4土中应力

合集下载

4土中应力的计算

4土中应力的计算

4-8, 4-10
4.3 基底压力
基底压力的简化计算
4.3 基底压力的简化计算
一、中心荷载下的基底压力P(kPa)
室内设计地面
F
+0.00
G
+0.00
F
室外设计地面
G
d d
b p
(a)
b
p
(b)
p F G A
d — 基础埋深 (m);必须从设 计地面或室内 外平均设计地 面算起。
F — 作用任基础上的竖向力设计值(kN);
4.3 地基附加应力
竖向集中力作用时的地基附加应力
竖向集中力 P(KN)作用在无 限半空间表面, 任 意 点 M(x 、 y 、 z) 处 的 六 个 应 力分量和三个 位移分量的解 析 解 —— 布 辛 奈斯克解。
4.3 地基附加应力
4.3 地基附加应力
布辛奈斯克解答:
三个正应力:
x

3P x2 z
2

R5

1
2
3

R2 Rz z2 R3(R z)

x2 (2R z)
R3
(R

z)2

y

3P y2z
2

R5

1 2
3

R2 Rz z R3(R z)
2

y2(2R z)
R3
(R

z)2

1
计算时注意地下水位的影响: (1)在地下水位以下,如埋藏有不透水层,由于不透水层中不存在
水的浮力,所以层面及层面以下的自重应力应按上覆土层的水 土总重计算 (2)地下水位位于同一土层中时,地下水位面应作为分层的界面。

土力学-第四章土中应力

土力学-第四章土中应力

γ1 h1 + γ 2h2 + γ′3h3 + γ′4h4 + γw(h3+h4)
天津城市建设学院土木系岩土教研室
4.2.2
成层土中自重应力
土力学
【例】一地基由多层土组成,地质剖面如下图所示,试计算 一地基由多层土组成,地质剖面如下图所示, 并绘制自重应力σcz沿深度的分布图
天津城市建设学院土木系岩土教研室
天津城市建设学院土木系岩土教研室
4.2.4
土质堤坝自身的自重应力
土力学
为了实用方便,不论是均质的或非均质的土质堤坝, 为了实用方便,不论是均质的或非均质的土质堤坝,其自身任 意点的自重应力均假定等于单位面积上该计算点以上土柱的有 意点的自重应力均假定等于单位面积上该计算点以上土柱的有 效重度与土柱高度的乘积。 效重度与土柱高度的乘积。
土体在自身重力、建筑物荷载、交通荷载或其他因素( 土体在自身重力、建筑物荷载、交通荷载或其他因素(渗 地震等)的作用力下,均可产生土中应力。 流、地震等)的作用力下,均可产生土中应力。土中应力过大 会导致土体的强度破坏, 时,会导致土体的强度破坏,使土工建筑物发生土坡失稳或使 建筑物地基的承载力不足而发生失稳。 建筑物地基的承载力不足而发生失稳。 土中应力的分布规律和计算方法是土力学的基本内容之一 自重 应力
p0 = p − σ ch = p − γ m h
在沉降计算中,考虑基坑回弱和再压缩而增加沉降,改取p =p-(0~1)σ 在沉降计算中,考虑基坑回弱和再压缩而增加沉降,改取p0=p-(0~1)σch, 此式应保证坑底土质不发生泡水膨胀。 此式应保证坑底土质不发生泡水膨胀。
式中: 基底平均压力, Pa; σch—基底处土中自重应力,kPa; 基底处土中自重应力, 式中:p—基底平均压力,kPa; 基底平均压力 基底处土中自重应力 kPa; γm—基底标高以上天然土层的加权平均重度,水位以下的取浮重度,kN/m3; 基底标高以上天然土层的加权平均重度, 基底标高以上天然土层的加权平均重度 水位以下的取浮重度, h—从天然地面算起的基础埋深,m,h=h1+h2+…… 从天然地面算起的基础埋深, 从天然地面算起的基础埋深

土力学-土中应力计算

土力学-土中应力计算

(1)地下水位下降情况
水位未降前 scz前=′z
水位下降后
scz后 = z
scz后 scz前
因scz后 scz前 土中有效应力增加
地面沉降
原地下水位 1
变动后地下水位 1′
原自重应力分布曲线
1′
变动后地下水位
1
原地下水位
地下水位变动后的 自重应力分布曲线
2′
2
z
2
2′
z
(2)地下水位上升
地基土和基础的刚度;荷载;基础埋深;地基土性质
基底压力是地基和 基础在上部荷载作 用下相互作用的结 果,受荷载条件、 基础条件和地基条 件的影响
暂不考虑上部结构的影 响,用荷载代替上部结 构,使问题得以简化
•大小
荷载条件: •方向
•分布
基础条件:
• 刚度 • 形状 • 大小 • 埋深
• 土类
地基条件: • 密度
二.水平向自重应力计算
s cx s cy K0s cz
z
K0——侧压力系数
t 0
scz scy
W
scx
F=1
无侧向变形(有侧限)条件下:
scz scx
εx εy 0
σx σy
scy
根据弹性力学中广义虎克定律:
εx
1 E
σx
υ
σy
σz
ch s cx s cy K0s cz
K0
• 土层结构等
1.基础的刚度的影响
柔性基础(EI=0)
Eg.土坝(堤)、路基、油罐等薄板基础、机场跑道。
沉降各处不同, 中央大边缘小
变形地面
反力
基底压力分布与 作用的荷载的分
布完全相同

4土中应力

4土中应力



§4 土中应力
§4.4 地基附加应力 4.4.3 线荷载和条形荷载作用时的地基附加应力
1、线荷载作用时的地基附加应力-弗拉曼解
•由于线荷载沿y坐标无限延伸, 因此与y轴垂直,平行于xoz任 何平面上的应力状态完全相同。 这种情况属于弹性力学平面问 题。 •平面问题只有三个独立的应 力分量
§4 土中应力

Ph

矩形基础:
条形基础:
§4 土中应力 §4.3 基底压力 4.3.3 基底附加压力

基底附加压(应)力是建筑物对基底下地 基产生的应力增量,是引起地基压缩变形 的应力,是计算地基中附加应力的依据。
p 0 p σ ch p γ m h
P——基底压力; σch——基底处土中自重应力,kPa; γm——基底标高以上天然土层的加权平均值;
※b—三角形分布荷载的一边为b。
※p—三角形分布荷载的最大值(基底附加应力)。
§4 土中应力
§4.4 地基附加应力 4.4.2 矩形荷载和圆形荷载作用时的地基附加应力
2. 矩形面积三角形分布荷载角点下的附加应力
对于矩形面积三角形分布荷载不在角点下 的附加应力计算:



(1)仍然要使用 “角点法”。 (2)对基础中心点下的附加应力,可分为相 等的四块,按均布荷载情况一次算出。 (3)对梯形荷载情况,按同样方法解决。
所以在不透水底面的上下可以有两个突变的自 重应力值。
§4 土中应力 §4.2 土中自重应力
4.2.3 地下水位升降时土中自重应力
§4 土中应力 §4.2 土中自重应力
4.2.4 土质堤坝自身的自重应力 (有限构筑物的自重应力)
计算 面
计算 面

4 土力学(stress)土中应力

4 土力学(stress)土中应力
基底标高以上天然土的 加权平均重度 (天然地面起)
桥台前后填土引起的基底附加应力计算
椎体也是填土
4-13 竖向附加应力系数 竖向附加应力系数 (p 94 表4-1)
p02 2 2 H 2
p01 1 1H1
Valentin Joseph Boussinesq (1842-1929) 法国著名物理家和数学家,对数学物理、流体力学和 固体力学都有贡献。
基底 压力 合力 与总 荷载 相等
pmin 0
p max
p max
p max
2P 2P 3KL 3(B 2 e ' )L
e<B/6: 梯形
e=B/6: 三角形
e’>B/6: 出现拉应力区
1)竖向静力平衡
F + G = 基底压力的反力合力Fa
F B Ke x L
K=B/2-e
2)基底压力重新调整后
3K y p min 0
e’ Fa
2(F G) 2(F G) 3KL 3(B 2 e ' )L
p max
注意:
偏心荷载作用下(e>l/6)时,偏心距e’的确定: 错误:e = 力作用点距离中心线的距离 正确:由于e>l/6,因此基底压力重新分布,e’ = M/(F+G)
§4 土中应力
第一节
概述
土中的应力主要包括:土体本身的重量产生的自 重应力;建筑物荷载引起的附加应力;土中渗透 水流引起的渗透应力。本章将只介绍自重应力和 附加应力。
计算地基应力时,一般将地基看作是一个具有水 平界面,深度和广度都无限大的空间弹性体。
§4 土中应力
土中应力符号的规定
zx

土力学1-第4章

土力学1-第4章

• 水平地基中的 自重应力
• 土石坝的自重 应力(自学)
§4.2 土中自重应力
土体的自重应力
定义:在修建建筑物以前,地基中由土体本身 的有效重量而产生的应力
目的:确定土体的初始应力状态
假定:水平地基 半无限空间体 半无限弹性体 有侧限应变条件 一维问题
计算: 地下水位以上用天然容重 地下水位以下用浮容重
§4.3 基底压力
基底压力的 分布形式十
分复杂
基底压力的简化计算
圣维南原理:
基底压力分布的影响仅限于一定深 度范围,之外的地基附加应力只取 决于荷载合力的大小、方向和位置
简化计算方法: 假定基底压力按直线分布的材料力学方法
§4.3 基底压力
基础形状与荷载条件的组合
竖直中心
竖直偏心

F

L
B
pP A
不同将会产生弯矩
条形基础,竖直均布荷载
弹性地基,绝对刚性基础
抗弯刚度EI=∞ → M≠0 基础只能保持平面下沉不能弯曲 分布: 中间小, 两端无穷大
§4.3 基底压力
基底压力的分布
弹塑性地基,有限刚度基础
— 荷载较小 — 荷载较大 — 荷载很大
砂性土地基
粘性土地基
接近弹性解 马鞍型 倒钟型
地面
1 h1
2 h2 地下水 z
2 h3 cy
cz cx
原水位
1h1
cz
2h2
2h3
z
水位下降
讨论题
1、地下水位的升降是否会引起土中自重应力的变化?
地面
1 h1
2 h2 原水位 z
3 h3 cy
cz cx
地下水
1h1

4土中应力(自重-地基附加应力)

4土中应力(自重-地基附加应力)

水对土体有浮力作用,则下部 分柱体取有效重度,即
cz ( w ) z ' z
当地下水位下降,地基中有效自重应力增加,从而引起地面
大面积沉降的严重后果
当地下水位上升时,水位上升引起地基承载力的减小,湿陷
性土的陷塌
原地下水位
1’
1 1
1’
原地下水位
2’
2
2
2’
4.不透水层的影响
四、公式的应用
1.均质地基土的自重应力stress in homogeneous soil
cz Z
2.成层地基土的自重应力
当地基为成层土体时,设各土层 的厚度为hi,重度为i,则在深度z处 土的自重应力计算公式为:
式中n为从天然地面到深度z处的 土层数。
3.地下水的影响
计算点在地下水位下时,由于
不透水层层面的自重应力按上覆土层的水土总重计算
5.自重应力图的绘制 ① 建立直角坐标系 ② 确立特征点并编号 (地面、层面、 地下水位面、不透水层层面)
③ 计算各点的竖向自重应力
④ 按比例绘出特征点自重应力的位置 ⑤ 用直线连接各点 ⑥ 校核 (地下水位处,不透水层处)
§4.3 基底压力
一、概述
土力学中应力符号的规定
z
zx
地基:半无限空间
o
∞ x ∞
y yz
xy
x
∞ y
z
x xy xz ij = yx y yz zx zy z
一. 土力学中应力符号的规定
zx
材料力学
z +
正应力
剪应力
-
zx
土力学
z

《土力学》第四章习题集及详细解答

《土力学》第四章习题集及详细解答

《土力学》第四章习题集及详细解答第4章土中应力一填空题1。

土中应力按成因可分为和 .2。

土中应力按土骨架和土中孔隙的分担作用可分为和。

3.地下水位下降则原水位出处的有效自重应力。

4。

计算土的自重应力应从算起。

5。

计算土的自重应力时,地下水位以下的重度应取。

二选择题1.建筑物基础作用于地基表面的压力,称为( A ).(A)基底压力;(B)基底附加压力;(C)基底净反力;(D)附加应力2.在隔水层中计算土的自重应力c时,存在如下关系( B ).(A) =静水压力(B) =总应力,且静水压力为零(C) =总应力,但静水压力大于零(D)=总应力—静水压力,且静水压力大于零3.当各土层中仅存在潜水而不存在毛细水和承压水时,在潜水位以下的土中自重应力为( C ).(A)静水压力(B)总应力(C)有效应力,但不等于总应力(D)有效应力,但等于总应力4.地下水位长时间下降,会使( A )。

(A)地基中原水位以下的自重应力增加(B)地基中原水位以上的自重应力增加(C)地基土的抗剪强度减小(D)土中孔隙水压力增大5.通过土粒承受和传递的应力称为( A ).(A)有效应力;(B)总应力;(C)附加应力;(D)孔隙水压力6.某场地表层为4m厚的粉质黏土,天然重度=18kN/m3,其下为饱和重度sat=19 kN/m3的很厚的黏土层,地下水位在地表下4m处,经计算地表以下2m处土的竖向自重应力为( B )。

(A)72kPa ; (B)36kPa ;(C)16kPa ;(D)38kPa7.同上题,地表以下5m处土的竖向自重应力为( A ).(A)91kPa ; (B)81kPa ;(C)72kPa ;(D)41kPa8.某柱作用于基础顶面的荷载为800kN,从室外地面算起的基础深度为1。

5m,室内地面比室外地面高0.3m,基础底面积为4m2,地基土的重度为17kN/m3,则基底压力为( C ).(A)229.7kPa ;(B)230 kPa ; (C)233 kPa ;(D)236 kPa9.由建筑物的荷载在地基内产生的应力称为( B ).(A)自重应力;(B)附加应力;(C)有效应力;(D)附加压力10.已知地基中某点的竖向自重应力为100 kPa,静水压力为20 kPa,土的静止侧压力系数为0。

第4章土中的应力和有效应力原理

第4章土中的应力和有效应力原理

淤泥层底 cz 1z1 2z2 3z3 4z4 41.05 16.7-107 87.95kN / m2
kN/m2 7.85 16.75
粉 质 黏 土 层 底 σcz = γ1z1 + γ2z2 + γ′3 z3
= 16.75 + (18.1-10) ×3 = 41.05k N/ m2
• 4.1 土自重应力的计算 • 4.2 基底压力的计算 • 4.3 荷载作用下地基附加应力计算 • 4.4 有效应力原理
土体中应力的方向: 法向应力:压应力为正,拉应力为负; 剪应力:逆时针方向为正,顺时针方向为负。 土体单轴压缩试验应力——应变曲线
§ 4.1 土自重应力的计算
一、竖向自重应力
§ 4.2 基础底面压力
分析地基中 应力、变形 及稳定性的 外荷载
基地压力:建筑荷载在基础底
面上产生的压应力,即基础底 面与地基接触面上的压应力。
计算基础结 构内力的外
荷载
地基反力:地基支撑基础
的反力。
基底附加应力
大小相等、 方向相反的 作用力与 反作用力
基底压力 分布规律
基底压力 简化计算
重要的工程意义
5 2 dxdy
s

p 2
arctan
n
m
m2 n2 1
mn

1
m2 n2 1 m2 n2

1

n2 1
z Kc p
Kc

1
2

arctan

n
m

m2 n2 1
m2
mn n
2
荷载

土中应力

土中应力
w : 水的重度
(2)当位于地下水位以下的土为坚硬不透水层,在坚硬不透水层土中只含有 结合水,计算不透水层顶面及以下的自重应力时按上覆土层的水重总量计算。即 采用饱和容重计算。
4.2.2 成层土中自重应力
cz
cz
1h1
1h1 2h2
1h1 2h2 3h3
wh3

2 (830 103.5) 3 0.861.5
482.4(kPa)
F+G
F=830kN
室内
M
0.6m
G
0.7m
e
pmax 3k=2.5m
b=1.5m l=3m
矩形基础在双向偏心荷载作 用下,若 pmin 0
则矩形基底边缘四个角点 处的压力可由下式计算
F+G y
My
x
Mx
b
l
pm pm
集中力时地基中任意点的应力和位移解
半空间表面
布辛奈斯克解
假设地基土为弹性半空间体
x
P
y
M(x、y、z)
z
4.4.1 竖向集中力作用时的地基附加应力
1. 布辛奈斯克解
p
o
αr
x y
x
M′
R θz
z
zx
y
M
xy
x
z
y yz
x y z xy yz
z

3p 2

z3 R5

3p 2z 2
(r 2
z5 z2)5/2

3 2

(r
/
1 z)2 1)
5/2

p z2

土中应力计算的方法

土中应力计算的方法

力分布状况。
只有掌握了土中应力的计算方法和土中应力的分布规律,才 能正确运用土力学的基本原理和方法解决地基变形、土体稳 定等问题。因此,研究土中应力分布及计算方法是土力学的 重要内容之一。
二、土中应力计算的方法
目前计算土中应力的方法,主要是采用弹性理论,也就是把
地基土视为均质的、连续的、各向同性的半无限空间线弹性
一、基底压力的实际分布规律
1.柔性基础 若一个基础作用着均布荷载,并假设基础是由许多小块组成, 如下图所示,各小块之间光滑而无摩擦力,则这种基础即为 理想柔性基础(即基础的抗弯刚度),基础上的荷载通过小 块直接传递到地基土上,基础随着地基一起变形,基底压力 均匀分布,但基础底面的沉降则各处不同,中央大而边缘小。
四、土中应力的种类
(1)自重应力:由土体重力引起的应力称为自重应力。自重应 力一般是自土形成之日起就在土中产生,因此也将它称为长 驻应力。
(2)附加应力: 由于外荷载(如建筑物荷载、车辆荷载、土中水的渗透力、 地震力等)的作用,在土中产生的应力增量。
自重应力存在于任何土体中,附加应力则存在于受荷载影响
在土中任取一单元体,如下图所示。 作用在单元体上的
3个法向应力(正
应力)分量分别为 ,六个剪应力分量 分别为。剪应力的 脚标前面一个表示 剪应力作用面的法 线方向,后一个表示剪应力的作用方向。
应特别注意的是,在土力学中法向应力以压应力为正,拉应 力为负,这与一般固体力学中的符号规定有所不同。剪应力 的正负号规定是:以外法线与坐标轴方向一致的面为正面, 反之为负面;在正面上剪应力与坐标方向相反者为正,反之 为负;在负面上剪应力与坐标方向相同者为正,反之为负。
的那部分土层中。
修建建筑物前,土中应力属于自重应力;修建建筑物后,

4土中应力(自重-地基附加应力)解析

4土中应力(自重-地基附加应力)解析

F
实际情况
F
基底附加压力在数 值上等于基底压力 扣除基底标高处原 有土体的自重应力
d
p0
p
0
d
基底附加压力
p0 p 0 d
自重应力
基底压力呈梯形分布时, 基底附加压力
p0 m a x p0 m in
pm a x pm in
0d
注意
❖因为基础具有一定的埋深,弹性力学解答具有近似性。 ❖ 基坑平面尺寸和深度较大时,坑底回弹是明显的,在沉降 计算中,为了适当考虑这种坑底回弹和再压缩增加沉降,取
若基础底面的形状或分布荷载都是有规律时,用积分法。
dA dd dF p(x, y)dd
( 3 )圆形面积上作用均布荷载时,土中附加应力的计算
z r p0
r f (z / r0 )
additional stress induced by uniform circular load
条形均布荷载下地基中的应力分布规律
土力学中应力符号的规定
z
zx
地基:半无限空间
xy
x
o

y yz
x

y z

ij=
x xy xz yx y yz
zx zy z
一. 土力学中应力符号的规定
- zx
z
+
材料力学
xz
x
z
- zx +
土力学
xz
x
正应力
剪应力
拉为正 顺时针为正 压为负 逆时针为负
压为正 逆时针为正 拉为负 顺时针为负
e>l/6
e=l/6
pmin=0
基底ቤተ መጻሕፍቲ ባይዱ力重分布

土力学课程讲解第4章

土力学课程讲解第4章

土力学
厦门大学
土木系
29
P 解:(1) σ Z = α ⋅ 2 Z
z=2, r=0,1,2,3,4m,α 查表可知,求σz后绘出图 (2)同理,r=0, z=0,1, 2,3,4m,求出σz后绘出图 (3)反算
【例4-3】解答
土力学
厦门大学
土木系
30
二、矩形面积受竖向均布荷载的 地基附加应力
1 矩形均布荷载角点下的应力 积分法求矩形荷载面角点下的地 基附加应力。
一、基底压力
1 中心荷载作用下基底压力 2 偏心荷载作用下基底压力
二、基底附加应力
土力学
厦门大学
土木系
16
二、基底附加压力
作用在基础底面的压力与基地处建前土自重应力之差。
p 0 = p − σ ch = p − γ m h
土力学
厦门大学
土木系
17
二、基底附加压力
卸荷应力、变形:卸荷理论涉及岩土介质的本构关系、 卸荷原理、卸荷过程,分析计算方法等,目前在理论 上还很不完善,工程应用不广泛,只在大型工程中由 大的科研机构承担一些探索性的研究。
(3)O点在荷载面边缘外侧 σZ=(αCⅠ﹣αCⅡ+αCⅢ﹣αCⅣ)po e Ⅳ o h Ⅱ a g d c abcd可看Ⅰ由(ofbg)与Ⅱ (ofah)之差和Ⅲ(oecg) 与Ⅳ(oedh)之差合成
f
b 厦门大学 土木系
34
土力学
二、矩形面积受竖向均布荷载的 地基附加应力
(4)O点在荷载面角点外侧 σZ=(αCⅠ﹣αCⅡ﹣αCⅢ﹢αCⅣ)po e d c 荷载面由Ⅰ(ohce),Ⅳ (ogaf)两个面积中扣除 Ⅱ(ohbf)和Ⅲ(ogde)
土力学
厦门大学

4 土中应力计算

4 土中应力计算
i 1
8
z 10m :
z zi 4 0.045 0.047 0.368kPa
i 1
8
第五节 竖向分布荷载作用下 土中应力计算
分布荷载作用下土中应力计算
• 在基底范围取元素 面积dF,作用在 元素面积上的分布 集中力可以用集中 力dQ表示。
dF d d dQ p( , )d d
第四章 土中应力计算
第一节 概述
• 土中应力:是指土体在自身重力、构筑 物荷载以及其它因素(土中水渗流、地 震等)作用下,土中所产生的应力。土 中应力包括自重应力与附加应力。 • 计算方法:主要采用弹性力学公式,也 就是把地基土视为均匀的、各向同性的 半无限弹性体。
土的应力-应变关系
• 连续介质问题 • 线性弹性体问题 • 均质、等向问题
• 某建筑场地 的地质柱状 图和土的有 关指标列于 图中。计算 地面下深度 为2.5m、 3.6m、 5.0m、 6.0m、 9.0m 处的自重应 力,并绘出 分布图。
例 题 4.1
例 题4.2
• 计算绘制地基中自重应力沿深度分布曲线。
第三节 基础底面的 压力分布与计算
基础底面压力分布的概念
• 接触压力问题及其 影响因素:基础刚 度、尺寸、埋深、 土性、荷载大小
• 绝对柔性基础 • 柔性基础 • 刚性基础
基础底面压力分布的概念
• 刚性基础:基础各点的沉降是相同的,基 底压力分布随荷载的增大依次呈马鞍形分 布、抛物线形分布及钟形分布。
接触压力计算方法
• 简化方法——材料力学轴心和偏心受 压公式 • 弹性地基上的梁板理论——弹性力学 理论,考虑基础刚度的影响
例题 4.7
某基础为方形,基础 深度范围内土的重度 γ=18kN/m3,试计算 基础最大压力边角下 深度z=2m处的附加 应力。

《土力学》第四章练习题及答案

《土力学》第四章练习题及答案

《土力学》第四章练习题及答案第4章 土中应力一、填空题1.1.由土筑成的梯形断面路堤,因自重引起的基底压力分布图形是由土筑成的梯形断面路堤,因自重引起的基底压力分布图形是由土筑成的梯形断面路堤,因自重引起的基底压力分布图形是 形,桥梁墩台形,桥梁墩台等刚性基础在中心荷载作用下,基底的沉降是等刚性基础在中心荷载作用下,基底的沉降是 的。

的。

的。

2.2.地基中附加应力分布随深度增加呈地基中附加应力分布随深度增加呈地基中附加应力分布随深度增加呈 减小,同一深度处,在基底减小,同一深度处,在基底减小,同一深度处,在基底 点下,点下,附加应力最大。

附加应力最大。

3.3.单向偏心荷载作用下的矩形基础,当偏心距单向偏心荷载作用下的矩形基础,当偏心距e > l /6时,基底与地基局部时,基底与地基局部 ,,产生应力产生应力 。

4.4.超量开采地下水会造成超量开采地下水会造成超量开采地下水会造成 下降,其直接后果是导致地面下降,其直接后果是导致地面下降,其直接后果是导致地面 。

5.5.在地基中同一深度处,在地基中同一深度处,水平向自重应力数值水平向自重应力数值 于竖向自重应力,于竖向自重应力,随着深度增大,水平向自重应力数值向自重应力数值 。

6.在地基中,矩形荷载所引起的附加应力,其影响深度比相同宽度的条形基础其影响深度比相同宽度的条形基础,,比相同宽度的方形基础同宽度的方形基础 。

7.上层坚硬、下层软弱的双层地基,在荷载作用下,将发生应力 现象,反现象,反之,将发生应力之,将发生应力 现象。

现象。

现象。

二、名词解释1.1.基底附加应力基底附加应力基底附加应力2. 2. 2.自重应力自重应力自重应力3. 3. 3.基底压力基底压力基底压力4. 4. 4.地基主要受力层地基主要受力层地基主要受力层三、简答题1. 1. 地基附加应力分布规律有哪些?地基附加应力分布规律有哪些?地基附加应力分布规律有哪些?四、单项选择题1.1.成层土中竖向自重应力沿深度的增大而发生的变化为成层土中竖向自重应力沿深度的增大而发生的变化为成层土中竖向自重应力沿深度的增大而发生的变化为 :(A ) 折线减小折线减小(B ) 折线增大折线增大(C ) 斜线减小斜线减小(D ) 斜线增大斜线增大您的选项(您的选项( )2.2.宽度均为宽度均为b ,基底附加应力均为p 0的基础,同一深度处,附加应力数值最大的是:的基础,同一深度处,附加应力数值最大的是:(A ) 方形基础方形基础(B ) 矩形基础矩形基础(C ) 条形基础条形基础(D ) 圆形基础(圆形基础(b b 为直径)为直径)您的选项(您的选项( )3.3.可按平面问题求解地基中附加应力的基础是:可按平面问题求解地基中附加应力的基础是:可按平面问题求解地基中附加应力的基础是:(A ) 柱下独立基础柱下独立基础(B ) 墙下条形基础墙下条形基础(C ) 片筏基础片筏基础(D ) 箱形基础箱形基础您的选项(您的选项( )4.4.基底附加应力基底附加应力p 0作用下,地基中附加应力随深度Z 增大而减小,增大而减小,Z Z 的起算点为:的起算点为:(A ) 基础底面基础底面(B ) 天然地面天然地面(C ) 室内设计地面室内设计地面 (D ) 室外设计地面室外设计地面您的选项(您的选项( )5.5.土中自重应力起算点位置为:土中自重应力起算点位置为:土中自重应力起算点位置为:(A ) 基础底面基础底面(B ) 天然地面天然地面(C ) 室内设计地面室内设计地面(D ) 室外设计地面室外设计地面 您的选项(您的选项( )6.6.地下水位下降,土中有效自重应力发生的变化是:地下水位下降,土中有效自重应力发生的变化是:地下水位下降,土中有效自重应力发生的变化是:(A ) 原水位以上不变,原水位以下增大原水位以上不变,原水位以下增大(B ) 原水位以上不变,原水位以下减小原水位以上不变,原水位以下减小(C ) 变动后水位以上不变,变动后水位以下减小变动后水位以上不变,变动后水位以下减小(D ) 变动后水位以上不变,变动后水位以下增大变动后水位以上不变,变动后水位以下增大您的选项(您的选项( )7.7.深度相同时,随着离基础中心点距离的增大,地基中竖向附加应力:深度相同时,随着离基础中心点距离的增大,地基中竖向附加应力:深度相同时,随着离基础中心点距离的增大,地基中竖向附加应力:(A ) 斜线增大斜线增大(B ) 斜线减小斜线减小(C ) 曲线增大曲线增大(D ) 曲线减小曲线减小您的选项(您的选项( )8.8.单向偏心的矩形基础,当偏心距单向偏心的矩形基础,当偏心距e < /6/6((为偏心一侧基底边长)时,基底压应力分布图简化为:图简化为:(A ) 矩形矩形(B ) 梯形梯形(C ) 三角形三角形(D ) 抛物线形抛物线形您的选项(您的选项( )9.9.宽度为宽度为3m 的条形基础,作用在基础底面的竖向荷载N =1000kN/m 1000kN/m ,偏心距,偏心距e =0.7m 0.7m,基,基底最大压应力为:底最大压应力为:(A ) 800 kPa(B ) 417 kPa(C ) 833 kPa(D ) 400 kPa您的选项(您的选项( )10.10.埋深为埋深为d 的浅基础,基底压应力p 与基底附加应力p 0大小存在的关系为:大小存在的关系为:(A ) p < p 0(B ) p = p 0(C ) p = 2p 0(D ) p > p 0您的选项(您的选项( )11.11.矩形面积上作用三角形分布荷载时,地基中竖向附加应力系数矩形面积上作用三角形分布荷载时,地基中竖向附加应力系数K t 是/b /b、、z/b 的函数,的函数,b b指的是:指的是:(A ) 矩形的长边矩形的长边(B ) 矩形的短边矩形的短边 (C ) 矩形的短边与长边的平均值矩形的短边与长边的平均值(D ) 三角形分布荷载方向基础底面的边长三角形分布荷载方向基础底面的边长您的选项(您的选项( )12.12.某砂土地基,天然重度某砂土地基,天然重度g =18 kN/m 3,饱和重度g sat =20 kN/m 3,地下水位距地表2m 2m,地表,地表下深度为4m 处的竖向自重应力为:处的竖向自重应力为:(A ) 56kPa(B ) 76kPa (C ) 72kPa(D ) 80kPa您的选项(您的选项( )13. 均布矩形荷载角点下的竖向附加应力系数当l /b /b==1、Z/b Z/b==1时,K C =0.17520.1752;;当l /b /b==1、Z/b Z/b==2时,时,K K C =0.0840.084。

第4章 土中应力计算

第4章 土中应力计算
z
3 pz 2
3
r
R 2 2

0
2

( r 2 r cos z )
2 5/ 2
1
0
d d
z
c p
c —应力系数,是(r/R)及(z/R)的函数
查表4-6,4-7
2.矩形面积均布荷载作用
(1) 矩形面积中点0下土中竖向应力计算
dP pdxdy
d z
W.T.
1 h 1 + 2 h 2
1 h1 + 2h2 + 3h3
1.地下水位以上土层采用天 然重度,地下水位以下土层采 用浮重度。 2.分层地基中自重应力沿深 度呈折线分布。 3. 地下水位以下埋藏有不透 水层,不存在水的浮力,自重 应力应按上覆土层的水土总重 计算。
3. 地下水位以下情况 的进一步讨论
K e
L x 3K y L
p min 0
应力重分布 结果 反力 = 荷载
p max
e=B/6: 三角形
K=B/2-e
p max
e>B/6: 拉力??
p max
2P 3KL
基底压力重分布
F+G
偏心荷载大小与基底压力的合力 相等 偏心荷载作用线与基底压力的合 pmax 力作用线重合
e L
F G
2 2 2

o
x
x
z
zx yz y
R
xy x
y
z
2 2 2
R r z x y z
(P;x,y,z;R, α, β)
布辛涅斯克解答
竖向应力

z

3 r 2 1 z

第4章 土中应力

第4章 土中应力
19×3=57.0kPa 57+10.5×2.2=80.1kPa 80.1+9.2×2.5=103.1kPa 103.1+10×4.7=150.1kPa 150.1+22×2=194.1kPa
§4.2 土中自重应力
例4-2:某地基土层情况及其物理性质指标如图所示, 试计算a,b,c3个点处的自重应力σz度(m)。
则基底压力p按下式计算:
§4.3 基底压力
2.偏心荷载下的基底压力
对于单向偏心荷载下的矩形基础
(如图),通常基底长边方向和偏心
方向一致,基底两边缘的最大、最小
压力pmax、pmin按下式计算:
pmax
pm
in
F G lb
M W
式中:M - 作用于的矩形基础底面的力矩,kN m;
§4.1 概 述
(3)土体可视为半无限体 所谓半无限体就是无限空间体的一半。即该物 体在水平方向是无限延伸的,而在竖直方向仅在向 下的方向是无限延伸的,向上的方向为零。地基土 在水平方向和深度方向相对于建筑物地基的尺寸而 言,可认为是无限延伸的。因此,可以认为地基土 体是符合半无限体的假定。
§4.1 概 述
§4.3 基底压力
荷载条件 基底压力分布
地基条件
•大小 •方向 •分布
基础条件
•土类 •密度 •土层结构等
•刚度 •形状 •大小 •埋深
§4.3 基底压力
1. 基础刚度的影响 基础刚度是指其抗弯刚度,基础按刚度可划分 为如下三种类型: (1)柔性基础 柔性基础刚度很小,在荷载作用下,基础的变 形与地基的变形一致,如土坝、土堤、路基等土工 建筑物,其基底压力分布和大小与作用在基底上的 荷载分布和大小相同。
§4.4 地基附加应力
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章 土中应力4.1 概 述土中应力按其起因分为:自重应力和附加应力。

自重应力——由土体本身有效重量产生的应力称为自重应力。

两种情况:(1)在自重作用下已经完成压缩固结,自重应力不再引起土体或地基的变形;(2)土体在自重作用下尚未完成固结,它将引起土体或地基的变形。

自重压力——土中竖向自重应力 附加压力——土中竖向附加应力某点总应力=土中某点的自重应力+附加应力4.2 土中自重应力自重应力:由土体本身有效重量产生的应力称为自重应力。

一般而言,土体在自重作用下,在漫长的地质历史上已压缩稳定,不再引起土的变形(新沉积土或近期人工充填土除外)。

一、竖直向自重应力自重应力——土体初始应力,指由土体自身的有效重力产生的应力。

假定⎩⎨⎧平面均不存在剪应力土体中所有竖直面和水无限弹性体土体具有水平表面的半1、竖直自重应力cz σ(称为自重应力,用c σ表示)设地基中某单元体离地面的距离z ,土的容重为γ,则单元体上竖直向自重应力等于单位面积上的土柱有效重量,即z cz ⋅=γσ可见,土的竖向自重应力随着深度直线增大,呈三角形分布。

注:(1)计算点在地下水为以下,由于水对土体有浮力作用,则水下部分土柱的有效重量应采用土的浮容重'γ或饱和容重sat γ计算;① 当位于地下水位以下的土为砂土时,土中水为自由水,计算时用'γ。

② 当位于地下水位以下的土为坚硬粘土时0<L I ,在饱和坚硬粘土中只含有结合水,计算自重应力时应采用饱和容重。

③ 水下粘土,当L I ≥1时,用'γ。

④ 如果是介乎砂土和坚硬粘土之间的土,则要按具体情况分析选用适当的容重。

(2)自重应力是由多层土组成,注意分层计算【思考】为何要如此假设? 对于天然重度为γ 的均质土:z cz γσ=对于成层土,并存在地下水:ini i n n cz h h h h ∑==+⋅⋅⋅++=12211γγγγσ式中 :i γ――第i 层土的重度,kN/m 3,地下水位以上的土层一般采用天然重度,地下水位以下的土层采用浮重度,毛细饱和带的土层采用饱和重度.注意:① 在地下水位以下,若埋藏有不透水层(如基岩层、连续分布的硬粘性土层),不透水层中不存在水的浮力,层面及层面以下的自重应力按上覆土层的水土总重计算;② 新近沉积的土层或新近堆填的土层,在自重应力作用下的变形尚未完成,还应考虑它们在自重应力作用下的变形。

【课堂讨论】地下水位的升降是否会引起土中自重应力的变化?——地下水位的升降会引起土中自重应力的变化,例如,大量抽取地下水造成地下水位大幅度下降,使原水位以下土体中的有效应力增加,造成地表大面积下沉。

二、水平向自重应力根据弹性力学广义虎克定律和土体的侧限条件,推导得cz cy cz K σσσ0==式中 K 0――土的静止侧压力系数(也称静止土压力系数)。

4.3 基底压力一、基本概念基底压力——建筑物上部结构荷载和基础自重通过基础传递给地基,作用于基础底面传 至地基的单位面积压力,又称接触压力。

基底反力——基底压力的反作用力即地基土层反向施加于基础底面上的压力。

影响基底压力的分布和大小的因素⎪⎪⎩⎪⎪⎨⎧基础的埋深,好坏)地基土性质(力学性质荷载(大小、分布)基础(大小、刚度)⑴ 对于刚性很小的基础和柔性基础,其基底压力大小和分布状况与作用在基础上的荷载大小和分布状况相同。

(因为刚度很小,在垂直荷载作用下几乎无抗弯能力,而随地基一起变形)。

⑵ 对于刚性基础:其基底压力分布將随上部荷载的大小,基础的埋置深度和土的性质而异。

如:砂土地基表面上的条形刚性基础,由于受到中心荷载作用时,基底压力分布呈抛物线,随着荷载增加,基底压力分布的抛物线的曲率增大。

这主要是散状砂土颗粒的侧向移动导致边缘的压力向中部转移而形成的。

又如粘性土表面上的条形基础,其基底压力分布呈中间小边缘大的马鞍形(如图),随荷载增加,基底压力分布变化呈中间大边缘小的形状。

二、基底压力的简化计算 1. 中心荷载作用下的基底压力当基础宽度不太大,而荷载较小的情况下,基底压力分布近似按直线变化考虑,根据材料力学公式进行简化计算,即AG F p += ,kPa 。

G ——基础自重及其上回填土重的总重,Ad G G γ=,G γ为平均重度,一般取3/20m KN ,d 为基础埋深对于荷载沿长度方向均匀分布的条形基础,则沿长度方向截取1m 的基底面积来计算,单位为kN /m 。

2.偏心荷载作用下的基底压力 (1)单向偏心荷载设计时,通常基底长边方向取与偏心方向一致,两短边边缘应力按下式计算:WM bl G F p p ±+=minmaxW ——基础底面的抵抗矩,62bl W =l ——矩形基底的长度;b ——矩形基底的宽度。

又GF Me +=得 ⎪⎭⎫⎝⎛±+=l e bl G F p p 61minmax讨论:当6le <时,基底压力呈梯形分布; 当6le =时,基底压力呈三角形分布;当6le >时,基底压力0min <p ,表明基底出现拉应力,此时,基底与地基间局部脱离,而使基底压力重新分布。

注意:一般而言,工程上不允许基底出现拉力,因此,在设计基础尺寸时,应使合力偏心矩满足 ① ble <的条件,以策安全。

② 为了减少因地基应力不均匀而引起过大的不均匀沉降,通常要求:0.3~5.1minmax≤P P ;对压缩性大的粘性土应采取小值;对压缩性小的无粘性土,可用大值。

当计算得到P min <0时,一般应调整结构设计和基础尺寸设计,以避免基底与地基间局部脱离的情况。

对作用于建筑物上的水平荷载,计算基底压力时,通常按均匀分布于整个基础底面计算。

(2)双向偏心荷载当矩形基础上作用着竖直偏心荷载P 时,则任意点的基底压力,可按材料力学偏心受压的公式进行计算:y yx x W M W M A G F p p ±±+=min max yyx x W M W M A G F p p ±±+=21 x M 、y M ——荷载合力分别对矩形基底x 、y 对称轴的力矩;x W 、y W ——基础底面分别对x 、y 轴的抵抗矩。

【小结】1.非均质土中自重应力沿深度呈折线分布;2.自重应力分布在重度变化的土层界面和地下水位面上发生转折; 3.自重应力分布在不透水层面处发生突变; 4.地下水位下降会引起自重应力增加。

5.中心、偏心荷载作用下的基底压力计算。

三、基底附加压力基底附加压力——作用在基础底面的压力与基底处建前土中自重应力之差,即导致地基中产生附加应力的那部分基底压力。

如,作用于地基表面,由于建造建筑物而新增加的压力。

基底附加压力在数值上等于基底压力扣除基底标高处原有土体的自重应力。

即 基底压力均匀分布时:d P P P m ch γσ-=-=0ch σ——基底处土中自重应力,kPa ;m γ——基底标高以上天然土层的加权平均重度;)/()(212211 ++++=h h h h γγγ ,其中地下水位下的重度取有效重度,3/m KN一般,为了考虑坑底的回弹和再压缩而增加沉降,取ch P P σ)10(0---=基底压力呈梯形分布时,基底附加压力为:d P P P P m γ-=minmaxmin 0max 0 式中 P 0――基底附加压力设计值,kPa ;P ――基底压力设计值,kPa ;d ――从天然地面起算的基础埋深,m 。

4、4 地基附加应力附加应力——新增外加荷载在地基土体中引起的应力。

地基附加应力主要是针对竖向正应力z σ而言。

假定——地基土是连续、均匀、各项同性的半无限完全弹性体。

空间问题——附加应力是三维坐标x 、y 、z 的函数; 平面问题——附加应力是二维坐标x 、z 的函数。

一、竖向集中力下的地基附加应力 1. 布辛奈斯克解(略)如图3-13,当半无限弹性体表面上作用着竖直集中力p 时,弹性体内部任意点M 的六个应力分量zx xz zy yz yx xy z y x ττττττσσσ===,,,,,,由弹性理论求出的表达式为:⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++-+---+⋅=23232252)()2()(32123Z R R Z R x Z R R z Rz R R Z X p x μπσ ⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++-+---+⋅=23232252)()2()(32123Z R R Z R y Z R R z Rz R R Z Y p y μπσ 5323R Z p z ⋅=πσ⎥⎦⎤⎢⎣⎡++⋅-+⋅==235)()2(32123Z R R Z R xy R xyz p yx xy μπττ 5223R yz p yzzy ⋅==πττ-5223Rxz p xz zx ⋅==πττ-⎥⎦⎤⎢⎣⎡+--+=)()21(2)1(3Z R R xR xz E P u μπμ ⎥⎦⎤⎢⎣⎡+--+=)()21(2)1(3Z R R yR yz E P v μπμ ⎥⎦⎤⎢⎣⎡--+=R R z E P 1)1(22)1(32μπμω式中:z y x σσσ,,——x,y,z 方向的法向应力zy xz xy τττ,,——剪应力μ——土的泊松比R ——M 点至坐标原点o 的距离22222z r z y x R +=++=u 、v 、ω——M 点沿坐标轴z y x ,,方向的位移。

上式为著名的布辛奈斯克(Boussinesq )解答,它是求解地基中附加应力的基本公式。

对于土力学来说,z σ具有特别重要的意义,它是使地基土产生压缩变形的原因。

2. 等代荷载法22z r R +=,则22/52253)(112323z p z r z p R z p z ⋅=⎥⎦⎤⎢⎣⎡+⋅⋅=⋅=αππσα——集中力作用下的地基竖向附加应力系数,简称集中应力系数,按z r /值由表查用。

2/52)(1123⎥⎦⎤⎢⎣⎡+⋅=z r πα 若干个竖向集中力时,分别求出各集中力对该点所引起的附加应力,然后进行叠加,即:ini i n n z Pzz p z p z p ∑==+++=1222222111αααασ式中:n ααα ,,21分别为集中力n p p p ,,,21 作用下的竖向应力分布函数。

竖直集中力作用下的竖向应力分布函数,它是zr的函数;可由图和表中查得。

(1)在集中力作用线上(即223,23,0zp r z ⋅===πσπα),附加应力z σ随着深度z 的增加而递减;(2)离集中力作用线某一距离r 时,在地表处的附加应力z σ=0,随着深度的增加,z σ逐渐递增,但到一定深度后,z σ又随着深度z 的增加而减小;(3)当z 一定时,即在同一水平面上,附加应力z σ随着r 的增大而减小。

相关文档
最新文档