第6章_梁的弯曲应力分析

合集下载

6第六章-梁的应力详解精选全文完整版

6第六章-梁的应力详解精选全文完整版
等直梁横截面上的最大正应力发生在最大弯矩所在横 截面上距中性轴最远的边缘处,而且在这些边缘处,即使 是横力弯曲情况,由剪力引起的切应力也等于零或其值很 小(详见下节),至于由横向力引起的挤压应力可以忽略不 计。因此可以认为梁的危险截面上最大正应力所在各点处 于单向应力状态。于是可按单向应力状态下的强度条件形 式来建立梁的正应力强度条件:
需要注意的是,型钢规格表中所示的x轴是我们所标示 的z轴。
Ⅱ. 纯弯曲理论的推广
工程中实际的梁大多发生横力弯曲,此时梁的横截面
由于切应力的存在而发生翘曲。此外,横向力还使各纵向
线之间发生挤压。因此,对于梁在纯弯曲时所作的平面假
设和纵向线之间无挤压的假设实际上都不再成立。但弹性
力学的分析结果表明,受分布荷载的矩形截面简支梁,当
A

E
y
r
代入上述三个静力学条件,有
FN
dA E
A
r
y d A ESz
A
r
0
(a)
M y
z d A E
A
r
yz d A EIyz
A
r
0
(b)
M z
y d A E
A
r
y2 d A EIz
A
r
M
(c)
以上三式中的Sz,Iyz,Iz都是只与截面的形状和尺寸相 关的几何量,统称为截面的几何性质,而
图b所示的简支梁。钢的许用弯曲正应力[]=152 MPa 。试
选择工字钢的号码。
(a)
(b)
解:在不计梁的自重的情况下,弯矩图如图所示 Mmax 375kN m
强度条件 Mmax 要求:
Wz
Wz
M max

梁的弯曲正应力实验报告

梁的弯曲正应力实验报告

梁的弯曲正应力实验报告梁的弯曲正应力实验报告引言:弯曲是一种常见的力学现象,广泛应用于工程和建筑领域。

梁是一种常见的结构,在受到外力作用时会发生弯曲变形。

为了研究梁的弯曲行为,本实验通过对梁进行弯曲试验,测量梁上的正应力分布,以便了解梁的强度和稳定性。

实验目的:1. 通过实验测量梁上的正应力分布,了解梁的弯曲行为;2. 分析梁的弯曲现象对梁的强度和稳定性的影响;3. 探究不同材料和截面形状对梁的弯曲正应力分布的影响。

实验原理:当一根梁受到外力作用时,梁会发生弯曲变形。

在梁的顶部和底部,会出现正应力和负应力。

本实验主要关注梁上的正应力分布。

根据梁的弯曲理论,梁上的正应力与梁的截面形状、材料性质、外力大小和位置等因素有关。

实验装置和步骤:实验装置包括一根长梁、测力计、测量仪器等。

具体步骤如下:1. 将长梁固定在实验台上,确保梁的两端支持牢固;2. 在梁上设置几个不同位置的测力计,用于测量梁上的正应力;3. 施加外力于梁上,使其发生弯曲变形;4. 通过测力计测量梁上各位置的正应力,并记录数据;5. 根据实验数据,绘制梁上的正应力分布曲线。

实验结果与分析:根据实验数据,我们可以得出梁上的正应力分布曲线。

通常情况下,梁上的正应力分布呈现出一定的规律性。

在梁的顶部和底部,正应力较大,逐渐向中间递减,最终趋近于零。

这是因为在梁的顶部和底部,受力较大,产生了较大的正应力;而在梁的中间,受力相对较小,正应力逐渐减小。

实验中还可以观察到不同材料和截面形状对梁的弯曲正应力分布的影响。

例如,对比不同材料的梁,我们可以发现不同材料的梁上的正应力分布曲线有所差异。

这是因为不同材料的梁具有不同的弹性模量和抗弯强度,从而导致不同的正应力分布。

此外,梁的截面形状也对梁的弯曲正应力分布有影响。

例如,对比矩形截面和圆形截面的梁,我们可以发现矩形截面的梁上的正应力分布曲线相对均匀,而圆形截面的梁上的正应力分布曲线则呈现出较大的集中度。

第6章 弯曲应力

第6章  弯曲应力

称为抗弯截面系数
只有一根对称轴的横截面形状: yt,max yc,max O y
O y
z
t,max
My t ,max Iz
c,max
Myc,max Iz
z
简单截面的弯曲截面系数 b h ⑴ 矩形截面
z
bh3 Iz 12 b3h Iy 12
⑵ 圆形截面
y d
Iz bh2 Wz h/2 6 Iy b2h Wy 源自/2 63()
Ⅱ .纯弯曲理论的推广 对于细长梁( l/h > 5 ),纯弯曲时的正应力计算 公式用于横力弯曲情况,其结果仍足够精确。 F
l
M ( x) y Iz
Fl
4
max
M ( x) Wz
解:
由弯曲曲率公式 可得:
M EIz
M EI z
1
代入弯曲正应力公式:
M EIZ Ed 533.3MPa WZ WZ 2
3.正应力的正负号与弯矩 及点的坐标 y的正负号有关。实际计算中,可根 据截面上弯矩的方向,直接判断中性 轴的哪一侧产生拉应力,哪一侧产生 压应力,而不必计及M和y的正负。
三、最大弯曲正应力 有两根对称轴的横截面形状: b h
z
y y
z
max
M M Mymax I z Wz Iz y max

基本假设2:
梁内各纵向纤维无挤压 假设,纵向纤维间无正应 力。

中性层与中性轴
纵向对称面 中性层 Z 中性轴
中性层 根据变形的连续性 可知,梁弯曲时从其凹 入一侧的纵向线缩短区 到其凸出一侧的纵向线 伸长区,中间必有一层 纵向无长度改变的过渡 层,称为中性层 。 中性轴: 中性层与横截面的交 线就是中性轴。

梁的弯曲正应力实验报告

梁的弯曲正应力实验报告

一、实验目的1. 通过实验,了解梁在弯曲状态下的应力分布规律;2. 验证梁的弯曲正应力计算公式的准确性;3. 掌握应变电测法的基本原理和操作方法;4. 培养学生严谨的实验态度和科学的研究方法。

二、实验原理梁在弯曲状态下,其横截面上各点的正应力可以用以下公式计算:\[ \sigma = \frac{M y}{I_z} \]其中,\(\sigma\) 为正应力,\(M\) 为弯矩,\(y\) 为梁横截面上某点到中性轴的距离,\(I_z\) 为梁截面对中性轴的惯性矩。

实验中,通过测量梁横截面上不同位置的应变,根据虎克定律,可计算出相应位置的应力。

实验装置主要包括梁、应变片、静态数字电阻应变仪等。

三、实验仪器与设备1. 梁材料:矩形截面试件,尺寸为 \(b \times h\);2. 应变片:电阻应变片,用于测量梁横截面上的应变;3. 静态数字电阻应变仪:用于测量应变片输出的电阻变化,从而计算出应变;4. 加载装置:用于对梁施加弯矩;5. 游标卡尺:用于测量梁的尺寸;6. 计算器:用于计算实验数据。

四、实验步骤1. 准备实验装置,包括梁、应变片、应变仪等;2. 将应变片粘贴在梁的预定位置,确保应变片与梁表面紧密贴合;3. 接通应变仪电源,调整应变仪的量程和灵敏度;4. 使用游标卡尺测量梁的尺寸,记录数据;5. 在梁上施加预定的弯矩,确保梁处于弯曲状态;6. 使用应变仪测量梁横截面上不同位置的应变,记录数据;7. 根据实验数据和应变片的位置,计算出梁横截面上不同位置的应力;8. 比较实验测得的应力与理论计算值,分析误差原因。

五、实验结果与分析1. 实验数据:表1:梁横截面上不同位置的应变测量值| 测点位置 | 应变值(με) || -------- | ------------ || A点 | 120 || B点 | 100 || C点 | 80 || D点 | 60 |表2:梁横截面上不同位置的应力计算值| 测点位置 | 应力值(MPa) || -------- | ------------ || A点 | 12.00 || B点 | 10.00 || C点 | 8.00 || D点 | 6.00 |2. 结果分析:通过实验数据与理论计算值的比较,可以看出,在梁的弯曲状态下,应力在梁横截面上呈线性分布。

工程力学第6节 弯曲切应力

工程力学第6节 弯曲切应力
* FS S z FS bt h t 1 h 2 2 ( ) [( t ) y ] Izd IZ d 2 2 2 2
* z
上式表明腹板上的切应力按抛物线规律变化。
最大弯曲切应力 max 发生在中性轴 y 0 处,故
相差不大,当 d b 时,腹板上的切应力可认为均匀 分布。由于工字钢腹板上切应力的合力与截面剪力十 分接近,故工程中常将剪 翼缘 力除以腹板面积来计算工 min 腹板 字形截面梁的 max 。即
一、矩形截面梁 的切应力 假设
截面上任一点 切应力 的方 向均平行于剪 力 FS ; 切应力沿矩形 截面的宽度 b 均匀分布,即 切应力的大小 只与 y 有关
C
在横截面上距中性轴为
y 处的切应力 * FS S z Izb
距中性轴为 y 处横线以下面积对中性轴的面积矩为
hy 2 h b h * 2 2 S z b( y ) (y ) ( y ) 2 2 2 4 bh 3 Iz 12
二、圆形截面梁的切应力
AB 弦上的最大切应力在端点 A 或 B ,切应力为
FS R R y 3Iz
2
2
其中
Iz
d
4
64

R
4
4
max
FS R R y 3Iz
2
2
其中
Iz
d
4
64

R
4
4
在中性轴上,y 0 得到切应力最大值
max
4 FS 2 3R
绘制梁的剪力图 绘制梁的弯矩图
2
8
1 FS max ql 2
最大剪力和最大弯矩
1 2 M max ql 8

材料力学第6章弯曲应力

材料力学第6章弯曲应力

图6.5
页 退出
材料力学
出版社 理工分社
例6.1如图6.6所示,矩形截面悬臂梁受集中力和集中力偶作用。试求Ⅰ—Ⅰ 截面和固定端Ⅱ—Ⅱ截面上A,B,C,D 4点处的正应力。
图6.6
页 退出
材料力学
出版社 理工分社
解矩形截面对中性轴的惯性矩为 对于Ⅰ—Ⅰ截面,弯矩MⅠ=20 kN·m,根据式(6.2),各点正应力分别为
页 退出
材料力学
出版社 理工分社
(1)变形几何关系 弯曲变形前和变形后的梁段分别表示于图6.4(a)和(b)。以梁横截面的对称 轴为y轴且向下为正(见图6.4(c))。以中性轴为z轴,但中性轴的位置尚待确 定。在中性轴尚未确定之前,x轴只能暂时认为是通过原点的横截面的法 线。根据弯曲平面假设,变形前相距为dx的两个横截面,变形后各自绕中性 轴相对旋转了一个角度dθ ,且仍然保持为平面。这就使得距中性层为y的纵 向纤维bb的长度变为
式中积分
是横截面对y轴和z轴的惯性积。由于y轴是横截面的对
称轴,必然有Iyz=0(见附录)。所以式(g)是自然满足的。 将式(b)代入式(e),得
式中积分∫Ay2dA=Iz是横截面对z轴(中性轴)的惯性矩。于是式(h)改写为 式中 ——梁轴线变形后的曲率。
页 退出
材料力学
出版社 理工分社
式(6.1)表明,EIz越大,则曲率 越小,故EIz称为梁的抗弯刚度。从式 (6.1)和式(b)中消去 ,得
而对于变截面梁,虽然是等截面梁但中性轴不是横截面对称轴的梁,在计算 最大弯曲正应力时不能只注意弯矩数值最大的截面,应综合考虑My/Iz的值 (参看例6.5和例6.8)。
页 退出
材料力学
出版社 理工分社
引用记号

梁的弯曲(应力、变形)

梁的弯曲(应力、变形)
和梁的跨度、截面尺寸等因素。
梁的弯曲类型
01
02
03
自由弯曲
梁在受到外力作用时,其 两端不受约束,可以自由 转动。
简支弯曲
梁在受到外力作用时,其 一端固定,另一端可以自 由转动。
固支弯曲
梁在受到外力作用时,其 两端均固定,不能发生转 动。
梁的弯曲应用场景
桥梁工程
桥梁中的梁常常需要进行弯曲变形以承受车辆和 行人等载荷。
稳定性。
06 梁的弯曲研究展望
CHAPTER
新材料的应用研究
高强度材料
随着材料科学的进步,高强度、轻质的新型 材料不断涌现,如碳纤维复合材料、钛合金 等。这些新材料在梁的弯曲研究中具有广阔 的应用前景,能够显著提高梁的承载能力和 刚度。
功能材料
新型功能材料如形状记忆合金、压电陶瓷等, 具有独特的力学性能和功能特性,为梁的弯 曲研究提供了新的思路和解决方案。
反复的弯曲变形可能导致疲劳裂纹的 产生和扩展,影响结构的疲劳寿命。
对使用功能的影响
弯曲变形可能导致结构使用功能受限 或影响正常使用。
04 梁的弯曲分析方法
CHAPTER
理论分析方法
弹性力学方法
01
基于弹性力学理论,通过数学公式推导梁在弯曲状态下的应力
和变形。
能量平衡法
02
利用能量守恒原理,通过计算梁在不同弯曲状态下的能量变化,
详细描述
常见的截面形状有矩形、工字形、圆形等。应根据梁的用途和受力情况选择合适的截面形状。例如, 对于承受较大弯矩的梁,采用工字形截面可以有效地提高梁的承载能力和稳定性。
支撑结构优化
总结词
支撑结构是影响梁弯曲性能的重要因素,合理的支撑结构可以提高梁的稳定性,减小梁 的变形。

第六章 弯曲剪应力

第六章  弯曲剪应力

所 以 d m in 1 3 7m m
[例6-7]两个尺寸完全相同的矩形截面梁叠在一起承受荷载如图 所示。若材料许用应力为[],其许可载荷[P]为多少?如将两 个梁用一根螺栓联成一体,则其许可荷载为多少?若螺栓许 用剪应力为[τ],求螺栓的最小直径?
L
FQ
P
-PL
M
P
解:叠梁承载时,每
梁都有自己的中性层
§6-3 弯曲剪应力和强度校核
一.具有纵对称轴截面梁的剪应力
对于薄壁、高截面的梁须计算弯曲剪应力
My
Iz
q(x) x dx
P
bh
z
q(x)
M(x)
M (x)dM (x)
y
FQ
FQ dFQ
在hb的情况下
假设 1)的 :方向F都 Q平与 行
2)沿宽度均布。
y
NI
N II
NI A*ⅠdA
M ydA M
(1)当外力偶作用在平行于形心主惯性平面的任一平 面内时,梁产生平面弯曲。
(2)当横向外力作用在平行于形心主惯性平面的平面 内,并且通过特定点时,梁发生平面弯曲。否则将 会伴随着扭转变形。但由于实体构件抗扭刚度很大
,扭转变形很小,其带来的影响可以忽略不计。
二. 开口薄壁截面的弯曲中心
对于开口薄壁截面梁,即使横向力作用于形心主惯性 平面内(非对称平面),则梁除发生弯曲变形外,还将 发生扭转变形。
b(x)
3P
4[]h
即: b(x)min4[3P]h
P/2
P
A
C
xL
P/2 同理:若b为常量,高度h=h(x)
B W(x)1bh2(x) Px
6
2[]
h(x) 3Px 半抛物线

梁的弯曲正应力实验

梁的弯曲正应力实验

梁的弯曲正应力实验引言在力学学科中,我们研究物体的形变和变形时,经常需要考虑应力的问题。

应力是物体内部的力分布情况,可以用来描述物体对外界施加力的能力。

弯曲正应力实验是一种常见的实验方法,用来研究材料在弯曲过程中产生的正应力分布情况。

本文将详细介绍梁的弯曲正应力实验的原理、实验装置、实验步骤以及实验结果的分析。

实验原理在材料力学中,当梁受到作用力而产生弯曲时,梁内部会产生正应力和剪应力。

弯曲的平面称为中性面,中性面附近的纤维受到压应力,而远离中性面的纤维则受到拉应力。

梁上不同位置的正应力大小不同,正应力随着距离中性面的距离增大而减小。

实验装置梁的弯曲正应力实验需要以下装置: 1. 实验梁:选择一块具有一定长度和宽度的梁作为实验梁。

梁的截面形状可以选择矩形、圆形等。

2. 支座:用于支撑实验梁的底部,使其能够固定在位置上。

3. 加载装置:通过施加作用力,使实验梁产生弯曲。

可以使用重物、液压等方式施加作用力。

4. 测力计:用于测量实验梁上的正应力大小。

5. 测量仪器:使用光学显微镜或拉伸计等设备来测量梁的形变情况。

实验步骤1.准备实验梁:选择一块长度和宽度适当的梁,使其能够适应实验要求。

可以根据需要对梁进行截割和加工。

2.搭建实验装置:将支座固定在实验台上,将实验梁放置在支座上,并调整支座的位置和角度,使实验梁能够产生弯曲。

3.施加作用力:根据实验要求,选择适当的加载装置施加作用力。

可以逐渐增加作用力的大小,以逐渐产生弯曲。

4.测量正应力:使用测力计测量实验梁上的正应力大小,并记录测得的数据。

5.测量形变:使用测量仪器测量梁的形变情况,可以测量梁的弯曲角度、梁的变形量等。

6.结束实验:根据实验要求,结束实验并记录实验数据。

实验结果分析在实验结束后,根据测得的数据进行结果分析。

可以绘制出梁上不同位置的正应力大小与距离中性面的距离的关系图,分析正应力随距离的变化规律。

还可以计算梁的弯曲刚度、弯曲变形等参数,以便进一步研究材料的力学性质。

第六章弯曲变形分析

第六章弯曲变形分析

第六章 弯曲变形分析梁是机械与工程结构中最常见的构件。

本章内容包括梁的内力、平面弯曲中横截面上的正应力和切应力分布规律,以及梁的变形计算。

6.1 梁的内力● 梁的概念当杆件受到矢量方向垂直于轴线的外力或外力偶作用时,其轴线将由直线变为曲线,如图6–1(a)。

以轴线变弯为主要特征的变形形式称为弯曲,凡是以弯曲变形为主的杆件,工程上称为梁,如车辆的轮轴、房屋的梁及桥梁等。

在分析计算中,通常用梁的轴线代表梁,如图6–1(b)。

在工程实际中,大多数梁都具有一个纵向对称面;而外力也作用在该对称面内。

在这种情况下,梁的变形对称于纵向对称面,且变形后的轴线也在对称图6–1 梁 图6–2 对称弯曲图6–3 梁的约束 图6–4 三类静定梁面内,即所谓的对称弯曲,如图6–2。

它是弯曲问题中最基本、最常见的情况。

本章只讨论梁的对称弯曲。

图6–3表示了梁的三种常见约束形式及相应的约束力:可动铰支座(图6–3(a)),固定铰支座(图6–3(b))和(平面)固定端约束(图6–3(c))。

在以上三种约束方式下,有三种常见的梁形式,如图6–4所示。

图6–4(a)为简支梁,两端分别为固定铰支座和活动铰支座;图6–4(b)为悬臂梁,一端固定端约束,一端自由;图6–4(b)为外伸梁,它是具有一个或两个外伸部分的简支梁。

这三种梁都是静定梁。

作用在梁上的外载荷,常见的有集中力偶M (图6–5(a))、分布载荷q (图6–5(b))和集中力F (图6–5(c))。

在实际问题中,q 为常数的均布载荷较为常见。

● 梁的剪力与弯矩在4.2中已经介绍了求杆件内力的通用方法,即截面法。

具体到梁,其内力分量为剪力和弯矩,规定当剪力相对于横截面的转向为顺时针为正,使杆件发生上凹下凸的弯矩为正,如图4–5(b)和(c)。

例6–1:如图6–6所示悬臂梁,受均布载荷q ,在B 点处受矩为2qa M =的力偶作用,试绘梁的剪力图与弯矩图。

解:设固定端的约束力和约束力偶为C R 和C M ,则由平衡方程00=-=∑qa R F C y ,qa R C =05.102=--⋅=∑C C M qa qa a m ,221qa M C = 以杆件左端为坐标原点,以B 为分界面,将梁分为AB 和BC 两段。

第六章 - 弯曲应力

第六章 - 弯曲应力

查表 N0 12.6工字钢
WZ=77.5cm3
kN
15
28.1
13.16
kNm
3.75
例题
F 25kN
铸铁梁受荷载情况如图示。已知截面对形心轴
的惯性矩Iz=403×10-7m4,铸铁抗拉强度[σ +] =50MPa,抗压强度[σ -]=125MPa。试按正应力强
度条件校核梁的强度。
200
q 12kN m
最大截面上的最大拉应力和最大压应力。
y
F
150
A
L 2
B
L 2
M max

FL 4
16kNm
y max

200 50 96.4 153.6mm
y max
96.4mm
50
96.4
z
200
C
50
max

My
max
IZ
24.09MPa
max

My max IZ
对梁的某一截面: 对全梁(等截面):
max
Mymax Iz
M
WZ
max
M max ymax Iz
M max Wz
max

M max Wz


例题
长为L的矩形截面悬臂梁,在自由端作用一集中力
F,已知b=120mm,h=180mm、L=2m,F=1.6kN, 试求B截面上a、b、c各点的正应力。

1 M Z (b)

EIZ
由(a)(b)式得
Mzy
Iz
y
M
m
Mz
n
中性轴

材料力学习题第六章应力状态分析答案详解

材料力学习题第六章应力状态分析答案详解

第6章 应力状态分析一、选择题1、对于图示各点应力状态,属于单向应力状态的是(A )。

20(MPa )20d20(A )a 点;(B )b 点;(C )c 点;(D )d 点 。

2、在平面应力状态下,对于任意两斜截面上的正应力αβσσ=成立的充分必要条件,有下列四种答案,正确答案是( B )。

(A ),0x y xy σστ=≠;(B ),0x y xy σστ==;(C ),0x y xy σστ≠=;(D )x y xy σστ==。

3、已知单元体AB 、BC 面上只作用有切应力τ,现关于AC 面上应力有下列四种答案,正确答案是( C )。

(A )AC AC /2,0ττσ==; (B )AC AC /2,/2ττσ==; (C )AC AC /2,/2ττσ==;(D )AC AC /2,/2ττσ=-=。

4、矩形截面简支梁受力如图(a )所示,横截面上各点的应力状态如图(b )所示。

关于它们的正确性,现有四种答案,正确答案是( D )。

(b)(a)(A)点1、2的应力状态是正确的;(B)点2、3的应力状态是正确的;(C)点3、4的应力状态是正确的;(D)点1、5的应力状态是正确的。

5、对于图示三种应力状态(a)、(b)、(c)之间的关系,有下列四种答案,正确答案是( D )。

τ(a)(b) (c)(A)三种应力状态均相同;(B)三种应力状态均不同;(C)(b)和(c)相同;(D)(a)和(c)相同;6、关于图示主应力单元体的最大切应力作用面有下列四种答案,正确答案是( B )。

(A) (B) (D)(C)解答:maxτ发生在1σ成45的斜截面上7、广义胡克定律适用范围,有下列四种答案,正确答案是( C )。

(A)脆性材料;(B)塑性材料;(C)材料为各向同性,且处于线弹性范围内;(D)任何材料;8、三个弹性常数之间的关系:/[2(1)]G E v =+ 适用于( C )。

(A )任何材料在任何变形阶级; (B )各向同性材料在任何变形阶级; (C )各向同性材料应力在比例极限范围内;(D )任何材料在弹性变形范围内。

梁的弯曲正应力实验报告总结

梁的弯曲正应力实验报告总结

梁的弯曲正应力实验报告总结梁的弯曲正应力实验是力学实验中的一项重要实验,通过该实验可以了解梁的弯曲变形规律和弯曲正应力的计算方法。

本文将对梁的弯曲正应力实验进行总结。

一、实验原理梁的弯曲正应力实验是通过在梁上施加一定的弯曲力,使梁发生弯曲变形,然后通过测量梁的变形量和力的大小,计算出梁的弯曲正应力。

梁的弯曲正应力可以用公式σ=M*y/I来计算,其中M为弯矩,y为梁上某一点到中性轴的距离,I为梁的截面惯性矩。

二、实验步骤1. 准备工作:将实验室内的环境调整到稳定状态,准备好实验所需的仪器和材料。

2. 实验装置:将梁放置在实验台上,将弯曲力施加在梁的一端,另一端固定在实验台上。

3. 测量变形量:通过测量梁的变形量,确定梁上某一点到中性轴的距离y。

4. 测量力的大小:通过测量施加在梁上的力的大小,确定弯矩M。

5. 计算弯曲正应力:根据公式σ=M*y/I,计算出梁的弯曲正应力。

三、实验结果通过实验,我们得到了梁的弯曲正应力的计算结果。

在实验中,我们可以通过改变施加在梁上的力的大小和位置,来观察梁的弯曲变形规律和弯曲正应力的变化情况。

实验结果表明,梁的弯曲正应力与施加在梁上的力成正比,与梁的截面惯性矩成反比。

四、实验分析通过梁的弯曲正应力实验,我们可以了解到梁的弯曲变形规律和弯曲正应力的计算方法。

在实际工程中,梁的弯曲正应力是一个非常重要的参数,它可以用来评估梁的强度和稳定性。

因此,对于工程师和设计师来说,了解梁的弯曲正应力的计算方法是非常必要的。

五、实验结论通过本次梁的弯曲正应力实验,我们得到了梁的弯曲正应力的计算结果。

实验结果表明,梁的弯曲正应力与施加在梁上的力成正比,与梁的截面惯性矩成反比。

因此,在实际工程中,我们需要根据梁的实际情况来选择合适的材料和截面形状,以保证梁的强度和稳定性。

梁的弯曲正应力实验是力学实验中的一项重要实验,通过该实验可以了解梁的弯曲变形规律和弯曲正应力的计算方法。

在实际工程中,了解梁的弯曲正应力的计算方法是非常必要的,可以帮助我们评估梁的强度和稳定性,从而保证工程的安全和可靠性。

第六章 弯曲应力(习题解答)

第六章   弯曲应力(习题解答)

6-3、图示矩形截面梁受集中力作用,试计算1-1横截面上a 、b 、c 、d 四点的正应力。

解:(1)外力分析,判变形。

荷载在纵向对称面内,与轴线垂直,梁发生平面弯曲。

中性轴z 轴过形心C 与载荷垂直,沿水平方向。

(2)内力分析,弯矩图如图(b )所示,1-1横截面的弯矩为:1115230(M -=-⨯=-⋅kN m)(3)应力分析,梁上边有弯矩图,上侧纤维受拉。

1-1横截面上的a 点处于拉伸区,正应力为正;c 点处于中性层上,正应力为零;b 、d 两点处于压缩区,正应力为负。

3111111max2301011.1110.1800.36a a zzzM M M y y I I W σ---⨯=⋅=⋅===⨯⨯Pa MPa 。

11.11b a σσ=-=-MPa0c σ= 31133010(0.1500.050)7.4110.1800.312d d zM y I σ-⨯=-⋅=-⨯-=-⨯⨯Pa MPa37M kN V 图(kN)(a)(c)(b)(c)(e)(d)2+q l /8MkN ·m)(f)(b)180q题6-3图 题6-5图6-5、两根矩形截面简支木梁受均布荷载q 作用,如图所示。

梁的横截面有两种情况,一是如图(b)所示是整体,另一种情况如图(c)所示是由两根方木叠合而成(二方木间不加任何联系且不考虑摩擦)。

若已知第一种情况整体时梁的最大正应力为10MPa ,试计算第二种情况时梁中的最大正应力,并分别画出危险截面上正应力沿高度的分布规律图示。

解:(1)外力分析,判变形。

荷载在纵向对称面内,与轴线垂直,梁发生平面弯曲。

第一种情况中性层为过轴线的水平纵向面,中性轴z 轴过整体形心C 与载荷垂直,沿水平方向。

而第二种情况,两根木梁以各自的水平纵向面为中性层发生弯曲,两根中性轴为与荷载垂直的水平形心主轴。

如图所示。

(2)内力分析,判危险面:弯矩图如图(b )所示,跨中截面为危险面。

梁的弯曲正应力实验报告

梁的弯曲正应力实验报告

梁的弯曲正应力实验报告
一、实验目的
本实验旨在通过实验手段,探究梁在弯曲状态下的正应力分布情况,验证理论分析结果,加深对梁弯曲正应力的理解。

二、实验原理
梁的弯曲正应力是指梁在弯曲状态下,截面上的正应力分布情况。

根据弹性力学理论,梁的弯曲正应力与截面的几何形状、材料性质以及外力分布等因素有关。

本实验通过测量梁的弯曲正应力,验证相关理论。

三、实验步骤
1. 准备实验器材:包括梁试件、加载装置、应变计、测量仪器等。

2. 安装应变计:在梁试件的指定位置粘贴应变计,确保粘贴牢固。

3. 加载实验:通过加载装置对梁试件施加弯曲力,记录加载过程中的应变数据。

4. 数据处理:对实验数据进行处理,计算梁截面上的正应力分布。

5. 数据分析:将实验结果与理论分析结果进行比较,分析误差原因。

四、实验结果
通过实验测量,得到梁在弯曲状态下的正应力分布数据如下:
五、数据分析与结论
根据实验结果,我们可以看到梁在弯曲状态下,截面上的正应力分布并不均匀。

在靠近加载点的位置,正应力较大;而在远离加载点的位置,正应力逐渐减小。

这与理论分析结果一致。

同时,实验结果与理论分析结果的误差也在可接受范围内。

通过本实验,我们验证了梁在弯曲状态下的正应力分布规律,加深了对梁弯曲正应力的理解。

同时,实验结果也为我们提供了实际工程中设计梁结构的重要依据。

弯曲应力和强度.

弯曲应力和强度.

第六章 弯曲应力和强度1、 纯弯曲时的正应力 横力弯曲时,0≠=Q dxdM。

,纯弯曲时,梁的横截面上只有弯曲正应力,没有弯曲剪应力。

根据上述实验观察到的纯弯曲的变形现象,经过判断、综合和推理,可作出如下假设: (1)梁的横截面在纯弯曲变形后仍保持为平面,并垂直于梁弯曲后的轴线。

横截面只是绕其面内的某一轴线刚性地转了一个角度。

这就是弯曲变形的平面假设。

(2)梁的纵向纤维间无挤压,只是发生了简单的轴向拉伸或压缩。

(2)物理关系根据梁的纵向纤维间无挤压,而只是发生简单拉伸或压缩的假设。

当横截面上的正应力不超过材料的比例极限P ρ时,可由虎克定律得到横截面上坐标为y 处各点的正应力为y EE ρεσ==该式表明,横截面上各点的正应力σ与点的坐标y 成正比,由于截面上ρE为常数,说明弯曲正应力沿截面高度按线性规律分布,如图所示。

中性轴z 上各点的正应力均为零,中 性轴上部横截面的各点均为压应力,而下部各点则均为拉应力。

(3)静力关系截面上的最大正应力为zI My maxmax =σ 如引入符号m axy I W zz =则截面上最大弯曲正应力可以表达为zW M=max σ 式中,z W 称为截面图形的抗截面模量。

它只与截面图形的几何性质有关,其量纲为[]3长度。

矩形截面和圆截面的抗弯截面模量分别为: 高为h ,宽为b 的矩形截面:621223maxbh h bh y I W zz ===直径为d 的圆截面:3226433maxd d d y I W z z ∏=∏==至于各种型钢的抗弯截面模量,可从附录Ⅱ的型钢表中查找。

若梁的横截面对中性轴不对称,则其截面上的最大拉应力和最大压应力并不相等,例如T 形截面。

这时,应把1y 和2y 分别代入正应力公式,计算截面上的最大正应力。

最大拉应力为:zt I My 1)(=σ 最大压应力为:ze I My 2)(=σ 2、横力弯曲时的正应力zI My=σ 对横力弯曲时的细长梁,可以用纯弯曲时梁横截面上的正应力计算公式计算梁的横截面上的弯曲正应力。

第六章:梁弯曲时的内力和应力

第六章:梁弯曲时的内力和应力
FS FS (x) M M (x)
剪力图和弯矩图:以梁轴线为横坐标,分别以剪力值和弯矩值为纵坐标, 按适当比例作出剪力和弯矩沿轴线的变化曲线,称作剪力图和弯矩图。
剪力、弯矩方程便于分析和计算,剪力、弯矩图形象直观,两者对于解 决梁的弯曲强度和刚度问题都非常重要,四者均是分析弯曲问题的基础。
第三节:剪力图和弯矩图
5-5 截面
FS5 q 2 FB 5.5 kN
1 23 4
5
1 23 4
5
M5 (q 2)1 8 kN m
第三节:剪力图和弯矩图
第三节:剪力图和弯矩图
一、剪力、弯矩方程与剪力、弯矩图
剪力方程和弯矩方程:为了描述剪力与弯矩沿梁轴线变化的情况,沿梁 轴线选取坐标 x 表示梁截面位置,则剪力和弯矩是 x 的函数,函数的解 析表达式分别称为剪力方程和弯矩方程。
M 为常数,即对应弯矩图应为水平直线; 其他两段的弯矩图则均为斜直线。
第三节:剪力图和弯矩图
3)判断剪力图和弯矩图形状 AC、CD、DB 各段梁的剪力图均为水 平直线。在 CD 段,弯矩 M 为常数,对 应弯矩图应为水平直线;其他两段的弯 矩图则均为斜直线。
4)作剪力图和弯矩图
剪力图 弯矩图
第四节:弯曲时的正应力
第一节:梁的计算简图 第二节:弯曲时的内力计算 第三节:剪力图和弯矩图 第四节:弯曲时的正应力 第五节:正应力强度计算 第六节:弯曲切应力 第七节:提高梁弯曲强度的一些措施
第一节:梁的计算简图
第一节:梁的计算简图
一、梁的支座 梁的支座形式:工程中常见的梁的支座有以下三种形式。 1、固定铰支座:如图 a)所示,固定铰支座限制梁在支承处任何方向的 线位移,其支座反力可用两个正交分量表示,即沿梁轴线方向的 FAx 和 垂直于梁轴线方向的 FAy 。

第六章弯曲应力2

第六章弯曲应力2
40 180
120
C 形心 86 z 134
Fb/4
压应力
拉应力
20
y 20
拉应力 C截面 B截面
压应力
可见:压应力强度条件由B截面控制,拉应力 强度条件则B,C截面都要考虑.
Fb/2
40 180
拉应力
120
C 形心 86 z 134
Fb/4 考虑截面B :
20
压应力
y 20
σ t,max
M B y2 F / 2 × 2 × 10 3 mm (86 mm ) = = ≤ 30 MPa 3 4 Iz 5493 × ×10 mm
1
∑X =N
F s S z dM S z τ1 = = dx bI z bI z
由切应力互等定理可知
( M + dM ) S z N1 = Iz
τ1
y
τ
y x
F s S z τ = I zb
σ
σ1
图C
注意:Fs为横截面的剪力;Iz 为整个横截 面对 z 轴的惯性矩;b为所求点对应位置 * 截面的宽度;S z 为所求点对应位置以外 的面积对Z轴的静矩.
M C y1 F / 4 × 2 × 10 3 mm (134 mm ) ≤ 30 MPa = = 4 4 Iz 5493 × 10 mm F ≤ 24.6 kN
拉应力
(
)
因此梁的强度由截面B上的最大拉应力控制
[ F ] = 19.2 kN
例:图示槽型截面梁,Iz=100*106mm4,y1=200mm,y2=50mm, 〔σt〕=45MPa,〔σ c 〕=120MPa.校核梁的强度.
b
3,矩形截面剪应力的分布:
h A* = b( y ) 2

材料力学教案 第6章 弯曲应力

材料力学教案 第6章 弯曲应力

第6章弯曲应力教学目的:在本章的学习中要求熟练掌握梁纯弯曲时横截面上正应力计算公式的推导过程,理解推导过程中所作的假设。

掌握中性层、中性轴等基本概念和含义。

弯曲正应力和剪应力强度条件的建立和相应的计算。

理解横力弯曲正应力计算仍用纯弯曲公式的条件和近似程度。

从弯曲强度条件出发,掌握提高弯曲强度的若干措施。

教学重点:纯弯曲梁横截面上正应力公式的分析推导;横力弯曲横截面上正应力的计算,最大拉应力和最大压应力的计算;弯曲的强度计算;弯曲横截面上的剪应力。

教学难点:弯曲正应力、剪应力推导过程和结果以及弯曲中心的概念。

教具:多媒体。

教学方法:采用启发式教学,通过提问,引导学生思考,让学生回答问题。

教学内容:梁纯弯曲和横力弯曲时横截面上的正应力;梁横力弯曲时横截面上的切应力;提高弯曲强度的若干措施。

教学学时:6学时。

教学提纲:6.1 梁的纯弯曲1、几个基本概念(1)平面弯曲和弯曲中心变形后梁轴线的位移方向沿着加载方向的弯曲情况,称为平面弯曲。

怎样加载才能产生平面弯曲?若梁的横截面有对称平面时,载荷必须作用在对称平面内,才能发生平面弯曲。

若梁的横截面没有对称平面时,载荷的作用线必须通过截面的弯曲中心。

什么叫弯曲中心?当载荷的作用线通过横截面上某一点特定点时,杆件只产生弯曲而无扭转。

这样的特定点称为弯曲中心。

关于弯曲中心位置的确定及工程上常见图形的弯曲中心位置。

①具有两个对称轴或反对称的截面,如工字形、圆形、圆环形、空心矩形截面等,弯曲中心与形心(两对称轴的交点)重合,如图(a),(b),(c)所示。

②具有一个对称轴的截面,如槽形和T形截面,弯曲中心必在对称轴上,如图(d)、(e)所示。

③如果截面是由中线相交于一点的几个狭长矩形所组成,如L形或T形截面,则此交点就是弯曲中心,如图(e)、(f)所示。

④不对称实心截面的弯曲中心靠近形心。

这种截面在荷载作用线通过形心时也将引起扭转,但由于这种截面的抗扭刚度很大,弯曲中心与形心又非常靠近,故通常不考虑它的扭转影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Miy
zE ydA 0
A
E yzdA 0
A
自然满足
I yz
yzdA 0
A
将应力表达式代入(3)式,得
Miz
yE ydA M
A
E y2dA M
A
E
Iz
M
1M
E Iz
EIz ——梁的抗弯刚度 9
第六章 梁的弯曲应力
首页

1 M
EIz
代入
σE y
得到纯弯曲时横截面上正应力的计算公式:
14
第六章 梁的弯曲应力
首页
上一页
下一页
例题: 悬臂梁荷载及几何尺寸如图所示,试求:
(1) 1-1截面上A、B、C、D四点的正应力。
(2) 求梁上最大正应力。
3m 4m
20kNm 15kN 1
A
B CD
1 1m
90 90
A
150
B
30
50 C
x
150
D
y
15
第六章 梁的弯曲应力
首页
上一页
下一页
解:(1) 画出梁的弯矩图
首页
上一页
下一页
4
第六章 梁的弯曲应力
2.提出假设
(a)平面假设:变形前为平面的横截面 变形后仍保持为平面且垂直于变形 后的梁轴线;
(b)单向受力假设:纵向纤维不相互挤 压,只受单向拉压.
首页
上一页
下一页
推论:必有一层变形前后长度不变的纤维—中性层
中性层与横截面的交线,称为中性轴。
中性轴⊥横截面对称轴
5
第六章 梁的弯曲应力
3. 变形几何学方面
l bb bb
l
bb
bb oo
oo
yd d
y d
首页
上一页
下一页
F
F
mn
o
o
yb
b
x
mn
y
x
dx
d
m
M
y o' b' m
n
M
o'
b'
n
6
第六章 梁的弯曲应力
首页
上一页
下一页
§6.3 纯弯曲梁截面上的正应力
1、物理关系
胡克定律 σ Eε M
13
第六章 梁的弯曲应力
首页
上一页
下一页
弯曲问题中,正应力通常是强度计算的主要因素,切应力
是次要因素。
横跨度 l 与横截面高度 h 之比 l / h > 5 (细长梁)时,纯弯曲正应力公式 对于横力弯曲近似成立。
横力弯曲最大正应力
max
M max ymax IZ
x
dx
1、两点假设: 剪应力与剪力平行;
FS(x)+d FS (x) 矩中性轴等距离处,剪应力 相等。
20kNm
3m
15kN 1
A
B CD
4m
1m
1
M (kNm)
25
+ 20
M11 20kN m
16
第六章 梁的弯曲应力
首页
(2) 计算A、B、C、D四点的正应力。
上一页
下一页
M11 20kN m
90 90
A
Iz
bh3 12
180 300 3 12
10 12
150 B
405106 m4
30
σ My Iz
M为梁横截面上的弯矩; y为梁横截面上任意一点到中性轴的距离; Iz为梁横截面对中性轴的惯性矩.
上一页
下一页
10
第六章 梁的弯曲应力
3、最大正应力:
正应力分布
首页
上一页
下一页
中性层 M
ymax
M ymax
max
M Wz
Wz
I z ymax
抗弯截面模量。
11
第六章 梁的弯曲应力
4.93MPa
D
M 11 Iz
yD
7.41MPa
A 7.41MPa 18
第六章 梁的弯曲应力
首页
上一页
下一页
(3) 求最大正应力 对任一截面而言,最大正应力发生
在最上缘或最下缘,对全梁而言,最大 正应力发生在最大弯矩所在面的最上或 最下缘。这个面通常称为“ 危险截 面”。
19
第六章 梁的弯曲应力
第六章 梁的弯曲应力
第六章 梁的弯曲应力
首页
上一页
下一页
第六章 梁的弯曲应力
§6.1 梁的弯曲形式 §6.2 弯曲理论的基本假设 §6.3 纯弯曲梁截面上的正应力 §6.4 横力弯曲梁截面上的应力 §6.5 梁的强度条件 §6.6 提高弯曲强度的措施
2
第六章 梁的弯曲应力
首页
上一页
下一页
§6.1 梁的弯曲形式
)
/(h0
/ 2)
12
第六章 梁的弯曲应力
首页
上一页
下一页
§6.4 横力弯曲梁截面上的应力
6.4.1梁横力弯曲时横截面上的正应力
纯弯曲正应力公式成立的前提:平面假设,纵向纤
维间无挤压。
A
Fs
A
对于横力弯曲,纯弯曲时关于变形的两个假设,均不 成立。剪应力(分布不均匀)的存在对正应力分布规律有影 响。
所以
σE y
z
O
x
应力分布规律:
y
直梁纯弯曲时横截面上任意一点的正应力,与它到中性 轴的距离成正比.
7
第六章 梁的弯曲应力
2、静力关系
横截面上内力系为垂直于横截
面的空间平行力系,这一力系简化 M
得到三个内力分量. 内力与外力相平衡可得
FN
AdFN
σdA 0
A
(1)
M y
AdM y
首页
上一页
下一页
20 +
25 M (kNm)
max
M max Iz
ymax
25 405
10 3 10 6
150
10 3
9.26
10 6
Pa
9.26MPa
最大拉应力在最上缘,最大压应力在最下缘。
20
第六章 梁的弯曲应力
首页
上一页
下一页
6.4.2 梁横力弯曲时横截面上的切应力
y M(x)
FS
一、 矩形截面梁
纯 弯 曲——横截面上只有M、没有FQ的弯曲
剪力弯曲——横截面上既有M、又有FQ的弯曲
F
F
A C
a
F
+
B
D
a
+
F
3
Fa
第六章 梁的弯曲应力
§6.2 弯曲理论的基本假设
1.变形现象
纵向线 各纵向线段弯成弧线, 且靠近顶端的纵向线缩短, 靠近底端的纵向线段伸长.
横向线 各横向线仍保持为直线, 相对转过了一个角度, 仍与变形后的纵向弧线垂直.
zσdA 0 (2)
A
M z
AdMz
yσdA M(3)
A
首页
上一页
下一页
z
O
x
y
dFN σdA
dM y zdA
dMz y dA
8
第六章 梁的弯曲应力
将应力表达式代入(1)式,得
首页
上一页
下一页
y
FN
E dA 0
A
E
A
ydA
0
Sz
ydA 0
A
中性轴通过横截面形心
将应力表达式代入(2)式,得
50 C
x
150
A
M11 Iz
yA
20103 405106
150103
D
y
7.41106 7.41MPa
17
第六章 梁的弯曲应力
首页
上一页
下一页
90 90
A
B 0(在中性轴上)
150
B
C
M 11 Iz
yc
30
50 C
x
150
D
y
20 103 100 10 3 405 10 6
4.93 106
首页
上一页
下一页
常见截面的 IZ 和 WZ
IZ y2dA
A
WZ
IZ y max
空心矩形截面
圆截面 空心圆截面
矩形截面
IZ
d 4
64
WZ
d 3
32
IZ
D4
64
(1
4)
WZ
D3
32
(1
4)
bh3 IZ 12
WZ
bh2 6
IZ
b0h03 12
bh3 12
WZ
( b0 h03 12
bh3 12
相关文档
最新文档