实验六 数字信号处理在 双音多频 拨号系
数字信号处理实验六报告
实验六 频域抽样定理和音频信号的处理实验报告 (一)频域抽样定理给定信号1, 013()27, 14260, n n x n n n +≤≤⎧⎪=-≤≤⎨⎪⎩其它 1.利用DTFT 计算信号的频谱()j X e ω,一个周期内角频率离散为M=1024点,画出频谱图,标明坐标轴。
n=0:100; %设定n 及其取值范围for n1=0:13 %对于n 处于不同的取值范围将n 代入不同的表达式xn(n1+1)=n1+1;endfor n2=14:26xn(n2+1)=27-n2;endfor n3=27:100xn(n3+1)=0;endM=1024; %设定抽样离散点的个数k=0:M-1; %设定k 的取值范围w=2*pi*k/M; %定义数字角频率[X,w] = dtft2( xn,n, M ) %调用dtft2子程序求频谱plot(w,abs(X)); %画出幅度值的连续图像xlabel('w/rad');ylabel('|X(exp(jw))|');title(' M=1024时的信号频谱图像'); %标明图像的横纵坐标和图像标题function [X,w] = dtft2(xn, n, M ) %定义x(n)的DTFT 函数w=0:2*pi/M:2*pi-2*pi/M; %将数字角频率w 离散化L=length(n); %设定L 为序列n 的长度 for (k=1:M) %外层循环,w 循环M 次sum=0; %每确定一个w 值,将sum 赋初值为零for (m=1:L) %内层循环,对n 求和,循环次数为n 的长度sum=sum+xn(m)*exp(-j*w(k)*n(m)); %求和X(k)=sum; %把每一次各x(n)的和的总值赋给X ,然后开始对下一个w 的求和过程end %内层循环结束end%外层循环结束M=1024时的信号频谱图像如图1-1所示:图1-1 M=1024时的信号频谱图像2.分别对信号的频谱()jX eω在区间π[0,2]上等间隔抽样16点和32点,得到32()X k和16()X k。
数字信号处理(第二版)上机实验
上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一 系统响应及系统稳定性。
实验二 时域采样与频域采样。
实验三 用FFT 对信号作频谱分析。
实验四 IIR 数字滤波器设计及软件实现。
实验五 FIR 数字滤波器设计与软件实现实验六 应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR 数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB 语言的工具箱函数filter 函数。
也可以用MATLAB 语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
双音多频拨号系统DTMF的课程设计报告
设计目的 1. 巩固所学的数字信号处理理论知识,了解电话中双音多频信号的产生与检测原理;2. 了解数字信号处理在实际中的使用方法和重要性;3. 学习资料的收集与整理,学会撰写课程设计报告。
实验环境 1. 微型电子计算机(PC);2. 安装Windows 2000以上操作系统,MATLAB等开发工具。
任务要求 1. 研究双音多频拨号(DTMF)系统,研究电话中双音多频信号的产生与检测原理;任意送入6位和8位电话号码,打印出相应的幅度谱。
观察程序运行结果,判断程序谱分析的正确性。
2. 利用课余时间去图书馆或上网查阅课题相关资料,深入理解课题含义及设计要求,注意材料收集与整理;3. 在第15周末之前完成预设计,并请指导教师审查,通过后方可进行下一步工作;4. 结束后,及时提交设计报告(含纸质稿、电子稿),要求格式规范、内容完整、结论正确,正文字数不少于3000字(不含代码)。
工作进度计划序号起止日期工作内容1 2009.12.14~2009.12.14 在预设计的基础上,进一步查阅资料,完善设计方案。
2 2009.12.14~2009.12.17 设计总体方案,构建、绘制流程框图,编写代码,上机调试。
3 2009.12.17~2009.12.18 测试程序,完善功能,撰写设计报告。
4 2009.12.18 参加答辩,根据教师反馈意见,修改、完善设计报告。
摘要所谓双音多频(DTMF),就是用两个频率——行频和列频来表示电话机键盘上的一个数字。
DTMF 电话的指令正在迅速的取代脉冲指令。
除了在电话呼叫信号中使用外,DTMF 还广泛的使用在交互式控制应用,例如电话银行、电子邮件甚至家电远程控制等,用户可以从电话机发送DTMF 信号来做菜单选择。
本文基于MATLAB的双音多频拨号系统的仿真实现。
主要涉及到电话拨号音合成的基本原理及识别的主要方法,利用MATLAB 软件以及DFT 算法实现对电话通信系统中拨号音的合成与识别。
数字信号处理上机实验及答案(第三版,第十章)
第十章 上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一 系统响应及系统稳定性。
实验二 时域采样与频域采样。
实验三 用FFT 对信号作频谱分析。
实验四 IIR 数字滤波器设计及软件实现。
实验五 FIR 数字滤波器设计与软件实现实验六 应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR 数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB 语言的工具箱函数filter 函数。
也可以用MATLAB 语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
数字信号处理上机实验答案(第三版,第十章)[自己整理完善的]
第十章 上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一 系统响应及系统稳定性。
实验二 时域采样与频域采样。
实验三 用FFT 对信号作频谱分析。
实验四 IIR 数字滤波器设计及软件实现。
实验五 FIR 数字滤波器设计与软件实现实验六 应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR 数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB 语言的工具箱函数filter 函数。
也可以用MATLAB 语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
实验一(系统响应及系统稳定性)
第十章 上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一 系统响应及系统稳定性。
实验二 时域采样与频域采样。
实验三 用FFT 对信号作频谱分析。
实验四 IIR 数字滤波器设计及软件实现。
实验五 FIR 数字滤波器设计与软件实现实验六 应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR 数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
实验一: 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB 语言的工具箱函数filter 函数。
也可以用MATLAB 语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
数字信号处理(第四版)(高西全)章 (10)
x(n) sin(0.014n) sin(0.4n)
第10章 上机实验
4. (1) 如果输入信号为无限长序列,系统的单位脉 冲响应是有限长序列,可否用线性卷积法求系统的响 应? (2) 如果信号经过低通滤波器,把信号的高频分 量滤掉,时域信号会有何变化? 用前面第一个实验结
第10章 上机实验
第10章 上机实验
2. 时域采样定理的要点是: ① 对模拟信号xa(t)以T进行时域等间隔理想采样, 形成的采样信号的频谱 Xˆ ( j会) 以采样角频率Ωs (Ωs=2π/T)为周期进行周期延拓。公式为
Xˆ a
(
j
)ห้องสมุดไป่ตู้
FT[ xˆa
(t)]
1 T
n
Xa
(
j
jns
)
第10章 上机实验
② 采样频率Ωs必须大于等于模拟信号最高频率的 两倍以上,才能使采样信号的频谱不产生频谱混叠。
第10章 上机实验
10.1 实验一: 系统响应及系统稳定性 1. (1) (2) (3)
第10章 上机实验
2. 在时域中,描写系统特性的方法是差分方程和单位脉冲 响应,在频域可以用系统函数描述系统特性。已知输入信号, 可以由差分方程、单位脉冲响应或系统函数求出系统对于该 输入信号的响应,本实验仅在时域求解。在计算机上适合用 递推法求差分方程的解,最简单的方法是采用MATLAB语言的 工具箱函数filter函数。也可以用MATLAB语言的工具箱函数 conv函数计算输入信号和系统的单位脉冲响应的线性卷积,
第10章 上机实验 3. (1) 编制程序,包括产生输入信号、单位脉冲响应序 列的子程序,用filter函数或conv函数求解系统输出响应的
数字信号处理在双音多频拨号系统中的应用
实验一、数字信号处理在双音多频拨号系统中的应用一、实验目的1.了解双音多频信号的产生、检测、包括对双音多频信号进行DFT 时的参数选择等。
2.初步了解数字信号处理在是集中的使用方法和重要性。
3.掌握matlab 的开发环境。
二、实验原理双音多频(Dual Tone Multi Frequency, DTMF )信号是音频电话中的拨号信号.由美国AT&T 贝尔公司实验室研制.并用于电话网络中。
这种信号制式具有很高的拨号速度.且容易自动监测识别.很快就代替了原有的用脉冲计数方式的拨号制式。
这种双音多频信号制式不仅用在电话网络中.还可以用于传输十进制数据的其它通信系统中.用于电子邮件和银行系统中。
这些系统中用户可以用电话发送DTMF 信号选择语音菜单进行操作。
DTMF 信号系统是一个典型的小型信号处理系统.它要用数字方法产生模拟信号并进行传输.其中还用到了D/A 变换器;在接收端用A/D 变换器将其转换成数字信号.并进行数字信号处理与识别。
为了系统的检测速度并降低成本.还开发一种特殊的DFT 算法.称为戈泽尔(Goertzel)算法.这种算法既可以用硬件(专用芯片)实现.也可以用软件实现。
下面首先介绍双音多频信号的产生方法和检测方法.包括戈泽尔算法.最后进行模拟实验。
下面先介绍电话中的DTMF 信号的组成。
在电话中.数字0-9的中每一个都用两个不同的单音频传输.所用的8个频率分成高频带和低频带两组.低频带有四个频率:679Hz,770Hz,852Hz 和941Hz ;高频带也有四个频率:1209Hz,1336Hz,1477Hz 和1633Hz.。
每一个数字均由高、低频带中各一个频率构成.例如1用697Hz 和1209Hz 两个频率.信号用)2sin()2sin(21t f t f ππ+表示.其中Hz f 6791=.Hz f 12092=。
这样8个频率形成16种不同的双频信号。
具体号码以及符号对应的频率如表4.1所示。
系统辨识-数字信号处理在双音多频拨号系统中的应用
数字信号处理在双音多频拨号系统中的应用张连滨 2015080111 A:八位电话号码1:程序代码程序分四段:第一段(1—7行)设置参数,并读入8位电话号码;第二段(8—20行)根据键入的8位电话号码产生时域离散DTMF信号,并连续发出8位号码对应的双音频声音;第三段(22—25行)对时域离散DTMF 信号进行频率检测,画出幅度谱;第四段(26—33行)根据幅度谱的两个峰值,分别查找并确定输入8位电话号码。
2:运行结果键入电话号码为:52113149接收端接检测的号码为:52113149对时域离散DTMF 信号进行频率检测,幅度谱图如下:实验结论:(1)输入8位号码52113149,接收端,检测到的号码是52113149,说明选取采样频率为Fs =8KHz ,序列长度为N =205是非常正确的。
(2)由DTMF 信号在8个近似基频点的DFT 幅度图可知,第一幅图低频K1=20,K2=33,由表4.2可知1f =770Hz ,2f =1336Hz,由表4.1可知对应的号码为5;第二幅图低频K1=18,K2=33,由表4.2可知1f =697Hz ,2f =1336Hz,由表4.1可知对应的号码为2;第三幅图低频K1=18,K2=31,由表4.2可知1f =697Hz ,2f =1209Hz,由表4.1可知对应的号码为1;第四幅图低频K1=18,K2=31,由表4.2可知1f =697Hz ,2f =1209Hz,由表4.1可知对应的号码为1;第五幅图低频K1=18,K2=38,由表4.2可知1f =697Hz ,2f =1477Hz,由表4.1可知对应的号码为3;第六幅图低频K1=18,K2=31,由表4.2可知1f =697Hz ,2f =1209Hz,由表4.1可知对应的号码为1;第七幅图低频K1=20,K2=31,由表4.2可知1f =770Hz ,2f =1209Hz,由表4.1可知对应的号码为4;第八幅图低频K1=22,K2=38,由表4.2可知1f =852Hz ,2f =1477Hz ,由表4.1可知对应的号码为9;即最终输出号码为52113149,与程序运行结果相同。
实验1 双音多频电话拨号音产生实验报告
沈阳工程学院学生实验报告实验室名称:通信实验室课程名称:数字传输技术实验名称:双音多频电话拨号音产生实验实验日期:2015年11月6日班级:通信32 姓名:张翼学号:2013312211指导教师:何思远成绩:一、实验目的1. 理解双音多频电话拨号音产生的原理。
2. 掌握使用MATLAB语言产生双音多频电话拨号音的方法。
二、实验原理电话拨号产生的电话号码是通过双音多频(DTMF)格式从电话机传送给交换机的。
所谓双音多频,就是利用两个规定频率的正弦波去代表电话机的某一个按键,当按下某按键时,就发送相应的一组正弦波。
交换机一方通过检测这组正弦波的频率来识别相应的号码信息。
DTMF规定的电话拨号按键与发送正弦波频率组的对应关系如图1所示。
图1 DTMF规定的电话拨号按键与发送正弦波频率组的对应关系此外,Matlab也提供了关于电话拨号的演示程序phone。
图2为使用phone命令打开的演示窗口。
图2 Matlab中的phone演示窗口三、实验内容及要求根据双音多频电话拨号音产生的原理,用一个函数文件(Function File)产生双音多频电话拨号音。
要求该函数能够根据输入的电话号码产生拨号音频,每个号码的DTMF音持续时间为0.3秒,拨号间隔为0.1秒。
四、程序代码function y=myphone(num_str)%输入num_str为电话号码字符串,为1.2.3.4.5.6.7.5.6.0.*.#%输出为相应的拨号音效矩阵%如果不给出输出变量,则从声卡输出拨号音频freq_low=[697 770 852 941]; %低频频率freq_Hgh=[1209 1336 1477]; %高频频率time_of_num=0.3; %每个号码的DTMF音持续时间Fs=8000; %信号采集率wav=inline('0.25*sin(2*pi*p(1)*[1/p(3):1/p(3):p(4)])+0.25*sin(2*pi*p(2)*[1/p(3):1/p(3):p(4)])','p'); %P=[fL,fH,time_of_num]%参数的含义:[高频率,低频率,采样率,持续时间]XX=[]; %提高运行速度for k=1:length(num_str)switch num_str(k) %根据拨号确定双音频对case '1'fL=freq_low(1);fH=freq_Hgh(1);case '2'fL=freq_low(1);fH=freq_Hgh(2);case '3'fL=freq_low(1);fH=freq_Hgh(3);case '4'fL=freq_low(2);fH=freq_Hgh(1);case '5'fL=freq_low(2);fH=freq_Hgh(2);case '6'fL=freq_low(2);fH=freq_Hgh(3);case '7'fL=freq_low(3);fH=freq_Hgh(1);case '8'fL=freq_low(3);fH=freq_Hgh(2);case '9'fL=freq_low(3);fH=freq_Hgh(3);case '0'fL=freq_low(4);fH=freq_Hgh(2);case '*'fL=freq_low(4);fH=freq_Hgh(1);case '#'fL=freq_low(4);fH=freq_Hgh(3);otherwiseerror('输入号码错误');endX=wav([fL,fH,Fs,time_of_num]); %产生拨号频率信号X=[X,zeros(1,Fs*0.1)]; %添加拨号间隔XX=[XX,X]; %多个拨号顺序合成endif nargout==1y=XX; %返回else %如果无返回变量,则播放声音,并做出波形图sound(XX,Fs);plot([1:length(XX)]./Fs,XX);axis([0 length(XX)/Fs -1 1]);xlabel('time(sec)');title(['The telephone number is : ',num_str]);end编辑并存盘为myphone.m后,执行:(1)myphone('31975555');从声卡输出拨号DTMF音,并显示出拨号波形图,如图3所示。
数字信号处理上机实验及答案(第三版,第十章)
第十章上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一系统响应及系统稳定性。
实验二时域采样与频域采样。
实验三用FFT对信号作频谱分析。
实验四IIR数字滤波器设计及软件实现。
实验五FIR数字滤波器设计与软件实现实验六应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB语言的工具箱函数filter函数。
也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
系统的稳定性由其差分方程的系数决定。
数字信号处理上机实验答案解析(全]
第十章上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一 系统响应及系统稳定性。
实验二 时域采样与频域采样。
实验三 用FFT 对信号作频谱分析。
实验四 IIR 数字滤波器设计及软件实现。
实验五 FIR 数字滤波器设计与软件实现实验六 应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR 数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
10.1 实验一: 系统响应及系统稳定性1.实验目的 (1)掌握 求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB 语言的工具箱函数filter 函数。
也可以用MATLAB 语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
数字信号处理上机实验答案(全)1
第十章上机实验第十章上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一系统响应及系统稳定性。
实验二时域采样与频域采样。
实验三用FFT对信号作频谱分析。
实验四IIR 数字滤波器设计及软件实现。
实验五FIR 数字滤波器设计与软件实现实验六应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR 数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
10.1实验一:系统响应及系统稳定性1.实验目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB 语言的工具箱函数filter 函数。
也可以用 MATLAB语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
系统的稳定性由其差分方程的系数决定。
数字信号处理学习指导与课后答案第8章
Xˆ a ( j ) xa (nT )e j nT n
第8章 上机实验
上式中, 在数值上xa(nT)=x(n), 再将ω=ΩT代入, 得到
Xˆ a ( j ) x(n)e j n n
上式的右边就是序列的傅里叶变换X(ejω), 即
Xˆ a ( j ) X (e j ) T
x(n)=sin(0.014n)+sin(0.4n) 求出系统的输出响应y4. 思考题 (1) 如果输入信号为无限长序列, 系统的单位脉冲响 应是有限长序列, 可否用线性卷积法求系统的响应? 如何求 (2) 如果信号经过低通滤波器, 信号的高频分量被 滤掉, 时域信号会有何变化? 用前面第一个实验的结果进 行分析说明。 5. (1) 简述在时域求系统响应的方法。 (2) 简述通过实验判断系统稳定性的方法。 分析上面 第三个实验的稳定输出的波形。 (3) 对各实验所得结果进行简单分析和解释。 (4) 简要回答思考题。 (5) 打印程序清单和要求的各信号波形。
第8章 上机实验
8.1.2
实验1程序: exp1.m %实验1: close all; clear all %==================================== %内容1: 调用filter解差分方程, 由系统对u(n)的响应判
A=[1, -0.9]; B=[0.05, 0.05]; %系统差分方程系数向量B和A
第8章 上机实验
8.1 实验一:
8.1.1
1. (1) 掌握求系统响应的方法。 (2) 掌握时域离散系统的时域特性。 (3) 分析、 观察及检验系统的稳定性。
第8章 上机实验
2. 在时域中, 描写系统特性的方法是差分方程和单位脉 冲响应, 在频域可以用系统函数描述系统特性。 已知输入 信号可以由差分方程、 单位脉冲响应或系统函数求出系统对 于该输入信号的响应。 本实验仅在时域求解。 在计算机上 适合用递推法求差分方程的解, 最简单的方法是采用 MATLAB语言的工具箱函数filter函数。 也可以用MATLAB 语言的工具箱函数conv函数计算输入信号和系统的单位脉冲 响应的线性卷积, 求出系统的响应。
双音多频拨号系统DTMF的实验报告
双音多频拨号系统DTMF的实验设计报告所谓双音多频(DTMF),就是用两个频率——行频和列频来表示机键盘上的一个数字。
DTMF 的指令正在迅速的取代脉冲指令。
除了在呼叫信号中使用外,DTMF 还广泛的使用在交互式控制应用,例如银行、电子甚至家电远程控制等,用户可以从机发送DTMF 信号来做菜单选择。
本文基于MATLAB的双音多频拨号系统的仿真实现。
主要涉及到拨号音合成的基本原理及识别的主要方法,利用 MATLAB 软件以及DFT 算法实现对通信系统中拨号音的合成与识别。
并进一步利用 MATLAB 中的图形用户界面 GUI 制作简单直观的模拟界面。
还能够利用矩阵不同的基频合成 0 - 9 不同按键的拨号音,并能够对不同的拨号音加以正确的识别,实现由拨号音解析出的过程,进一步利用 GUI 做出了简单的图形操作界面。
本文具有界面清楚,画面简洁,易于理解,操作简单的优点,从而实现对拨号音系统的简单的信号仿真。
关键词:双音多频(DTMF) MATLAB GUI 信号仿真在中,数字0~9的中每一个都用两个不同的单音频传输,所用的8个频率分成高频带和低频带两组,低频带有四个频率:679Hz,770Hz,852Hz和941Hz;高频带也有四个频率:1209Hz,1336Hz,1477Hz和1633Hz.。
每一个数字均由高、低频带中各一个频率构成,例如1用697Hz和1209Hz两个频率,信号用表示,其中,。
这样8个频率形成16种不同的双频信号。
一,利用GUI 作图(简单的界面)如下:利用 GUI 图形用户界面设计工具制作拨号面板,把 DTMF 信号和机的键盘矩阵对应起来。
其中选用我们熟悉的 10 个数字键 0 — 9 , 3 个功能键“ 回删”、“拨号”,“解码”。
按照图机键盘矩阵的排列方式制作五行三列的按键控件。
每个按键可用( Push Button )添加。
静态文本框可用( Static Text )添加,如图再加个解码键( Push Button )二,再点运行,得出与上图对应的m文件,再用鼠标右击上图的每个键,点callback导入每个键的编译程序如下:1,按键1的程序:% --- Executes on button press in pushbutton4. function pushbutton4_Callback(hObject, eventdata, handles)x=get(handles.text1,'string'); % 把数字显示在屏幕上if(length(x)>15)errordlg('Sorry . The number you have input is too long !','Input Error•','modal')elsen=[1:1000];%每个数字1000个采样点y=sin(0.5345*n)+sin(0.9272*n);%对应行频列频时域叠加,数字1的低频697Hz和高频1209Hz叠加wavplay(y,8192) %产生拨号音space=zeros(1,100);%100个0模拟静音信号global NUMphone=[NUM,y];% 循环储存NUM=[phone,space]; % 储存连续的拨号音信号NoCtrl=x;NoCtrl=[NoCtrl,'1'];set(handles.text1,'string',[NoCtrl]);end2,按键2的程序:function pushbutton5_Callback(hObject, eventdata, handles)x=get(handles.text1,'string'); %把数字显示在屏幕上if(length(x)>15)errordlg('Sorry . The number you have input is tooelsen=[1:1000];% 每个数字1000个采样点y=sin(0.5345*n)+sin(1.0247*n);% 对应行频列频时域叠加,数字2的低频697Hz和高频1336Hz叠加wavplay(y,8192) %产生拨号音space=zeros(1,100);% 100个0模拟静音信号global NUMphone=[NUM,y]; %循环储存NUM=[phone,space]; %储存连续的拨号音信号NoCtrl=x;NoCtrl=[NoCtrl,'2'];set(handles.text1,'string',[NoCtrl]);end3.按键3的程序:% --- Executes on button press in pushbutton6. function pushbutton6_Callback(hObject, eventdata, handles)x=get(handles.text1,'string'); %把数字显示在屏幕上if(length(x)>15)errordlg('Sorry . The number you have input is tooelsen=[1:1000];% 每个数字1000个采样点y=sin(0.5345*n)+sin(1.1328*n);% 对应行频列频时域叠加,数字3的低频697Hz和高频1477Hz叠加wavplay(y,8192) %产生拨号音space=zeros(1,100);% 100个0模拟静音信号global NUMphone=[NUM,y]; %循环储存NUM=[phone,space]; %储存连续的拨号音信号NoCtrl=x;NoCtrl=[NoCtrl,'3'];set(handles.text1,'string',[NoCtrl]);end4,按键4的程序:% --- Executes on button press in pushbutton10. function pushbutton10_Callback(hObject, eventdata, handles)x=get(handles.text1,'string'); %把数字显示在屏幕上if(length(x)>15)errordlg('Sorry . The number you have input is tooelsen=[1:1000];% 每个数字1000个采样点y=sin(0.5905*n)+sin(0.9272*n);% 对应行频列频时域叠加,数字4的低频770Hz和高频1209Hz叠加wavplay(y,8192) %产生拨号音space=zeros(1,100);% 100个0模拟静音信号global NUMphone=[NUM,y]; %循环储存NUM=[phone,space]; %储存连续的拨号音信号NoCtrl=x;NoCtrl=[NoCtrl,'4'];set(handles.text1,'string',[NoCtrl]);end5,按键5的程序:% --- Executes on button press in pushbutton9. function pushbutton9_Callback(hObject, eventdata, handles)x=get(handles.text1,'string'); %把数字显示在屏幕上if(length(x)>15)errordlg('Sorry . The number you have input is too long !','Input Error•','modal')elsen=[1:1000];%每个数字1000个采样点vy=sin(0.5905*n)+sin(1.0247*n);% 对应行频列频时域叠加,数字5的低频770Hz和高频1336Hz叠加wavplay(y,8192) %产生拨号音space=zeros(1,100); %100个0模拟静音信号global NUMphone=[NUM,y];% 循环储存NUM=[phone,space]; %储存连续的拨号音信号NoCtrl=x;NoCtrl=[NoCtrl,'5'];set(handles.text1,'string',[NoCtrl]);end6,按键6的程序:% --- Executes on button press in pushbutton8. function pushbutton8_Callback(hObject, eventdata, handles)x=get(handles.text1,'string'); %把数字显示在屏幕上if(length(x)>15)errordlg('Sorry . The number you have input is too long !','Input Error•','modal')elsen=[1:1000];% 每个数字1000个采样点y=sin(0.5905*n)+sin(1.1328*n);% 对应行频列频时域叠加,数字6的低频770Hz和高频1477Hz叠加wavplay(y,8192) %产生拨号音space=zeros(1,100);% 100个0模拟静音信号global NUMphone=[NUM,y];% 循环储存NUM=[phone,space]; %储存连续的拨号音信号NoCtrl=x;NoCtrl=[NoCtrl,'6'];set(handles.text1,'string',[NoCtrl]);end7,按键7的程序:% --- Executes on button press in pushbutton13. function pushbutton13_Callback(hObject, eventdata,handles)x=get(handles.text1,'string'); %把数字显示在屏幕上if(length(x)>15)errordlg('Sorry . The number you have input is too long !','Input Error•','modal')elsen=[1:1000];% 每个数字1000个采样点y=sin(0.6534*n)+sin(0.9272*n);% 对应行频列频时域叠加,数字7的低频852Hz和高频1209Hz叠加wavplay(y,8192) %产生拨号音space=zeros(1,100); %100个0模拟静音信号global NUMphone=[NUM,y];% 循环储存NUM=[phone,space]; %储存连续的拨号音信号NoCtrl=x;NoCtrl=[NoCtrl,'7'];set(handles.text1,'string',[NoCtrl]);end8,按键8的程序:% --- Executes on button press in pushbutton12.function pushbutton12_Callback(hObject, eventdata, handles)x=get(handles.text1,'string'); %把数字显示在屏幕上if(length(x)>15)errordlg('Sorry . The number you have input is too long !','Input Error•','modal')elsen=[1:1000];% 每个数字1000个采样点y=sin(0.6534*n)+sin(1.0247*n);% 对应行频列频时域叠加,数字8的低频852Hz和高频1336Hz叠加wavplay(y,8192) %产生拨号音space=zeros(1,100);% 100个0模拟静音信号global NUMphone=[NUM,y]; %循环储存NUM=[phone,space]; %储存连续的拨号音信号NoCtrl=x;NoCtrl=[NoCtrl,'8'];set(handles.text1,'string',[NoCtrl]);end% --- Executes on button press in pushbutton14. function pushbutton14_Callback(hObject, eventdata, handles)x=get(handles.text1,'string'); %把数字显示在屏幕上if(length(x)>15)errordlg('Sorry . The number you have input is too long !','Input Error•','modal')elsen=[1:1000];% 每个数字1000个采样点y=sin(0.6534*n)+sin(1.1328*n);% 对应行频列频时域叠加,数字9的低频852Hz和高频1477Hz叠加wavplay(y,8192) %产生拨号音space=zeros(1,100); %100个0模拟静音信号global NUMphone=[NUM,y];% 循环储存NUM=[phone,space]; %储存连续的拨号音信号NoCtrl=x;NoCtrl=[NoCtrl,'9'];set(handles.text1,'string',[NoCtrl]);end% --- Executes on button press in pushbutton17. function pushbutton17_Callback(hObject, eventdata, handles)x=get(handles.text1,'string'); %把数字显示在屏幕上if(length(x)>15)errordlg('Sorry . The number you have input is too long !','Input Error•','modal')elsen=[1:1000];每个数字1000个采样点y=sin(0.7217*n)+sin(1.0247*n);% 对应行频列频时域叠加,数字0的低频941Hz和高频1336Hz叠加wavplay(y,8192) %产生拨号音space=zeros(1,100); %100个0模拟静音信号global NUMphone=[NUM,y];% 循环储存NUM=[phone,space]; %储存连续的拨号音信号NoCtrl=x;NoCtrl=[NoCtrl,'0'];set(handles.text1,'string',[NoCtrl]);end11,按键#号程序:% --- Executes on button press in pushbutton16. function pushbutton16_Callback(hObject, eventdata, handles)set(handles.text1,'string',['']);set(handles.tbutton,'visible',['off']);set(handles.tbutton,'value',[0]);clear all12,按键*的程序:% --- Executes on button press in pushbutton18. function pushbutton18_Callback(hObject, eventdata, handles)set(handles.text1,'string',['']);set(handles.tbutton,'visible',['off']);set(handles.tbutton,'value',[0]);clear all13,回删键的程序:% --- Executes on button press in pushbutton20. function pushbutton20_Callback(hObject, eventdata, handles)x=get(handles.text1,'string');% 把数字显示在屏幕上if(isempty(x))errordlg('Please input the phone No.','Input error','modal')elsexll=length(x);x(xll)=[];%去掉末尾号在面板上的显示set(handles.text1,'string',[x]);global NUMll=length(NUM);%删除末尾在拨号音信号中的储存for i=ll-1100+1:llNUM(ll)=[];ll=length(NUM);endend14,拨号键的程序:% --- Executes on button press in pushbutton21. function pushbutton21_Callback(hObject, eventdata, handles)x=get(handles.text1,'string'); % 把数字显示在屏幕上xx=str2num(x);if(isempty(NUM))errordlg('Please input the phone No.','Input error','modal')elsewavplay(NUM,8192);msgbox('拨号成功!若需再次拨号请按#号复位!','Done','help')set(handles.tbutton,'visible',['on']);set(handles.text1,'string',['Dieling Done.']); end14,关闭键的程序:% --- Executes on button press in pushbutton22. function pushbutton22_Callback(hObject, eventdata, handles)clear allclose all15,解码的程序:% --- Executes on button press in tbotton.function tbotton_Callback(hObject, eventdata, handles)L=length(NUM);n=L/1100;number='';for i=1:nj=(i-1)*1100+1;d=NUM(j:j+999); %截取出每个数字f=fft(d,2048); %以N=2048作FFT变换a=abs(f);p=a.*a/10000; %计算功率谱num(1)=find(p(1:250)==max(p(1:250))); % 找行频通过计算得出数值围num(2)=300+find(p(300:380)==max(p(300:380))); % 找列频通过计算得出数值围if (num(1) < 180) row=1; % 确定行数elseif (num(1) < 200) row=2;elseif (num(1) < 220) row=3;else row=4;endif (num(2) < 320) column=1; %确定列数elseif (num(2) < 340) column=2;else column=3;endz=[row,column]; % 确定数字if z==[4,2] tel=0; %0在4行2列elseif z==[1,1] tel=1; %1在1行1列elseif z==[1,2] tel=2; %2在1行2列elseif z==[1,3] tel=3; %3在1行3列elseif z==[2,1] tel=4; %4在2行1列elseif z==[2,2] tel=5; %5在2行2列elseif z==[2,3] tel=6; %6在2行3列elseif z==[3,1] tel=7; %7在3行1列elseif z==[3,2] tel=8; %8在3行2列elseif z==[3,3] tel=9; %9在3行3列endt(i)=tel;c=strcat(number,int2str(tel));number=c;i=i+1;endset(handles.text1,'string',['解码中...']);h = waitbar(0,'Decoding...Please wait...'); steps = 1500;for step = 1:steps% computations take place herewaitbar(step / steps)endclose(h);set(handles.text1,'string',number);% hObject handle to tbotton (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)三,运行以上程序调出如下图界面:即可以进行仿真拨号。
实验五 数字信号处理在双音多频拨号系统中的应用
实验五程序代码及实验结果图:(1)运行仿真程序exp6.m,任意送入 6 位电话号码,打印出相应的幅度谱。
观察程序运行结果,判断程序谱分析的正确性。
实验程序代码及结果如下:% DTMF 双频拨号信号的生成和检测程序tm=[1,2,3,65;4,5,6,66;7,8,9,67;42,0,35,68]; % DTMF 信号代表的16 个数N=205;K=[18,20,22,24,31,34,38,42]; %采样点数f1=[697,770,852,941]; %行频率向量f2=[1209,1336,1477,1633]; %列频率向量TN=input('键入6 位电话号码= '); %输入6位数字TNr=0; %接收端电话号码初值为零for l=1:6;d=fix(TN/10^(6-l)); %通过整除依次得到六位数字TN=TN-d*10^(6-l); %得到1位数字之后,得到新的序列TNfor p=1:4; %通过查表法得到数字的行号p和列号q for q=1:4;if tm(p,q)==abs(d); break,end %检测码相符的列号qendif tm(p,q)==abs(d); break,end %检测码相符的行号pend%得到每一位数值之后,然后跳出循环,对该位进行信号调制n=0:1023; %延长序列,为了发出声音x = sin(2*pi*n*f1(p)/8000) + sin(2*pi*n*f2(q)/8000);sound(x,8000); %发出声音pause(0.1) %声音持续时间% 接收检测端的程序X=goertzel(x(1:205),K+1); %用Goertzel算法计算8点DFT样本val = abs(X); %列出8点DFT向量subplot(3,2,l);stem(K,val,'.');grid on; %绘制幅度谱xlabel('k');ylabel('|X(k)|'); %横纵坐标名称axis([10 50 0 120]); %确定坐标轴范围limit = 80; %设定门限值for s=5:8;if val(s) > limit, break, end %查找列号,找到列号大于门限的幅度谱值endfor r=1:4;if val(r) > limit, break, end %查找行号,找到行号大于门限的幅度谱值endTNr=TNr+tm(r,s-4)*10^(6-l); %合成6位电话号码enddisp('接收端检测到的号码为:'); %显示接收到的字符disp(TNr);(2)分析该仿真程序,将产生、检测和识别 6 位电话号码的程序改为能产生、检测和识别8 位电话号码的程序,并运行一次,打印出相应的幅度谱和8 位电话号码。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验六数字信号处理在双音多频拨号系10.6实验六数字信号处理在双音多频拨号系统中的应用10.6.1实验指导1、引言双音多频(DualToneMultiFrequency,DTMF)信号是音频电话中的拨号信号,由美国AT&T贝尔公司实验室研制,并用于电话网络中。
这种信号制式具有很高的拨号速度,且容易自动监测识别,很快就代替了原有的用脉冲计数方式的拨号制式。
这种双音多频信号制式不仅用在电话网络中,还可以用于传输十进制数据的其它通信系统中,用于电子邮件和银行系统中。
这些系统中用户可以用电话发送DTMF信号选择语音菜单进行操作。
DTMF信号系统是一个典型的小型信号处理系统,它要用数字方法产生模拟信号并进行传输,其中还用到了D/A变换器;在接收端用A/D变换器将其转换成数字信号,并进行数字信号处理与识别。
为了系统的检测速度并降低成本,还开发一种特殊的DFT算法,称为戈泽尔(Goertzel)算法,这种算法既可以用硬件(专用芯片)实现,也可以用软件实现。
下面首先介绍双音多频信号的产生方法和检测方法,包括戈泽尔算法,最后进行模拟实验。
下面先介绍电话中的DTMF信号的组成。
在电话中,数字0~9的中每一个都用两个不同的单音频传输,所用的8个频率分成高频带和低频带两组,低频带有四个频率:679Hz,770Hz,852Hz和941Hz;高频带也有四个频率:1209Hz,1336Hz,1477Hz和1633Hz.。
每一个数字均由高、低频带中各一个频率构成,例如1用697Hz和1209Hz两个频率,信号用表示,其中,。
这样8个频率形成16种不同的双频信号。
具体号码以及符号对应的频率如表10.6.1所示。
表中最后一列在电话中暂时未用。
表10.6.1双频拨号的频率分配列行1209Hz1336Hz1477Hz633Hz697Hz123A770Hz456B852Hz789C942Hz*0#DDTMF信号在电话中有两种作用,一个是用拨号信号去控制交换机接通被叫的用户电话机,另一个作用是控制电话机的各种动作,如播放留言、语音信箱等。
2电话中的双音多频(DTMF)信号的产生与检测(1)双音多频信号的产生假设时间连续的DTMF信号用表示,式中是按照表10.10.1选择的两个频率,代表低频带中的一个频率,代表高频带中的一个频率。
显然采用数字方法产生DTMF信号,方便而且体积小。
下面介绍采用数字方法产生DTMF信号。
规定用8KHz对DTMF信号进行采样,采样后得到时域离散信号为形成上面序列的方法有两种,即计算法和查表法。
用计算法求正弦波的序列值容易,但实际中要占用一些计算时间,影响运行速度。
查表法是预先将正弦波的各序列值计算出来,寄存在存储器中,运行时只要按顺序和一定的速度取出便可。
这种方法要占用一定的存储空间,但是速度快。
因为采样频率是8000Hz,因此要求每125ms输出一个样本,得到的序列再送到D/A变换器和平滑滤波器,输出便是连续时间的DTMF信号。
DTMF信号通过电话线路送到交换机。
(2)双音多频信号的检测在接收端,要对收到的双音多频信号进行检测,检测两个正弦波的频率是多少,以判断所对应的十进制数字或者符号。
显然这里仍然要用数字方法进行检测,因此要将收到的时间连续DTMF信号经过A/D变换,变成数字信号进行检测。
检测的方法有两种,一种是用一组滤波器提取所关心的频率,根据有输出信号的2个滤波器判断相应的数字或符号。
另一种是用DFT(FFT)对双音多频信号进行频谱分析,由信号的幅度谱,判断信号的两个频率,最后确定相应的数字或符号。
当检测的音频数目较少时,用滤波器组实现更合适。
FFT是DFT的快速算法,但当DFT的变换区间较小时,FFT快速算法的效果并不明显,而且还要占用很多内存,因此不如直接用DFT合适。
下面介绍Goertzel算法,这种算法的实质是直接计算DFT的一种线性滤波方法。
这里略去Goertzel算法的介绍(请参考文献[19]),可以直接调用MATLAB信号处理工具箱中戈泽尔算法的函数Goertzel,计算N点DFT的几个感兴趣的频点的值。
3检测DTMF信号的DFT参数选择用DFT检测模拟DTMF信号所含有的两个音频频率,是一个用DFT对模拟信号进行频谱分析的问题。
根据第三章用DFT对模拟信号进行谱分析的理论,确定三个参数:(1)采样频率,(2)DFT的变换点数N,(3)需要对信号的观察时间的长度。
这三个参数不能随意选取,要根据对信号频谱分析的要求进行确定。
这里对信号频谱分析也有三个要求:(1)频率分辨率,(2)谱分析的频谱范围,(3)检测频率的准确性。
1.频谱分析的分辨率。
观察要检测的8个频率,相邻间隔最小的是第一和第二个频率,间隔是73Hz,要求DFT最少能够分辨相隔73Hz的两个频率,即要求。
DFT的分辨率和对信号的观察时间有关,。
考虑到可靠性,留有富裕量,要求按键的时间大于40ms。
2频谱分析的频率范围要检测的信号频率范围是697~1633Hz,但考虑到存在语音干扰,除了检测这8个频率外,还要检测它们的二次倍频的幅度大小,波形正常且干扰小的正弦波的二次倍频是很小的,如果发现二次谐波很大,则不能确定这是DTMF信号。
这样频谱分析的频率范围为697~3266Hz。
按照采样定理,最高频率不能超过折叠频率,即,由此要求最小的采样频率应为7.24KHz。
因为数字电话总系统已经规定=8KHz,因此对频谱分析范围的要求是一定满足的。
按照,=8KHz,算出对信号最少的采样点数为。
3检测频率的准确性这是一个用DFT检测正弦波频率是否准确的问题。
序列的N点DFT是对序列频谱函数在0~区间的N点等间隔采样,如果是一个周期序列,截取周期序列的整数倍周期,进行DFT,其采样点刚好在周期信号的频率上,DFT的幅度最大处就是信号的准确频率。
分析这些DTMF信号,不可能经过采样得到周期序列,因此存在检测频率的准确性问题。
DFT的频率采样点频率为(k=0,1,2,---,N-1),相应的模拟域采样点频率为(k=0,1,2,---,N-1),希望选择一个合适的N,使用该公式算出的能接近要检测的频率,或者用8个频率中的任一个频率代入公式中时,得到的k值最接近整数值,这样虽然用幅度最大点检测的频率有误差,但可以准确判断所对应的DTMF频率,即可以准确判断所对应的数字或符号。
经过分析研究认为N=205是最好的。
按照=8KHz,N=205,算出8个频率及其二次谐波对应k值,和k取整数时的频率误差见表10.6.2。
表10.6.28个基频Hz最近的整数k值DFT的k值绝对误差二次谐波Hz对应的k值最近的整数k值绝对误差69717.861180.139139435.024350.02477019.531200.269154038.692390.30 885221.833220.167170442.813430.18794124.113240.113188247.285470.28512 0930.981310.019241860.752610.248133634.235340.235267267.134670.134147 737.848380.152295474.219740.219163341.846420.154326682.058820.058通过以上分析,确定=8KHz,N=205,。
4DTMF信号的产生与识别仿真实验下面先介绍MATLAB工具箱函数goertzel,然后介绍DTMF信号的产生与识别仿真实验程序。
Goerztel函数的调用格式额为Xgk=goertzel(xn,K)xn是被变换的时域序列,用于DTMF信号检测时,xn就是DTMF信号的205个采样值。
K是要求计算的DFT[xn]的频点序号向量,用N表示xn的长度,则要求1≤K≤N。
由表10.2.2可知,如果只计算DTMF信号8个基频时,K=[18,20,22,24,31,34,38,42],如果同时计算8个基频及其二次谐波时,K=[18,20,22,24,31,34,35,38,39,42,43,47,61,67,74,82]。
Xgk是变换结果向量,其中存放的是由K指定的频率点的DFT[x(n)]的值。
设X(k)=DFT[x(n)],则。
DTMF信号的产生与识别仿真实验在MATLAB环境下进行,编写仿真程序,运行程序,送入6位电话号码,程序自动产生每一位号码数字相应的DTMF信号,并送出双频声音,再用DFT进行谱分析,显示每一位号码数字的DTMF信号的DFT幅度谱,安照幅度谱的最大值确定对应的频率,再安照频率确定每一位对应的号码数字,最后输出6位电话号码。
本实验程序较复杂,所以将仿真程序提供给读者,只要求读者读懂程序,直接运行程序仿真。
程序名为exp6。
程序分四段:第一段(2-7行)设置参数,并读入6位电话号码;第二段(9-20行)根据键入的6位电话号码产生时域离散DTMF信号,并连续发出6位号码对应的双音频声音;第三段(22-25行)对时域离散DTMF信号进行频率检测,画出幅度谱;第四段(26-33行)根据幅度谱的两个峰值,分别查找并确定输入6位电话号码。
根据程序中的注释很容易分析编程思想和处理算法。
程序清单如下:%《数字信号处理(第三版)》第十章实验6程序:exp6.m%DTMF双频拨号信号的生成和检测程序%clearall;clc;tm=[1,2,3,65;4,5,6,66;7,8,9,67;42,0,35,68];%DTMF信号代表的16个数N=205;K=[18,20,22,24,31,34,38,42];f1=[697,770,852,941];%行频率向量f2=[1209,1336,1477,1633];%列频率向量TN=input('键入6位电话号码=');%输入6位数字TNr=0;%接收端电话号码初值为零forl=1:6;d=fix(TN/10^(6-l));TN=TN-d*10^(6-l);forp=1:4;forq=1:4;iftm(p,q)==abs(d);break,end%检测码相符的列号qendiftm(p,q)==abs(d);break,end%检测码相符的行号pendn=0:1023;%为了发声,加长序列x=sin(2*pi*n*f1(p)/8000)+sin(2*pi*n*f2(q)/8000);%构成双频信号sound(x,8000);%发出声音pause(0.1)%接收检测端的程序X=goertzel(x(1:205),K+1);%用Goertzel算法计算八点DFT样本val=abs(X);%列出八点DFT向量subplot(3,2,l);stem(K,val,'.');grid;xlabel('k');ylabel('|X(k)|')%画出DFT(k)幅度axis([10500120])limit=80;%fors=5:8;ifval(s)limit,break,end%查找列号endforr=1:4;ifval(r)limit,break,end%查找行号endTNr=TNr+tm(r,s-4)*10^(6-l);enddisp('接收端检测到的号码为:')%显示接收到的字符disp(TNr)运行程序,根据提示键入6位电话号码123456,回车后可以听见6位电话号码对应的DTMF信号的声音,并输出相应的6幅频谱图如图10.10.1所示,左上角的第一个图在k=18和k=31两点出现峰值,所以对应第一位号码数字1。