+-++====++++++。

三角恒等变换练习题一

三角恒等变换练习题一

三角恒等变换练习题一三角恒等变换练题一一、选择题1.已知sin(π/2+θ)=3/5,则cos(π-2θ)=()A。

-12/25B。

-5/25C。

-5/12D。

25/252.若cosα=-4/5,且α在第二象限内,则cos(2α+π/4)为() A。

-31/50B。

31/50C。

-172/50D。

50/503.已知α∈R,sinα+2cosα=10/2,则tan2α=() A。

4/3B。

3/4C。

-4/3D。

-3/44.已知sinα-cosα=2,α∈(0,π),则sin2α=() A。

-1B。

-2/2C。

2/2D。

15.已知sin(x-π/4)=3/5,则sin2x的值为()A。

-7/25B。

79/16C。

25D。

26.计算sin43°cos13°-cos43°sin13°的结果等于() A。

13√2/2B。

3C。

2D。

2√3/27.函数f(x)=sinx(cosx-sinx)的最小正周期是()A。

π/4B。

π/2C。

πD。

2π8.函数f(x)=2sin^2(π/4+x)-3cos^2x(π/4≤x≤2)的最大值为() A。

2B。

3C。

2+3D。

2-39.为了得到函数y=sin(2x-π/3)的图像,只需把函数y=sin(2x+π/6)的图像()A.向左平移π/4个长度单位B.向右平移π/4个长度单位C.向左平移π/2个长度单位D.向右平移π/2个长度单位10.函数y=sinxsin(x+π/3)+cosxcos2x的最大值和最小正周期分别为()A.1,πB.2,2πC.1+3√3/2,πD.2+2√3/3,2π11.函数y=sin2x+3cos2x-的最小正周期等于()A.πB.2πC.π/4D.π/212.若cos(3π-x)-3cos(x+π/4)=,则tan(x+π/4)等于()A.-B.-2C.D.213.将函数y=3cosx+sinx(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A.5π/2B.3π/5C.2π/5D.π/514.若sin(-α) = 1/3,则cos(2α)的值为 -43/3.15.若f(x) = 2tan(x/2) - 1,则f(π/4)的值为 4/3.16.已知α∈(π/2,π),sinα + cosα = -1,则tan(α+π/4)等于 -7.17.若cosθ = 2/5,sinθ = -2/5,则角θ的终边所在的直线为24x + 7y = 0.18.已知锐角α的终边上一点P(sin40°,1+cos40°),则锐角α的度数为 50°。

三角恒等变换(测试题及答案)

三角恒等变换(测试题及答案)

三角恒等变换(测试题及答案)三角恒等变换测试题第I卷一、选择题(本大题共12个小题,每小题5分,共60分)1.求cos24cos36-cos66cos54的值。

A。

0.B。

1/2.C。

1/4.D。

1/82.已知tan(α+β)=3,tan(α-β)=5,则tan(2α)的值为:A。

1/2.B。

2/3.C。

3/4.D。

4/53.函数y=sin(x)+cos(x)的最小正周期为:A。

π。

B。

2π。

C。

4π。

D。

π/24.已知等腰三角形顶角的余弦值等于4/5,则这个三角形底角的正弦值为:A。

3/5.B。

4/5.C。

5/6.D。

5/45.α,β都是锐角,且sin(α)=1/3,cos(α+β)=-1/2,则sin(β)的值是:A。

-2/3.B。

-1/3.C。

1/3.D。

2/36.已知-x<π/3且cos(-x)=-√3/2,则cos(2x)的值是:A。

-7/24.B。

-1/8.C。

1/8.D。

7/247.函数y=sin(x)+cos(x)的值域是:A。

[0,1]。

B。

[-1,1]。

C。

[-1/2,1/2]。

D。

[1/2,√2]8.将y=2sin(2x)的图像向左平移π/4个单位,得到y=3sin(2x)-cos(2x)的图像,只需将y=2sin(2x)的图像:A。

向右平移π/4个单位。

B。

向左平移π/4个单位C。

向右平移π/2个单位。

D。

向左平移π/2个单位9.已知等腰三角形顶角的正弦值等于4/5,则这个三角形底角的余弦值为:A。

3/5.B。

4/5.C。

5/6.D。

5/410.函数y=sin(x)+3cos(2x)的图像的一条对称轴方程是:A。

x=π/4.B。

x=π/6.C。

x=π/2.D。

x=π/3二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中的横线上)11.已知α,β为锐角,cosα=1/10,cosβ=1/5,则α+β的值为__ π/6 __。

12.在△ABC中,已知tanA,tanB是方程3x^2-7x+2=0的两个实根,则tanC=__ 1/2 __。

三角恒等变换 专题训练

三角恒等变换 专题训练

三角恒等变换 专题训练1.(优质试题·全国Ⅱ)若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin 2α=( )A.725B.15C.-15D.-7252.(优质试题·四川)cos 2π8-sin 2π8=________.3.(优质试题·北京)已知函数f (x )=2sin ωx cos ωx +cos 2ωx (ω>0)的最小正周期为π. (1)求ω的值;(2)求f (x )的单调递增区间.考点1 化简求值1.(优质试题·重庆)若tan α=2tanπ5,则cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=()A.1B.2C.3D.42.(优质试题·新课标全国Ⅰ)sin 20°cos 10°-cos 160°sin 10°=( ) A.-32B.32C.-12D.123.(优质试题·新课标全国Ⅰ)设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,且tan α=1+sin βcos β,则( ) A.3α-β=π2 B.2α-β=π2 C.3α+β=π2D.2α+β=π24.(优质试题·江苏)已知tan α=-2,tan(α+β)=17,则tan β的值为________.考点2 研究三角函数的性质5.(优质试题·新课标全国Ⅰ)如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]上的图象大致为( )6.(优质试题·浙江)函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,单调递减区间是________.7.(优质试题·新课标全国Ⅱ)函数f(x)=sin(x+2φ)-2sinφcos(x+φ)的最大值为________.8.(优质试题·福建)已知函数f(x)的图象是由函数g(x)=cos x的图象经如下变换得到:先将g(x)图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图象向右平移π2个单位长度.(1)求函数f(x)的解析式,并求其图象的对称轴方程;(2)已知关于x的方程f(x)+g(x)=m在[0,2π)内有两个不同的解α,β.①求实数m的取值范围;②证明:cos(α-β)=2m25-1.考点3三角恒等变换的综合应用9.(优质试题·湖北)某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10-3cos π12t-sin π12t,t∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温?1.(优质试题·湖南衡阳二模)2sin 47°-3sin 17°cos 17°=( ) A.- 3B.-1C. 3D.12.(优质试题·天一大联考)cos 410°cos 190°+cos 320°sin 370°=( ) A.-12B.-cos 40°C.-32D.323.(优质试题·福建漳州八校联考)若α∈⎝ ⎛⎭⎪⎫π2,π,3cos 2α=sin ⎝ ⎛⎭⎪⎫π4-α,则sin 2α的值为( ) A.-1718B.1718C.-118D.1184.(优质试题·甘肃模拟)定义行列式运算:⎪⎪⎪⎪⎪⎪a 1a 2a 3a 4=a 1a 4-a 2a 3.若将函数f (x )=⎪⎪⎪⎪⎪⎪⎪⎪-sin x cos x 1-3的图象向左平移m (m >0)个单位后,所得图象对应的函数为奇函数,则m 的最小值是( ) A.π6B.π3C.2π3D.5π65.(优质试题·广东汕头模拟)已知sin ⎝ ⎛⎭⎪⎫α+π6=13,则cos ⎝ ⎛⎭⎪⎫2α-2π3的值是( ) A.79B.13C.-13 D.-796.(优质试题·福建宁德模拟)已知函数f (x )=23sin(π-x )·cos x -1+2cos 2 x ,其中x ∈R ,则下列结论中正确的是( ) A.f (x )的一条对称轴是x =π2B.f (x )在⎣⎢⎡⎦⎥⎤-π3,π6上单调递增C.f (x )是最小正周期为π的奇函数D.将函数y =2sin 2x 的图象左移π6个单位得到函数f (x )的图象 7.(优质试题·河北名校模拟)已知θ∈⎝ ⎛⎭⎪⎫0,π4,且sin θ-cos θ=-144,则2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ等于( )A.23B.43C.34D.328.(优质试题·东北三省三校模拟)已知函数y =sin(πx +φ)-2cos(πx +φ)(0<φ<π)的图象关于直线x =1对称,则sin 2φ=________.9.(优质试题·江苏启东模拟)设常数a 使方程sin x +3cos x =a 在闭区间[0,2π]上恰有三个解x 1,x 2,x 3,则x 1+x 2+x 3=________. 10.(优质试题·北京四中模拟)设f (x )=a sin 2x +b cos 2x ,其中a ,b∈R ,ab ≠0.若f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对一切x ∈R 恒成立,则以下结论正确的是________(写出所有正确结论的编号).①f ⎝ ⎛⎭⎪⎫11π12=0;②⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫7π12≥⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π5;③f (x )既不是奇函数也不是偶函数;④f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z );⑤经过点(a ,b )的所有直线均与函数f (x )的图象相交.11.(优质试题·湖北雅礼中学模拟)已知函数y =sin 4x +23sin x cos x -cos 4x .(1)求该函数的最小正周期和取最小值时x 的集合; (2)若x ∈[0,π],求该函数的单调递增区间.12.(优质试题·江苏启东模拟)已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫π6x +π3 (0≤x ≤5),点A ,B 分别是函数y =f (x )图象上的最高点和最低点. (1)求点A ,B 的坐标以及OA →·OB→的值; (2)设点A ,B 分别在角α,β(α,β∈[0,2π])的终边上,求sin ⎝ ⎛⎭⎪⎫α2-2β的值.13.(优质试题·广东茂名模拟)已知函数f (x )=sin 2x cos φ+cos2x sin φ(x ∈R ,0<φ<π),f ⎝ ⎛⎭⎪⎫π4=32.(1)求f (x )的解析式; (2)若f ⎝ ⎛⎭⎪⎫α2-π3=513,α∈⎝ ⎛⎭⎪⎫π2,π,求sin ⎝ ⎛⎭⎪⎫α+π4的值.。

三角恒等变换与三角方程综合练习题

三角恒等变换与三角方程综合练习题

三角恒等变换与三角方程综合练习题一、三角恒等变换1. 化简以下表达式:(1) sin^2x + cos^2x(2) 1 + tan^2x(3) sec^2x - tan^2x(4) cot^2x + 1(5) cos^2x - sin^2x(6) csc^2x - cot^2x2. 利用三角恒等变换化简以下表达式:(1) sinx/cosx + cosx/sinx(2) secx/tanx + cotx/cscx(3) sin^4x - 2sin^2x + 1(4) 2cos^2x - 1(5) 1 + tan^2x - sec^2x(6) sin^2x - 2sin^4x + sin^6x二、三角方程1. 解以下方程:(1) sinx = 0(2) cosx = 1/2(3) tanx = √3(4) secx = -1(5) cscx = 2(6) cotx = 02. 解以下方程组:(1) sinx - cosx = 0sinx + cosx = 1(2) 2sinx + cosx = 0cosx - 2sinx = 1(3) sin^2x - cos^2x = 0sinx + cosx = √2/2(4) 2sin^2x - cos^2x = 1sin^2x + cos^2x = 2三、综合练习题1. 化简以下表达式并求解方程:(1) sin^2x - cos^2x = 0sinx + cosx = 1(2) tan^2x + 2sinx = 1sec^2x - cosx = 0(3) sin^4x - 2sin^2x + 1 = 0cos^2x - 2cosx = 02. 解以下综合方程组:(1) sinx + 2cosx = 1sin^2x + cosx = 1(2) 2sin^2x + cos^2x = 13sinx + 4cosx = 1(3) sinx + cos^2x = 0cos^2x - sinx = 1(4) sin^2x + cos^2x = 1sinx + cosx = √2以上是三角恒等变换与三角方程的综合练习题。

新高考数学计算题型精练 三角恒等变换(解析版)

新高考数学计算题型精练 三角恒等变换(解析版)

新高考数学计算题型精练三角恒等变换1.cos70cos20sin70sin160︒︒-︒︒=()A.0B.12C D.1【答案】A【详解】cos20cos70sin160sin70︒︒-︒︒()cos20cos70sin18020sin70=︒︒-︒-︒︒cos20cos70sin20sin70=︒︒-︒︒()cos2070cos900=︒+︒=︒=.故选:A.2.sin40°cos10°+cos140°sin10°=()A B C.﹣12D.12【答案】D【详解】sin40°cos10°+cos140°sin10°,=sin40°cos10°-cos40°sin10°,=sin(40°-10°),=sin30°=12.故选:D3.sin20cos40cos20sin140︒︒︒︒+=A.B.2C.12-D.12【答案】B【详解】sin20cos40cos20sin140sin20cos40cos20sin40sin(2040)sin60︒︒+︒︒=︒︒+︒︒=︒+︒=︒故选B4.已知π1cos63α⎛⎫-=⎪⎝⎭,则πsin26α⎛⎫+=⎪⎝⎭()A.79-B.79C.3-D.3【答案】A【详解】因为π1 cos63α⎛⎫-=⎪⎝⎭,故2πππππ27sin 2sin 2()cos 2()2cos ()116626699αααα⎛⎫⎡⎤+=-+=-=--=-=- ⎪⎢⎥⎝⎭⎣⎦,故选:A 5.若cos tan 3sin ααα=-,则sin 22πα⎛⎫+= ⎪⎝⎭()A .23B .13C .89D .79【答案】D【详解】因为cos tan 3sin ααα=-,所以sin cos cos 3sin αααα=-,即223sin sin cos ααα-=,所以223sin sin cos 1ααα=+=,即1sin 3α=,所以27sin 2cos212sin 2π9ααα⎛⎫+==-= ⎪⎝⎭,故选:D .6.sin 20cos 40sin 70sin 40︒︒+︒︒=()AB .12C.2D .1【答案】A【详解】已知可化为:()sin 20cos 40cos 20sin 40sin 20402︒︒︒+︒=︒+︒=.故选:A7.若πtan 28α⎛⎫-= ⎪⎝⎭,则πtan 24α⎛⎫-= ⎪⎝⎭()A .34B .34-C .43D .43-【答案】D【详解】由2π2tan()π448tan 2π41431tan ()8ααα-⎛⎫-===- ⎪-⎝⎭--.故选:D8.已知π0,2α⎛⎫∈ ⎪⎝⎭π2sin 4αα⎛⎫=+ ⎪⎝⎭,则sin 2α=()A .34-B .34C .1-D .1【答案】B【详解】π2sin(4αα=+Q,)22(sin cos )2cos sin αααα=+-Q,1(cos sin )(cos sin )02αααα∴+--=,又π0,2α⎛⎫∈ ⎪⎝⎭,则sin 0,cos 0αα>>,即cos sin 0αα+>所以1cos sin 2αα-=,因为π0,2α⎛⎫∈ ⎪⎝⎭,所以2(0,π)α∈,sin 20α>.由1cos sin 2αα-=平方可得11sin 24α-=,即3sin 24α=,符合题意.综上,3sin 24α=.故选:B.9.已知5π4sin 125θ⎛⎫+= ⎪⎝⎭,则πsin 23θ⎛⎫+= ⎪⎝⎭()A .2425-B .725-C .725D .2425【答案】C【详解】5ππππ4sin sin cos 12212125θθθ⎡⎤⎛⎫⎛⎫⎛⎫+=--=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以22πππ47cos 2cos 22cos 1216612525θθθ⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,得ππππ7sin 2sin 2cos 2326625θθθ⎡⎤⎛⎫⎛⎫⎛⎫+=+-=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故选:C.10.已知tan 2α=,则213cos sin2αα-=()A .12B .14C .2D .4【答案】A【详解】因为tan 2α=,所以222213cos sin 2cos tan 221sin22sin cos 2tan 42αααααααα---====,故选:A.11.化简:()22sin πsin 22cos 2ααα-+=()A .sin αB .sin 2αC .2sin αD .sin2α【答案】C【详解】根据题意可知,利用诱导公式可得()222sin πsin 22sin sin 22cos 2cos 22αααααα-++=再由二倍角的正弦和余弦公式可得()()222sin 1cos 2sin 1cos 2sin sin 22sin 1cos 2cos2cos22αααααααααα+++===+,即()22sin πsin 22sin 2cos2αααα-+=.故选:C12.cos78cos18sin 78sin18︒︒+︒︒的值为()A .12B .13CD【答案】A【详解】依题意由两角差的余弦公式可知,()1cos78cos18sin 78sin18cos 7818cos602︒︒+︒︒=︒-︒==.故选:A13.若tan 2θ=-,则()()()πsin 1sin22sin πcos πθθθθ⎛⎫+- ⎪⎝⎭=-++____________【答案】35-/-0.6【详解】()()()()22πsin 1sin2cos sin cos 2cos sin cos sin πcos πsin cos θθθθθθθθθθθθ⎛⎫+- ⎪-⎝⎭==--++-22222tan 1213cos sin 1tan 1(2)5cossin cos θθθθθθ-=---===-+++-,故答案为:35-14.已知ππ2θ<<,且4cos 5θ=-,则tan 2θ=______.【答案】247-【详解】4cos 5θ=-,3sin 5θ==±,ππ2θ<< ,3sin 5θ∴=.sin 3tan cos 4θθθ∴==-,232tan 242tan 291tan 7116θθθ-===---.故答案为:247-.15.已知cos 24π7sin 4αα=⎛⎫+ ⎪⎝⎭,则sin 2α的值是______.【答案】4149【详解】22cos 2442cos sin π777sin 422αααα=⇒⇒-=⎛⎫+ ⎪⎝⎭228841cos 2sin cos sin 1sin 2sin 2494949αααααα⇒-+=⇒-=⇒=,故答案为:414916.已知()0,απ∈,若sin 6πα⎛⎫-= ⎪⎝⎭cos 26πα⎛⎫+= ⎪⎝⎭_________.【答案】3±【详解】因为sin 63πα⎛⎫-= ⎪⎝⎭,()0,απ∈,所以cos 6πα⎛⎫-== ⎪⎝⎭所以sin 2=2sin cos =6663πππααα⎛⎫⎛⎫⎛⎫---±⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以cos 2cos 2cos 2sin 2=6326263ππππππαααα⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=-+=-+=--± ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故答案为:17.若3,0,sin 25⎛⎫∈-=- ⎪⎝⎭x x π,则tan 2x =________.【答案】247-【详解】343,0,sin cos ,tan 2554x x x x π⎛⎫∈-=-∴==-⎪⎝⎭Q 232tan 242tan 291tan 7116x x x -∴===---故答案为:247-18.已知(),2αππ∈,cos 3sin 1αα-=,则cos 2α=_______________________.【答案】【详解】因为(),2αππ∈,所以,22αππ⎛⎫∈ ⎪⎝⎭,由cos 3sin 1αα-=可得212sin 6sin cos 1222ααα--=,整理可得sin 3cos 22αα=-,22sin 3cos 22sin cos 12222ααααπαπ⎧=-⎪⎪⎪+=⇒⎨⎪⎪<<⎪⎩cos 2α=故答案为:19.若πcos 0,,tan 22sin αααα⎛⎫∈= ⎪⎝⎭,则α=__________.【答案】6π/16π【详解】依题意,πcos 0,,tan 22sin αααα⎛⎫∈= ⎪⎝⎭,所以2222tan 1,2tan 1tan 1tan tan ααααα==--,21tan 3α=,而α为锐角,所以πtan 6αα=.故答案为:π620.已知tan 3α=,则sin 2α=______.【答案】35【详解】22222sin cos 2tan 233sin 2sin cos tan 1315ααααααα⨯====+++.故答案为:3521.已知α是第二象限的角,1cos24α=,则tan α=________.【答案】5/【详解】因为21cos 212sin 4αα=-=,又α是第二象限的角,所以6sin 4α=,cos 4α=,所以5tan α=-.故答案为:5-22.已知22cos 5sin 10αα-+=,则cos 2=α______.【答案】12/0.5【详解】解:已知()2222cos 5sin 121sin 5sin 12sin 5sin 30αααααα-+=--+=--+=,即()()22sin 5sin 32sin 1sin 30αααα+-=-+=,解得1sin 2α=或sin 3α=-(舍),211cos 212sin 1242αα∴=-=-⨯=,故答案为:12.23.若tan 2θ=,则sin cos 2cos sin θθθθ=-_________.【答案】65/1.2/115【详解】()()22sin cos sin sin cos 2sin cos sin cos sin cos sin θθθθθθθθθθθθ-==+--222222sin cos sin tan tan 246sin cos sin sin cos tan 155θθθθθθθθθθθ+++=+====++.故答案为:65.24.函数()sin 2sin 1cos x xf x x=+的值域__________.【答案】14,2⎛⎤- ⎥⎝⎦【详解】因为()()222221cos cos sin 2sin 2sin cos 11=2cos 2cos 2cos 1cos 1cos 1cos 22x x x x x x f x x x x x x x -⎛⎫===-+=--+ ⎪+++⎝⎭,因为1cos 1x -≤≤,当1cos 2x =时,()f x 取得最大值12,当cos 1x =-时,()f x 取得最小值4-,又因为1cos 0x +≠,所以()f x 的值域为14,2⎛⎤- ⎝⎦.故答案为:14,2⎛⎤- ⎥⎝⎦.25.已知sin 2cos αα=,π0,2α⎛⎫∈ ⎪⎝⎭,tan α=________.【详解】sin 2cos 2sin cos αααα==,π0,2α⎛⎫∈ ⎪⎝⎭,则cos 0α≠,1sin 2α=,π6α=,故tan α=26.(1)计算:cos157sin 97sin 60cos 97︒+︒︒︒;(2)已知tan 1α=-,求2cos 2sin cos 1ααα--的值.【答案】(1)12;(2)12【详解】(1)cos157sin 97sin 60cos97︒+︒︒︒()cos 9760sin 97sin 60cos 97︒+︒+︒︒=︒cos 97cos 60sin 97sin 60sin 97sin 60cos 97︒︒-︒︒+︒︒=︒cos 60=︒12=.(2)2cos 2sin cos 1ααα--222cos 2sin cos 1cos sin ααααα-=-+212tan 11tan αα-=-+()()2121111-⨯-=-+-12=.。

三角恒等变换综合测试题

三角恒等变换综合测试题

三角恒等变换综合测试题(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.⎝⎛⎭⎫cos π12-sin π12⎝⎛⎭⎫cos π12+sin π12=( ) A .-32 B .-12 C .12D .32 2.sin45°cos15°+cos225°sin15°的值为( )A .-32B .-12C .12D .323.tan15°+1tan 15°=( )A .2B .2+ 3C .4D .4334.在△ABC 中,tan A tan B =tan A +tan B +1,则C =( ) A .45° B .135° C .150° D .30°5.已知θ是锐角,那么下列各值中,sin θ+cos θ能取得的值是( )A .43B .34C .53D .126.函数y =sin ⎝⎛⎭⎫2x +π3cos ⎝⎛⎭⎫x -π6+cos ⎝⎛⎭⎫2x +π3sin ⎝⎛⎭⎫π6-x 的图象的一条对称轴方程是( ) A .x =π4 B .x =π2 C .x =π D .x =3π27.函数y =2sin x (sin x +cos x )的最大值为( ) A .2+1 B .2-1 C . 2 D .2 8.已知tan2θ=-22,π<2θ<2π,则tan θ的值为( )A . 2B .-22C .2D .2或-229.已知cos ⎝⎛⎭⎫π6-α=13,则cos ⎝⎛⎭⎫2π3+2α的值是( ) A .-79 B .-13 C .13 D .7910.已知sin (45°+α)=55,则sin2α=( )A .-45B .-35C .35D .4511.函数y =sin x -cos x 的图象可以看成是由函数y =sin x +cos x 的图象平移得到的.下列所述平移方法正确的是( )A .向左平移π2个单位B .向右平移π4个单位C .向右平移π2个单位D .向左平移π4个单位12.已知cos (α-β)=35,sin β=-513,且α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫-π2,0,则sin α=( ) A .3365 B .6365 C .-3365 D .-6365二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.方程sin x +3cos x -a =0有解,则实数a 的取值范围是________. 14.3tan 15°+13-tan 15°的值是________.15.已知α是第三象限角且sin α=-2425,则tan α2=________.16.设α为第四象限的角,若513sin 3sin =αα,则α2tan =________. 三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知tan α,tan β是方程6x 2-5x +1=0的两根,且0<α<π2,π<β<3π2.求:tan (α+β)及α+β的值.18.(12分)求值:1sin 10°-3sin 80°.19.(12分)在△ABC 中,sin (A -B )=15,sin C =35,求证:tan A =2tan B .20.(12分)求函数y =7-4sin x cos x +4cos 2x -4cos 4x 的最大值与最小值. 21.(12分)已知函数f (x )=cos ⎝⎛⎭⎫π3+x cos ⎝⎛⎭⎫π3-x ,g (x )=12sin2x -14. (1)求函数f (x )的最小正周期;(2)求函数h (x )=f (x )-g (x )的最大值,并求使h (x )取得最大值的x 的集合. 22.(12分)已知函数f (x )=2sin 2⎝⎛⎭⎫π4+x -3cos2x . (1)求f (x )的周期和单调递增区间;(2)若关于x 的方程f (x )-m =2在x ∈⎣⎡⎦⎤π4,π2上有解,求实数m 的取值范围.第三章 三角恒等变换综合测试题答案一、选择题1.D 2.C 3.C 4.A 5.A 6.C 7.A 8.B 9.D 10.B 11.C 12.A 提示:1.⎝⎛⎭⎫cos π12-sin π12⎝⎛⎭⎫cos π12+sin π12=cos 2π12-sin 2π12=cos π6=32. 2.原式=sin45°cos15°-cos45°sin15°=sin30°=12.3.原式=sin 15°cos 15°+cos 15°sin 15°=1sin 15°cos 15°=2sin 30°=4.4.由题意得tan A +tan B =-1+tan A tan B ,所以tan (A +B )=tan A +tan B1-tan A tan B =-1,所以A +B =135°,C =45°.5.因为0<θ<π2,所以θ+π4∈⎝⎛⎭⎫π4,34π,所以22<sin ⎝⎛⎭⎫θ+π4≤1,又sin θ+cos θ=2sin ⎝⎛⎭⎫θ+π4,1<sin θ+cos θ≤2. 6.y =sin ⎝⎛⎭⎫2x +π3cos ⎝⎛⎭⎫x -π6+cos ⎝⎛⎭⎫2x +π3sin ⎝⎛⎭⎫π6-x =sin ⎝⎛⎭⎫2x +π3+π6-x =sin ⎝⎛⎭⎫π2+x =cos x . 7.y =2sin 2x +2sin x cos x =sin2x +1-cos2x =2sin ⎝⎛⎭⎫2x -π4+1,所以y max =2+1. 8.因为π<2θ<2π,所以π2<θ<π,则tan θ<0,tan2θ=2tan θ1-tan 2θ=-22,化简得2tan 2θ-tan θ-2=0,解得tan θ=-22或tan θ=2(舍去),所以tan θ=-22.9.cos ⎝⎛⎭⎫2π3+2α=-cos ⎝⎛⎭⎫π3-2α=-cos ⎣⎡⎦⎤2⎝⎛⎭⎫π6-α=-⎣⎡⎦⎤2cos 2⎝⎛⎭⎫π6-α-1=79. 10.sin (α+45°)=22(sin α+cos α)·=55,所以sin α+cos α=105,两端平方得1+sin2α=25,所以sin2α=-35. 11.由于y =sin x +cos x =2sin ⎝⎛⎭⎫x +π4,y =sin x -cos x =2sin ⎝⎛⎭⎫x -π4=2sin ⎣⎡⎦⎤⎝⎛⎭⎫x -π2+π4,那么函数y =sin x -cos x的图象可以看成是由函数y =sin x +cos x 的图象向右平移π2个单位得到的.12.由于α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫-π2,0,因此α-β∈(0,π),又由于cos (α-β)=35>0,因此α-β∈(0,π2),sin (α-β)=45且cos β=1213,sin α=sin (α-β+β)=sin (α-β)cos β+cos (α-β)sin β=45×1213+35×⎝⎛⎭⎫-513=3365. 二、填空题13.[-2,2] 14.1 15.-43 16.-43提示:13.因为a =sin x +3cos x =2sin ⎝⎛⎭⎫x +π3,所以-2≤a ≤2. 14.因为3-tan 15°1+3tan 15°=tan 60°-tan 15°1+tan 60°tan 15°=tan45°=1,所以3tan 15°+13-tan 15°=1.15.因为α是第三象限角,sin α=-2425,所以cos α=-725,所以tan α2=sin α1+cos α=-24251-725=-43.16.()513sin sin 2cos cos 2sin sin 2sin sin 3sin =+=+=αααααααααα, 所以2α2cos +α2cos =513,即2α2cos -1+α2cos =58, 所以α2cos =54.因为2πk -2π<α<2πk ,k ∈Z ,所以4πk -π<2α<4πk ,又因为α2cos =54>0,所以2α为第四象限的角.所以αα2cos 12sin 2--==-53,所以α2tan =-43.三、解答题17.解:因为tan α、tan β为方程6x 2-5x +1=0的两根,所以tan α+tan β=56,tan αtan β=16,所以tan (α+β)=tan α+tan β1-tan αtan β=561-16=1,因为0<α<π2,π<β<3π2,所以π<α+β<2π,所以α+β=5π4.18.解:原式=1sin 10°-3cos 10°=cos 10°-3sin 10°sin 10°cos 10°=2⎝⎛⎭⎫12cos 10°-32sin 10°12sin 20°=20sin )10sin 30cos 10cos 30(sin 4-=4sin 30°-10°sin 20°=4sin 20°sin 20°=4.19.解:因为A +B +C =π,所以C =π-(A +B ),所以sin C =sin (A +B )=35,所以sin A cos B +cos A sin B =35,①又sin (A -B )=sin A cos B -cos A sin B =15,②由①②联立得⎩⎨⎧sin A cos B =25③cos A sin B =15④③÷④得sin A cos Bcos A sin B=2,所以tan A =2tan B .20.解:y =7-4sin x cos x +4cos 2x -4cos 4x =7-2sin2x +4cos 2x (1-cos 2x ) =7-2sin2x +4cos 2x sin 2x =7-2sin2x +sin 22x =(1-sin2x )2+6, 当sin2x =1时,y min =6;当sin2x =-1时,y max =10.21.解:(1)因为f (x )=cos ⎝⎛⎭⎫π3+x cos ⎝⎛⎭⎫π3-x =⎝⎛⎭⎫12cos x -32sin x ⎝⎛⎭⎫12cos x +32sin x =14cos 2x -34sin 2x =1+cos 2x 8-3-3cos 2x 8=12cos2x -14, 所以f (x )的最小正周期为2π2=π;(2)h (x )=f (x )-g (x )=12cos2x -12sin2x =22cos ⎝⎛⎭⎫2x +π4, 当2x +π4=2k π(k ∈Z )时,h (x )取得最大值22,此时,对应的x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =kx -π8,k ∈Z . 22.解:(1)f (x )=2sin 2⎝⎛⎭⎫π4+x -3cos2x =1-cos ⎝⎛⎭⎫π2+2x -3cos2x =1+sin2x -3cos2x =2sin ⎝⎛⎭⎫2x -π3+1, 周期T =π;2k π-π2≤2x -π3≤2k π+π2,解得单调递增区间为⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ); (2)x ∈⎣⎡⎦⎤π4,π2,所以2x -π3∈⎣⎡⎦⎤π6,2π3,sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤12,1, 所以f (x )的值域为[2,3],而f (x )=m +2,所以m +2∈[2,3],即m ∈[0,1].。

三角恒等变换综合 (详细答案)

三角恒等变换综合 (详细答案)

题一函数f (x )=sin x (cos x -sin x )的最小正周期是( ) A.π4 B. π2C. πD. 2π 答案:注意公式选用同类题一题面:函数y =2cos x (sin x +cos x )的最大值和最小正周期分别是( ) A .2,π B.2+1,π C .2,2πD.2+1,2π答案:B. 详解:y =2cos x sin x +2cos 2x =sin 2x +cos 2x +1=2sin ⎝ ⎛⎭⎪⎫2x +π4+1,所以当2x +π4=2k π+π2(k ∈Z ),即x =k π+π8(k ∈Z )时取得最大值2+1,最小正周期T =2π2=π.同类题二 题面:函数f (x )=cos ⎝ ⎛⎭⎪⎫-x 2+sin ⎝ ⎛⎭⎪⎫π-x 2,x ∈R . 求f (x )的最小正周期;答案:4π.详解:f (x )=cos ⎝⎛⎭⎪⎫-x 2+sin ⎝⎛⎭⎪⎫π-x 2=sin x 2+cos x 2=2sin ⎝ ⎛⎭⎪⎫x 2+π4.∴f (x )的最小正周期T =2π12=4π.题二题面:设θ为第二象限角,若π1tan()42θ+=,则sin cos θθ+=______.答案:同类题一题面:若tan θ+1tan θ=4,则sin 2θ=()A.15 B.14 C.13 D.12答案:D. 详解:∵tan θ+1tan θ=4,∴sin θcos θ+cos θsin θ=4,∴sin2θ+cos2θcos θsin θ=4,即2sin 2θ=4,∴sin 2θ=1 2.同类题二题面:已知tan θ=2,则sin⎝⎛⎭⎪⎫π2+θ-cos π-θsin⎝⎛⎭⎪⎫π2-θ-sin π-θ=()A.2 B.-2C.0 D.2 3答案:B. 详解:原式=cos θ+cos θcos θ-sin θ=21-tan θ=21-2=-2.题一题面:在△ABC中,若2cos B sin A=sin C,则△ABC的形状一定是( )A. 等腰直角三角形B. 直角三角形C. 等腰三角形D.等边三角形答案:C同类题一题面:已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,a =80,b =100,A =30°,则此三角形( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是直角三角形,也可能是锐角三角形答案:C. 详解:依题意得a sin A =b sin B ,sin B =b sin A a =100sin 30°80=58,12<58<32,因此30°<B <60°,或120°<B <150°.若30°<B <60°,则C =180°-(B +30°)>90°,此时△ABC 是钝角三角形;若120°<B <150°,此时△ABC 仍是钝角三角形.因此,此三角形一定是钝角三角形,选C.同类题二 题面:在三角形ABC 中,若cos ⎝ ⎛⎭⎪⎫π2+A sin ⎝ ⎛⎭⎪⎫32π+B tan (C -π)<0,求证:三角形ABC 为钝角三角形. 答案:见详解.详解:若cos ⎝ ⎛⎭⎪⎫π2+A sin ⎝ ⎛⎭⎪⎫32π+B tan (C -π)<0,则(-sin A )(-cos B )tan C <0, 即sin A cos B tan C <0,∵在△ABC 中,0<A <π,0<B <π,0<C <π, ∴sin A >0,⎩⎨⎧ cos B <0,tan C >0或⎩⎨⎧tan C <0,cos B >0,∴B 为钝角或C 为钝角,故△ABC 为钝角三角形.题二题面:设π,2Zkkα≠∈,sin tancos cotTαααα+=+,则( )A. T < 0B. T ≤ 0C. T > 0D. T的值可正可负答案:同类题一题面:三角形ABC是锐角三角形,若角θ终边上一点P的坐标为(sin A-cos B,cosA-sin C),则sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值是()A.1 B.-1C.3 D.4答案:B.详解:因为三角形ABC是锐角三角形,所以A+B>90°,即A>90°-B,则sin A>sin(90°-B)=cos B,sin A-cos B>0,同理cos A-sin C<0,所以点P在第四象限,sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|=-1+1-1=-1,故选B.同类题二题面:已知α为第二象限角,则cos α1+tan2α+sin α1+1tan2α=________.答案:0. 详解:原式=cos α1+sin2αcos2α+sin α1+cos2αsin2α=cos α1cos2α+sin α1sin2α=cos α1-cos α+sin α1sin α=0.题三题面:求值:oo o o tan 20tan 4020tan 40++.答案: 3同类题一题面:若α+β=3π4,则(1-tan α)(1-tan β)的值是________. 答案:2. 详解:-1=tan 3π4=tan(α+β)=tan α+tan β1-tan αtan β,∴tan αtan β-1=tan α+tan β. ∴1-tan α-tan β+tan αtan β=2, 即(1-tan α)(1-tan β)=2.同类题二 题面:若tan α=lg(10a ),tan β=lg ⎝ ⎛⎭⎪⎫1a ,且α+β=π4,则实数a 的值为( )A .1B.110 C .1或110D .1或10答案:C. 详解:tan(α+β)=1⇒tan α+tan β1-tan αtan β=lg 10a +lg ⎝ ⎛⎭⎪⎫1a 1-lg 10a ·lg ⎝ ⎛⎭⎪⎫1a =1⇒lg 2a +lg a =0,所以lg a =0或lg a =-1,即a =1或110.题四题面:设当x θ=时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=______答案:5-同类题一 题面:当函数y =sin x -3cos x (0≤x <2π)取得最大值时,x =________. 答案:56π. 详解:利用正弦函数的性质求解. ∵y =sin x -3cos x (0≤x <2π), ∴y =2sin ⎝ ⎛⎭⎪⎫x -π3(0≤x <2π).由0≤x <2π知,-π3≤x -π3<5π3,∴当y 取得最大值时,x -π3=π2,即x =56π.同类题二 题面:函数f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x +π6的值域为( )A .[-2,2]B .[-3,3]C .[-1,1] D.⎣⎢⎡⎦⎥⎤-32,32答案:[-3,3]. 详解:将函数化为y =A sin(ωx +φ)的形式后求解.∵f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x +π6=sin x -cos x cos π6+sin x sin π6=sin x -32cos x +12sin x =3⎝ ⎛⎭⎪⎫32sin x -12cos x=3sin ⎝ ⎛⎭⎪⎫x -π6(x ∈R ),∴f (x )的值域为[-3,3].题五 题面:已知1sin cos ()1sin cos x xf x x x+-=++,(1)计算f (x )+ f (-x )的值; (2)判断函数f (x )的奇偶性.答案:同类题一题面:已知sin(2α+β)=3sin β,设tan α=x ,tan β=y ,记y =f (x ). (1)求证:tan(α+β)=2tan α; (2)求f (x )的解析式. 答案: (1)略. (2) f (x )=x1+2x 2详解:(1)证明:由sin(2α+β)=3sin β, 得sin [(α+β)+α]=3sin [(α+β)-α],即sin(α+β)cos α+cos(α+β)sin α=3sin(α+β)cos α-3cos(α+β)sin α, ∴sin(α+β)cos α=2cos(α+β)sin α. ∴tan(α+β)=2tan α.(2)由(1)得tan α+tan β1-tan αtan β=2tan α,即x +y1-xy=2x ,∴y =x 1+2x 2,即f (x )=x1+2x 2.同类题二题面:已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +7π4+cos ⎝ ⎛⎭⎪⎫x -3π4,x ∈R .(1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0. 答案:(1)-2.(2)略. 详解:(1)∵f (x )=sin ⎝ ⎛⎭⎪⎫x +7π4-2π+cos ⎝ ⎛⎭⎪⎫x -π4-π2=sin ⎝ ⎛⎭⎪⎫x -π4+sin ⎝ ⎛⎭⎪⎫x -π4=2sin ⎝ ⎛⎭⎪⎫x -π4,∴T =2π,f (x )的最小值为-2.(2)证明:由已知得cos βcos α+sin βsin α=45, cos βcos α-sin βsin α=-45. 两式相加得2cos βcos α=0.∵0<α<β≤π2,∴β=π2.∴[f (β)]2-2=4sin 2π4-2=0.题一题面:在△ABC 中,若tan A +tan B +tan C >0,则△ABC 是( )A .直角三角形B .钝角三角形C .锐角三角形D .形状不确定答案:C同类题一题面:在△ABC 中a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状. 答案:(1) A =120°.(2)等腰的钝角三角形. 详解:(1)由已知,根据正弦定理得2a 2=(2b +c )·b +(2c +b )c ,即a 2=b 2+c 2+bc . 由余弦定理得a 2=b 2+c 2-2bc cos A , 故cos A =-12,∵0<A <180°,∴A =120°. (2)由(1)得sin 2A =sin 2B +sin 2C +sin B sin C =34. 又sin B +sin C =1, 解得sin B =sin C =12.∵0°<B <60°,0°<C <60°,故B =C , ∴△ABC 是等腰的钝角三角形.同类题二 题面:已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(4,-1),n =⎝ ⎛⎭⎪⎫cos 2A 2,cos 2A ,且m ·n =72.(1)求角A 的大小;(2)若b +c =2a =23,试判断△ABC 的形状. 答案:(1)A =π3.(2)△ABC 为等边三角形. 详解:(1)∵m =(4,-1),n =⎝ ⎛⎭⎪⎫cos 2A 2,cos 2A ,∴m ·n =4cos 2A2-cos 2A =4·1+cos A 2-(2cos 2A -1)=-2cos 2A +2cos A +3. 又∵m ·n =72,∴-2cos 2A +2cos A +3=72, 解得cos A =12. ∵0<A <π,∴A =π3.(2)在△ABC 中,a 2=b 2+c 2-2bc cos A ,且a =3, ∴(3)2=b 2+c 2-2bc ·12=b 2+c 2-bc .①又∵b +c =23,∴b =23-c ,代入①式整理得c 2-23c +3=0,解得c =3,∴b = 3,于是a =b =c = 3,即△ABC 为等边三角形.题二题面:oo 4cos50tan 40- = ( )A B .2+ C D .1-答案:C同类题一题面:sin 47°-sin 17°cos 30°cos 17°=( )A .-32 B .-12 C.12 D.32.答案:C.详解:原式=sin 30°+17° -sin17°cos 30°cos 17°=sin 30°cos 17°+cos 30°sin 17°-sin 17°cos 30°cos 17°=sin 30°cos 17°cos 17°=sin 30°=12.同类题二题面: 计算:cos 10°+3sin 10°1-cos 80°=________.答案: 2.详解:cos 10°+3sin 10°1-cos 80° =2 s in 30°cos 10°+cos 30°sin 10° 2sin 240°=2sin 40°2sin 40°= 2.题一题面:方程x 2-2a sin(cos x )+a 2=0仅有一个解,求a 的值.答案:0或2sin1同类题一题面:若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为()A .1+ 5B .1- 5C .1±5D .-1- 5答案:B.详解: 由题意知:sin θ+cos θ=-m 2,sin θcos θ=m 4,又(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m 2,解得:m =1±5,又Δ=4m 2-16m ≥0,∴m ≤0或m ≥4,∴m =1- 5.同类题二题面:已知sin θ、cos θ是关于x 的方程x 2-ax +a =0的两根,则a =________. 答案:1- 2详解:由题意知,原方程判别式Δ≥0,即(-a )2-4a ≥0,∴a ≥4或a ≤0.∵⎩⎨⎧sin θ+cos θ=a ,sin θcos θ=a ,又(sin θ+cos θ)2=1+2sin θcos θ,∴a 2-2a -1=0,∴a =1-2或a =1+2(舍去).。

三角恒等变换练习题及答案

三角恒等变换练习题及答案

1.已知cos ⎝⎛⎭⎫α+π3=sin ⎝⎛⎭⎫α-π3,则tan α的值为( ) A .-1 B .1 C. 3 D .- 3解析:选B 由已知得12cos α-32sin α=12sin α-32cos α,整理得⎝⎛⎭⎫12+32sin α=⎝⎛⎭⎫12+32cos α,即sin α=cos α,故tan α=1.2.3cos 15°-4sin 215°cos 15°=( )A.12B.22C .1 D. 2 解析:选D 3cos 15°-4sin 215°cos 15°=3cos 15°-2sin 15°·2sin 15°cos 15°=3cos 15°-2sin 15°·sin 30°=3cos 15°-sin 15°=2cos(15°+30°)=2cos 45°= 2.故选D.3.在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( ) A .4 2 B.30 C.29 D .2 5解析:选A ∵cos C 2=55,∴cos C =2cos 2C 2-1=2×⎝⎛⎭⎫552-1=-35.在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC ·cos C =52+12-2×5×1×⎝⎛⎭⎫-35=32,∴AB =4 2. 4.已知α是第三象限的角,且tan α=2,则sin ⎝⎛⎭⎫α+π4=( ) A .-1010 B.1010 C .-31010 D.31010解析:选C 因为α是第三象限的角,tan α=2,且⎩⎪⎨⎪⎧sin αcos α=tan α,sin 2α+cos 2α=1,所以cos α=-11+tan 2α=-55,sin α=-255,则sin ⎝⎛⎭⎫α+π4=sin αcos π4+cos αsin π4=-255×22-55×22=-31010,选C. 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且2b cos C =2a +c ,则B =( ) A.π6 B.π4 C.π3 D.2π3 解析:选D 因为2b cos C =2a +c ,所以由正弦定理可得2sin B cos C =2sin A +sin C =2sin(B +C )+sin C =2sin B cos C +2cos B sin C +sin C ,即2cos B sin C =-sin C ,又sin C ≠0,所以cos B =-12,又0<B <π,所以B =2π3,故选D. 6.已知3cos 2α=4sin ⎝⎛⎭⎫π4-α,α∈⎝⎛⎭⎫π4,π,则sin 2α=( )A.79 B .-79 C.19 D .-19解析:选D 由题意知3(cos 2α-sin 2α)=22(cos α-sin α),由于α∈⎝⎛⎭⎫π4,π,因而cosα≠sin α,则3(cos α+sin α)=22,那么9(1+sin 2α)=8,sin 2α=-19. 7.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C 等于( )A.34B.43 C .-43 D .-34解析:选C 因为2S =(a +b )2-c 2=a 2+b 2-c 2+2ab ,由面积公式与余弦定理,得ab sin C =2ab cos C +2ab ,即sin C -2cos C =2,所以(sin C -2cos C )2=4,sin 2C -4sin C cos C +4cos 2C sin 2C +cos 2C =4,所以tan 2C -4tan C +4tan 2C +1=4,解得tan C =-43或tan C =0(舍去).8.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a ,b ,c 成等比数列,且a 2=c 2+ac -bc ,则c b sin B=( ) A.32 B.233 C.33 D. 3解析:选B 由a ,b ,c 成等比数列得b 2=ac ,则有a 2=c 2+b 2-bc ,由余弦定理得cos A =b 2+c 2-a 22bc =bc 2bc =12,故A =π3.对于b 2=ac ,由正弦定理,得sin 2B =sin A sin C =32·sin C ,由正弦定理,得c b sin B =sin C sin 2B =sin C 32sin C =233.故选B. 9.已知x ∈(0,π),且cos ⎝⎛⎭⎫2x -π2=sin 2x ,则tan ⎝⎛⎭⎫x -π4=( ) A.13 B .-13 C .3 D .-3解析:选A 由cos ⎝⎛⎭⎫2x -π2=sin 2x 得sin 2x =sin 2x ,∵x ∈(0,π),∴tan x =2,∴tan ⎝⎛⎭⎫x -π4=tan x -11+tan x =13. 10.已知tan ⎝⎛⎭⎫α+π4=34,则cos 2⎝⎛⎭⎫π4-α=( ) A.725 B.925 C.1625 D.2425解析:选B 由tan ⎝⎛⎭⎫α+π4=1+tan α1-tan α=34,解得tan α=-17,所以cos 2⎝⎛⎭⎫π4-α=1+cos ⎝⎛⎭⎫π2-2α2=1+sin 2α2=12+sin αcos α,又sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=-750,故12+sin αcos α=925. 11.已知tan ⎝⎛⎭⎫α-5π4=15,则tan α=________. 解析:tan ⎝⎛⎭⎫α-5π4=tan ⎝⎛⎭⎫α-π4=tan α-11+tan α=15,解得tan α=32. 答案:3212.如图,已知两座灯塔A 和B 与海洋观察站C 的距离分别为a 海里和2a 海里,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 和B 的距离为________海里.解析:依题意知∠ACB =180°-20°-40°=120°,在△ABC 中,由余弦定理知AB =AC 2+BC 2-2AC ·BC cos 120°=7a 2=7a .即灯塔A 与灯塔B 的距离为7a 海里. 答案:7a13.已知△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a =4,a sin B =3b cos A ,若△ABC 的面积S =43,则b +c =________.解析:由正弦定理,得sin A sin B =3sin B cos A ,又sin B ≠0,∴tan A =3,∴A =π3. 由S =12bc ×32=43,得bc =16,由余弦定理得,16=b 2+c 2-bc ,∴c 2+b 2=32,∴b +c =8.答案:8。

三角恒等变换综合练习(解析版)

三角恒等变换综合练习(解析版)

答案解析部分一、单选题1.【答案】C【解析】【解答】如图:在Rt△OCB中,设∠COB=α,则OB=2cosα,BC=2sinα,在Rt△OAD中,DAOA=tan45°=1,所以OA=DA=2sinα,∴AB=OB−OA=2cosα−2sinα,设矩形A BCD的面积为S,则S=AB⋅BC=(2cosα−2sinα)⋅2sinα=4(12sin2α−sin2α)=2(sin2α+cos2α)−2=2√2sin(2α+π4)−2,由于0<α<π4,所以当α=π8时,S最大=2√2−2,故答案为:C【分析】如图先用所给的角将矩形的面积表示出来,建立三角函数模型,再根据所建立的模型,利用三角函数的性质求最值。

2.【答案】D【解析】【解答】由f(x)=sinωx+√3cosωx=2sin(ωx+π3),由x=−5π6和x=π6为两条相邻的对称轴,所以周期T2=π6−(−5π6)=π,所以T=2πω=2π,解得ω=1.故答案为:D.【分析】直接由对称轴得半周期为π,再利用周期公式求解即可。

3.【答案】D【解析】【解答】y=sinx−√3cosx=2sin(x−π3),将函数的图像沿x轴向右平移m(m>0)个单位长度,可得y=2sin(x−m−π3),此函数图像关于y轴对称,则−m−π3=kπ+π2(k∈Z),解得m=−kπ−5π6(k∈Z),因为m>0,则当k=−1时,m取得最小值π6,故答案为:D。

【分析】利用辅助角公式化简函数为正弦型函数,再利用图象的平移变换结合图象的对称性,从而推出函数图像关于y轴对称,再利用函数图象的对称性,从而求出m=−kπ−5π6(k∈Z),因为m>0,则当k=−1时,从而求出m的最小值。

4.【答案】D【解析】【解答】解:由辅助角公式得:f(x)=√a2+b2sin(2x+φ),由f(x)≤f(π6)恒成立,得2×π6+φ=2kπ+π2(k∈Z),所以φ=2kπ+π6(k∈Z),取φ=π6,从而f(x)=√a2+b2sin(2x+π6),由f(11π12)=0得①正确,由2kπ−π2≤2x+π6≤2kπ+π2(k∈Z)得kπ−π3≤x≤kπ+π6(k∈Z),所以函数的单调递增区间为[kπ−π3,kπ+π6](k∈Z),②不正确,根据正弦函数的奇偶性易得③显然正确,由2x+π6=kπ+π2(k∈Z),得对称轴为x=kπ2+π6(k∈Z),④正确,故答案为:D.【分析】利用辅助角公式化简函数为正弦型函数,再由f(x)≤f(π6)恒成立,得出φ的值,从而求出正弦型函数的解析式,再利用换元法将正弦型函数转化为正弦函数,再利用正弦函数的图像求出正弦型函数的对称点和对称轴,并判断出正弦型函数的单调性,从而求出对应的单调递增区间,再利用奇函数和偶函数的定义判断出正弦型函数的奇偶性,从而找出说法正确的序号。

三角恒等变换测试题

三角恒等变换测试题

三角恒等变换测试题1、下列哪个选项是正确的?A. sin(2π - α) = sinαB. cos(π - α) = - cosαC. tan(3π - α) = - tanαD. tan(4π - α) = - tanα答案:C. tan(3π - α) = - tanα2、下列哪个选项是正确的?A. sin(-π - α) = - sinαB. cos(-π - α) = - cosαC. tan(-π - α) = - tanαD. tan(-π - α) = tanα答案:A. sin(-π - α) = - sinα3、下列哪个选项是正确的?A. sin(π/2 + α) = cosαB. cos(π/2 + α) = sinαC. tan(π/2 + α) = secαD. tan(π/2 + α) = cscα答案:A. sin(π/2 + α) = cosα4、下列哪个选项是正确的?A. sin(3π/2 - α) = cosαB. cos(3π/2 - α) = sinαC. tan(3π/2 - α) = secαD. tan(3π/2 - α) = cscα答案:A. sin(3π/2 - α) = cosα二、填空题1、请填写下列空白:sin(π - α) = ______;cos(π - α) = ______;tan(π - α) =______。

答案:sinα;-cosα;-tanα2、请填写下列空白:sin(2π - α) = ______;cos(2π - α) = ______;tan(2π - α) = ______。

答案:sinα;cosα;-tanα一、选择题1、下列哪个选项正确描述了正弦函数的角度和其相对应的数值?A.当角度增加时,正弦函数的值也增加B.当角度增加时,正弦函数的值减少C.当角度减少时,正弦函数的值增加D.当角度减少时,正弦函数的值减少答案:D.当角度减少时,正弦函数的值减少。

三角恒等变换综合习题

三角恒等变换综合习题

学习文档 仅供参考三角恒等变换考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷〔选择题〕请点击修改第I 卷的文字说明一、选择题〔题型注释〕1.以下等式中恒成立的是〔 〕A 、cos()cos cos sin sin AB A B A B -=- B 、cos()cos sin sin cos A B A B A B +=-C 、sin()sin sin cos cos A B A B A B +=+D 、sin()sin cos cos sin A B A B A B -=-2.设31)4sin(=+θπ,则sin2θ=A. -97B. -91C. 91D. 973.=-17cos 30cos 17sin 47sin A. -23 B. -21 C. 21 D. 234.函数y =12sin 26x π⎛⎫+⎪⎝⎭+5sin 23x π⎛⎫-⎪⎝⎭的最大值为( ) A .6 B .17 C .13D .125.已知α为第三象限角,且sin α=-2425,则tan 2α的值是( ) A.43 B.34 C .-34D .-436.假设4cos5α=-,α是第三象限的角,则sin()4πα+= ( )A 、10 B 、10- C 、 10 D 、10-试卷第2页,总8页7.已知3(,),sin 25παπα∈=,则tan()4πα+=〔 〕 A.7 B.-7 C.17- D.178.00tan1051tan1051-+的值为( ) A.33B .-33C.3D .-39.已知1sin cos ,(0,)5αααπ+=∈,则tan α的值为〔 〕 A .-43或-34 B .43或34 C .-34 D .-4310.假设f(sinx)=3-cos2x ,则f(cosx)=( )A.3-cos2xB.3-sin2xC.3+cos2xD.3+sin2x11.已知tan 2θ=,则22sin sin cos 2cos θθθθ+-=〔 〕A.43-B.54C.34- D.4512.设sin 〔4πθ+〕=13,sin2θ=〔 〕A.79-B.19- D.19 D.7913.已知sin2α=,则cos 2(α+)=〔 〕〔A 〕16 〔B 〕13 〔C 〕12 〔D 〕2314.已知tan α、tan β是方程04332=++x x 的两根,且)2,2(,ππβα-∈,则=+βα ( )A .3π或32π- B .3π-或32π C .32π- D .3π 15.设3(,sin )2a α=,1(cos ,)3b α=,且133()sin 2cos 2)2a f x a x x b=+++3sin 22sin(2)23a a x xb a x b π=+=-+,则锐角3511222,2321212k x k k x k πππππππππ+≤-≤++≤≤+为〔 〕 A .511[,],1212k k k Z ππππ∴++∈学习文档 仅供参考B.20,2,sin(2)123333x x x πππππ≤≤-≤-≤≤-≤ C.min max ()2,()f x b f x a b =+=-=+= D.2222a a b b a b ⎧=⎧-+=-⎪⎪⇒⎨⎨=-+⎪⎩⎪+=⎩16.已知3,2ππαβ<+<, 0,4παβ<-<, 则123cos()sin()135αβαβ-=+=-,的值为 ( ) A .54sin()cos()135αβαβ-=+=-, B .cos 2cos[()()]cos()cos()sin()sin()ααβαβαβαβαβαβ=-++=-+--+C .1245363()()13513565⨯--⨯-=- D .131817.假设sin()3B π=+=〔203B π<<,2〕,2333B πππ<+<=〔2,sin()13B π<+≤〕则sin sin B c +与1]的夹角θ等于A. 300B. 450C. 600D. 75018.已知平面上C B,A,三点共线,则对于函数)(x f ,以下结论中错误的选项是......〔 〕 A.周期是π B.最大值是2是函数的一个对称点 D.19,则ααsin cos -的值是〔 〕20.sin163sin 223sin 253sin313+=〔 〕A试卷第4页,总8页21.已知32,244x k k ππππ⎛⎫∈-+ ⎪⎝⎭()k Z ∈,且3cos 45x π⎛⎫-=- ⎪⎝⎭,则cos 2x 的值是〔 〕 A 、725-B 、2425-C 、2425D 、7252232tan131cos50cos6sin 6,,,21tan 13b c --==+则有〔 〕 A.a b c >> B.a b c << C.a cb << D.bc a <<23.2sin75°cos75°的值为 A1 D 24.已知41)6sin(=+απ,则ααsin 3cos +的值为( ) A .41-B .21C .2D .-1 25.函数2sin ()y x x R =∈的最小正周期为 A. 2π B. π C.2π D. 4π26.cos 42cos78sin 42cos168+= ( )A、12- B 、12 C 、学习文档 仅供参考第II 卷〔非选择题〕请点击修改第II 卷的文字说明 评卷人 得分二、填空题〔题型注释〕27.已知1sin(),23πθ+=则cos 2θ= ; 28.化简sin13cos17cos13sin17︒︒+︒︒= .29.已知44cos(),cos()55αβαβ+=-=-且3(),22παβπ⎛⎫+∈ ⎪⎝⎭,(),2παβπ⎛⎫-∈ ⎪⎝⎭,则sin 2α=30.计算以下几个式子:①2(sin35︒cos25︒+sin55︒cos65︒), ②tan 25tan 353tan 25tan 35︒+︒+︒︒,③2tan61tan6ππ-,④1tan151tan15+︒-︒,⑤12sin 212cos244ππ-结果为3的是 〔填上所有你认为正确答案的序号〕 31.假设171tan =α,则 αα2cos 2sin = 32.已知1(0,),sin cos ,tan 22a a a απ∈+=且则的值为 。

简单的三角恒等变换专题及答案

简单的三角恒等变换专题及答案

简单的三角恒等变换专题及答案简单的三角恒等变换专题一、选择题1.已知sinα=5115,则cos(π-2α)=()。

答案:B。

通过sinα和cos(π-2α)的关系,可以得到cos(π-2α)=-sinα=-(1/5115)。

2.sin70°/(2cos10°-sin20°)的值是()。

答案:C。

通过三角函数的恒等变换,可以将sin70°/(2cos10°-sin20°)化简为sin70°/cos80°,再使用tan的定义式,得到tan70°=sin70°/cos70°=sin70°/sin10°cos80°=sin70°/sin10°sin10°=1/sin10°=3.3.若sin76°=m,用含m的式子表示cos7°为()。

答案:B。

通过三角函数的恒等变换,可以得到cos(π/2-76°)=sin76°=m,即cos14°=m,再通过三角函数的恒等变换,可以得到cos7°=2cos2(7°)-1=2cos2(14°)cos(π/2-14°)-1=2(1-sin2(14°))-1=1-2sin2(14°)=1-2(cos14°)2=1-2m2.4.若cos2α=-2,则sinα+cosα的值为sin(7π/4)()。

答案:B。

通过cos2α的值可以得到sin2α=1-cos2α=3,再通过三角函数的恒等变换,可以得到sinα+cosα=√2sin(π/4+α)=√2sin(π/4+α-2π)=√2sin(7π/4-α)。

5.已知f(x)=2tanx-2/(x+π/12),则f(π/6)的值为()。

答案:D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角恒等变换
考试范围:xxx;考试时间:100 分钟;命题人:xxx 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上
第 I 卷(选择题)
请点击修改第 I 卷的文字说明
评卷人 得分
一、选择题(题型注释)
1.下列等式中恒成立的是( )
A、 cos(A B) cos Acos B sin Asin B
16.已知 3 , , 0 , , 则 cos( ) 12,sin( ) 3
2
4
13
5
的值为 ( )
A. sin( ) 5 ,cos( ) 4
13
5
B. cos 2 cos[( ) ( )] cos( ) cos( ) sin( )sin( )
C.
1 7
1 D. 7
8. tan1050 1 的值为( ) tan1050 1
A. 3 3
B.- 3 3
C. 3
D.- 3
9.已知 sin cos 1 , (0, ) ,则 tan 的值为( ) 5
A.- 4 或- 3 34
B. 4 或 3 34
C.- 3 4
10.若 f(sinx)=3-cos2x,则 f(cosx)=( )
2
3
2
12
12
A.[k 5 , k 11 ], k Z
12
12
试卷第 2 页,总 8 页
B. 0 x , 2x 2 , 3 sin(2x ) 1
23
33 2
3
C. f (x)min
3 2
a
b
2,
f
( x)max
ab
3,
D.
3 2
a
b
2
a
2
a b 3
b 2 3
D.- 4 3
A.3-cos2x
B.3-sin2x C.3+cos2x D.3+sin2x
11.已知 tan 2,则 sin2 sin cos 2cos2 ( )
A. 4
B. 5
C. 3
D. 4
3
4
4
5
12.设 sin( )= 1 ,sin2 =( )
4
3
A. 7 9
B. 1 D. 1 D. 7
(2)化简 tan 70 cos10 ( 3 tan 20 1)
49.已知 cos 3 10 , tan 1 , .
10
22
2
(1) 求 cos 2, sin ( 5 ) 的值; 6
(2) 求 的值.
试卷第 6 页,总 8 页
50.已知 a (5 3 cosx,cosx),b (sin x,2cosx),设函数 f (x) a b | b |2 3 . 2
21.已知
x
2k
3 4
,
2k
4
k
Z
,且
cos
4
x
3 5
,则
cos 2x
的值是
()
A、 7 25
B、 24 25
C、 24 25
D、 7 25
22.设 a 1 cos 6 2
3 2
sin
6
,b
2 tan13 1 tan2 13
,c
1 cos50 , 则有( 2

A. a b c B. a b c C. a c b D. b c a
(Ⅰ)当 x [ , ] ,求函数 f (x) 的值域; 62
(Ⅱ)当 x [ , ] 时,若 f (x) =8, 求函数 f (x ) 的值;
62
12
51.已知函数 f (x) 2sin(1 x ) , x R . 36
(1)求 f (0) 的值;
(2)设
0,
2
,
2
,0
,f
(3
⑤ 2 cos4
12
2 sin4
12
结果为 3 的是
(填上所有你认为正确答案的序号)
31.若 tan
1
,则
17
sin 2 = cos2
32.已知 (0, ),且sin a cos a 1 ,则tan 2a的值为

2
33.已知 cos 3 , ( , 3 ) ,则 tan( )
2
3
38.设θ为第二象限角,若 tan(θ+ )= 1 ,则 sinθ+cosθ=_________. 2
39.sin2α= 1 ,且 <α< ,则 cosα-sinα 的值为

44
2
试卷第 5 页,总 8 页
40.已知 1 cos x sin x 2 ,则 sin x 的值为 1 cos x sin x
9
9
3. sin 47
sin17 cos30 cos17
D. 7 9
A. - 3 2
B. - 1 2
C. 1 2
D. 3 2
4.函数
y=12sin
2x
6
+5sin
3
2
x
的最大值为(
)
A.6+ 5 3 2
B.17
C.13
D.12
5.已知α为第三象限角,且 sinα=- 24 ,则 tan 的值是( )
sin( ) sin cos cos sin ------②
由①+② 得 sin sin 2sin cos ------③
令 A, B 有 A B , A B
2
2
代入③得 sin A sin B 2sin A B cos A B .
2
2
(Ⅰ)类比上述推证方法,根据两角和与差的余弦公式,证明:
C. 12 ( 4) 5 ( 3) 63 13 5 13 5 65
D. 13 18
17 . 若 sin(B ) = ( 2 0 B , 2 ), B 2 = ( 2 ,
3
3
3
33
2 3 sin(B ) 1 )则 sin B sin c与 ( 3 , 1] 的夹角θ等于
.
5
2
4
34. cos75cos30 sin75sin30 的值为
.
35. 2sin75o cos75o =
.
36.若 cosxcosy+sinxsiny= ,则 cos(2x﹣2y)=

37.若 cos x cos y sin x sin y 1 ,sin 2x sin 2y 2 ,则 sin(x y) ________
sin
4
的值.
13 cos2 4
(2)化简
1
sin
cos
sin
2
cos
2
,其中π<α<2π.
2 2 cos
47.已知 为第二象限的角, sin 3 , 为第一象限的角, cos 5 .求
5
13
tan(2 ) 的值.
48.(1)计算 tan 20 tan 40 3 tan 20 tan 40 的值
2
3
2
A. 300
B. 450
C. 600
D. 750
18.已知平面上 A, B, C 三点共线,且 OC
f
(
x)OA
1
2
sin(2
x
3
)OB
,则对于
函数 f (x) ,下列结论中错.误.的是( )
A.周期是
B.最大值是 2
C. ,0 是函数的一个对称点 12
D.函数在区间
-
6
, 12
A
B E
C F
评卷人 得分
三、解答题(题型注释)
45.在 ABC 中,内角 A、B 、C 的对边分别为 a 、b 、c ,已知 a 、b 、c 成等比数列, 且 cos B 3 .
4 (Ⅰ)求 1 1 的值;
tan A tanC (Ⅱ)设 BA BC 3 ,求 a 、 c 的值.
2
46.(1)已知α是第一象限的角,且 cosα= 5 ,求
(1)求 cos( ) 的值;
(2)若 0 , 0, 且 sin 5 , 求 sin .
2
(2)用“五点法”画出函数 f (x) 在一个周期内的简图;
y
2
1
O
π
x
1
2
(3)若
x
12
,
2
,设函数
g
(x)
f
( x)2
f
(x) ,求 g(x) 的值域。
54.已知函数 f (x)
2
cos
x
12
,
x
R

(1)

f
3
的值;
(2)
若 cos
3 5
,
3 2
, 2
,求
f
6

试卷第 7 页,总 8 页
)
A、 1 2
B、 1 2
C、 3 2
D、 3 2
试卷第 4 页,总 8 页
第 II 卷(非选择题)
请点击修改第 II 卷的文字说明
评卷人 得分
二、填空题(题型注释)
27.已知 sin( ) 1 , 则 cos 2 =

2
3
28.化简 sin13cos17 cos13sin17
.
29 .
55.已知函数 f (x)
2
cos
x
12
,
x
R
.
(Ⅰ)

f
6
的值;
(Ⅱ)
若 cos
3 5
,
相关文档
最新文档