简单三角恒等变换典型例题

合集下载

完整版简单三角恒等变换典型例题

完整版简单三角恒等变换典型例题

简单三角恒等变换复习、公式体系(1) sin( ) sin cos cos sin sin cos cos sin sin( ) (2) cos()cos cossin sincoscossin sincos()(3) tan(tan tan去分母得tan tan i tan()(1 tantan )1 tan tantantantan()(1 tantan 、倍角公式的推导及其变形:(1) sin 2sin( ) sin coscos sin2 sin cossin1 .cos— sin 2221 sin 2(sincos(2) cos 2cos() cos cos sin sin cos 2 sin 2cos 2cos 2 sin 2 (cossin )(cossin )cos 22• 2 cos 厶 sin2 2COS (1 cos )把1移项得 1 cos22 cos 2或 -4- GQS -2-c2 cos 212【因为 是-的两倍,所以公式也可以写成2cos2 cos 2一 1 或 1 cos 2 cos 2或 - 1 cos —cos 22222因为4 是2的两倍,所以公式也可以写成cos 42 cos 221 或 1 2Once 厶或nee? O12cos 2 22 cossin(1 sin 2) sin 2把1移项得1cos 22s in 2或 -4-1 2sin 22【因为是—的两倍,所以公式也可以写成2cos1 2 sin 2—或1 cos2 sin 2或 4 ---- eos-sin 22222因为4 是2 的两倍,所以公式也可以写成21、和差公式及其变形: 2) )2sin 2、基本题型1、已知某个三角函数,求其他的三角函数:注意角的关系,如(),(4 (1)已知,都是锐角,sin -,cos(5) , (-4)_5 ,求sin的值13)(—)等等4 5(2)已知COS(—) 1,—,sin( )U,0 —,求sin( )的值4 5 4 4 4 13 4. 3(提不:(——)(—) ,只要求出sin( )即可)2、已知某个三角函数值,求相应的角:只要计算所求角的某个三角函数,再由三角函数值求角,注意选择合适的三角函数(1)已知,都是锐角,sin —,cos5,求角的弧度103、T()公式的应用(2) A ABC 中,角A、B 满足(1 tan A)(l tan B) 2 ,求A+B 的弧度4、弦化切,即已知tan ,求与sin, cos相关的式子的值:化为分式,分子分母同时除以cos 或cos? 等(1)已知tansin2 ,求SmQ 1Q in 9 rnQ 7,3sin 2cos2 的值3sin cos 1 sin 2 cos 25、切化弦,再通分,再弦合一(1)、化简:① sin 50° (13 t#TiO°)sin 35°sin 2x x(2)、证明: ________ (1 tan x tan _) tan x2 cos x 26、综合应用,注意公式的灵活应用与因式分解结合②(tan 10 01) cos-100...化简(2 sin2 2 cos4cos 20° sin 40° 的值等于()3cos cos2 的值等于( )——5 511A .C. 2D ・ 4424、已知0AiL cos A 3 那么卡in 2A 等于()2547-_ 12 24A.B .C ・D ・25252525215已知tan ()——,tan( ),则)的值等升( : )544413313 3A •B.—c.-一D.182222186、sinl65o= ()——1A •B.3C. 62 D. 62 22,4J广 47sinl4ocos 16o+sin76ocos74o 的值是 ()1、sin 20°cos40°A. 1B. 3c.1 D. 342r 244 72、若 tan3 , tan,则 tan()等于()31 1 A. 3B. 3-c.D.33A・3 B . 18、已知2x ( ,0),£,COS X24 一,则tan 2x (A . 7 2B —579、化简242s in (JI—x) —• sin (24n:+x), 其结果是4 4A. sin2x cos2x —10 、sin —3 cos 的值是( )12 12A . 0 £-211 、1 tan 2 75 的值为()ji V tan 753 1c. D.2 J 2)24 24C・ D .7 7( )C .—cos2x D. —sin2x5c. 2 D . 2 sin12A. 2 3。

简单的三角恒等变换(含解析)

简单的三角恒等变换(含解析)

第六节简单的三角恒等变换[知识能否忆起]半角公式(不要求记忆)1.用cos α表示sin 2α2,cos 2α2,tan 2α2.sin 2α2=1-cos α2;cos 2α2=1+cos α2;tan 2α2=1-cos α1+cos α. 2.用cos α表示sin α2,cos α2,tan α2.sin α2=± 1-cos α2;cos α2=± 1+cos α2; tan α2=± 1-cos α1+cos α.3.用sin α,cos α表示tan α2.tan α2=sin α1+cos α=1-cos αsin α. [小题能否全取]1.(教材习题改编)已知cos α=13,α∈(π,2π),则cos α2等于( )A.63 B .-63 C.33D .-33解析:选B ∵cos α=13,α∈(π,2π),∴α2∈⎝⎛⎭⎫π2,π, ∴cos α2=-1+cos α2=- 1+132=-63.2.已知函数f (x )=cos 2⎝⎛⎭⎫π4+x -cos 2⎝⎛⎭⎫π4-x ,则f ⎝⎛⎭⎫π12等于( ) A.12B .-12C.32D .-32解析:选B f (x )=cos 2⎝⎛⎭⎫π4+x -sin 2⎝⎛⎭⎫x +π4=-sin 2x ,∴f ⎝⎛⎭⎫π12=-sin π6=-12. 3.已知tan α=12,则cos 2α+sin 2α+1cos 2α等于( )A .3B .6C .12D.32解析:选A cos 2α+sin 2α+1cos 2α=2cos 2α+2sin α·cos αcos 2α=2+2tan α=3. 4.sin 20°cos 20°cos 50°=________.解析:sin 20°cos 20°cos 50°=12sin 40°cos 50°=12sin 40°sin 40°=12.答案:125.若1+tan α1-tan α=2 013,则1cos 2α+tan 2α=________.解析:1cos 2α+tan 2α=1+sin 2αcos 2α=(cos α+sin α)2cos2α-sin2α=cos α+sin αcos α-sin α=1+tan α1-tan α=2 013.答案:2 013三角恒等变换的常见形式三角恒等变换中常见的三种形式:一是化简;二是求值;三是三角恒等式的证明.(1)三角函数的化简常见的方法有切化弦、利用诱导公式、同角三角函数关系式及和、差、倍角公式进行转化求解.(2)三角函数求值分为给值求值(条件求值)与给角求值,对条件求值问题要充分利用条件进行转化求解.(3)三角恒等式的证明,要看左右两侧函数名、角之间的关系,不同名则化同名,不同角则化同角,利用公式求解变形即可.典题导入[例1] 化简2cos 4x -2cos 2x +122tan ⎝⎛⎭⎫π4-x sin 2⎝⎛⎭⎫π4+x .[自主解答] 原式=-2sin 2x cos 2x +122sin ⎝⎛⎭⎫π4-x cos 2⎝⎛⎭⎫π4-x cos ⎝⎛⎭⎫π4-x=12(1-sin 22x )2sin ⎝⎛⎭⎫π4-x cos ⎝⎛⎭⎫π4-x =12cos 22x sin ⎝⎛⎭⎫π2-2x=12cos 2x . 由题悟法三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式要通分”等.以题试法1.化简⎝ ⎛⎭⎪⎫1tan α2-tan α2·⎝⎛⎭⎫1+tan α·tan α2. 解:法一:原式=⎝ ⎛⎭⎪⎫cos α2sin α2-sin α2cos α2·⎝ ⎛⎭⎪⎫1+sin αcos α·sin α2cos α2=cos 2α2-sin 2α2sin α2·cos α2·cos αcos α2+sin αsinα2cos αcos α2=2cos αsin α·cos ⎝⎛⎭⎫α-α2cos αcosα2 =2cos αsin α·cosα2cos αcosα2=2sin α. 法二:原式=1-tan 2α2tan α2·⎝ ⎛⎭⎪⎫1+sin αsin α2cos αcos α2=2tan α·cos αcos α2+sin αsinα2cos αcosα2 =2cos αsin α·cos α2cos α·cosα2=2sin α.典题导入[例2] (1)(2012·重庆高考)sin 47°-sin 17°cos 30°cos 17°=( )A .-32 B .-12C.12D.32. (2)已知α、β为锐角,sin α=35,cos ()α+β=-45,则2α+β=________.[自主解答] (1)原式=sin (30°+17°)-sin17°cos 30°cos 17°=sin 30°cos 17°+cos 30°sin 17°-sin 17°cos 30°cos 17°=sin 30°cos 17°cos 17°=sin 30°=12.(2)∵sin α=35,α∈⎝⎛⎭⎫0,π2, ∴cos α=45,∵cos(α+β)=-45,α+β∈(0,π),∴sin(α+β)=35,∴sin(2α+β)=sin[α+(α+β)]=sin αcos(α+β)+cos αsin(α+β)=35×⎝⎛⎭⎫-45+45×35=0. 又2α+β∈⎝⎛⎭⎫0,3π2. ∴2α+β=π. [答案] (1)C (2)π由题悟法三角函数求值有三类(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.以题试法2.(2012·广州一测)已知函数f (x )=tan ⎝⎛⎭⎫3x +π4. (1)求f ⎝⎛⎭⎫π9的值;(2)设α∈⎝⎛⎭⎫π,3π2,若f ⎝⎛⎭⎫α3+π4=2,求cos ⎝⎛⎭⎫α-π4的值. 解:(1)f ⎝⎛⎭⎫π9=tan ⎝⎛⎭⎫π3+π4=tan π3+tanπ41-tan π3tanπ4=3+11-3=-2- 3. (2)因为f ⎝⎛⎭⎫α3+π4=tan ⎝⎛⎭⎫α+3π4+π4=tan(α+π)=tan α=2, 所以sin αcos α=2,即sin α=2cos α.①又sin 2α+cos 2α=1,② 由①②解得cos 2α=15.因为α∈⎝⎛⎭⎫π,3π2,所以cos α=-55,sin α=-255. 所以cos ⎝⎛⎭⎫α-π4=cos αcos π4+sin αsin π4=-55×22+⎝⎛⎭⎫-255×22=-31010.典题导入[例3] (2011·四川高考)已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.[自主解答] (1)∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+cos ⎝⎛⎭⎫x -π4-π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明:由已知得cos βcos α+sin βsin α=45,cos βcos α-sin βsin α=-45.两式相加得2cos βcos α=0.∵0<α<β≤π2,∴β=π2.∴[f (β)]2-2=4sin 2π4-2=0.在本例条件不变情况下,求函数f (x )的零点的集合. 解:由(1)知f (x )=2sin ⎝⎛⎭⎫x -π4, ∴sin ⎝⎛⎭⎫x -π4=0,∴x -π4=k π(k ∈Z ), ∴x =k π+π4(k ∈Z ).故函数f (x )的零点的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π+π4,k ∈Z .由题悟法三角变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y =A sin(ωx +φ)的形式再研究性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.以题试法3.已知函数f (x )=2cos x cos ⎝⎛⎭⎫x -π6-3sin 2x +sin x cos x . (1)求f (x )的最小正周期;(2)当α∈[0,π]时,若f (α)=1,求α的值.解:(1)因为f (x )=2cos x cos ⎝⎛⎭⎫x -π6-3sin 2x +sin x cos x =3cos 2 x +sin x cos x -3sin 2x +sin x cos x =3cos 2x +sin 2x =2sin ⎝⎛⎭⎫2x +π3, 所以最小正周期T =π.(2)由f (α)=1,得2sin ⎝⎛⎭⎫2α+π3=1, 又α∈[0,π],所以2α+π3∈⎣⎡⎦⎤π3,7π3, 所以2α+π3=5π6或2α+π3=13π6,故α=π4或α=11π12.1.在△ABC 中,tan B =-2,tan C =13,则A 等于( )A.π4 B.3π4 C.π3D.π6解析:选A tan A =tan [π-(B +C )]=-tan(B +C )=-tan B +tan C1-tan B tan C=--2+131-(-2)×13=1.故A =π4.2.sin (180°+2α)1+cos 2α·cos 2αcos (90°+α)等于( )A .-sin αB .-cos αC .sin αD .cos α解析:选D 原式=(-sin 2α)·cos 2α(1+cos 2α)·(-sin α)=2sin α·cos α·cos 2α2cos 2α·sin α=cos α.3.(2013·深圳调研)已知直线l: x tan α-y -3tan β=0的斜率为2,在y 轴上的截距为1,则tan(α+β)=( )A .-73B.73C.57D .1解析:选D 依题意得,tan α=2,-3tan β=1, 即tan β=-13,tan(α+β)=tan α+tan β1-tan αtan β=2-131+23=1.4.(2012·山东高考)若θ∈⎣⎡⎦⎤π4,π2,sin 2θ=378,则sin θ=( ) A.35B.45C.74D.34解析:选D 因为θ∈⎣⎡⎦⎤π4,π2,所以2θ∈⎣⎡⎦⎤π2,π, 所以cos 2θ<0,所以cos 2θ=-1-sin 22θ=-18.又cos 2θ=1-2sin 2θ=-18,所以sin 2θ=916,所以sin θ=34.5.(2012·河北质检)计算tan ⎝⎛⎭⎫π4+α·cos 2α2cos 2⎝⎛⎭⎫π4-α的值为( )A .-2B .2C .-1D .1解析:选D tan ⎝⎛⎭⎫π4+α·cos 2α2cos 2⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4+α·cos 2α2sin 2⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4+α=cos 2α2sin ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4+α=cos 2αsin 2⎝⎛⎭⎫π4+α =cos 2αsin ⎝⎛⎭⎫π2+2α =cos 2αcos 2α=1. 6.定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc .若cos α=17,⎪⎪⎪⎪⎪⎪sin α sin βcos α cos β=3314,0<β<α<π2,则β等于( )A.π12 B.π6 C.π4D.π3解析:选D 依题意有sin αcos β-cos αsin β =sin(α-β)=3314,又0<β<α<π2,∴0<α-β<π2,故cos(α-β)=1-sin 2(α-β)=1314,而cos α=17,∴sin α=437,于是sin β=sin[α-(α-β)] =sin αcos(α-β)-cos αsin(α-β)=437×1314-17×3314=32. 故β=π3.7.若tan ⎝⎛⎭⎫π4-θ=3,则cos 2θ1+sin 2θ=________. 解析:∵tan ⎝⎛⎭⎫π4-θ=1-tan θ1+tan θ=3, ∴tan θ=-12.∴cos 2θ1+sin 2θ=cos 2θ-sin 2θsin 2θ+2sin θcos θ+cos 2θ=1-tan 2θtan 2θ+2tan θ+1=1-1414-1+1=3.答案:38.若锐角α、β满足(1+3tan α)(1+3tan β)=4,则α+β=________. 解析:由(1+3tan α)(1+3tan β)=4, 可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3.又α+β∈(0,π),所以α+β=π3.答案:π39.计算:cos 10°+3sin 10°1-cos 80°=________.解析:cos 10°+3sin 10°1-cos 80°=2(sin 30°cos 10°+cos 30°sin 10°)2sin 240°=2sin 40°2sin 40°= 2.答案: 210.已知函数f (x )=sin x +cos x ,f ′(x )是f (x )的导函数. (1)求f ′(x )及函数y =f ′(x )的最小正周期;(2)当x ∈⎣⎡⎦⎤0,π2时,求函数F (x )=f (x )f ′(x )+f 2(x )的值域. 解:(1)由题意可知,f ′(x )=cos x -sin x =-2·sin ⎝⎛⎭⎫x -π4,所以y =f ′(x )的最小正周期为T =2π. (2)F (x )=cos 2x -sin 2x +1+2sin x cos x =1+sin 2x +cos 2x =1+2sin ⎝⎛⎭⎫2x +π4. ∵x ∈⎣⎡⎦⎤0,π2,∴2x +π4∈⎣⎡⎦⎤π4,5π4, ∴sin ⎝⎛⎭⎫2x +π4∈⎣⎡⎦⎤-22,1. ∴函数F (x )的值域为[0,1+ 2 ].11.已知0<α<π2<β<π,tan α2=12,cos(β-α)=210.(1)求sin α的值; (2)求β的值. 解:(1)∵tan α2=12,∴tan α=2tanα21-tan 2α2=2×121-⎝⎛⎭⎫122=43,由⎩⎪⎨⎪⎧sin αcos α=43,sin 2α+cos 2α=1, 解得sin α=45⎝⎛⎭⎫sin α=-45舍去. (2)由(1)知cos α=1-sin 2α =1-⎝⎛⎭⎫452=35,又0<α<π2<β<π,∴β-α∈(0,π),而cos(β-α)=210, ∴sin(β-α)=1-cos 2(β-α)= 1-⎝⎛⎭⎫2102=7210, 于是sin β=sin[α+(β-α)] =sin αcos(β-α)+cos αsin(β-α) =45×210+35×7210=22. 又β∈⎝⎛⎭⎫π2,π,∴β=3π4.12.已知sin(2α+β)=3sin β,设tan α=x ,tan β=y ,记y =f (x ). (1)求证:tan(α+β)=2tan α; (2)求f (x )的解析式.解:(1)证明:由sin(2α+β)=3sin β, 得sin [(α+β)+α]=3sin [(α+β)-α],即sin(α+β)cos α+cos(α+β)sin α=3sin(α+β)cos α-3cos(α+β)sin α, ∴sin(α+β)cos α=2cos(α+β)sin α. ∴tan(α+β)=2tan α.(2)由(1)得tan α+tan β1-tan αtan β=2tan α,即x +y1-xy =2x ,∴y =x 1+2x 2,即f (x )=x1+2x 2.1.(2012·郑州质检)已知曲线y =2sin ⎝⎛⎭⎫x +π4cos ⎝⎛⎭⎫π4-x 与直线y =12相交,若在y 轴右侧的交点自左向右依次记为P 1,P 2,P 3,…,则|15P P |等于( )A .πB .2πC .3πD .4π解析:选B 注意到y =2sin ⎝⎛⎭⎫x +π4cos ⎝⎛⎭⎫π4-x =2sin 2⎝⎛⎭⎫x +π4=1-cos 2⎝⎛⎭⎫x +π4=1+sin 2x ,又函数y =1+sin 2x 的最小正周期是2π2=π,结合函数y =1+sin 2x 的图象(如图所示)可知,|15P P |=2π.2.3-sin 70°2-cos 210°等于( )A.12B.22 C .2D.32解析:选C3-sin 70°2-cos 2 10°=3-cos 20°2-cos 210°=3-(2cos 210°-1)2-cos 210°=2(2-cos 210°)2-cos 210°=2.3.(2012·江西重点高中模拟)已知函数f (x )=sin ⎝⎛⎭⎫2x +π3+sin ⎝⎛⎭⎫2x -π3+3cos 2x -m ,若f (x )的最大值为1.(1)求m 的值,并求f (x )的单调递增区间;(2)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若f (B )=3-1,且3a =b +c ,试判断三角形的形状.解:(1)f (x )=2sin 2x ·cos π3+3cos 2x -m =sin 2x +3cos 2x -m =2sin ⎝⎛⎭⎫2x +π3-m . 又f (x )max =2-m ,所以2-m =1,得m =1. 由-π2+2k π≤2x +π3≤π2+2k π(k ∈Z )得到k π-5π12≤x ≤k π+π12(k ∈Z ),所以f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12(k ∈Z ). (2)由f (B )=3-1,得2sin ⎝⎛⎭⎫2B +π3-1=3-1,所以B =π6.又3a =b +c ,则3sin A =sin B +sin C , 3sin A =12+sin ⎝⎛⎭⎫5π6-A ,即sin ⎝⎛⎭⎫A -π6=12, 所以A =π3,C =π2,故△ABC 为直角三角形.1.求证:tan α+1tan ⎝⎛⎭⎫π4+α2=1cos α.证明:左边=sin αcos α+cos ⎝⎛⎭⎫π4+α2sin ⎝⎛⎭⎫π4+α2=sin αsin ⎝⎛⎭⎫π4+α2+cos αcos ⎝⎛⎭⎫π4+α2cos αsin ⎝⎛⎭⎫π4+α2=cos ⎝⎛⎭⎫π4+α2-αcos αsin ⎝⎛⎭⎫π4+α2=cos ⎝⎛⎭⎫π4-α2cos αsin ⎝⎛⎭⎫π4+α2=sin ⎝⎛⎭⎫π4+α2cos αsin ⎝⎛⎭⎫π4+α2=1cos α=右边. 故原式得证.2.已知f (x )=⎝⎛⎭⎫1+1tan x sin 2x -2sin ⎝⎛⎭⎫x +π4·sin ⎝⎛⎭⎫x -π4. (1)若tan α=2,求f (α)的值;(2)若x ∈⎣⎡⎦⎤π12,π2,求f (x )的取值范围.解:(1)f (x )=(sin 2x +sin x cos x )+2sin ⎝⎛⎭⎫x +π4·cos ⎝⎛⎭⎫x +π4 =1-cos 2x 2+12sin 2x +sin ⎝⎛⎭⎫2x +π2 =12+12(sin 2x -cos 2x )+cos 2x =12(sin 2x +cos 2x )+12. 由tan α=2,得sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=45.cos 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α=-35.所以f (α)=12(sin 2α+cos 2α)+12=35.(2)由(1)得f (x )=12(sin 2x +cos 2x )+12=22sin ⎝⎛⎭⎫2x +π4+12. 由x ∈⎣⎡⎦⎤π12,π2,得5π12≤2x +π4≤54π. 故-22≤sin ⎝⎛⎭⎫2x +π4≤1,则0≤f (x )≤2+12, 所以f (x )的取值范围是⎣⎢⎡⎦⎥⎤0,2+12.。

三角恒等变换经典例题

三角恒等变换经典例题

三角恒等变换经典例题删除明显有问题的段落,改写每段话如下:三角恒等变换半角公式是根据角度所在的象限来选择符号的。

1.两角和与差的正弦、余弦、正切公式:1)sin(α+β)=sinαcosβ+cosαsinβ,sin(α-β)=sinαcosβ-cosαsinβ2)cos(α+β)=cosαcosβ-sinαsinβ,cos(α-β)=cosαcosβ+sinαsinβ3)tan(α+β)=tanα+tanβ/(1-tanαtanβ),tan(α-β)=tanα-tanβ/(1+tanαtanβ)2.万能公式:tan(α-β)=tanα-tanβ/(1+tanαtanβ),tan(α+β)=tanα+tanβ/(1-tanαtanβ)3.角度的三角函数值:sinα=1/2,cosα=1/2,tanα=24.降幂公式:sin^2α=(1-cos2α)/2,cos^2α=(1+cos2α)/2,tan^2α=(1-cos2α)/(1+cos2α)5.辅角公式:asinθ+bcosθ=sqrt(a^2+b^2)sin(θ+φ),其中辅助角φ所在象限由点(a,b)所在的象限决定,sinφ=b/sqrt(a^2+b^2),cosφ=a/sqrt(a^2+b^2),tanφ=b/a6.二倍角公式:sin2α=2sinαcosα,cos2α=cos^2α-sin^2α=1-2sin^2α=2cos^2α-17.常见数据:sin15°=cos75°=(sqrt(6)-sqrt(2))/4,sin75°=cos15°=(sqrt(6)+sqrt(2))/4.1.cos2a = 1 + cos2a2.sin2a = 1 - cos2atan15° = 2 - √3.tan75° = 2 + √34.升幂公式:1) 1 + cosα = 2cos2α/22) 1 - cosα = 2sin2α/23) 1 ± sinα = (sinα ± cosα)2/24) 1 = sin2α + cos2α1.解:sin20cos10 - cos160sin10 = sin20cos10 + cos20sin10 = sin30 = 1/2,选B。

三角恒等变换(含答案)

三角恒等变换(含答案)

2
4
4
4
从而 sin

4
=

4 5
,因此
tan

4
=

4 3
.故填

4 3

评注:此处的角还可由 cos

4
=
3 5
缩小至 2k +
2

4
2k
+
7 4
(k
Z)
,但没必要.
另外,还可利用
tan

π 4
tan
+
π 4
=
−1 来进行处理,或者直接进行推演,即由题意
cos
+
4
4
5
(A) 7 25
(B) 1 5
(C) − 1 5
(D) − 7 25
【解析】因为
cos
π 4

=
3 5

2 (cos + sin ) = 3,所以 cos + sin = 3
2
5
5
2 ,两边平方得,
1+sin 2 = 18 sin 2 = 7 .故选 D.
25
25
2
解法二:
cos 2
4
= − 1 .选 A 2
2
1+
cos
2
22
2
2
2
4.【2010 新课标文 10】若 sin = − 4 , 是第三象限的角,则 sin( + ) = ( )
5
4
(A) − 7 2 10
(B) 7 2 10
(C) − 2 10

三角恒等变换练习题及答案

三角恒等变换练习题及答案

1.已知cos ⎝⎛⎭⎫α+π3=sin ⎝⎛⎭⎫α-π3,则tan α的值为( ) A .-1 B .1 C. 3 D .- 3解析:选B 由已知得12cos α-32sin α=12sin α-32cos α,整理得⎝⎛⎭⎫12+32sin α=⎝⎛⎭⎫12+32cos α,即sin α=cos α,故tan α=1.2.3cos 15°-4sin 215°cos 15°=( )A.12B.22C .1 D. 2 解析:选D 3cos 15°-4sin 215°cos 15°=3cos 15°-2sin 15°·2sin 15°cos 15°=3cos 15°-2sin 15°·sin 30°=3cos 15°-sin 15°=2cos(15°+30°)=2cos 45°= 2.故选D.3.在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( ) A .4 2 B.30 C.29 D .2 5解析:选A ∵cos C 2=55,∴cos C =2cos 2C 2-1=2×⎝⎛⎭⎫552-1=-35.在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC ·cos C =52+12-2×5×1×⎝⎛⎭⎫-35=32,∴AB =4 2. 4.已知α是第三象限的角,且tan α=2,则sin ⎝⎛⎭⎫α+π4=( ) A .-1010 B.1010 C .-31010 D.31010解析:选C 因为α是第三象限的角,tan α=2,且⎩⎪⎨⎪⎧sin αcos α=tan α,sin 2α+cos 2α=1,所以cos α=-11+tan 2α=-55,sin α=-255,则sin ⎝⎛⎭⎫α+π4=sin αcos π4+cos αsin π4=-255×22-55×22=-31010,选C. 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且2b cos C =2a +c ,则B =( ) A.π6 B.π4 C.π3 D.2π3 解析:选D 因为2b cos C =2a +c ,所以由正弦定理可得2sin B cos C =2sin A +sin C =2sin(B +C )+sin C =2sin B cos C +2cos B sin C +sin C ,即2cos B sin C =-sin C ,又sin C ≠0,所以cos B =-12,又0<B <π,所以B =2π3,故选D. 6.已知3cos 2α=4sin ⎝⎛⎭⎫π4-α,α∈⎝⎛⎭⎫π4,π,则sin 2α=( )A.79 B .-79 C.19 D .-19解析:选D 由题意知3(cos 2α-sin 2α)=22(cos α-sin α),由于α∈⎝⎛⎭⎫π4,π,因而cosα≠sin α,则3(cos α+sin α)=22,那么9(1+sin 2α)=8,sin 2α=-19. 7.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C 等于( )A.34B.43 C .-43 D .-34解析:选C 因为2S =(a +b )2-c 2=a 2+b 2-c 2+2ab ,由面积公式与余弦定理,得ab sin C =2ab cos C +2ab ,即sin C -2cos C =2,所以(sin C -2cos C )2=4,sin 2C -4sin C cos C +4cos 2C sin 2C +cos 2C =4,所以tan 2C -4tan C +4tan 2C +1=4,解得tan C =-43或tan C =0(舍去).8.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a ,b ,c 成等比数列,且a 2=c 2+ac -bc ,则c b sin B=( ) A.32 B.233 C.33 D. 3解析:选B 由a ,b ,c 成等比数列得b 2=ac ,则有a 2=c 2+b 2-bc ,由余弦定理得cos A =b 2+c 2-a 22bc =bc 2bc =12,故A =π3.对于b 2=ac ,由正弦定理,得sin 2B =sin A sin C =32·sin C ,由正弦定理,得c b sin B =sin C sin 2B =sin C 32sin C =233.故选B. 9.已知x ∈(0,π),且cos ⎝⎛⎭⎫2x -π2=sin 2x ,则tan ⎝⎛⎭⎫x -π4=( ) A.13 B .-13 C .3 D .-3解析:选A 由cos ⎝⎛⎭⎫2x -π2=sin 2x 得sin 2x =sin 2x ,∵x ∈(0,π),∴tan x =2,∴tan ⎝⎛⎭⎫x -π4=tan x -11+tan x =13. 10.已知tan ⎝⎛⎭⎫α+π4=34,则cos 2⎝⎛⎭⎫π4-α=( ) A.725 B.925 C.1625 D.2425解析:选B 由tan ⎝⎛⎭⎫α+π4=1+tan α1-tan α=34,解得tan α=-17,所以cos 2⎝⎛⎭⎫π4-α=1+cos ⎝⎛⎭⎫π2-2α2=1+sin 2α2=12+sin αcos α,又sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=-750,故12+sin αcos α=925. 11.已知tan ⎝⎛⎭⎫α-5π4=15,则tan α=________. 解析:tan ⎝⎛⎭⎫α-5π4=tan ⎝⎛⎭⎫α-π4=tan α-11+tan α=15,解得tan α=32. 答案:3212.如图,已知两座灯塔A 和B 与海洋观察站C 的距离分别为a 海里和2a 海里,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 和B 的距离为________海里.解析:依题意知∠ACB =180°-20°-40°=120°,在△ABC 中,由余弦定理知AB =AC 2+BC 2-2AC ·BC cos 120°=7a 2=7a .即灯塔A 与灯塔B 的距离为7a 海里. 答案:7a13.已知△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a =4,a sin B =3b cos A ,若△ABC 的面积S =43,则b +c =________.解析:由正弦定理,得sin A sin B =3sin B cos A ,又sin B ≠0,∴tan A =3,∴A =π3. 由S =12bc ×32=43,得bc =16,由余弦定理得,16=b 2+c 2-bc ,∴c 2+b 2=32,∴b +c =8.答案:8。

高中数学三角函数及三角恒等变换精选题目(附解析)

高中数学三角函数及三角恒等变换精选题目(附解析)

高中数学三角函数及三角恒等变换精选题目(附解析) 一、三角函数的定义若角α的终边上任意一点P (x ,y )(原点除外),r =|OP |=x 2+y 2,则sin α=y r ,cos α=x r ,tan α=y x (x ≠0).1.已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则sin α=________,tan α=________.[解析] ∵θ∈⎝ ⎛⎭⎪⎫π2,π,∴cos θ<0,∴r =x 2+y 2=9cos 2θ+16cos 2θ=-5cosθ,故sin α=y r =-45,tan α=y x =-43.[答案] -45 -43 注:利用三角函数定义求函数值的方法当已知角的终边所经过的点或角的终边所在的直线时,一般先根据三角函数的定义求这个角的三角函数值,再求其他.但当角经过的点不固定时,需要进行分类讨论.求与正切函数有关问题时,不要忽略正切函数自身的定义域.2.已知点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,且角θ的终边所在的直线过点M ,则tan θ=( )A .-13 B .±13 C .-3D .±3解析:选C 因为点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,所以a =log 313=-1,即M ⎝ ⎛⎭⎪⎫13,-1,所以tan θ=-113=-3,故选C.3.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35 C.35D.45解析:选B 在角θ的终边上任取一点P (a,2a )(a ≠0). 则r 2=|OP |2=a 2+(2a )2=5a 2. 所以cos 2θ=a 25a 2=15,cos 2θ=2cos 2 θ-1=25-1=-35.4.若θ是第四象限角,则点P (sin θ,tan θ)在第________象限. 解析:∵θ是第四象限角,则sin θ<0,tan θ<0, ∴点P (sin θ,tan θ )在第三象限. 答案:三二、同角三角函数的基本关系及诱导公式①牢记两个基本关系式sin 2α+cos 2α=1及sin αcos α=tan α,并能应用两个关系式进行三角函数的求值、化简、证明.②诱导公式可概括为k ·π2±α(k ∈Z)的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍或偶数倍,变与不变是指函数名称的变化.5.已知2+tan (θ-π)1+tan (2π-θ)=-4,求(sin θ-3cos θ)(cos θ-sin θ)的值.[解] 法一:由已知得2+tan θ1-tan θ=-4,∴2+tan θ=-4(1-tan θ), 解得tan θ=2.∴(sin θ-3cos θ)(cos θ-sin θ ) =4sin θcos θ-sin 2θ-3cos 2θ =4sin θcos θ-sin 2θ-3cos 2θsin 2θ+cos 2θ=4tan θ-tan2θ-3tan2θ+1=8-4-34+1=15.法二:由已知得2+tan θ1-tan θ=-4,解得tan θ=2.即sin θcos θ=2,∴sin θ=2cos θ.∴(sin θ-3cos θ)(cos θ-sin θ)=(2cos θ-3cos θ)(cos θ-2cos θ)=cos2θ=cos2θsin2θ+cos2θ=1tan2θ+1=15.注:三角函数式的求值、化简、证明的常用技巧(1)化弦:当三角函数式中三角函数名称较多时,往往把三角函数化为弦,再化简变形.(2)化切:当三角函数式中含有正切及其他三角函数时,有时可将三角函数名称都化为正切,再变形化简.(3)“1”的代换:在三角函数式中,有些会含有常数1,常数1虽然非常简单,但有些三角函数式的化简却需要利用三角函数公式将“1”代换为三角函数式.6.若sin(π+α)=35,且α是第三象限角,则sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=()A.1B.7 C.-7 D.-1解析:选B由sin(π+α)=35,得sin α=-35.又α是第三象限角,所以cos α=-4 5,所以sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=cos α+sin αcos α-sin α=-45+⎝ ⎛⎭⎪⎫-35-45-⎝ ⎛⎭⎪⎫-35=7.7.已知sin θ+cos θ=43,且0<θ<π4,则sin θ-cos θ的值为( )A.23 B .-23 C.13D .-13解析:选B ∵sin θ+cos θ=43,∴1+2sin θcos θ=169,则2sin θcos θ=79.又0<θ<π4,所以sin θ-cos θ<0,故sin θ-cos θ=-(sin θ-cos θ)2=-1-2sin θcos θ=-23,故选B.8.已知α为第三象限角,且sin α+cos α=2m,2sin αcos α=m 2,则m 的值为________.解析:由(sin α+cos α)2=1+2sin αcos α,得4m 2=1+m 2,即m 2=13.又α为第三象限角,所以sin α<0,cos α<0,则m <0,所以m =-33.答案:-339.已知sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫3π2+β,cos(π-α)=63cos(π+β),且0<α<π,0<β<π,求sin α和cos β的值.解:由已知,得sin α=2sin β,① 3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2, 即sin 2α+3(1-sin 2α)=2,所以sin 2α=12. 又0<α<π,则sin α=22. 将sin α=22代入①,得sin β=12.又0<β<π,故cos β=±32.三、简单的三角恒等变换两角和与差的正弦、余弦、正切公式 ①sin(α±β)=sin αcos β±cos αsin β; ②cos(α±β)=cos αcos β∓sin αsin β; ③tan(α±β)=tan α±tan β1∓tan αtan β.二倍角的正弦、余弦、正切公式 ①sin 2α=2sin αcos α;②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; ③tan 2α=2tan α1-tan 2α.10.已知tan α=2. (1)求tan ⎝ ⎛⎭⎪⎫α+π4的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.[解] (1)tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2×1=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1.注:条件求值的解题策略(1)分析已知角和未知角之间的关系,正确地用已知角来表示未知角. (2)正确地运用有关公式将所求角的三角函数值用已知角的三角函数值来表示.(3)求解三角函数中给值求角的问题时,要根据已知求这个角的某种三角函数值,然后结合角的取值范围,求出角的大小.11.若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin 2θ=378,则sin θ=( )A.35 B.45 C.74D.34解析:选D 因为θ∈⎣⎢⎡⎦⎥⎤π4,π2,所以2θ∈⎣⎢⎡⎦⎥⎤π2,π,所以cos 2θ<0,所以cos 2θ=-1-sin 22θ=-18.又cos 2θ=1-2sin 2θ=-18,所以sin 2θ=916,所以sin θ=34.12.已知sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫α+8π3等于( )A .-45 B .-35 C.35D.45解析:选D 因为sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3-π3=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3cos π3-cos ⎝ ⎛⎭⎪⎫α+π3sin π3=-435,所以32sin ⎝ ⎛⎭⎪⎫α+π3-32cos ⎝ ⎛⎭⎪⎫α+π3=-435,所以-3⎣⎢⎡⎦⎥⎤12cos ⎝ ⎛⎭⎪⎫α+π3-32sin ⎝ ⎛⎭⎪⎫α+π3=-435,即-3cos ⎝ ⎛⎭⎪⎫α+π3+π3=-435,cos ⎝ ⎛⎭⎪⎫α+2π3=45,所以cos ⎝ ⎛⎭⎪⎫α+8π3=cos ⎝ ⎛⎭⎪⎫α+2π3=45,故选D.13.(2017·全国卷Ⅲ)已知sin α-cos α=43,则sin 2α=( )A .-79B .-29 C.29D.79解析:选A 将sin α-cos α=43的两边进行平方,得sin 2 α-2sin αcos α+cos 2α=169,即sin 2α=-79.14.已知向量a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,函数f (x )=a ·b .(1)若f (θ)=0,求2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4的值;(2)当x ∈[0,π]时,求函数f (x )的值域.解:(1)∵a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,∴f (x )=a ·b =sin x -3⎝ ⎛⎭⎪⎫2cos 2x 2-1=sin x -3cos x .∵f (θ)=0,即sin θ-3cos θ=0,∴tan θ=3,∴2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4=cos θ-sin θsin θ+cos θ=1-tan θtan θ+1=1-33+1=-2+ 3.(2)由(1)知f (x )=sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,∵x ∈[0,π],∴x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π3=-π3,即x =0时,f (x )min =-3; 当x -π3=π2,即x =5π6时,f (x )max =2,∴当x ∈[0,π]时,函数f (x )的值域为[-3,2].。

三角恒等变换经典例题

三角恒等变换经典例题

三角恒等变换1. 两角和与差的正弦、余弦、正切公式:(1)βαβαβαsin cos cos sin )sin(+=+ βαβαβαsin co cos sin )sin(s -=- (2)βαβαβαsin sin cos cos )cos(-=+ βαβαβαsin sin cos cos )cos(+=-(3)βαβαβαtan tan 1tan tan )tan(-+=+ ⇒ ()()tan tan tan 1tan tan αβαβαβ+=+-(4)βαβαβαtan tan 1tan tan )tan(+-=- ⇒ ()()tan tan tan 1tan tan αβαβαβ-=-+(7) sin cos a b αα+=)αϕ+(其中,辅助角ϕ所在象限由点(,)a b 所在的象限决定,sin tan ba ϕϕϕ=== ,该法也叫合一变形). (8))4tan(tan 1tan 1θπθθ+=-+ )4tan(tan 1tan 1θπθθ-=+-2. 二倍角公式(1)a a a cos sin 22sin = (2)1cos 2sin 21sin cos 2cos 2222-=-=-=a a a a a(3)aaa 2tan 1tan 22tan -=3. 降幂公式:(1)22cos 1cos 2a a +=(2) 22cos 1sin 2a a -=4. 升幂公式(1)2cos 2cos 12αα=+ (2)2sin2cos 12αα=-(3)2)2cos 2(sin sin 1ααα±=± (4)αα22cos sin 1+= (5)2cos2sin 2sin ααα=5. 半角公式(符号的选择由2θ所在的象限确定) (1)2cos 12sinaa -±=, (2)2cos 12cos a a +±= , (3)a a a a a a a sin cos 1cos 1sin cos 1cos 12tan-=+=+-±=6. 万能公式:(1)2tan 12tan2sin 2ααα+=, (2)2tan 12tan 1cos 22ααα+-=,(3).2tan 12tan2tan 2ααα-=7,辅角公式)sin(cos sin 22ϕθθθ++=+b a b a 其中2222sin ,cos b a bb a a +=+=ϕϕ,比如:xx y cos 3sin +=)cos )3(13sin )3(11()3(1222222x x ++++=)cos 23sin 21(2x x +=)3sin cos 3cos (sin 2ππx x +=)3sin(2π+=x10.常见数据:sin15cos75cos15︒=︒=︒=︒= 3215tan -=︒, 3275tan +=︒,专题四 三角恒等变形各类题命题点1 和差公式的直接应用1.(2015课标1,2) 0000sin 20cos10cos160sin10-=( ).AB 1.2C - 1.2D2.(2017江苏,5)若1tan()46πα-=,则tan α=_____________ . 3.(2016·杭州模拟)已知sin α=35,α∈(π2,π),则cos 2α2sin (α+π4)=________.4.在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C 的值为( ) A .-22 B.22 C.12 D .-125.(2016·全国丙卷)若tan α=34,则cos 2α+2sin 2α等于( )A.6425B.4825 C .1 D.16256.(2016·宁波期末考试)已知θ∈(0,π4),且sin θ-cos θ=-144,则2cos 2θ-1cos (π4+θ)等于( )A.23B.43C.34D.327.(2017浙江高考模拟训练冲刺卷四,4)已知4sin25θ=-,3cos 25θ=,则θ属于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 命题点2 角的变换8.设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( ) A.2525 B.255 C.2525或255 D.55或5259.已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是________.10.设α为锐角,若cos(α+π6)=45,则sin(2α+π12)的值为________.11.(2016·浙江五校联考)已知3tan α2+tan 2α2=1,sin β=3sin(2α+β),则tan(α+β)等于( )A.43 B .-43 C .-23 D .-3 命题点3 三角函数式的化简12.(2013重庆,9)004cos50tan 40-=()BC 1 13.化简:(1+sin θ+cos θ)(sin θ2-cos θ2)2+2cos θ (0<θ<π);化简4cos 2sin 22+-14.求值:1+cos 20°2sin 20°-sin 10°(1tan 5°-tan 5°).15. 化简:2cos 4x -2cos 2x +122tan ⎝⎛⎭⎫π4-x sin 2⎝⎛⎭⎫π4+x =________.16.(2017·嘉兴第一中学调研)若sin(π+α)=35,α是第三象限角,则sin π+α2-cosπ+α2sin π-α2-cosπ-α2等于A.12 B .-12C .2D .-2 命题点4 给值求值问题17.(2017课标全国3文,4)已知4sin cos 3αα-=,则sin2α=( ) 7.9A - 2.9B - 2.9C 7.9D18.(2016·合肥联考)已知α,β为锐角,cos α=17,sin(α+β)=5314,则cos β=________.19.(2013浙江,6)已知R α∈,sin 2cos αα+=则tan 2α=( ) 4.3A 3.4B 3.4C - 4.3D - 20.(2014江苏,15)已知(,)2παπ∈,sin α=(1)求sin()4πα+的值;(2)求5cos(2)6πα-的值。

三角函数恒等变换练习题及答案详解

三角函数恒等变换练习题及答案详解

两角和与差的正弦、余弦、正切1.利用两角和与差的正弦、余弦、正切公式进行三角变换;2.利用三角变换讨论三角函数的图象和性质 2.1.牢记和差公式、倍角公式,把握公式特征;2.灵活使用(正用、逆用、变形用)两角和与差的正弦、余弦、正切公式进行三角变换,三角变换中角的变换技巧是解题的关键.知识点回顾1. 两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β (C α-β) cos(α+β)=cos_αcos_β-sin_αsin_β (C α+β) sin(α-β)=sin_αcos_β-cos_αsin_β (S α-β) sin(α+β)=sin_αcos_β+cos_αsin_β (S α+β) tan(α-β)=tan α-tan β1+tan αtan β (T α-β)tan(α+β)=tan α+tan β1-tan αtan β(T α+β)2. 二倍角公式sin 2α=ααcos sin 2;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.3. 在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如T α±β可变形为tan α±tan β=tan(α±β)(1∓tan_αtan_β), tan αtan β=1-tan α+tan βtan (α+β)=tan α-tan βtan (α-β)-1.4. 函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定. [难点正本 疑点清源] 三角变换中的“三变”(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等. (3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.热身训练1. 已知sin(α+β)=23,sin(α-β)=-15,则tan αtan β的值为_______.2. 函数f (x )=2sin x (sin x +cos x )的单调增区间为______________________.3. (2012·江苏)设α为锐角,若cos ⎪⎭⎫ ⎝⎛+6πα=45,则 4. (2012·江西)若sin α+cos αsin α-cos α=12,则tan 2α等于( )A .-34B.34C .-43D.43 5. (2011·辽宁)设sin(π4+θ)=13,则sin 2θ等于( )A .-79B .-19C.19D.79典例分析题型一 三角函数式的化简、求值问题 例1 (1)化简:⎝ ⎛⎭⎪⎫1tan α2-tan α2·⎝⎛⎭⎫1+tan α·tan α2; (2)求值:[2sin 50°+sin 10°(1+3tan 10°)]·2sin 280°.在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C2的值为________.题型二 三角函数的给角求值与给值求角问题例2 (1)已知0<β<π2<α<π,且cos ⎪⎭⎫ ⎝⎛-2πα=-19,sin ⎪⎭⎫ ⎝⎛-βα2=23,求cos(α+β)的值;(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.题型三 三角变换的简单应用 例3 已知f (x )=⎪⎭⎫ ⎝⎛+x tan 11sin 2x -2sin ⎪⎭⎫ ⎝⎛+4πx ·sin ⎪⎭⎫ ⎝⎛-4πx (1)若tan α=2,求f (α)的值;(2)若x ∈⎣⎡⎦⎤π12,π2,求f (x )的取值范围.已知函数f (x )=3sin ⎪⎭⎫ ⎝⎛-62πx +2sin 2⎪⎭⎫ ⎝⎛-12πx (x ∈R ). (1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值时x 的集合.利用三角变换研究三角函数的性质典例:(12分)(2011·北京)已知函数f (x )=4cos x ·sin ⎪⎭⎫⎝⎛+6πx -1. (1)求f (x )的最小正周期; (2)求f (x )在区间⎥⎦⎤⎢⎣⎡-4,6ππ上的最大值和最小值.总结方法与技巧 1. 巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x tan y );倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22,1+cos α=2cos 2α2,1-cos α=2sin 2α2. 2. 利用辅助角公式求最值、单调区间、周期.由y =a sin α+b cos α=a 2+b 2sin(α+φ)(其中tan φ=ba)有a 2+b 2≥|y |.3. 重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.4. 已知和角函数值,求单角或和角的三角函数值的技巧:把已知条件的和角进行加减或二倍角后再加减,观察是不是常数角,只要是常数角,就可以从此入手,给这个等式两边求某一函数值,可使所求的复杂问题简单化.5. 熟悉三角公式的整体结构,灵活变换.本节要重视公式的推导,既要熟悉三角公式的代数结构,更要掌握公式中角和函数名称的特征,要体会公式间的联系,掌握常见的公式变形,倍角公式应用是重点,涉及倍角或半角的都可以利用倍角公式及其变形. 失误与防范1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通. 2.在(0,π)范围内,sin(α+β)=22所对应的角α+β不是唯一的. 3.在三角求值时,往往要估计角的范围后再求值.过手训练(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分) 1. (2012·山东)若θ∈⎥⎦⎤⎢⎣⎡2,4ππ,sin 2θ=378,则sin θ等于( )A.35B.45C.74D.342. 已知tan(α+β)=25,tan ⎪⎭⎫ ⎝⎛-4πβ=14,那么tan ⎪⎭⎫ ⎝⎛+4πα等于( )A.1318B.1322C.322D.163. 当-π2≤x ≤π2时,函数f (x )=sin x +3cos x 的( )A .最大值是1,最小值是-1B .最大值是1,最小值是-12C .最大值是2,最小值是-2D .最大值是2,最小值是-1二、填空题(每小题5分,共15分) 4. 已知锐角α满足cos 2α=cos ⎪⎭⎫⎝⎛-απ4,则sin 2α=________. 5. 已知cos ⎪⎭⎫⎝⎛-απ4=1213,α∈⎪⎭⎫⎝⎛4,0π,则cos 2αsin ⎝⎛⎭⎫π4+α=________. 6. 设x ∈⎪⎭⎫⎝⎛2,0π,则函数y =2sin 2x +1sin 2x的最小值为________.三、解答题7. (13分)(2012·广东)已知函数f (x )=2cos ⎪⎭⎫⎝⎛+6πωx (其中ω>0,x ∈R )的最小正周期为10π. (1)求ω的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫5α+53π=-65,f ⎝⎛⎭⎫5β-56π=1617,求cos(α+β)的值. 课后习题(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2012·江西)若tan θ+1tan θ=4,则sin 2θ等于( )A.15B.14C.13D.122. (2012·大纲全国)已知α为第二象限角,sin α+cos α=33,则cos 2α等于 ( )A .-53B .-59C.59D.533. 已知α,β都是锐角,若sin α=55,sin β=1010, 则α+β等于( )A.π4B.3π4C.π4和3π4D .-π4和-3π44. (2011·福建)若α∈⎪⎭⎫ ⎝⎛2,0π,且sin 2α+cos 2α=14,则tan α的值等于 ( )A.22B.33C. 2D. 3二、填空题(每小题5分,共15分)5. cos 275°+cos 215°+cos 75°cos 15°的值为________. 6.3tan 12°-3(4cos 212°-2)sin 12°=________.7. sin α=35,cos β=35,其中α,β∈⎪⎭⎫⎝⎛2,0π,则α+β=____________.三、解答题(共22分) 8. (10分)已知1+sin α1-sin α-1-sin α1+sin α=-2tan α,试确定使等式成立的α的取值集合.9. (12分)已知α∈⎪⎭⎫⎝⎛ππ,2,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎪⎭⎫⎝⎛ππ,2,求cos β的值.。

三角恒等变换经典例题

三角恒等变换经典例题

三角恒等变换1. 两角和与差的正弦、余弦、正切公式:(1)βαβαβαsin cos cos sin )sin(+=+ βαβαβαsin co cos sin )sin(s -=- (2)βαβαβαsin sin cos cos )cos(-=+ βαβαβαsin sin cos cos )cos(+=-(3)βαβαβαtan tan 1tan tan )tan(-+=+ ⇒ ()()tan tan tan 1tan tan αβαβαβ+=+-(4)βαβαβαtan tan 1tan tan )tan(+-=- ⇒ ()()tan tan tan 1tan tan αβαβαβ-=-+(7) sin cos a b αα+=)αϕ+(其中,辅助角ϕ所在象限由点(,)a b 所在的象限决定,sin tan ba ϕϕϕ=== ,该法也叫合一变形). (8))4tan(tan 1tan 1θπθθ+=-+ )4tan(tan 1tan 1θπθθ-=+-2. 二倍角公式(1)a a a cos sin 22sin = (2)1cos 2sin 21sin cos 2cos 2222-=-=-=a a a a a(3)aaa 2tan 1tan 22tan -=3. 降幂公式:(1)22cos 1cos 2a a +=(2) 22cos 1sin 2a a -=4. 升幂公式(1)2cos 2cos 12αα=+ (2)2sin2cos 12αα=-(3)2)2cos 2(sin sin 1ααα±=± (4)αα22cos sin 1+= (5)2cos2sin 2sin ααα=5. 半角公式(符号的选择由2θ所在的象限确定) (1)2cos 12sinaa -±=, (2)2cos 12cos a a +±= , (3)a a a a a a a sin cos 1cos 1sin cos 1cos 12tan-=+=+-±=6. 万能公式:(1)2tan 12tan2sin 2ααα+=, (2)2tan 12tan 1cos 22ααα+-=,(3).2tan 12tan2tan 2ααα-=7,辅角公式)sin(cos sin 22ϕθθθ++=+b a b a 其中2222sin ,cos b a bb a a +=+=ϕϕ,比如:xx y cos 3sin +=)cos )3(13sin )3(11()3(1222222x x ++++=)cos 23sin 21(2x x +=)3sin cos 3cos (sin 2ππx x +=)3sin(2π+=x10.常见数据:sin15cos75cos15︒=︒=︒=︒= 3215tan -=︒, 3275tan +=︒,专题四 三角恒等变形各类题命题点1 和差公式的直接应用1.(2015课标1,2) 0000sin 20cos10cos160sin10-=( ).AB 1.2C - 1.2D2.(2017江苏,5)若1tan()46πα-=,则tan α=_____________ . 3.(2016·杭州模拟)已知sin α=35,α∈(π2,π),则cos 2α2sin (α+π4)=________.4.在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C 的值为( ) A .-22 B.22 C.12 D .-125.(2016·全国丙卷)若tan α=34,则cos 2α+2sin 2α等于( )A.6425B.4825 C .1 D.16256.(2016·宁波期末考试)已知θ∈(0,π4),且sin θ-cos θ=-144,则2cos 2θ-1cos (π4+θ)等于( )A.23B.43C.34D.327.(2017浙江高考模拟训练冲刺卷四,4)已知4sin25θ=-,3cos 25θ=,则θ属于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 命题点2 角的变换8.设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( ) A.2525 B.255 C.2525或255 D.55或5259.已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是________.10.设α为锐角,若cos(α+π6)=45,则sin(2α+π12)的值为________.11.(2016·浙江五校联考)已知3tan α2+tan 2α2=1,sin β=3sin(2α+β),则tan(α+β)等于( )A.43 B .-43 C .-23 D .-3 命题点3 三角函数式的化简12.(2013重庆,9)004cos50tan 40-=()BC 1 13.化简:(1+sin θ+cos θ)(sin θ2-cos θ2)2+2cos θ (0<θ<π);化简4cos 2sin 22+-14.求值:1+cos 20°2sin 20°-sin 10°(1tan 5°-tan 5°).15. 化简:2cos 4x -2cos 2x +122tan ⎝⎛⎭⎫π4-x sin 2⎝⎛⎭⎫π4+x =________.16.(2017·嘉兴第一中学调研)若sin(π+α)=35,α是第三象限角,则sin π+α2-cosπ+α2sin π-α2-cosπ-α2等于A.12 B .-12C .2D .-2 命题点4 给值求值问题17.(2017课标全国3文,4)已知4sin cos 3αα-=,则sin2α=( ) 7.9A - 2.9B - 2.9C 7.9D18.(2016·合肥联考)已知α,β为锐角,cos α=17,sin(α+β)=5314,则cos β=________.19.(2013浙江,6)已知R α∈,sin 2cos αα+=则tan 2α=( ) 4.3A 3.4B 3.4C - 4.3D - 20.(2014江苏,15)已知(,)2παπ∈,sin α=(1)求sin()4πα+的值;(2)求5cos(2)6πα-的值。

三角恒等变换常考题(含答案)

三角恒等变换常考题(含答案)

三角恒等变换基础题型一.选择题(共20小题,每小题5分)时间60分钟4.已知sin2α=,则cos2()=()A.﹣B.C.﹣ D.5.若,则cos(π﹣2α)=()A.B.C.D.6.已知sin(α+)+sinα=﹣,﹣<α<0,则cos(α+)等于()A.﹣ B.﹣ C.D.7.若,则=()A. B.C.D.8.已知cosα=,cos(α﹣β)=,且0<β<α<,那么β=()A.B.C.D.9.若α∈(,π),且3cos2α=sin(﹣α),则sin2α的值为()A.B.C.D.10.若α,β为锐角,且满足cosα=,cos(α+β)=,则sinβ的值为()A.B.C.D.12.已知sin(﹣α)﹣cosα=,则cos(2α+)=()A.B.﹣C.D.﹣13.已知cosα=﹣,且α∈(,π),则tan(α+)等于()A.﹣B.﹣7 C.D.715.已知,则sin2α的值为()A.B.C.D.16.cos15°•cos105°﹣cos75°•sin105°的值为()A.﹣ B.C.D.﹣17.若tanα=,则sin2α+cos2α的值是()A.﹣B.C.5 D.﹣519.cos43°cos77°+sin43°cos167°的值是()A. B.C.D.21.已知sinα+cosα=,则sin2α=()A.﹣B.﹣ C.D.23.若tanα=,则cos2α+2sin2α=()A.B.C.1 D.24.已知向量,且,则sin2θ+cos2θ的值为()A.1 B.2 C.D.325.已知tan(α﹣)=,则的值为()A.B.2 C.2 D.﹣226.已知,则tanα=()A.﹣1 B.0 C.D.1三角恒等变换基础题型组卷参考答案与试题解析一.选择题(共30小题)4.(2017•泉州模拟)已知sin2α=,则cos2()=()A.﹣ B.C.﹣ D.【解答】解:==,由于:,所以:=,故选:D.5.(2017•焦作二模)若,则cos(π﹣2α)=()A.B.C.D.【解答】解:由,可得:sinα=.∵cos(π﹣2α)=﹣cos2α=﹣(1﹣2sin2α)=2sin2α﹣1=.故选D6.(2017•衡水一模)已知sin(α+)+sinα=﹣,﹣<α<0,则cos(α+)等于()A.﹣ B.﹣ C.D.【解答】解:∵sin(α+)+sinα=﹣,∴,∴,∴cos(α﹣)=,∴cos(α+)=cos[π+(α﹣)]=﹣cos(α﹣)=.故选C.7.(2017•商丘三模)若,则=()A.B.C.D.【解答】解:∵=cos(α+),∴=cos[2(α+)]=2cos2(α+)﹣1=2×﹣1=﹣.故选:D.8.(2017•德州二模)已知cosα=,cos(α﹣β)=,且0<β<α<,那么β=()A.B.C.D.【解答】解:由0<α<β<,得到0<β﹣α<,又cosα=,cos(α﹣β)=cos(β﹣α)=,所以sinα==,sin(β﹣α)=﹣sin(α﹣β)=﹣=﹣,则cosβ=cos[(β﹣α)+α]=cos(β﹣α)cosα﹣sin(β﹣α)sinα=×﹣(﹣)×=,所以β=.故选:C.9.(2017•青海模拟)若α∈(,π),且3cos2α=sin(﹣α),则sin2α的值为()A.B.C.D.【解答】解:∵α∈(,π),∴sinα>0,cosα<0,∵3cos2α=sin(﹣α),∴3(cos2α﹣sin2α)=(cosα﹣sinα),∴co sα+sinα=,∴两边平方,可得:1+2sinαcosα=,∴sin2α=2sinαcosα=﹣.故选:D.10.(2017•大武口区校级四模)若α,β为锐角,且满足cosα=,cos(α+β)=,则sinβ的值为()A.B.C.D.【解答】解:α,β为锐角,且满足cosα=,∴sinα==,sin(α+β)==,则sinβ=sin[(α+β)﹣α]=sin(α+β)cosα﹣cos(α+β)sinα=﹣×=,故选:C.12.(2017•腾冲县校级二模)已知sin(﹣α)﹣cosα=,则cos(2α+)=()A.B.﹣C.D.﹣【解答】解:∵sin(﹣α)﹣cosα=cosα﹣sinα﹣cosα=﹣sin(α+)=,∴sin(α+)=﹣,则cos(2α+)=1﹣2sin2(α+)=,故选:C.13.(2017•榆林一模)已知cosα=﹣,且α∈(,π),则tan(α+)等于()A.﹣ B.﹣7 C.D.7【解答】解析:由cosα=﹣且α∈()得tanα=﹣,∴tan(α+)==,故选C.15.(2017•全国三模)已知,则sin2α的值为()A.B.C.D.【解答】解:∵已知,则平方可得1﹣sin2α=,∴sin2α=,故选:C.16.(2017•山西一模)cos15°•cos105°﹣cos75°•sin105°的值为()A.﹣ B.C.D.﹣【解答】解:cos15°•cos105°﹣cos75°•sin105°=cos15°•cos105°﹣sin15°•sin105°=cos(15°+105°)=cos120°=﹣.故选:A.17.(2017春•陆川县校级月考)若tanα=,则sin2α+cos2α的值是()A.﹣ B.C.5 D.﹣5【解答】解:原式=.故选B.19.(2017春•福州期末)cos43°cos77°+sin43°cos167°的值是()A.B.C.D.【解答】解:cos43°cos77°+sin43°cos167°=cos43°cos77°+sin43°cos(90°+77°)=cos43°cos77°﹣sin43°sin77°=cos(43°+77°)=cos120°=﹣cos60°=﹣.故选D.21.(2017春•荔城区校级期中)已知sinα+cosα=,则sin2α=()A.﹣ B.﹣ C.D.【解答】解:∵sina+cosa=,∴(sina+cosa)2=,∴1+2sinacosa=,∴sin2a=﹣.故选:A.23.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.【解答】解:∵tanα=,∴cos2α+2sin2α====.故选:A.24.(2016•肃南裕县校级模拟)已知向量,且,则sin2θ+cos2θ的值为()A.1 B.2 C.D.3【解答】解:由题意可得=sinθ﹣2cosθ=0,即tanθ=2.∴sin2θ+cos2θ===1,故选A.25.(2016•河南模拟)已知tan(α﹣)=,则的值为()A.B.2 C.2 D.﹣2【解答】解:由tan(α﹣)==,得tanα=3.则=.故选:B.26.(2016•全国二模)已知,则tanα=()A.﹣1 B.0 C.D.1【解答】解:∵,∴cosα﹣sinα=cosα﹣sinα,∴cosα=sinα,∴tanα===﹣1.故选:A.29.(2017•玉林一模)若3sinα+cosα=0,则的值为()A.B.C.D.﹣2【解答】解:∵3sinα+cosα=0,∴tanα=﹣,∴===,故选:A.30.(2017•成都模拟)已知函数f(x)=cos(x+)sinx,则函数f(x)的图象()A.最小正周期为T=2πB.关于点(,﹣)对称C.在区间(0,)上为减函数D.关于直线x=对称【解答】解:∵函数f(x)=cos(x+)sinx=(cosx﹣sinx)•sinx=sin2x﹣•=(sin2x+cos2x)﹣=sin(2x+)+,故它的最小正周期为=π,故A不正确;令x=,求得f(x)=+=,为函数f(x)的最大值,故函数f(x)的图象关于直线x=对称,且f(x)的图象不关于点(,)对称,故B不正确、D正确;在区间(0,)上,2x+∈(,),f(x)=sin(2x+)+为增函数,故C不正确,故选:D.。

简单三角恒等变换典型例题

简单三角恒等变换典型例题

简单三角恒等变换复习一、公式体系1、和差公式及其变形:(1)βαβαβαsin cos cos sin )sin(±=± ⇔ )s i n (s i n c o s c o s s i n βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ⇔ )c o s (s i n s i n c o s c o s βαβαβα±= (3)βαβαβαtan tan 1tan tan )tan( ±=± ⇔ 去分母得 )t a n t a n 1)(tan(tan tan βαβαβα-+=+2、倍角公式的推导及其变形:(1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+= (2)ααααααααα22sin cos sin sin cos cos )cos(2cos -=-=+=1cos 2)cos 1(cos sin cos 2cos 22222-=--=-=⇔αααααα⇔把1移项得αα2cos 22cos 1=+ 或 αα2cos 22cos 1=+ 【因为α是2α的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2c o s 2c o s 12αα=+因为α4是α2的两倍,所以公式也可以写成12cos 24cos 2-=αα 或 αα2c o s 24c o s 12=+ 或 αα2c o s 24c o s 12=+】αααααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=⇔ ⇔把1移项得αα2sin 22cos 1=- 或αα2sin 22cos 1=- 【因为α是2α的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2s i n 2c o s 12αα=- 或 2s i n 2c o s 12αα=- 因为α4是α2的两倍,所以公式也可以写成αα2sin 214cos 2-= 或 αα2s i n 24c o s 12=- 或 αα2s i n 24c o s 12=-】二、基本题型1、已知某个三角函数,求其他的三角函数:注意角的关系,如)4()4(,)(,)(πβαπβααβαβββαα-++=+-+=-+=等等 (1)已知βα,都是锐角,135)cos(,54sin =+=βαα,求βsin 的值 (2)已知,40,1312)45sin(,434,53)4cos(πββππαπαπ<<-=+<<=-求)sin(βα+的值(提示:βαπαπβπ++=--+)4()45(,只要求出)sin(βαπ++即可) 2、已知某个三角函数值,求相应的角:只要计算所求角的某个三角函数,再由三角函数值求角,注意选择合适的三角函数(1)已知βα,都是锐角,10103cos ,55sin ==βα,求角βα+的弧度 3、)(βα+T 公式的应用(1)求)32tan 28tan 1(332tan 28tan 0000+++的值(2)△ABC 中,角A 、B 满足2)tan 1)(tan 1(=++B A ,求A+B 的弧度4、弦化切,即已知tan ,求与sin ,cos 相关的式子的值:化为分式,分子分母同时除以αcos 或α2cos 等 (1)已知2tan =α,求αααααααααα2cos 2sin 3,2cos 2sin 12cos 2sin 1,cos sin 3cos 5sin +-++++-的值5、切化弦,再通分,再弦合一(1)、化简:① )10tan 31(50sin 0+ ② 035sin 10cos )110(tan ⋅- (2)、证明:x xx x x tan )2tan tan 1(cos 22sin =+6、综合应用,注意公式的灵活应用与因式分解结合 化简4cos 2sin 22+-1、sin 20cos 40cos 20sin 40+的值等于( )A .14 B C .12D 2、若tan 3α=,4tan 3β=,则tan()αβ-等于( ) A .3- B .3 C .13- D .133、cos5πcos52π的值等于( )A .41 B .21 C .2 D .44、 已知02A π<<,且3cos 5A =,那么sin 2A 等于( )A .425B .725C .1225D .24255、已知,41)4tan(,52)tan(=-=+πββα则)4tan(πα+的值等于 ( )A .1813 B.223 C.2213 D.1836、sin165º= ( )A .21B .23C .426+D .426- 7、sin14ºcos16º+sin76ºcos74º的值是( )A .23 B .21 C .23 D .21- 8、已知(,0)2x π∈-,4cos 5x =,则=x 2tan ( ) A .247 B .247- C .724 D .724-9、化简2sin (4π-x )·sin (4π+x ),其结果是( ) A.sin2x B.cos2x C.-cos2x D.-sin2x 10、sin12π—3cos 12π的值是 ( ) A .0 B . —2 C .2 D . 2 sin125π11、)( 75tan 75tan 12的值为︒︒-A .32B .332C . 32-D .332-。

简单的三角恒等变换(一)

简单的三角恒等变换(一)

x 2
1+cos x = sin x
=右边.所以原等式成立.
1.证明绝对恒等式要根据等式两边的特征,化繁为简、左右归一. 2.条件恒等式的证明要认真观察,比较已知条件与求证等式之间的联系,选择适当 途径化简证明.
【加固训练】
1+sin θ-cos θ 求证:
1+sin θ+cos θ
1+sin θ+cos θ +
1.下列各式与 tan α 相等的是( )
A.
1-cos 2α 1+cos 2α
B.1+sincoαs α
C.1-sicnosα2α
1-cos 2α D. sin 2α
1-cos 2α 【解析】选 D. sin 2α
=2si2nsαinc2oαs α
=csoins
α α
=tan α.
2.若 sin (π-α)=-
=14

3 2
sin 100°+
3 2
sin 100°=14
.
化简问题中的“三变” (1)变角:三角变换时通常先寻找式子中各角之间的联系,通过拆、凑等手段消除角 之间的差异,合理选择联系它们的公式; (2)变名:观察三角函数种类的差异,尽量统一函数的名称,如统一为弦或统一为切; (3)变式:观察式子的结构形式的差异,选择适当的变形途径.如升幂、降幂、配方、 开方等.
2+2cos 8 +2 1-sin 8 的化简结果是( ) A.4cos 4-2sin 4 B.2sin 4 C.2sin 4-4cos 4 D.-2sin 4 【解析】选 D.原式= 4cos24 +2 (sin4-cos 4)2 =|2cos 4|+2|sin 4-cos 4|=-2sin 4.
(3)选公式:涉及半角公式的正切值时,常用

方法技巧专题19 三角恒等变换(解析版)

方法技巧专题19 三角恒等变换(解析版)

方法技巧专题19 三角恒等变换解析版一、三角恒等变换问题知识框架【一】公式顺用、逆用及其变形用1.例题 【例1】计算:(1)cos(-15°); (2)cos 15°cos 105°+sin 15°sin 105°. 【解析】(1)方法一 原式=cos(30°-45°)=cos 30°cos 45°+sin 30°sin 45°=32×22+12×22=6+24. 方法二 原式=cos 15°=cos(45°-30°)=cos 45°cos 30°+sin 45°sin 30°=22×32+22×12=6+24. (2)原式=cos(15°-105°)=cos(-90°)=cos 90°=0. 【例2】(1)计算:cos 2π12-sin 2π12; 【解析】原式=cos π6=32.(2)计算:1-tan 275°tan 75°;【解析】 1-tan 275°tan 75°=2·1-tan 275°2tan 75°=2·1tan 150°=-2 3.(3)计算:cos 20°cos 40°cos 80°.【解析】原式=12sin 20°·2sin 20°cos 20°cos 40°cos 80°=12sin 20°·sin 40°·cos 40°cos 80°=122sin 20°sin 80°cos 80°=123sin 20°·sin 160°=sin 20°23sin 20°=18.【例3】(1)1+tan 15°1-tan 15°=________.【解析】3 原式=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)=tan 60°= 3.(2)化简:tan 23°+tan 37°+3tan 23°tan 37°. 【解析】方法一 tan 23°+tan 37°+3tan 23°tan 37° =tan(23°+37°)(1-tan 23°tan 37°)+3tan 23°tan 37° =tan 60°(1-tan 23°tan 37°)+3tan 23°tan 37°= 3. 方法二 ∵tan(23°+37°)=tan 23°+tan 37°1-tan 23°tan 37°,∴3=tan 23°+tan 37°1-tan 23°tan 37°,∴3-3tan 23°tan 37°=tan 23°+tan 37°, ∴tan 23°+tan 37°+3tan 23°tan 37°= 3. (3)已知sin θ=45,5π2<θ<3π,求cos θ2和tan θ2.【解析】 ∵sin θ=45,且5π2<θ<3π,∴cos θ=-1-sin 2θ=-35.由cos θ=2cos 2θ2-1,得cos 2θ2=1+cos θ2=15.∵5π4<θ2<3π2,∴cos θ2=- 1+cos θ2=-55. tan θ2=sin θ1+cos θ=2.2.巩固提升综合练习【练习1】化简cos 15°cos 45°+cos 75°sin 45°的值为( )A.12B.32 C .-12 D .-32【解析】Bcos 15°cos 45°+cos 75°sin 45°=cos 15°cos 45°+sin 15°sin 45°=cos(15°-45°)=cos(-30°)=32.【练习2】1-3tan 75°3+tan 75°=________.【解析】-1原式=33-tan 75°1+33tan 75°=tan 30°-tan 75°1+tan 30°tan 75°=tan(30°-75°)=-tan 45°=-1.【练习3】在△ABC 中,A +B ≠π2,且tan A +tan B +3=3tan A tan B ,则角C 的值为( )A.π3B.2π3C.π6D.π4 【解析】A∵tan A +tan B +3=3tan A tan B ⇔tan(A +B )·(1-tan A tan B )=3(tan A tan B -1).(*) 若1-tan A tan B =0,则cos A cos B -s in A sin B =0,即cos(A +B )=0. ∵0<A +B <π,∴A +B =π2与题设矛盾.∴由(*)得tan(A +B )=-3,即tan C = 3.又∵0<C <π,∴C =π3.【练习4】若sin α+cos α=13,则sin 2α= .【解析】由题意,得(sin α+cos α)2=19,∴1+2sin αcos α=19,即1+sin 2α=19,∴sin 2α=-89.1.例题【例1】已知31)3sin(=-πα,则)6cos(πα+ 的值为( ) A .-13 B.13 C.223 D .-223【答案】A 【解析】∵sin )3(πα-=13,∴cos )6(πα+=cos )]3(2[παπ-+=-sin )3(πα-=-13.【例2】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点⎪⎭⎫⎝⎛--54,53P . 若角β满足sin(α+β)=513,则cos β的值为________.【答案】 -5665或1665【解析】 由角α的终边过点⎪⎭⎫⎝⎛--54,53P ,得sin α=-45,cos α=-35. 由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.【例3】若1sin 63πα⎛⎫-= ⎪⎝⎭,则2cos 23πα⎛⎫+= ⎪⎝⎭( ) A .13 B .13-C .79D .79-【答案】D 【解析】222πππcos 22cos 12cos 13326πααα⎡⎤⎛⎫⎛⎫⎛⎫+=+-=--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2π272sin 11699α⎛⎫=--=-=- ⎪⎝⎭2.巩固提升综合练习 【练习1】已知33)6tan(=-απ,则=+)65tan(απ________. 【答案】-33【解析】tan )65(απ+=tan )6(αππ+-=tan )]6([αππ--=-tan )6(απ-=-33. 【练习2】若1027)4sin(=+πA ,A ∈),4(ππ,则sin A 的值为( ) A.35 B.45C.35或45D.34【答案】B 【解析】∵A ∈),4(ππ,∴A +π4∈)45,2(ππ, ∴cos (A +π4)=-1-sin 2⎝⎛⎭⎫A +π4=-210, ∴sin A =sin[(A +π4)- π4]=sin (A +π4)cos π4-cos (A +π4)sin π4=45.【练习3】已知sin(α−3π10)=35,则cos(α+π5)=( ) A.−45 B.45C.−35D.35【答案】C【解析】因为sin(α−3π10)=35,则cos(α+π5)=cos[π2+(α−3π10)]=−sin(α−3π10)=−35.故应选C . 【练习4】若sin (3x π-)=23,则cos (23x π+)=( )A .79B .19C .19-D .79-【答案】C 【解析】令3x πθ=-,则223x ππθ+=-,所以()21cos 2cos 2cos 22sin 139x ππθθθ⎛⎫+=-=-=-=- ⎪⎝⎭,故选C .【练习5】已知3sin 245x π⎛⎫-= ⎪⎝⎭,则sin 4x 的值为( ) A .1825B .1825±C .725D .725±【答案】C【解析】由题意得:297cos 412sin 212242525x x ππ⎛⎫⎛⎫-=--=-⨯=⎪ ⎪⎝⎭⎝⎭7sin 4cos 4225x x π⎛⎫∴=-= ⎪⎝⎭本题正确选项:C1.例题【例1】已知02απ<<,cos()4απ+= (1)求tan()4απ+的值; (2)求sin(2)3απ+的值.【解析】(1)∵02απ<<,cos()4απ+= ∴sin()4απ+==, ∴sin()4tan()24cos()4αααπ+π+==π+. (2)∵tan 1tan()241tan αααπ++==-,∴1tan 3α=, ∴2222sin cos 2tan 3sin 2sin cos tan 15ααααααα===++,2222cos sin cos 2sin cos ααααα-=+221tan 4tan 15αα-==+,3sin(2)sin 2cos cos 2sin 33310αααπππ++=+=.【例2】已知△ABC 中,137cos sin -=+A A ,则tanA= . 【解析】解法一:列出方程组⎪⎩⎪⎨⎧=+-=+1cos sin 137cos sin 22A A A A由第一个方程得,A A sin 137cos --=,代入第二个方程得1)sin 137(sin 22=--+A A , 即016960sin 137sin 2=-+A A , 解得135sin =A 或1312sin -=A , 因为△ABC 中0<A<π, 所以sinA>0,135sin =A ,1312cos -=A ,所以125tan -=A . 答案:125-. 解法二:由已知得sinA>0, cosA<0, |sin A|<|cos A|, tanA>-1, 由137cos sin -=+A A 两边平方,整理得16960cos sin -=⋅A A ,即16960cos sin cos sin 22-=+⋅A A A A , 分子分母同除以A 2cos 得169601tan tan 2-=+A A , 解得125tan -=A .2.巩固提升综合练习【练习1】已知a ∈R ,sina +2cosa =√102,则tan2a =( )A .−34或−35 B .−34C .34D .−35【答案】B 【解析】因为sina +2cosa =√102,所以(sina +2cosa )2=52,所以sin 2a +4cos 2a +4sinacosa =52, 所以sin 2a+4cos 2a+4sin acosasin 2a+cos 2a=52,即tan 2a+4+4tanatan 2a+1=52,解得tana =3或者tana =−13,当tana =3时,tan2a =2tana1−tan 2a =−34,当tana =−13时,tan2a =2tana 1−tan 2a =−34, 综上所述,tan2a =−34,故选B 。

高中数学高考总复习简单的三角恒等变换习题及详解

高中数学高考总复习简单的三角恒等变换习题及详解

高中数学高考总复习简单的三角恒等变换习题及详解一、选择题1.(文)(2010·山师大附中模考)设函数f (x )=cos 2(x +π4)-sin 2(x +π4),x ∈R ,则函数f (x )是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数[答案] A[解析] f (x )=cos(2x +π2)=-sin2x 为奇函数,周期T =2π2=π.(理)(2010·辽宁锦州)函数y =sin 2x +sin x cos x 的最小正周期T =( ) A .2πB .πC.π2D.π3[答案] B[解析] y =sin 2x +sin x cos x =1-cos2x 2+12sin2x =12+22sin ⎝⎛⎭⎫2x -π4,∴最小正周期T =π. 2.(2010·重庆一中)设向量a =(cos α,22)的模为32,则cos2α=( ) A .-14B .-12C.12D.32[答案] B[解析] ∵|a |2=cos 2α+⎝⎛⎭⎫222=cos 2α+12=34,∴cos 2α=14,∴cos2α=2cos 2α-1=-12.3.已知tan α2=3,则cos α=( )A.45B .-45C.415D .-35[答案] B[解析] cos α=cos 2α2-sin 2α2=cos 2α2-sin 2α2cos 2α2+sin2α2=1-tan 2α21+tan 2α2=1-91+9=-45,故选B.4.在△ABC 中,若sin A sin B =cos 2C2,则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .既非等腰又非直角的三角形 [答案] B[解析] ∵sin A sin B =cos 2C2,∴12[cos(A -B )-cos(A +B )]=12(1+cos C ), ∴cos(A -B )-cos(π-C )=1+cos C , ∴cos(A -B )=1,∵-π<A -B <π,∴A -B =0, ∴△ABC 为等腰三角形.5.(2010·绵阳市诊断)函数f (x )=2sin(x -π2)+|cos x |的最小正周期为( )A.π2B .πC .2πD .4π[答案] C[解析] f (x )=-2cos x +|cos x |=⎩⎪⎨⎪⎧-cos x cos x ≥0-3cos x cos x <0,画出图象可知周期为2π. 6.(2010·揭阳市模考)若sin x +cos x =13,x ∈(0,π),则sin x -cos x 的值为( )A .±173B .-173C.13D.173[答案] D[解析] 由sin x +cos x =13两边平方得,1+2sin x cos x =19,∴sin2x =-89<0,∴x ∈⎝⎛⎭⎫π2,π, ∴(sin x -cos x )2=1-sin2x =179且sin x >cos x , ∴sin x -cos x =173,故选D. 7.(文)在锐角△ABC 中,设x =sin A ·sin B ,y =cos A ·cos B ,则x ,y 的大小关系是( )高考总复习含详解答案A .x ≤yB .x <yC .x ≥yD .x >y[答案] D[解析] ∵π>A +B >π2,∴cos(A +B )<0,即cos A cos B -sin A sin B <0,∴x >y ,故应选D.(理)(2010·皖南八校)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,如果cos(2B +C )+2sin A sin B <0,那么a 、b 、c 满足的关系是( )A .2ab >c 2B .a 2+b 2<c 2C .2bc >a 2D .b 2+c 2<a 2[答案] B[解析] ∵cos(2B +C )+2sin A sin B <0,且A +B +C =π, ∴cos(π-A +B )+2sin A ·sin B <0,∴cos(π-A )cos B -sin(π-A )sin B +2sin A sin B <0, ∴-cos A cos B +sin A sin B <0,即cos(A +B )>0, ∴0<A +B <π2,∴C >π2,由余弦定理得,cos C =a 2+b 2-c 22ab <0,∴a 2+b 2-c 2<0,故应选B.8.(2010·吉林省调研)已知a =(cos x ,sin x ),b =(sin x ,cos x ),记f (x )=a ·b ,要得到函数y =sin 4x -cos 4x 的图象,只需将函数y =f (x )的图象( )A .向左平移π2个单位长度B .向左平移π4个单位长度C .向右平移π2个单位长度D .向右平移π4个单位长度[答案] D[解析] y =sin 4x -cos 4x =(sin 2x +cos 2x )(sin 2x -cos 2x )=-cos2x ,将f (x )=a ·b =2sin x cos x =sin2x ,向右平移π4个单位得,sin2⎝⎛⎭⎫x -π4=sin ⎝⎛⎭⎫2x -π2=-sin ⎝⎛⎭⎫π2-2x =-cos2x ,故选D.9.(2010·浙江金华十校模考)已知向量a =(cos2α,sin α),b =(1,2sin α-1),α∈⎝⎛⎭⎫π4,π,若a ·b =25,则tan ⎝⎛⎭⎫α+π4的值为( ) A.13B.27C.17D.23[答案] C[解析] a ·b =cos2α+2sin 2α-sin α=1-2sin 2α+2sin 2α-sin α=1-sin α=25,∴sin α=35,∵π4<α<π,∴cos α=-45,∴tan α=-34, ∴tan ⎝⎛⎭⎫α+π4=1+tan α1-tan α=17. 10.(2010·湖北黄冈模拟)若5π2≤α≤7π2,则1+sin α+1-sin α等于( ) A .-2cos α2B .2cos α2C .-2sin α2D .2sin α2[答案] C[解析] ∵5π2≤α≤7π2,∴5π4≤α2≤7π4.∴1+sin α+1-sin α =1+2sin α2cos α2+1-2sin α2cos α2=(sin α2+cos α2)2+(sin α2-cos α2)2 =-(sin α2+cos α2)-(sin α2-cos α2)=-2sin α2.二、填空题11.(2010·广东罗湖区调研)若sin ⎝⎛⎭⎫π2+θ=35,则cos2θ=________. [答案] -725[解析] ∵sin ⎝⎛⎭⎫π2+θ=35,∴cos θ=35, ∴cos2θ=2cos 2θ-1=-725.12.(2010·江苏无锡市调研)函数y =tan x -tan 3x1+2tan 2x +tan 4x的最大值与最小值的积是高考总复习含详解答案________.[答案] -116[解析] y =tan x -tan 3x 1+2tan 2x +tan 4x =tan x (1-tan 2x )(1+tan 2x )2=tan x 1+tan 2x ·1-tan 2x 1+tan 2x =sin x cos xcos 2x +sin 2x +cos 2x -sin 2x cos 2x +sin 2x=12sin2x ·cos2x =14sin4x , 所以最大与最小值的积为-116. 13.(2010·浙江杭州质检)函数y =sin(x +10°)+cos(x +40°),(x ∈R )的最大值是________. [答案] 1[解析] y =sin x cos10°+cos x sin10°+cos x cos40°-sin x sin40°=(cos10°-sin40°)sin x +(sin10°+cos40°)cos x ,其最大值为(cos10°-sin40°)2+(sin10°+cos40°)2 =2+2(sin10°cos40°-cos10°sin40°) =2+2sin (-30°)=1.14.(文)如图,AB 是半圆O 的直径,点C 在半圆上,CD ⊥AB 于点D ,且AD =3DB ,设∠COD =θ,则tan 2θ2=________.[答案] 13[解析] 设OC =r ,∵AD =3DB ,且AD +DB =2r ,∴AD =3r 2,∴OD =r 2,∴CD =32r ,∴tan θ=CDOD=3,∵tan θ=2tanθ21-tan 2θ2,∴tan θ2=33(负值舍去),∴tan 2θ2=13.(理)3tan12°-3(4cos 212°-2)sin12°=________.[答案] -4 3 [解析] 3tan12°-3(4cos 212°-2)sin12°=3(sin12°-3cos12°)2cos24°sin12°cos12°=23sin (12°-60°)12sin48°=-4 3.三、解答题15.(文)(2010·北京理)已知函数f (x )=2cos2x +sin 2x -4cos x . (1)求f (π3)的值;(2)求f (x )的最大值和最小值.[解析] (1)f (π3)=2cos 2π3+sin 2π3-4cos π3=-1+34-2=-94.(2)f (x )=2(2cos 2x -1)+(1-cos 2x )-4cos x =3cos 2x -4cos x -1 =3(cos x -23)2-73,x ∈R因为cos x ∈[-1,1],所以当cos x =-1时,f (x )取最大值6;当cos x =23时,f (x )取最小值-73. (理)(2010·广东罗湖区调研)已知a =(cos x +sin x ,sin x ),b =(cos x -sin x,2cos x ),设f (x )=a ·b .(1)求函数f (x )的最小正周期;(2)当x ∈⎣⎡⎦⎤0,π2时,求函数f (x )的最大值及最小值. [解析] (1)f (x )=a ·b =(cos x +sin x )·(cos x -sin x )+sin x ·2cos x =cos 2x -sin 2x +2sin x cos x =cos2x +sin2x =2⎝⎛⎭⎫22cos2x +22sin2x=2sin ⎝⎛⎭⎫2x +π4. ∴f (x )的最小正周期T =π. (2)∵0≤x ≤π2,∴π4≤2x +π4≤5π4,∴当2x +π4=π2,即x =π8时,f (x )有最大值2;当2x +π4=5π4,即x =π2时,f (x )有最小值-1.16.(文)设函数f (x )=cos ⎝⎛⎭⎫2x +π3+sin 2x .高考总复习含详解答案(1)求函数f (x )的最大值和最小正周期;(2)设A 、B 、C 为△ABC 的三个内角,若cos B =13,f (C 2)=-14,且C 为锐角,求sin A 的值.[解析] (1)f (x )=cos ⎝⎛⎭⎫2x +π3+sin 2x =cos2x cos π3-sin2x sin π3+1-cos2x 2=12-32sin2x , 所以函数f (x )的最大值为1+32,最小正周期为π.(2)f (C 2)=12-32sin C =-14,所以sin C =32,因为C 为锐角,所以C =π3,在△ABC 中,cos B =13,所以sin B =223,所以sin A =sin(B +C )=sin B cos C +cos B sin C =223×12+13×32=22+36. (理)已知角A 、B 、C 为△ABC 的三个内角,OM →=(sin B +cos B ,cos C ),ON →=(sin C ,sin B -cos B ),OM →·ON →=-15.(1)求tan2A 的值;(2)求2cos 2A2-3sin A -12sin ⎝⎛⎭⎫A +π4的值.[解析] (1)∵OM →·ON →=(sin B +cos B )sin C + cos C (sin B -cos B )=sin(B +C )-cos(B +C )=-15,∴sin A +cos A =-15①两边平方并整理得:2sin A cos A =-2425,∵-2425<0,∴A ∈⎝⎛⎭⎫π2,π, ∴sin A -cos A =1-2sin A cos A =75②联立①②得:sin A =35,cos A =-45,∴tan A =-34,∴tan2A =2tan A 1-tan 2A=-321-916=-247. (2)∵tan A =-34,∴2cos 2A2-3sin A -12sin ⎝⎛⎭⎫A +π4=cos A -3sin A cos A +sin A =1-3tan A1+tan A=1-3×⎝⎛⎭⎫-341+⎝⎛⎭⎫-34=13.17.(文)(2010·厦门三中阶段训练)若函数f (x )=sin 2ax -3sin ax cos ax (a >0)的图象与直线y =m 相切,相邻切点之间的距离为π2.(1)求m 和a 的值;(2)若点A (x 0,y 0)是y =f (x )图象的对称中心,且x 0∈⎣⎡⎦⎤0,π2,求点A 的坐标. [解析] (1)f (x )=sin 2ax -3sin ax cos ax =1-cos2ax 2-32sin2ax =-sin ⎝⎛⎭⎫2ax +π6+12, 由题意知,m 为f (x )的最大值或最小值, 所以m =-12或m =32,由题设知,函数f (x )的周期为π2,∴a =2,所以m =-12或m =32,a =2.(2)∵f (x )=-sin ⎝⎛⎭⎫4x +π6+12, ∴令sin ⎝⎛⎭⎫4x +π6=0,得4x +π6=k π(k ∈Z ), ∴x =k π4-π24(k ∈Z ),由0≤k π4-π24≤π2 (k ∈Z ),得k =1或k =2,因此点A 的坐标为⎝⎛⎭⎫5π24,12或⎝⎛⎭⎫11π24,12.(理)(2010·广东佛山顺德区检测)设向量a =(sin x,1),b =(1,cos x ),记f (x )=a ·b ,f ′(x )是f (x )的导函数.高考总复习含详解答案(1)求函数F (x )=f (x )f ′(x )+f 2(x )的最大值和最小正周期; (2)若f (x )=2f ′(x ),求1+2sin 2xcos 2x -sin x cos x 的值.[解析] (1)f (x )=sin x +cos x , ∴f ′(x )=cos x -sin x , ∴F (x )=f (x )f ′(x )+f 2(x ) =cos 2x -sin 2x +1+2sin x cos x=cos2x +sin2x +1=1+2sin ⎝⎛⎭⎫2x +π4, ∴当2x +π4=2k π+π2,即x =k π+π8(k ∈Z )时,F (x )max =1+ 2.最小正周期为T =2π2=π.(2)∵f (x )=2f ′(x ),∴sin x +cos x =2cos x -2sin x , ∴cos x =3sin x ,∴tan x =13,∴1+2sin 2x cos 2x -sin x cos x =3sin 2x +cos 2x cos 2x -sin x cos x =3tan 2x +11-tan x =2.。

简单的三角恒等变换专题及答案

简单的三角恒等变换专题及答案

简单的三角恒等变换专题及答案简单的三角恒等变换专题一、选择题1.已知sinα=5115,则cos(π-2α)=()。

答案:B。

通过sinα和cos(π-2α)的关系,可以得到cos(π-2α)=-sinα=-(1/5115)。

2.sin70°/(2cos10°-sin20°)的值是()。

答案:C。

通过三角函数的恒等变换,可以将sin70°/(2cos10°-sin20°)化简为sin70°/cos80°,再使用tan的定义式,得到tan70°=sin70°/cos70°=sin70°/sin10°cos80°=sin70°/sin10°sin10°=1/sin10°=3.3.若sin76°=m,用含m的式子表示cos7°为()。

答案:B。

通过三角函数的恒等变换,可以得到cos(π/2-76°)=sin76°=m,即cos14°=m,再通过三角函数的恒等变换,可以得到cos7°=2cos2(7°)-1=2cos2(14°)cos(π/2-14°)-1=2(1-sin2(14°))-1=1-2sin2(14°)=1-2(cos14°)2=1-2m2.4.若cos2α=-2,则sinα+cosα的值为sin(7π/4)()。

答案:B。

通过cos2α的值可以得到sin2α=1-cos2α=3,再通过三角函数的恒等变换,可以得到sinα+cosα=√2sin(π/4+α)=√2sin(π/4+α-2π)=√2sin(7π/4-α)。

5.已知f(x)=2tanx-2/(x+π/12),则f(π/6)的值为()。

答案:D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单三角恒等变换
一、公式体系
1、和差公式及其变形:
(1)βαβαβαsin cos cos sin )sin(±=± ⇔ )sin(sin cos cos sin βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ⇔ )cos(sin sin cos cos βαβαβα±= (3)β
αβ
αβαtan tan 1tan tan )tan( ±=
± ⇔ 去分母得 )tan tan 1)(tan(tan tan βαβαβα-+=+
)tan tan 1)(tan(tan tan βαβαβα+-=-
2、倍角公式的推导及其变形:
(1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+=
⇔ααα2sin 2
1
cos sin =
⇔2)cos (sin 2sin 1ααα±=±
(2)ααααααααα2
2
sin cos sin sin cos cos )cos(2cos -=-=+=
)sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=⇔
1
cos 2)cos 1(cos sin cos 2cos 22222-=--=-=⇔αααα
αα⇔把1移项得αα2cos 22cos 1=+ 或 αα
2cos 2
2cos 1=+ 【因为α是

的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2
cos 2cos 12α
α=+
因为α4是α2的两倍,所以公式也可以写成
12cos 24cos 2-=αα 或 αα2cos 24cos 12=+ 或 αα
2cos 2
4cos 12=+】
α
ααααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=⇔ ⇔把1移项得αα2
sin 22cos 1=- 或
αα
2sin 2
2cos 1=- 【因为α是
2
α
的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2sin 2cos 12αα=- 或 2
sin 2cos 12α
α=-
因为α4是α2的两倍,所以公式也可以写成
αα2sin 214cos 2-= 或 αα2sin 24cos 12=- 或 αα
2sin 2
4cos 12=-】
二、基本题型
1、已知某个三角函数,求其他的三角函数:
注意角的关系,如)4
()4(,)(,)(π
βαπ
βααβαβββαα-++=+-+=-+=等等 (1)已知βα,都是锐角,13
5
)cos(,54sin =+=βαα,求βsin 的值
(2)已知,4
0,1312)45sin(,434,53)4
cos(π
ββππαπαπ
<<-=+<<=
-求)sin(βα+的值
2、已知某个三角函数值,求相应的角:只要计算所求角的某个三角函数,再由三角函数值求角,注意选择合适的三角函数
(1)已知βα,都是锐角,10
103cos ,55sin ==βα,求角βα+的弧度
3、)(βα+T 公式的应用
(1)求)32tan 28tan 1(332tan 28tan 0
000+++的值
(2)△ABC 中,角A 、B 满足2)tan 1)(tan 1(=++B A ,求A+B 的弧度
4、弦化切,即已知tan ,求与sin ,cos 相关的式子的值:化为分式,分子分母同时除以αcos 或α2
cos 等 (1)已知2tan =α,求
ααα
αα
ααααα2cos 2sin 3,2cos 2sin 12cos 2sin 1,cos sin 3cos 5sin +-++++-的值
5、切化弦,再通分,再弦合一
(1)、化简:① )10tan 31(50sin 0
+ ② 0
35
sin 10cos )110(tan ⋅-
(2)、证明:
x x
x x x tan )2
tan tan 1(cos 22sin =+
6、综合应用,注意公式的灵活应用与因式分解结合 化简4cos 2sin 22+-
7、 a,b 型化简
8、降幂公式
1. 已知函数1cos sin 2cos 2)(2
++-=x x x x f ,(R x ∈).
(1)求函数 ()f x 的最小正周期;(2)求函数 ()f x 的最大值,并求此时自变量x 的集合.
2. 已知函数()2sin()cos f x x x π=-.
(1)求()f x 的最小正周期;(2)求()f x 在区间,62ππ⎡⎤
-
⎢⎥⎣⎦
上的最大值和最小值.
3.已知函数2()1cos 2cos f x x x x =-++
(1)求函数()f x 的最小正周期;(2)求函数()f x 的单调减区间.
4.已知函数()2cos (sin cos )1f x x x x x =-+∈R ,.
(1)求函数()f x 的最小正周期;(2)求函数()f x 在区间π3π84
⎡⎤⎢⎥⎣⎦
,上的最小值和最大值.
5.设函数.cos cos sin 3)(2m x x x x f ++=
(1)写出函数的最小正周期及单调递增区间; (2)若]3
,6[π
π-
∈x 时,函数()f x 的最小值为72,求此时()f x 的最大值,并指出x 为何值时,()f x 取得最大值.
6.已知函数).,(2cos )6
2sin()6
2sin()(为常数a R a a x x x x f ∈++-
++

π
(1)求函数的最小正周期;(2)若.,2)(,]2
,0[的值求的最小值为时a x f x -∈π
7.已知函数x x x x f cos sin sin 3)(2+-=
(1)求函数)(x f 的最小正周期;(2)求函数⎥

⎤⎢⎣⎡∈32,245)(ππx x f 在的值域. (3)对称轴和对称点
巩固练习
1、sin 20cos 40cos 20sin 40+的值等于( )
2、若tan 3α=,4
tan 3
β=
,则tan()αβ-等于( ) A .3- B .3 C .13- D .1
3
3、cos
5
π
cos
5
2π的值等于( )
A .
41 B .
2
1 C .
2 D .4
4、 已知02A π
<<
,且3
cos 5
A =
,那么sin 2A 等于( )
A .425
B .725
C .1225
D .2425
5、已知,41)4tan(,52)tan(=-=+πββα则)4
tan(π
α+的值等于 ( )
A .1813 B.223 C.2213 D.18
3
6、sin165º= ( ) A .
21
B .23
C .426+
D .
4
2
6- 7、sin14ºcos16º+sin76ºcos74º的值是( )
A .
23 B .21 C .23 D .2
1
- 8、已知(,0)2
x π
∈-,4
cos 5
x =
,则=x 2tan ( ) A .
247 B .247- C .724 D .7
24- 9、化简2sin (
4π-x )·sin (4
π
+x ),其结果是( ) A.sin2x B.cos2x C.-cos2x D.-sin2x 10、sin
12π—3cos 12
π
的值是 ( ) A .0 B . —2 C .
2 D . 2 sin
12

11、
)( 75tan 75tan 12的值为︒

-
A .32
B .332
C . 32-
D .3
3
2-。

相关文档
最新文档