高考文科数学数列专题复习(附答案及解析)

合集下载

2024年高考数学专项复习数列中的奇偶项问题(微专题)(解析版)

2024年高考数学专项复习数列中的奇偶项问题(微专题)(解析版)

数列中的奇偶项问题(微专题)题型选讲题型一、分段函数的奇偶项求和1(深圳市罗湖区期末试题)已知数列a n中,a1=2,na n+1-n+1a n=1n∈N*.(1)求数列a n的通项公式;(2)设b n=a n+1,n为奇数,2a n+1,n为偶数,求数列bn的前100项和.1(2023·黑龙江大庆·统考三模)已知数列a n满足a1+3a2+⋯+2n-1a n=n.(1)证明:1a n是一个等差数列;(2)已知c n=119a n,n为奇数a n a n+2,n为偶数,求数列c n 的前2n项和S2n.2024年高考数学专项复习数列中的奇偶项问题(微专题)(解析版)2(2023·吉林·统考三模)已知数列a n满足a n=2n-2,n为奇数3n-2,n为偶数an的前n项和为S n.(1)求a1,a2,并判断1024是数列中的第几项;(2)求S2n-1.3(2023·安徽蚌埠·统考三模)已知数列a n满足a1=1,a2n+1=a2n+1,a2n=2a2n-1.(1)求数列a n的通项公式;(2)设T n=1a1+1a2+⋯+1a n,求证:T2n<3.4(2023·湖南邵阳·统考三模)记S n 为等差数列{a n }的前n 项和,已知a 3=5,S 9=81,数列{b n }满足a 1b 1+a 2b 2+a 3b 3+⋯+a n b n =n -1 ⋅3n +1+3.(1)求数列{a n }与数列{b n }的通项公式;(2)数列{c n }满足c n =b n ,n 为奇数1a n a n +2,n 为偶数,n 为偶数,求{c n }前2n 项和T 2n .5(2023·湖南岳阳·统考三模)已知等比数列a n 的前n 项和为S n ,其公比q ≠-1,a 4+a 5a 7+a 8=127,且S 4=a 3+93.(1)求数列a n 的通项公式;(2)已知b n =log 13a n ,n 为奇数a n,n 为偶数,求数列b n 的前n 项和T n .2【2020年新课标1卷文科】数列{a n}满足a n+2+(-1)n a n=3n-1,前16项和为540,则a1=1(2021·山东济宁市·高三二模)已知数列{a n}是正项等比数列,满足a3是2a1、3a2的等差中项,a4=16.(1)求数列{a n}的通项公式;log,求数列{b n}的前n项和T n.(2)若b n=-1n⋅2a2n+12【2022·广东省深圳市福田中学10月月考】已知等差数列{a n}前n项和为S n,a5=9,S5=25.(1)求数列{a n}的通项公式及前n项和S n;(2)设b n=(-1)n S n,求{b n}前n项和T n.n n+13(2023·广东深圳·统考一模)记S n,为数列a n的前n项和,已知S n=a n2+n2+1,n∈N*.(1)求a1+a2,并证明a n+a n+1是等差数列;(2)求S n.1(2022·湖北省鄂州高中高三期末)已知数列a n满足a1=1,a n+a n+1=2n;数列b n前n项和为S n,且b1=1,2S n=b n+1-1.(1)求数列a n和数列b n的通项公式;(2)设c n=a n⋅b n,求c n前2n项和T2n.2(2022·湖北省鄂州高中高三期末)已知数列a n前n项和满足a1=1,a n+a n+1=2n;数列b n为S n,且b1=1,2S n=b n+1-1.(1)求数列a n的通项公式;和数列b n(2)设c n=a n⋅b n,求c n前2n项和T2n.数列中的奇偶项问题(微专题)题型选讲题型一、分段函数的奇偶项求和1(深圳市罗湖区期末试题)已知数列a n中,a1=2,na n+1-n+1a n=1n∈N*.(1)求数列a n的通项公式;(2)设b n=a n+1,n为奇数,2a n+1,n为偶数,求数列bn的前100项和.【解析】【小问1详解】∵na n+1-n+1a n=1,∴a n+1n+1-a nn=1n-1n+1,a n+1+1n+1=a n+1n,所以a n+1n是常数列,即a n+1n=a1+11=3,∴a n=3n-1;【小问2详解】由(1)知,a n是首项为2,公差为3等差数列,由题意得b2n-1=a2n-1=6n-4,b2n=2a2n+1=12n+4,设数列b2n-1,b2n的前50项和分别为T1,T2,所以T1=50b1+b992=25×298=7450,T2=50×b2+b1002=25×620=15500,所以b n的前100项和为T1+T2=7450+15500=22950;综上,a n=3n-1,b n的前100项和为T1+T2=7450+15500=22950.1(2023·黑龙江大庆·统考三模)已知数列a n满足a1+3a2+⋯+2n-1a n=n.(1)证明:1a n是一个等差数列;(2)已知c n=119a n,n为奇数a n a n+2,n为偶数,求数列c n 的前2n项和S2n.【答案】(1)证明见详解(2)S2n=2n-1n19+n34n+3【详解】(1)当n=1时,可得a1=1,当n≥2时,由a1+3a2+⋯+2n-1a n=n,则a1+3a2+⋯+2n-3a n-1=n-1n≥2,上述两式作差可得a n=12n-1n≥2,因为a1=1满足a n=12n-1,所以a n的通项公式为a n=12n-1,所以1a n=2n-1,因为1a n-1a n-1=2n-1-2n-3=2(常数),所以1a n是一个等差数列.(2)c n=2n-119,n为奇数12n-12n+3,n为偶数 ,所以C1+C3+⋯C2n-1=1+5+9+⋯4n-319=2n-1n19,C2+C4+⋯C2n=1413-17+17-111+⋯+14n-1-14n+3=n34n+3所以数列c n的前2n项和S2n=2n-1n19+n34n+3.2(2023·吉林·统考三模)已知数列a n满足a n=2n-2,n为奇数3n-2,n为偶数an的前n项和为S n.(1)求a1,a2,并判断1024是数列中的第几项;(2)求S2n-1.【答案】(1)a1=12,a2=4;1024是数列a n的第342项(2)S2n-1=4n6+3n2-5n+116【详解】(1)由a n=2n-2,n为奇数3n-2,n为偶数可得a1=12,a2=4.令2n-2=1024=210,解得:n=12为偶数,不符合题意,舍去;令3n-2=1024,解得:n=342,符合题意.因此,1024是数列a n的第342项.(2)S2n-1=a1+a2+a3+a4+⋅⋅⋅+a2n-2+a2n-1=12+4+2+10+⋅⋅⋅+6n-8+22n-3=12+2+⋅⋅⋅+22n-3+4+10+⋅⋅⋅+6n-8=121-4n1-4+n-14+6n-82=164n-1+n-13n-2=4n6+3n2-5n+116.另解:由题意得a2n-1=22n-3,又a2n+1a2n-1=4,所以数列a2n-1是以12为首项,4为公比的等比数列.a2n=6n-2,又a2n+2-a2n=6,所以数列a2n是以4为首项,6为公差的等差数列.S2n-1为数列a2n-1的前n项和与数列a2n的前n-1项和的总和.故S2n-1=121-4n1-4+n-14+6n-82=164n-1+n-13n-2=4n6+3n2-5n+116.3(2023·安徽蚌埠·统考三模)已知数列a n满足a1=1,a2n+1=a2n+1,a2n=2a2n-1.(1)求数列a n的通项公式;(2)设T n=1a1+1a2+⋯+1a n,求证:T2n<3.【答案】(1)a n=2n+12-1,n为奇数, 2n2+1-2,n为偶数.(2)证明见解析.【详解】(1)由题意a2n+1=a2n+1=2a2n-1+1,所以a2n+1+1=2a2n-1+1,因为a1+1=2≠0,所以数列a2n-1+1是首项为2,公比为2的等比数列,所以a2n-1+1=2n,即a2n-1=2n-1,而a2n=2a2n-1=2n+1-2,所以a n=2n+12-1,n为奇数, 2n2+1-2,n为偶数.(2)方法一:由(1)得T2n=ni=11a2i-1+1a2i=32ni=112i-1=32ni=12i+1-12i-12i+1-1<32ni=12i+12i-12i+1-1=3ni=12i2i-12i+1-1=3ni=112i-1-12i+1-1=31-12n+1-1<3方法二:因为2n-1≥2n-1n∈N*,所以T2n=∑ni=11a2i-1+1a2i=32∑n i=112i-1≤32∑n i=112i-1=31-12n<34(2023·湖南邵阳·统考三模)记S n为等差数列{a n}的前n项和,已知a3=5,S9=81,数列{b n}满足a 1b 1+a 2b 2+a 3b 3+⋯+a n b n =n -1 ⋅3n +1+3.(1)求数列{a n }与数列{b n }的通项公式;(2)数列{c n }满足c n =b n ,n 为奇数1a n an +2,n 为偶数,n 为偶数,求{c n }前2n 项和T 2n .【答案】(1)a n =2n -1,b n =3n (2)T 2n =3⋅9n 8-116n +12-724【详解】(1)设等差数列{a n }的公差为d ,∵a 3=5S 9=81 ,即a 1+2d =59a 1+9×82d =81 ,∴a 1=1,d =2,∴a n =2n -1.∵a 1b 1+a 2b 2+a 3b 3+⋯+a n b n =n -1 ⋅3n +1+3,①∴a 1b 1+a 2b 2+⋯+a n -1b n -1=n -2 ⋅3n +3n ≥2 ,②所以①-②得,a n b n =2n -1 ⋅3n ,∴b n =3n n ≥2 .当n =1时,a 1b 1=3,b 1=3,符合b n =3n .∴b n =3n .(2)T 2n =c 1+c 2+c 3+⋯+c 2n ,依题有:T 2n =b 1+b 3+⋯+b 2n -1 +1a 2a 4+1a 4a 6+⋯+1a 2n a 2n +2.记T 奇=b 1+b 3+⋯+b 2n -1,则T 奇=3(1-32n )1-32=32n +1-38.记T 偶=1a 2a 4+1a 4a 6+⋯+1a 2n a 2n +2,则T 偶=12d 1a 2-1a 4 +1a 4-1a 6 +⋯+1a 2n -1a 2n +2=12d 1a 2-1a 2n +2=1413-14n +3 .所以T 2n =32n +1-38+1413-14n +3 =3⋅9n 8-116n +12-7245(2023·湖南岳阳·统考三模)已知等比数列a n 的前n 项和为S n ,其公比q ≠-1,a 4+a 5a 7+a 8=127,且S 4=a 3+93.(1)求数列a n 的通项公式;(2)已知b n =log 13a n ,n 为奇数a n,n 为偶数,求数列b n 的前n 项和T n .【答案】(1)a n =3n (2)T n =18×3n +1-98-n +1 24,n 为奇数983n -1-n 24,n 为偶数【详解】(1)因为a n 是等比数列,公比为q ≠-1,则a 4=a 1q 3,a 5=a 1q 4,a 7=a 1q 6,a 8=a 1q 7,所以a 4+a 5a 7+a 8=a 1q 3+a 1q 4a 1q 6+a 1q 7=1q 3=127,解得q =3,由S 4=a 3+93,可得a 11-34 1-3=9a 1+93,解得a 1=3,所以数列a n 的通项公式为a n =3n .(2)由(1)得b n =-n ,n 为奇数3n ,n 为偶数,当n 为偶数时,T n =b 1+b 2+⋅⋅⋅+b n =b 1+b 3+⋅⋅⋅+b n -1 +b 2+b 4+⋅⋅⋅+b n =-1+3+⋅⋅⋅+n -1 +32+34+⋅⋅⋅+3n=-n2⋅1+n -12×+91-9n 21-9=983n -1 -n 24;当n 为奇数时T n =T n +1-b n +1=983n +1-1 -n +1 24-3n +1=18×3n +1-98-n +1 24;综上所述:T n =18×3n +1-98-n +1 24,n 为奇数983n -1-n 24,n 为偶数.题型二、含有(-1)n 类型2【2020年新课标1卷文科】数列{a n }满足a n +2+(-1)n a n =3n -1,前16项和为540,则a 1=【答案】7【解析】a n +2+(-1)n a n =3n -1,当n 为奇数时,a n +2=a n +3n -1;当n 为偶数时,a n +2+a n =3n -1.设数列a n 的前n 项和为S n ,S 16=a 1+a 2+a 3+a 4+⋯+a 16=a 1+a 3+a 5⋯+a 15+(a 2+a 4)+⋯(a 14+a 16)=a 1+(a 1+2)+(a 1+10)+(a 1+24)+(a 1+44)+(a 1+70)+(a 1+102)+(a 1+140)+(5+17+29+41)=8a 1+392+92=8a 1+484=540,∴a 1=7.故答案为:7.1(2021·山东济宁市·高三二模)已知数列{a n }是正项等比数列,满足a 3是2a 1、3a 2的等差中项,a 4=16.(1)求数列{a n }的通项公式;(2)若b n =-1 n ⋅2a 2n +1log ,求数列{b n }的前n 项和T n .【解析】(1)设等比数列{a n }的公比为q ,因为a 3是2a 1、3a 2的等差中项,所以2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q ,因为a 1≠0,所以2q 2-3q -2=0,解得q =2或q =-12,因为数列{a n }是正项等比数列,所以q =2.因为a 4=16,即a 4=a 1q 3=8a 1=16,解得a 1=2,所以a n =2×2n -1=2n ;(2)解法一:(分奇偶、并项求和)由(1)可知,a 2n +1=22n +1,所以,b n =-1 n ⋅2a 2n +1log =-1 n ⋅222n +1log =-1 n ⋅2n +1 ,①若n 为偶数,T n =-3+5-7+9-⋯-2n -1 +2n +1 =-3+5 +-7+9 +⋯+-2n -1 +2n +1 =2×n2=n ;②若n 为奇数,当n ≥3时,T n =T n -1+b n =n -1-2n +1 =-n -2,当n =1时,T 1=-3适合上式,综上得T n =n ,n 为偶数-n -2,n 为奇数(或T n =n +1 -1 n -1,n ∈N *);解法二:(错位相减法)由(1)可知,a 2n +1=22n +1,所以,b n =-1 n ⋅2a 2n +1log =-1 n ⋅222n +1log =-1 n ⋅2n +1 ,T n =-1 1×3+-1 2×5+-1 3×7+⋯+-1 n ⋅2n +1 ,所以-T n =-1 2×3+-1 3×5+-1 4×7+⋯+-1 n +1⋅2n +1 所以2T n =3+2[-1 2+-1 3+⋯+-1 n ]--1 n +12n +1 ,=-3+2×1--1 n -12+-1 n 2n +1 =-3+1--1 n -1+-1 n 2n +1=-2+2n +2 -1 n ,所以T n=n+1-1n-1,n∈N*2【2022·广东省深圳市福田中学10月月考】已知等差数列{a n}前n项和为S n,a5=9,S5=25.(1)求数列{a n}的通项公式及前n项和S n;(2)设b n=(-1)n S n,求{b n}前n项和T n.【答案】(1)a n=2n-1,S n=n2;(2)T n=(-1)n n(n+1)2.【解析】【分析】(1)利用等差数列的基本量,列方程即可求得首项和公差,再利用公式求通项公式和前n项和即可;(2)根据(1)中所求即可求得b n,对n分类讨论,结合等差数列的前n项和公式,即可容易求得结果.【详解】(1)由S5=5(a1+a5)2=5×2a32=5a3=25得a3=5.又因为a5=9,所以d=a5-a32=2,则a3=a1+2d=a1+4=5,解得a1=1;故a n=2n-1,S n=n(1+2n-1)2=n2.(2)b n=(-1)n n2.当n为偶数时:T n=b1+b2+b3+b4+⋯+b n-1+b n=-12+22+-32+42+⋯+-(n-1)2+n2=(2-1)×(2+1)+(4-3)×(4+3)+⋯+[n-(n-1)]×[n+(n-1)] =1+2+3+⋯+(n-1)+n=n(n+1)2.当n为奇数时:T n=b1+b2+b3+b4+⋯+b n-2+b n-1+b n=-12+22+-32+42+-(n-2)2+(n-1)2-n2=(2-1)×(2+1)+(4-3)×(4+3)+⋯+[(n-1)-(n-2)]×[(n-1)+(n-2)]-n2 =1+2+3+⋯+(n-2)+(n-1)-n2=(n-1)(1+n-1)2-n2=-n(n+1)2.综上得T n=(-1)n n(n+1)2题型三、a n+a n+1类型3(2023·广东深圳·统考一模)记S n,为数列a n的前n项和,已知S n=a n2+n2+1,n∈N*.(1)求a1+a2,并证明a n+a n+1是等差数列;(2)求S n.【解析】(1)已知S n=a n2+n2+1,n∈N*当n=1时,a1=a12+2,a1=4;当n=2时,a1+a2=a22+5,a2=2,所以a1+a2=6.因为S n=a n2+n2+1①,所以S n+1=a n+12+n+12+1②.②-①得,a n+1=a n+12-a n2+n+12-n2,整理得a n+a n+1=4n+2,n∈N*,所以a n+1+a n+2-a n+a n+1=4n+1+2-4n+2=4(常数),n∈N*,所以a n+a n+1是首项为6,公差为4的等差数列.(2)由(1)知,a n-1+a n=4n-1+2=4n-2,n∈N*,n≥2.当n为偶数时,S n=a1+a2+a3+a4+⋯+a n-1+a n=n26+4n-22=n2+n;当n为奇数时,S n=a1+a2+a3+a4+a5+⋯+a n-1+a n=4+n-1210+4n-22=n2+n+2.综上所述,S n=n2+n,当n为偶数时n2+n+2,当n为奇数时1(2022·湖北省鄂州高中高三期末)已知数列a n满足a1=1,a n+a n+1=2n;数列b n前n项和为S n,且b1=1,2S n=b n+1-1.(1)求数列a n和数列b n的通项公式;(2)设c n=a n⋅b n,求c n前2n项和T2n.【答案】(1)a n=n,n=2k-1,k∈Zn-1,n=2k,k∈Z,bn=3n-1;(2)58n-59n8.【分析】(1)根据递推公式,结合等差数列的定义、等比数列的定义进行求解即可;(2)利用错位相减法进行求解即可.(1)n ≥2,a n -1+a n =2n -1 ,∴a n +1-a n -1=2,又a 1=1,a 2=1,n =2k -1(k 为正整数)时,a 2k -1 是首项为1,公差为2的等差数列,∴a 2k -1=2k -1,a n =n ,n =2k (k 为正整数)时,a 2k 是首项为1,公差为2的等差数列.∴a 2k =2k -1,∴a n =n -1,∴a n =n ,n =2k -1,k ∈Zn -1,n =2k ,k ∈Z,∵2S n =b n +1-1,∴n ≥2时,2S n -1=b n -1,∴2b n =b n +1-b n ,又b 2=3,∴n ≥2时,b n =3n -1,b 1=1=30,∴b n =3n -1;(2)由(1)得c n =n 3n -1,n =2k -1,k ∈Zn -1 3n -1,n =2k ,k ∈Z ,T 2n =1×30+3×32+5×34+⋅⋅⋅+2n -1 ⋅32n -2 +1×31+3×33+5×35+⋅⋅⋅+2n -1 ⋅32n -1 =41×30+3×32+5×34+⋅⋅⋅2n -1 ⋅32n -2 设K n =1×30+3×32+5×34+⋅⋅⋅2n -1 ⋅32n -2 ①则9K n =1×32+3×34+5×36+⋅⋅⋅+2n -1 ⋅32n ②①-②得-8K n =1+232+34+⋅⋅⋅+32n -2-2n -1 ⋅32n=5+8n -5 9n-4,K n =5+8n -5 9n 32,∴T 2n =58n -5 9n82(2022·湖北省鄂州高中高三期末)已知数列a n 满足a 1=1,a n +a n +1=2n ;数列b n 前n 项和为S n ,且b 1=1,2S n =b n +1-1.(1)求数列a n 和数列b n 的通项公式;(2)设c n =a n ⋅b n ,求c n 前2n 项和T 2n .【答案】(1)a n =n ,n =2k -1,k ∈Zn -1,n =2k ,k ∈Z,b n =3n -1;(2)58n -5 9n8.【解析】(1)根据递推公式,结合等差数列的定义、等比数列的定义进行求解即可;(2)利用错位相减法进行求解即可.(1)n ≥2,a n -1+a n =2n -1 ,∴a n +1-a n -1=2,又a 1=1,a 2=1,n =2k -1(k 为正整数)时,a 2k -1 是首项为1,公差为2的等差数列,∴a 2k -1=2k -1,a n =n ,n =2k (k 为正整数)时,a 2k 是首项为1,公差为2的等差数列.∴a 2k =2k -1,∴a n =n -1,∴a n =n ,n =2k -1,k ∈Zn -1,n =2k ,k ∈Z,∵2S n =b n +1-1,∴n ≥2时,2S n -1=b n -1,∴2b n =b n +1-b n ,又b 2=3,∴n ≥2时,b n =3n -1,b 1=1=30,∴b n =3n -1;(2)由(1)得c n =n 3n -1,n =2k -1,k ∈Zn -1 3n -1,n =2k ,k ∈Z ,T 2n =1×30+3×32+5×34+⋅⋅⋅+2n -1 ⋅32n -2 +1×31+3×33+5×35+⋅⋅⋅+2n -1 ⋅32n -1 =41×30+3×32+5×34+⋅⋅⋅2n -1 ⋅32n -2 设K n =1×30+3×32+5×34+⋅⋅⋅2n -1 ⋅32n -2 ①则9K n =1×32+3×34+5×36+⋅⋅⋅+2n -1 ⋅32n ②①-②得-8K n =1+232+34+⋅⋅⋅+32n -2-2n -1 ⋅32n=5+8n -5 9n-4,K n =5+8n -5 9n 32,∴T 2n =58n -5 9n8。

高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。

2021年高考数学专题复习:数列(含答案解析)

2021年高考数学专题复习:数列(含答案解析)
已知等差数列{an}的前n项和为Sn,满足a3=6,____.
(1)求{an}的通项公式;
(2)设bn=2 an,求{bn}的前n项和Tn.
3.已知等比数列{an}的各项均为正数,且a1+16a3=1,a1a5=16a42.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{ }的前n项和Tn.
(1)求数列{an}的通项公式;
(2)证明: .
13.设数列{an}满足a1=2,an+1=an+2n.
(1)求数列{an}的通项公式;
(2)设bn=log2(a1•a2…an),求数列{ }的前n项和Sn.
14.已知等比数列{an}的各项都为正数,Sn为其前n项和,a3=8,S3=14.
(1)求数列{an}的通项公式;
(2)记Tn ,求使得Tn 成立的正整数n的最小值.
15.设数列{an}的前n项和为Sn(n∈N*),且满足an+Sn=2n+1.
(1)证明数列{an﹣2}是等比数列,并求数列{an}的通项公式;
(2)若bn=n(2﹣an),求数列{bn}的前n项和Tn.
16.已知{an}是等差数列,{bn}是等比数列,b1=a5,b2=3,b5=﹣81.
(1)求数列{an},{bn}的通项公式;
(2)设cn an,数列{cn}的前n项和为Tn,若不等式 1 恒成立,求λ的取值范围.
18.已知递增的等比数列{an}的前n项和为Sn,S3 ,a3a4=a5.
(1)求数列{an}的通项公式;
(2)若4an=3Sn,求正整数n的值.
19.已知等差数列{an}中,a2=3,a4=7.等比数列{bn}满足b1=a1,b4=a14.

高考数学压轴专题专题备战高考《数列》全集汇编含答案解析

高考数学压轴专题专题备战高考《数列》全集汇编含答案解析

【高中数学】数学高考《数列》试题含答案一、选择题1.在正整数数列中,由1开始依次按如下规则,将某些数取出.先取1;再取1后面两个偶数2,4;再取4后面最邻近的3个连续奇数5,7,9;再取9后面的最邻近的4个连续偶数10,12,14,16;再取此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直取下去,得到一个新数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个新数列中,由1开始的第2 019个数是( ) A .3 971 B .3 972C .3 973D .3 974【答案】D 【解析】 【分析】先对数据进行处理能力再归纳推理出第n 组有n 个数且最后一个数为n 2,则前n 组共1+2+3+…+n ()12n n +=个数,运算即可得解.【详解】解:将新数列1,2,4,5,7,9,10,12,14,16,17,…,分组为(1),(2,4),(5,7,9,),(10,12,14,16),(17,19,21,23,25)… 则第n 组有n 个数且最后一个数为n 2, 则前n 组共1+2+3+…+n ()12n n +=个数,设第2019个数在第n 组中,则()()120192120192n n n n ⎧+≥⎪⎪⎨-⎪⎪⎩<,解得n =64,即第2019个数在第64组中,则第63组最后一个数为632=3969,前63组共1+2+3+…+63=2016个数,接着往后找第三个偶数则由1开始的第2019个数是3974, 故选:D . 【点睛】本题考查了对数据的处理能力及归纳推理能力,考查等差数列前n 项和公式,属中档题.2.已知数列22333311313571351,,,,,,,...,,,, (2222222222)nn n ,则该数列第2019项是( ) A .1019892 B .1020192 C .1119892 D .1120192 【答案】C【解析】 【分析】由观察可得()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭项数为21,1,2,4,8,...,2,...k -,注意到101110242201922048=<<=,第2019项是第12个括号里的第995项. 【详解】 由数列()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,可发现其项数为 21,1,2,4,8,...,2,...k -,则前11个括号里共有1024项,前12个括号里共有2048项,故原数列第2019项是第12个括号里的第995项,第12个括号里的数列通项为11212m -, 所以第12个括号里的第995项是1119892. 故选:C. 【点睛】本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.3.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S ( ) A .3 B .9C .10D .13【答案】C 【解析】 【分析】设{}n a 的公比为0q >,由645,3,a a a -成等差数列,可得260,0q q q --=>,解得q ,再利用求和公式即可得结果. 【详解】设各项均为正数的等比数列{}n a 的公比为0q >,Q 满足645,3,a a a -成等差数列,()2465446,6,0a a a a a q q q ∴=-∴=->, 260,0q q q ∴--=>,解得3q =,则()()4124221313131103131a S S a --==+=--,故选C. 【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.4.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2019这2019个数中,能被3除余2且被5整除余2的数按从小到大的顺序排成一列,构成数列{}n a ,则此数列所有项中,中间项的值为( ) A .992 B .1022C .1007D .1037【答案】C 【解析】 【分析】首先将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数.再写出{}n a 的通项公式,算其中间项即可. 【详解】将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数. 即215(1)n a n -=-,1513n a n =-当135n =,135151351320122019a =⨯-=<, 当136n =,136151361320272019a =⨯-=>, 故1,2,n =……,135数列共有135项.因此数列中间项为第68项,681568131007a =⨯-=. 故答案为:C . 【点睛】本题主要考查数列模型在实际问题中的应用,同时考查了学生的计算能力,属于中档题.5.《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则小满日影长为( ) A .1.5尺B .2.5尺C .3.5尺D .4.5尺【解析】 【分析】结合题意将其转化为数列问题,并利用等差数列通项公式和前n 项和公式列方程组,求出首项和公差,由此能求出结果. 【详解】解:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{}n a ,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,∴()()111913631.598985.52a a d a d S a d ⎧++++=⎪⎨⨯=+=⎪⎩, 解得113.5a =,1d =-,∴小满日影长为1113.510(1) 3.5a =+⨯-=(尺). 故选C . 【点睛】本题考查等差数列的前n 项和公式,以及等差数列通项公式的运算等基础知识,掌握各公式并能熟练运用公式求解,考查运算求解能力,考查化归与转化思想,属于基础题.6.数列{a n },满足对任意的n ∈N +,均有a n +a n +1+a n +2为定值.若a 7=2,a 9=3,a 98=4,则数列{a n }的前100项的和S 100=( ) A .132 B .299C .68D .99【答案】B 【解析】 【分析】由12n n n a a a ++++为定值,可得3n n a a +=,则{}n a 是以3为周期的数列,求出123,,a a a ,即求100S . 【详解】对任意的n ∈+N ,均有12n n n a a a ++++为定值,()()123120n n n n n n a a a a a a +++++∴++-++=,故3n n a a +=,{}n a ∴是以3为周期的数列,故17298392,4,3a a a a a a ======,()()()100123979899100123133S a a a a a a a a a a a ∴=+++++++=+++L()332432299=+++=.【点睛】本题考查周期数列求和,属于中档题.7.设函数()mf x x ax =+的导数为()21f x x '=+,则数列()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和是( ) A .1nn + B .21nn + C .21nn - D .()21n n+ 【答案】B 【解析】 【分析】函数()mf x x ax =+的导函数()21f x x '=+,先求原函数的导数,两个导数进行比较即可求出m ,a ,利用裂项相消法求出()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和即可.【详解】Q 1()21m f x mx a x -'=+=+,1a \=,2m =,()(1)f x x x ∴=+,112()()(1)221f n n n n n ==-++, ∴111111122[()()()]2(1)1223111n n S n n n n =-+-++-=-=+++L ,故选:B . 【点睛】本题考查数列的求和运算,导数的运算法则,数列求和时注意裂项相消法的应用.8.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=( )A .4B .19C .20D .23【答案】D 【解析】 【分析】本题首先可以设出奇数项的公差以及偶数项的公比,然后对347a a +=、5613a a +=进行化简,得出公差和公比的数值,然后对78a a +进行化简即可得出结果. 【详解】设奇数项的公差为d ,偶数项的公比为q ,由347a a +=,5613a a +=,得127d q ++=,212213d q ++=,解得2d =,2q =,所以37813271623a a d q +=++=+=,故选D .【点睛】本题主要考查等差数列、等比数列的通项公式及性质等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等,体现基础性与综合性,提升学生的逻辑推理、数学运算等核心素养,是中档题.9.已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S =( ) A .10 B .7C .8D .4【答案】C 【解析】 【分析】根据等比数列的性质可将已知等式变为12332224a a a S a ++==,解方程求得结果. 【详解】 由题意得:13123321231322111124a a a a a S a a a a a a a +++++=+=== 38S ∴= 本题正确选项:C 【点睛】本题考查等比数列性质的应用,关键是能够根据下角标的关系凑出关于3S 的方程,属于基础题.10.已知数列{}n a 满足:()()2*112,10n n n a a S S n +=+-=∈N ,其中n S 为数列{}n a 的前n 项和.设()()()12111()1n S S S f n n +++=+L ,若对任意的n 均有(1)()f n kf n +<成立,则k 的最小整数值为( ) A .2 B .3C .4D .5【答案】A 【解析】 【分析】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111n n S S +-=--,得出 11n S ⎧⎫⎨⎬-⎩⎭是首项、公差均为1的等差数列,从而求出n S 【详解】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111111n n n n n S S S S S +-=-=----,又1111121S ==--,11n S ⎧⎫∴⎨⎬-⎩⎭是首项、公差均为1的等差数列,11n n S ∴=-,1n n S n +=,由()()()12111()1n S S S f n n +++=+L , 得()1(1)1(1)23152,2()2223n n S f n n f n n n n +++++⎡⎫===-∈⎪⎢+++⎣⎭, 依题意知(1)()f n k f n +>, min 2k ∴=.故选:A 【点睛】本题考查数列的综合应用.属于中等题.11.执行如图所示的程序框图,若输出的S 为154,则输入的n 为( )A .18B .19C .20D .21【答案】B 【解析】 【分析】找到输出的S 的规律为等差数列求和,即可算出i ,从而求出n . 【详解】由框图可知,()101231154S i =+++++⋯+-= , 即()1231153i +++⋯+-=,所以()11532i i -=,解得18i =,故最后一次对条件进行判断时18119i =+=,所以19n =. 故选:B 【点睛】本题考查程序框图,要理解循环结构的程序框图的运行,考查学生的逻辑推理能力.属于简单题目.12.在递减等差数列{}n a 中,21324a a a =-.若113a =,则数列11{}n n a a +的前n 项和的最大值为 ( ) A .24143B .1143C .2413D .613【答案】D 【解析】设公差为,0d d < ,所以由21324a a a =-,113a =,得213(132)(13)42d d d +=+-⇒=- (正舍),即132(1)152n a n n =--=- , 因为111111()(152)(132)2215213n n a a n n n n +==----- ,所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和等于1111116()()213213213261313n --≤--=-⨯- ,选D. 点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(1)(3)n n ++或1(2)n n +.13.等比数列{n a }的前n 项和为n S ,若103010,30,S S ==则20S = A .10 B .20 C .20或-10 D .-20或10【答案】B 【解析】 【分析】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列即(S 20﹣S 10)2=S 10•(S 30﹣S 20),代入可求. 【详解】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列,且公比为10q∴(S 20﹣S 10)2=S 10•(S 30﹣S 20)即()()22020101030S S -=- 解20S =20或-10(舍去) 故选B . 【点睛】本题主要考查了等比数列的性质(若S n 为等比数列的前n 项和,且S k ,S 2k ﹣S k ,S 3k ﹣S 2k 不为0,则其成等比数列)的应用,注意隐含条件的运用14.已知数列{}n a 是1为首项,2为公差的等差数列,{}n b 是1为首项,2为公比的等比数列,设n n b c a =,12...,(*)n n T c c c n N =+++∈,则当2019n T <时,n 的最大值是( ) A .9 B .10C .11D .12【答案】A 【解析】 【分析】由题设知21n a n =-,12n nb -=,由1121124222n n n b b bn T a a a a a a a n -+=++⋯+=+++⋯+=--和2019n T <,得1222019n n +--<,由此能求出当2019n T <时n 的最大值.【详解】{}n a Q 是以1为首项,2为公差的等差数列,21n a n ∴=-,{}n b Q 是以1为首项,2为公比的等比数列,12n n b -∴=,()()()()1121121242211221241221n n n n b b bn T c c c a a a a a a a --∴=++⋯+=++⋯+=+++⋯+=⨯-+⨯-+⨯-+⋯+⨯- ()121242n n -=+++⋯+- 12212nn -=⨯-- 122n n +=--,2019n T <Q ,1222019n n +∴--<,解得:10n <.则当2019n T <时,n 的最大值是9. 故选A . 【点睛】本题考查了等差数列、等比数列的通项公式,结合含两个变量的不等式的处理问题,易出错,属于中档题.15.已知数列{}n a 是等比数列,前n 项和为n S ,则“3152a a a >+”是“210n S -<”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】根据等比数列的通项公式与求和公式,即可判断命题间的关系. 【详解】因为数列{}n a 是等比数列,前n 项和为n S 若3152a a a >+,由等比数列的通项公式可得111242a a q a q >+,化简后可得()21210q a -<.因为()2210q -≥所以不等式的解集为10a < 若210n S -<当公比1q ≠±时, 210n S -<则10a <,可得3152a a a >+ 当公比1q =±时, 由210n S -<则10a <,可得3152a a a =+ 综上可知, “3152a a a >+”是“210n S -<”的充分不必要条件 故选:B 【点睛】本题考查了等比数列的通项公式与求和公式的应用,在应用等比数列求和公式时,需记得讨论公比是否为1的情况,属于中档题.16.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D 【解析】 【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,若得到的折线长度为初始线段长度的1000倍,则410003n a a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭, ()()44lg lg lg 4lg32lg 2lg3lg1000333n n n n ⎛⎫∴==-=-≥= ⎪⎝⎭, 即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造. 故选:D .【点睛】 本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.17.已知数列{}n a 的前n 项和()2*23n S n n n N =+∈,则{}na 的通项公式为( ) A .21n a n =+B .21n a n =-C .41n a n =+D .41n a n =-【答案】C【解析】【分析】 首先根据223n S n n =+求出首项1a 的值,然后利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可.【详解】因为223n S n n =+,所以,当2n ≥时,22123[2(1)3(1)]41n n n a S S n n n n n -=-=+--+-=+,当1n =时,11235==+=a S ,上式也成立,所以41n a n =+,故选C.【点睛】该题考查的是有关数列的通项公式的求解问题涉及到的知识点有数列的项与和的关系,即11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,算出之后再判断1n =时对应的式子是否成立,最后求得结果.18.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则2020a =( )A .1-B .1 CD .2【答案】B【解析】【分析】根据可导函数在极值点处的导数值为0,得出140396a a =,再由等比数列的性质可得.【详解】解:依题意1a 、4039a 是函数()3214633f x x x x =-+-的极值点,也就是()2860f x x x '=-+=的两个根∴140396a a =又{}n a是正项等比数列,所以2020a =∴20201a ==.故选:B【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.19.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a n +=++,则122016111a a a +++=L ( ) A .20152016B .40322017C .40342017D .20162017【答案】B【解析】【分析】 首先根据题设条件,由11n n a a n +=++,可得到递推关系为11n n a a n +-=+; 接下来利用累加法可求得()12n n n a +=,从而()1211211na n n n n ⎛⎫==- ⎪++⎝⎭,由此就可求得122016111a a a +++L 的值. 【详解】因为111n n n a a a n a n +=++=++,所以11n n a a n +-=+,用累加法求数列{}n a 的通项得:()()1211n n n a a a a a a -=+-+⋯+-()1122n n n +=++⋯+=, 所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,于是1232016111111111212222320162017a a a a ⎛⎫⎛⎫⎛⎫ +++⋯+=-+-+⋯+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121201*********⎛⎫==- ⎪⎝⎭. 故选:B.【点睛】本题是一道考查数列的题目,掌握数列的递推关系以及求解前n 项和的方法是解答本题的关键,属于常考题.20.设数列{}n a 的前n 项和为n S 已知()*123n n a a n n N ++=+∈且1300n S =,若23a <,则n 的最大值为( )A .49B .50C .51D .52【答案】A【解析】【分析】对n 分奇偶性分别讨论,当n 为偶数时,可得2+32n n n S =,发现不存在这样的偶数能满足此式,当n 为奇数时,可得21+342n n n S a -=+,再结合23a <可讨论出n 的最大值. 【详解】当n 为偶数时,12341()()()n n n S a a a a a a -=++++⋅⋅⋅++(213)(233)[2(1)3]n =⨯++⨯++⋅⋅⋅+-+2[13(1)]32n n =⨯++⋅⋅⋅+-+⨯2+32n n =, 因为22485048+348503501224,132522S S ⨯+⨯====, 所以n 不可能为偶数;当n 为奇数时,123451()()()n n n S a a a a a a a -=+++++⋅⋅⋅++1(223)(243)[2(1)3]a n =+⨯++⨯++⋅⋅⋅+-+21342n n a +-=+ 因为2491149349412722S a a +⨯-=+=+, 2511151351413752S a a +⨯-=+=+, 又因为23a <,125a a +=,所以 12a >S 时,n的最大值为49所以当1300n故选:A【点睛】此题考查的是数列求和问题,利用了并项求和的方法,考查了分类讨论思想,属于较难题.。

高考数学数列多选题复习训练题(含答案解析)

高考数学数列多选题复习训练题(含答案解析)

高考数学数列多选题复习训练题(含答案解析)1.(2022·江苏江苏·一模)记n S 为等差数列{}n a 的前n 项和,则( ) A .6422S S S =−B .()6423S S S =−C .2n S ,42n n S S −,64n n S S −成等差数列D .22S ,44S ,66S 成等差数列【答案】BCD 【解析】 【分析】利用等差数列求和公式分别判断. 【详解】 由已知得()112n n n dS a n −=+, A 选项,61615S a d =+,4146S a d =+,212S a d =+,所以42162611S S a d S −=+≠,A 选项错误;B 选项,()42163615S S a d S −=+=,B 选项正确;C 选项,()()221122122n S a n n n d a n n n d =+−=+−,()414241n S a n n n d =+−,()616361n S a n n n d =+−,()242126n n S S a n n n d −=+−,()2641210n n S S a n n n d −=+−,则()()()22264114241222262n n n n S S S a n n n d a n n n d S S ⎡⎤+−=+−=+−=−⎣⎦,C 选项正确;D 选项,2112222S a d d a +==+,411463442S a d a d +==+,6116155662S a d a d +==+,则6241232264S S Sa d +=+=⨯,D 选项正确; 故选:BCD.2.(2022·江苏南通·模拟预测)若数列{}n a 是等比数列,则( ) A .数列1n a ⎧⎫⎨⎬⎩⎭是等比数列B .数列{}n ka 是等比数列C .数列{}1n n a a ++是等比数列D .数列{}2n a 是等比数列【答案】AD 【解析】 【分析】设等比数列{}n a 的公比为()0q q ≠,利用等比数列的定义结合特例法可判断各选项的正误. 【详解】设等比数列{}n a 的公比为()0q q ≠,11111n n n na a a q a ++==,则1n a ⎧⎫⎨⎬⎩⎭是以1q 为公比的等比数列,A 对; 0k =时,0n ka =,则{}n ka 不是等比数列,B 错;()11n n n n n a a a a q a q ++=+=+,1q =−时,10n n a a ++=,此时{}1n n a a ++不是等比数列,C 错;2212n na q a +=,所以,{}2n a 是公比为2q 的等比数列,D 对. 故选:AD .3.(2022·福建宁德·模拟预测)数列{n a }中,设12n n T a a a =⋅…….若n T 存在最大值,则n a 可以是( ) A .62n n a −= B .()1nn a =− C .29n a n =− D .121n n a n +=− 【答案】BD 【解析】 【分析】根据数列的单调性即可判断. 【详解】对于A ,()()115436212322n n n n n T a a aa −−−−+−=== ,当n 趋于无穷大时,n T 也趋于无穷大, 故n T 不存在最大值; 对于B ,()()()()()()1123211111n n nn T +=−−−−=− ,当()12n n + 为偶数时,1n T = ,当()12n n +为奇数时,1n T =− , 故n T 的最大值为1;对于C ,()()1121128n n n n n T T a a a a T n ++−=−=− ,当5n ≥ 时,10,n n n T T T +>> ,∴5n ≥ 时n T 是递增的数列,不存在最大值; 对于D ,1232342,1,,135a a a ===== 即当3n ≥ 时,0121n n <+<− ,1n a < , 即3n ≥ 时,()1110n n n n T T T a ++−=−< ,所以n T 是递减的数列, 最大值为122T T == ; 故选:BD.4.(2022·福建·模拟预测)已知等差数列{}n a 的前n 项和为2212n a n n S +=,公差为d ,则( )A .11a =B .1d =C .()213521n n S a n −=+++⋅⋅⋅+−D .2222n nn S a a =+ 【答案】ABC 【解析】 【分析】运用代入法,结合等差数列的通项公式和前n 项和公式逐一判断即可. 【详解】取1n =,则21112a a +=,解得11a =,即A 正确;由A 可知,22n n nS +=,则212321d S a =−=−=,即B 正确;于是有1(1)1n a n n =+−⋅=,因为22n n S a n −=,且()()212113212n n n n +−+++−==,即C 正确; 因为()222222222nn n n nS n n a a +==+=+,即D 错误.故选:ABC5.(2021·山东·模拟预测)设等比数列{an }的公比为q ,其前n 项和为Sn ,前n 项积为Tn ,并满足条件a 1>1,a 2019a 2020>1,2019202011a a −−<0,下列结论正确的是( )A .S 2019<S 2020B .a 2019a 2021﹣1<0C .T 2020是数列{Tn }中的最大值D .数列{Tn }无最大值 【答案】AB 【解析】 【分析】根据题意,由等比数列的通项公式可得(a 1q 2018)(a 1q 2019)=(a 1)2(q 4037)>1,分析可得q >0,可得数列{an }各项均为正值,又由2019202011a a −−<0可得2019202011a a <⎧⎨>⎩或2019202011a a >⎧⎨<⎩,由等比数列的性质分析可得q 的范围,据此分析4个选项,综合即可得答案. 【详解】根据题意,等比数列{an }的公比为q ,若a 2019a 2020>1,则(a 1q 2018)(a 1q 2019)=(a 1)2(q 4037)>1,又由a 1>1,必有q >0,则数列{an }各项均为正值, 又由2019202011a a −−<0,即(a 2019﹣1)(a 2020﹣1)<0,则有2019202011a a <⎧⎨>⎩或2019202011a a >⎧⎨<⎩,又由a 1>1,必有0<q <1,则有2019202011a a >⎧⎨<⎩,对于A ,有S 2020﹣S 2019=a 2020>0,即S 2019<S 2020,则A 正确; 对于B ,有a 2020<1,则a 2019a 2021=(a 2020)2<1,则B 正确;对于C ,2019202011a a >⎧⎨<⎩,则T 2019是数列{Tn }中的最大值,C 错误,同理D 错误;故选:AB6.(2022·海南·模拟预测)在数列{}n a 中,11a =,数列11n a ⎧⎫+⎨⎬⎩⎭是公比为2的等比数列,设n S 为{}n a 的前n 项和,则( )A .121n na =− B .1122n n a =+ C .数列{}n a 为递减数列 D .378S >【答案】ACD 【解析】 【分析】由已知结合等比数列通项公式可求11na +,进而可求n a ,然后结合单调性定义及数列的求和分别检验各选项即可判断和选择. 【详解】因为11a =,数列11n a ⎧⎫+⎨⎬⎩⎭是公比为2的等比数列,所以111222n nna −+=⋅=所以121n n a =−,故A 正确,B 错误; 因为()21,1xy x =−≥是单调增函数,故()1,121x y x =≥−是单调减函数, 故数列{}n a 是减数列,故C 正确; 31231171378S a a a =++=++>,故D 正确.故选:ACD .7.(2022·江苏连云港·模拟预测)“外观数列”是一类有趣的数列,该数列由正整数构成,后一项是前一项的“外观描述”.例如:取第一项为1,将其外观描述为“1个1”,则第二项为11;将11描述为“2个1”,则第三项为21;将21描述为“1个2,1个1”,则第四项为1211;将1211描述为“1个1,1个2,2个1”,则第五项为111221,…,这样每次从左到右将连续的相同数字合并起来描述,给定首项即可依次推出数列后面的项.对于外观数列{}n a ,下列说法正确的是( ) A .若13a =,则5131213a =B .若122a =,则10022a =C .若16a =,则100a 的最后一个数字为6D .若1123a =,则100a 中没有数字4【答案】BCD 【解析】 【分析】根据题干中的递推规律,依次分析各项的正误. 【详解】对于A 项,13a =,即“1个3”,213a =,即“1个1,1个3”,31113a =,即“3个1,1个3”,故43113a =,故A 项错;对于B 项,122a =,即“2个2”, 222a =,即“2个2”,以此类推,该数列的各项均为22,则10022a =,故B 项正确;对于C 项,16a =,即“1个6”, 216a =,即“1个1,1个6”, 31116a =,即“3个1,1个6”,故43116a =,即“1个3,2个1,1个6”,以此类推可知,()*n a n ∈N 的最后一个数字均为6,故C 项正确;对于D 项,1123a =,则2111213a =,331121113a =,41321123113a =,L ,若数列{}n a 中,()5,N k a k k *≥∈中为第一次出现数字4,则1k a −中必出现了4个连续的相同数字,如11111k a −=,则在2k a −的描述中必包含“1个1,1个1”, 即211k a −=,显然2k a −的描述是不合乎要求的, 若12222k a −=或13333k a −=,同理可知均不合乎题意,故()N n a n *∈不包含数字4,故D 项正确. 故选:BCD.8.(2022·广东茂名·模拟预测)一组数据1x ,2x ,…,10x 是公差为1−的等差数列,若去掉首末两项1x ,10x 后,则( ) A .平均数不变 B .中位数没变C .极差没变D .方差变小【答案】ABD 【解析】 【分析】根据平均数的概念结合等差数列的性质判断A ,由中位数的概念可判断B ,由方差及等差数列的通项公式计算即可判断C ,根据极差及等差数列的通项公式可判断D . 【详解】由题意可知,对于选项A , 原数据的平均数为1210511()5(1010x x x x x =+++=⨯+ 6561)()2x x x =+,去掉1x ,10x 后的平均数为2395656111()4()()882x x x x x x x x x '=+++=⨯+=+=,即平均数不变,故选项A 正确;对于选项B ,原数据的中位数为561()2x x +,去掉1x ,10x 后的中位数仍为561()2x x +,即中位数没变,故选项B 正确;对于选项C ,原数据的极差为11099x x d −=−=, 去掉1x ,10x 后的极差为2977x x d −=−=, 即极差变小,故选项C 错误;对于选项D ,设公差为d ,则原数据的方差为222215625610561111()()()10222s x x x x x x x x x ⎧⎫⎪⎪⎡⎤⎡⎤⎡⎤=−++−+++−+⎨⎬⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎪⎪⎩⎭2221975()()()10222[d d d =−+−+−222311()()()222d d d +−+−++2222357933()()()()2224]2d d d d +++=, 去掉1x ,10x 后的方差为22222563569561111()()()8222s x x x x x x x x x ⎧⎫⎪⎪⎡⎤⎡⎤⎡⎤'=−++−+++−+⎨⎬⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎪⎪⎩⎭2222222217531135721()()()()()()()()8222222224[]d d d d d d d d =−+−+−+−++++=, 即方差变小,故选项D 正确. 故选:ABD.9.(2022·山东济宁·二模)已知一组数据1x ,2x ,…,11x 是公差不为0的等差数列,若去掉数据6x ,则( ) A .中位数不变 B .平均数变小 C .方差变大 D .方差变小【答案】AC 【解析】 【分析】由中位数的概念可判断A ,根据平均数的概念结合等差数列的性质判断B ,由方差计算公式即可判断CD. 【详解】对于选项A ,原数据的中位数为6x ,去掉6x 后的中位数为5761()2x x x +=,即中位数没变,故选项A 正确;对于选项B ,原数据的平均数为()111121161111()11112x x x x x x x +=+++=⨯=,去掉6x 后的平均数为1111257811610()11()10102x x x x x x x x x x x +'=+++++++=⨯==即平均数不变,故选项B 错误:对于选项C ,则原数据的方差为()()22221626116]1[()11s x x x x x x =−+−++−,去掉6x 后的方差为()()()()()22222216265676116110s x x x x x x x x x x ⎡⎤'=−+−++−+−++−⎣⎦,故2s 2s '<,即方差变大,故选项C 正确,选项D 错误.10.(2022·山东临沂·模拟预测)设数列{}n a 的前n 项和为n S ,已知233=+nn S .数列{}n b 满足3log n n n a b a =,则( )A .13,1,3, 1.n n n a n −=⎧=⎨>⎩B .113n n n b −−=C .数列{}n b 的前n 项和113211243n n n T −+=−⋅ D .数列{}n b 的前n 项和113211243n n n T −−=+⋅ 【答案】AC 【解析】 【分析】根据n S 与n a 的关系,即可求出n a ,利用错位相减法即可求出数列{}n b 的前n 项和n T ,据此,逐个选项判断即可得出答案. 【详解】对于A ,因为233=+nn S ,所以,当1n =时,11226S a ==,得13a =,当2n ≥时,1113332n n n n n n a S S −−−−=−==,经检验,当1n =时,不符合13−=n n a ,所以,13,1,3, 1.n n n a n −=⎧=⎨>⎩故A 正确;对于B ,因为3log n n n a b a =,得311,1log 31,23n n nn n a b n a n −⎧=⎪⎪==⎨−⎪≥⎪⎩,故B 错误; 对于C ,数列{}n b 的前n 项和1232311123133333n n n n T b b b b −−=++++=+++++①, 234111231393333n nn T −=+++++②,所以,−①②得, 23122111111()3933333n n n n T −−=++⨯+++−11515311193293929333n n n n n n −−−⎛⎫=+−=+⨯−− ⎪⎝⎭1823n=−⋅,得 113211243n n n T −+=−⋅,故C 正确,D 错误; 故选:AC11.(2023·福建漳州·三模)已知数列{n a }的前n 项和为211n S n n =−,则下列说法正确的是( ). A .{}n a 是递增数列 B .{}n a 是递减数列C .122n a n =-D .数列{}n S 的最大项为5S 和6S【答案】BCD 【解析】 【分析】根据211n S n n =−,利用二次函数的性质判断D ,利用数列通项和前n 项和关系求得通项公式判断ABC. 【详解】解:因为22111211124n S n n n ⎛⎫=−=−−+ ⎪⎝⎭,所以数列{}n S 的最大项为5S 和6S ,故D 正确;当1n =时,110a =,当2n ≥时,由211n S n n =−,得()()211111n S n n −=−−−,两式相减得:212n a n =−+, 又110a =,适合上式, 所以212n a n =−+,故C 正确;因为120n n a a −−=−<,所以{}n a 是递减数列,故A 错误,B 正确; 故选:BCD12.(2022·湖南怀化·一模)设{}()*n a n N ∈是各项为正数的等比数列,q 是其公比,nK是其前n 项的积,且56678,K K K K K <=>,则下列选项中成立的是( ) A .01q << B .71a =C .95K K >D .6K 与7K 均为n K 的最大值【答案】ABD【分析】结合等比数列的定义利用数列的单调性判断各选项. 【详解】由已知数列各项均为正,因此乘积n K 也为正,公比0q >, 又56678,K K K K K <=>, 6651K a K =>,7761Ka K ==,B 正确; 8871K a K =<,761aq a =<,即01q <<,A 正确; 由71a =得681a a =,591a a =,所以49K K =,而51a >,54K K >,因此95K K <,C 错; 由上知126781a a a a a <<<<=<<,{}n K 先增后减,6K 与7K 均为n K 的最大值,D 正确.故选:ABD .13.(2022·福建龙岩·模拟预测)已知等比数列{}n a 的前n 项和为n S ,公比为q ,则下列命题正确的是( )A .若11a =,2q =,则663S =B .若1q >,则数列{}n a 是单调递增数列C .若10a >,0q >,lg n n b a =,则数列{} n b 是公差为lg q 的等差数列D .若10a >,0q >,且()21105612a a a a +=+,则110a a +的最小值为4 【答案】AC 【解析】 【分析】A :利用等比数列前n 项和公式即可计算;B :根据函数单调性即可判断;C :根据等差数列定义即可判断;D :利用基本不等式即可判断. 【详解】对于A ,66612216312S −==−=−,故A 正确;对于B ,∵11n n a a q −=⋅,故{}n a 的单调性由q 和1a 共同决定,q >1无法判断数列为递增数列,如10a <,此时数列为递减数列,故B 错误;对于C ,∵111lg lg lg lg n n n n n na b b a a q a +++−=−==为常数,∴数列{}n b 是公差为lg q 的等差数列,故C 正确;对于D ,若10a >,0q >,则0n a >,56110a a a a =, ∵()21105612a a a a +=+, ∴()2211011011012122a a a a a a +⎛⎫+=++ ⎪⎝⎭…,即()()22110110124a a a a +++…,即()211016a a +≤,即11004a a <+…,即当110a a =时,110a a +的最大值为4,故D 错误. 故选:AC .14.(2022·江苏泰州·模拟预测)数列{}n a 满足1111,,2n n n a a a n N *+==∈,n S 为数列{}n a 的前n 项和,则( ) A .418a =B .1n n a a +≤C .3n S <D .132n n S S −<【答案】BC 【解析】 【分析】根据题意求得212112n n n n n n a a a a a a ++++==,得到{}n a 的奇数项和偶数项分别构成公比为12的等比数列,且首项分别为1211,2a a ==,由414a =,可判定A 错误;求得n 为奇数和n 为偶数时,数列的通项公式,可判定B 正确;根据n 为奇数和偶数,求得n S ,可判定C 正确;结合2n =时,可判定D 错误. 【详解】由题意,数列{}n a 满足11,2n n na a n N *+=∈,可得212112n n n n n na a a a a a ++++==, 因为11a =,可得2112a a =,所以212a =, 所以{}n a 的奇数项和偶数项分别构成公比为12的等比数列,且首项分别为1211,2a a ==,对于A 中,可得421124a a =⨯=,所以A 错误; 对于B 中,若n 为奇数时,可数列的通项公式为1122111()()22n n n a −−=⨯=; 若n 为偶数时,可数列的通项公式为122111()()222n n n a +=⨯=,当n 为奇数时,121()2n n a −=,2211()2n n a ++=,此时1n n a a +<,当n 为偶数时,121()2n n a +=,1211()2n n a ++=,此时1n n a a +=,综上可得:1n n a a +≤,所以B 正确; 对于C 中,数列{}n a 为1111111,,,,,,,224488,可得{}1n n a a ++构成首项为32,公比为12的等比数列,当n 为偶数时,可得2231[1()]1223[1()]31212nn n S −==⋅−<−, 当n 为奇数时,可得121211[1()]12112[1()]31212n n n S −−⋅−=+=+⋅−<−,所以C 正确;对于D 中,当2n =时,可得213122S =+=,13322S =,此时132n n S S −=,所以D 错误.故选:BC.15.(2022·重庆·二模)设数列{}n a 的前n 项和为n S ,已知12a =,且()1210n n n a na ++−=()n N *∈,则下列结论正确的是( ) A .{}n na 是等比数列 B .n a n ⎧⎫⎨⎬⎩⎭是等比数列C .2n n a n =⋅D .()122nn S n =−⋅+【答案】BC 【解析】 【分析】由条件变形,先求n a n ⎧⎫⎨⎬⎩⎭的通项公式,再判断选项【详解】 由题意得121n n a a n n +=⋅+,故n a n ⎧⎫⎨⎬⎩⎭是首项为2,公比为2的等比数列, 1222n n na n−=⋅=,则2n n a n =⋅.故B ,C 正确,A 错误 122222n n S n =+⋅++⋅, 23122222n n S n +=+⋅++⋅,两式相减得:()1212(222)122n n n n S n n ++=⋅−+++=−⋅+,故D 错误.故选:BC16.(2022·广东茂名·模拟预测)已知数列{}n a 的前n 项和为S ,11a =,121n n n S S a +=++,数列12n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,*n ∈N ,则下列选项正确的为( ) A .数列{}1n a +是等比数列 B .数列{}1n a +是等差数列C .数列{}n a 的通项公式为21n n a =−D .1n T > 【答案】AC 【解析】 【分析】由1121n n n n a S S a ++=−=+可得,1121n n a a ++=+,可判断A,B 的正误,再求出n a ,可判断C 的正误,利用裂项相消法求n T ,可判断D 的正误. 【详解】因为121n n n S S a +=++,所以1121n n n n a S S a ++=−=+,1+122n n a a +=+, 即1121n n a a ++=+,且112a +=, 所以数列{}1n a +是首项为2,公比为2的等比数列,故A 正确,B 错误;所以12nn a +=,即21n n a =−,故C 正确;因为()()111212122211121n n n n n n n n a a +++−−−−==−⋅,所以12231121212121111111111212121n n n n T ++−+−+=−−−−+−−−=−−<…, 故D 错误; 故选:AC.17.(2022·重庆·二模)设等差数列{}n a 前n 项和为n S ,公差0d >,若920S S =,则下列结论中正确的有( ) A .150a = B .当15n =时,n S 取得最小值 C .10220a a +> D .当0n S >时,n 的最小值为29【答案】ABC 【解析】 【分析】根据等差数列的前n 项和公式,结合该数列的单调性逐一判断即可. 【详解】 解:根据题意,由9201111511998202019140022S S a d a d a d a =⇒+⨯⨯=+⨯⨯⇒+=⇒=.故A 正确;因为0d >,故当15n <时,0n a <,150a =,当15n >时,0n a >,当15n =或14n =时,n S 取得最小值,故B 正确;由于()102216150a a a a d d +=2=2+=2>,故C 正确;因为0d >,n *∈N ,所以由1111(1)(14)(1)(29)0222n S na n n d n d n n d dn n =+−=−+−=−>,可得:29,n >n *∈N ,因此n 的最小值为30,故D 错误.故选:ABC18.(2022·河北保定·一模)已知数列{}n a 的前n 项和为n S ,且满足11a =,22a =,1143n n n a a a +−=−,则下面说法正确的是( ) A .数列{}1n n a a +−为等比数列 B .数列{}13n n a a +−为等差数列C .131n n a -=+D .3142n n nS −=+【答案】ABD【分析】由已知递推式可得()113n n n n a a a a +−−=−或1133n n n n a a a a +−−=−,从而可得数列{}1n n a a +−为公比为3的等比数列,数列{}13n n a a +−为常数列,从而可求出,n n a S ,进而可分析判断 【详解】根据题意得()()111113434344n n n n n n n n n a a a a ka k a a k a a k +−+−−⎛⎫=−⇒+=+−=+−⎪+⎝⎭,令2343014k k k k k =−⇒++=⇒=−+或3k =−,所以可得:()113n n n n a a a a +−−=−或1133n n n n a a a a +−−=−,所以数列{}1n n a a +−为公比为3的等比数列,故选项A 正确;数列{}13n n a a +−为常数列,即为公差为0的等差数列,故选项B 正确;所以1113n n n a a −+−=⨯,且131n n a a +−=−,解得1312n n a −+=,所以C 错误,所以12n n S a a a =++⋅⋅⋅+ 011313131222n −+++=++⋅⋅⋅+()011133322n n −=++⋅⋅⋅++ 1132132n n −=⨯+− 3142n n −=+,所以D 正确,故选:ABD .19.(2022·全国·模拟预测)已知数列{}n a 满足()1213n n n a a a m ++=+,12n a ≠−,则下列说法正确的有( )A .若12=−m ,11a =,则35a =B .若0m =,112a =,则11331n n n a −−=+C .若12m =,12a ≠−,3,则32n n a a ⎧⎫−⎨⎬+⎩⎭是等比数列 D .若12m =−,11a =,则766n n a =−【答案】BC 【解析】A 选项由递推关系计算可判断;B 选项,递推关系变形为1111113n n a a +⎛⎫−=− ⎪⎝⎭,构造一个等比数列11n a ⎧⎫−⎨⎬⎩⎭,可求出通项公式,从而判断;C 选项由递推关系变形出1132n n a a ++−+3372n n a a −=−⨯+,从而得到判断;D 选项,递推关系变形得出112n a ⎧⎫⎪⎪⎨⎬⎪⎪−⎩⎭是等比数列,从而求得通项公式进行判断. 【详解】A 选项:若12=−m ,则()121312n n n a a a ++=−,即131221n n n a a a +−=+.又11a =,则231233a −==−,391221615a −−==−+,故A 错误. B 选项:若0m =,则()1213n n n a a a ++=,即1321nn n a a a +=+, 即112133n n a a +=+,则1111113n n a a +⎛⎫−=− ⎪⎝⎭.又112a =,则111211a −=−=, 所以11n a ⎧⎫−⎨⎬⎩⎭是首项为1,公比为13的等比数列,则11113n n a −⎛⎫−= ⎪⎝⎭,即1111113133n n n n a −−−+⎛⎫=+= ⎪⎝⎭,即11331n n n a −−=+,故B 正确.C 选项:若12m =,则()121312n n n a a a ++=+,即131221n n n a a a ++=+,则()()1131233123213213122312221221n n n n n n n n n n a a a a a a a a a a +++−+−+−+===+++++++393371472n n n n a a a a ⎛⎫−+−=−⨯ ⎪++⎝⎭,所以32n n a a ⎧⎫−⎨⎬+⎩⎭是公比为37−的等比数列,故C 正确.D 选项:若12m =−,则113221n n n a a a +−=+,则11132112222121n n n n n n a a a a a a +−−−−−==++,则1212121111112121222n n n n n n a a a a a a +−+⎛⎫==+=+≠ ⎪−−⎝⎭−−,即11111122n n a a +−=−−.又11a =,则11212a =−,所以112n a ⎧⎫⎪⎪⎨⎬⎪⎪−⎩⎭是首项为2,公差为1的等差数列,所以1112n n a =+−, 即1121n a n −=+,即1112n a n =++,故D 错误, 故选:BC.20.(2022·广东·一模)已知数列{}n a 满足11a =,*12()N n n n a a n ++=∈,则下列结论中正确的是( ) A .45a =B .{}n a 为等比数列C .202212202123a a a +++=−D .2023122022223a a a −+++=【答案】AD 【解析】 【分析】利用递推式可求得234,,a a a 的值,可判断A,B;将122021a a a +++变为1235202042021()()()a a a a a a a ++++++++,利用等比数列的求和公式,求得结果,判断C; 将122022a a a +++变为412320212022))()((a a a a a a +++++++,利用等比数列的求和公式,求得结果,判断D; 【详解】11a =,则1222,1a a a +== ,又2334,3a a a +== ,同理33442,5a a a +== ,故A 正确;而32121,3a a a a == ,故{}n a 不是等比数列,B 错误; 1220211235204202021()()()a a a a a a a a a a =+++++++++++1010101120222420204-4-12-112+2++2=1+==1-433=+(14) ,故C 错误; 122022123202120242()a a a a a a a a a ++++=++++++()()101110112023132021-24-22-22+2++2===1-433⨯=2(14),故D 正确, 故选:AD21.(2022·福建·模拟预测)已知{}n a 是正项等差数列,其公差为d ,若存在常数c ,使得对任意正整数n 均有12n n n ac a a c+=+,则以下判断不正确的是( ) A .0d > B .0d = C .1c > D .01c <<【答案】ACD 【解析】 【分析】利用基本不等式可得101n a +<≤,结合通项公式可得0d =,从而可得()212c c a −=,故可得02c <<,故可得正确的选项.【详解】由题设可得{}n a 是无穷正项等差数列,故0d ≥且0c >, 由基本不等式有122nn n a c a a c+=+≥, 所以101n a +<≤对任意的正整数n 恒成立, 即101a nd <+≤对任意的正整数n 恒成立,即111a nd a −<≤−对任意的正整数n 恒成立,故0d =且101a <≤. 而1112a c a a c=+,故()212c c a −=, 所以()021c c <−≤,所以02c <<, 故选:ACD22.(2022·重庆市育才中学模拟预测)已知数列{an }满足11a =,21n n n a a a +=+,则( )A .{an }是递增数列B .n a n ≥C .202120222a ≤D .121111111n a a a ++⋅⋅⋅+<+++ 【答案】ABD 【解析】 【分析】由递推公式和20n a >可判断A ,由数列递增和11a =可判断B ,由递推公式知21n n a a +>可判断C ,对递推公式取倒裂项,然后累加、放缩可判断D. 【详解】因为a 1=1,21n n n a a a +=+,所以1n n a a +>,故A 正确;易知,所以n a 为正整数,又{an }是递增数列,所以n a n ≥,故B 正确;由递推公式得:232,64a a ==>,又221n n n n a a a a +=+>,所以244a >,22225(4)4a >=,()23222644a >=,易知201922021202242a >>,故C 不正确;取倒得1111(1)11n n n n n a a a a a +=−++=,则由累加法得2341123123111111111111()1111n n n a a a a a a a a a a a a ++++⋅⋅⋅+=+++⋅⋅⋅+−+++⋅⋅⋅+++++整理得123111111111111111n n n a a a a a a a +++++⋅⋅⋅+=−=−++++, 又110n a +>所以121111111n a a a ++⋅⋅⋅+<+++故选:ABD23.(2022·河北张家口·三模)已知公差为d 的等差数列{}n a 的前n 项和为n S ,则( ) A .n S n ⎧⎫⎨⎬⎩⎭是等差数列B .n S 是关于n 的二次函数C .{}n na 不可能是等差数列D .“0d >”是“112n n n S S S −++>”的充要条件【答案】AD 【解析】 【分析】根据等差数列前n 项公式及函数特征结合等差数列的定义即可判断ABC ,再结合充分条件和必要条件的定义即可判断D. 【详解】解:由11(1)2n S na n n d =+−知,11(1)2n S a n d n =+−,则1112+−=+n n S S d n n ,所以n S n ⎧⎫⎨⎬⎩⎭是等差数列,故A 正确; 当0d =时,1n S na =不是n 的二次函数,故B 不正确; 当0d =时,11,n n a a na na ==,则()111n n n a na a ++−=,所以{}n na 是等差数列,故C 不正确; 当0d >时,1102n n n S S d S −+=−>+,故112n n n S S S −++>,11111120n n n n n n n n n n n S S S S S S S a a a a d −++−+++>⇔−>−⇔>⇔−=>,所以“0d >”是“112n n n S S S −++>”的充要条件,故D 正确. 故选:AD.24.(2022·江苏江苏·三模)已知各项都是正数的数列{}n a 的前n 项和为n S ,且122n n na S a =+,则( ) A .{}2n S 是等差数列B .212n n n S S S +++<C .1n n a a +>D .1ln n nS n S −≥ 【答案】ABD 【解析】 【分析】对于A,求出1a ,再将n a 转化为n S ,即可证明,对于B,利用A 的结论求出n S ,再利用基本不等式,即可证明. 对于C ,求出21a a <,即可判断正误,对于D ,构造函数()12ln f x x x x=−−,即可判断正误【详解】 1111122a a S a ==+,10a >,解得:111S a == 2n ≥时,()11122n n n n n S S S S S −−−=+−, 整理得:2211n n S S −−=故{}2n S 是等差数列,选项A 正确;2211n S S n n =+−=,则=n S212n n n S S S +++<==,选项B 正确;22111a S S a =−=<,选项C 错误;令()12ln f x x x x =−−,1≥x ,()()2210x f x x −'=≥ ()f x 在[)1,+∞递增,()()10f x f ≥=,则ln 0fn≥ 即1ln n nS n S −≥,选项D 正确; 故选:ABD.25.(2022·河北保定·一模)已知n S 是数列{}n a 的前n 项和,且21n n S S n +=−+,则下列选项中正确的是( ).A .121n n a a n ++=−(2n ≥)B .22n n a a +−=C .若10a =,则1004950S =D .若数列{}n a 单调递增,则1a 的取值范围是11,43⎛⎫− ⎪⎝⎭【答案】AC 【解析】 【分析】对于A , 由 21n n S S n +=−+,多写一项,两式相减即可得出答案.对于B ,由 121n n a a n ++=−(2n ≥),多递推一项,两式相减即可得出答案少了条件2n ≥. 对于C ,由分析知22n n a a +−=,所以{}n a 奇数项是以10a =为首项,2为公差的等差数列,偶数项是以21a =为首项,2为公差的等差数列,由等差数列得前n 项和公式即可得出答案. 对于D ,因为数列{}n a 单调递增,根据1234n a a a a a <<<<<,即可求出1a 的取值范围.【详解】对于A ,因为21n n S S n +=−+,当()2121n n n S S n −≥=−+−,,两式相减得:121n n a a n ++=−(2n ≥),所以A 正确.对于B ,因为121n n a a n ++=−(2n ≥),所以()+122+11=21n n a a n n ++=−+, 两式相减得:22n n a a +−=(2n ≥),所以B 不正确.对于C ,21n n S S n +=−+,令1n =,则211S S =−+,1211a a a +=−+,因为10a =,所以21a =.令2n =,则324S S =−+,112324a a a a a ++=−−+ ,所以32a =.因为22n n a a +−=(2n ≥),而312a a −=,所以22n n a a +−=.所以{}n a 奇数项是以10a =为首项,2为公差的等差数列. 偶数项是以21a =为首项,2为公差的等差数列. 则:()()10012399100139924100=+++S a a a a a a a a a a a =+++++++++5049504950025012=495022⨯⨯⎛⎫⎛⎫=⨯+⨯+⨯+⨯ ⎪ ⎪⎝⎭⎝⎭,所以C 正确.对于D ,21n n S S n +=−+,令1n =,则211S S =−+,1211a a a +=−+,则2121a a =−+又因为+12=21n n a a n +++,令1n =则23=3a a +,所以()3211=332122a a a a −=−−+=+, 同理:()4311=552223a a a a −=−+=−+,()5411=772324a a a a −=−−+=+,因为数列{}n a 单调递增,所以1234n a a a a a <<<<<,解12a a <得:113a <,解23a a <得:114a >−,解34a a <得:114a <, 解45a a <得:114a >−,解56a a <得:114a <, 所以1a 的取值范围是11,44⎛⎫− ⎪⎝⎭,所以D 不正确.故选:AC. 【点睛】本题考查的是等差数列的知识,解题的关键是利用121n n a a n ++=−,得出{}n a 的奇数项、偶数项分别成等差数列,考查学生的逻辑推理能力和运算求解能力,属于难题.26.(2022·山东日照·二模)已知数列{}n a 满足11a =,()12ln 11n n n a a a +=++,则下列说法正确的有( ) A .31225a a a <+ B .2211n nn a a a +−≤+ C .若2n ≥,则131141n i i a =≤<+∑ D .()()1ln 121ln 2nni i a =+≤−∑【答案】BCD 【解析】 【分析】直接计算出23,a a 即可判断A 选项;构造函数函数()ln 1f x x x =−−,由ln 1x x +…,得到ln 1n n a a +…,进而判断B 选项;由ln 11n a +…得到121n n a a ++…,再结合累乘法得到12n n a +…,按照等比数列求和公式即可判断C 选项;构造函数()12ln g x x x x=−+,由11ln 2x x x ⎛⎫− ⎪⎝⎭…得到212n n n a a a ++…,结合累乘法求得()1ln 12ln2n n a −+…,按照等比数列求和公式即可判断D 选项.【详解】()()2113222ln 113,2ln 116ln37a a a a a a =++==++=+,则()3122512ln360a a a −+=−>,又120a a +>,所以31225a a a >+,A 不正确. 令函数()ln 1f x x x =−−,则()11f x x'=−,则()f x 在()0,1上单调递减,在()1,∞+上单调递增,()()10f x f =…,即ln 1x x +…,又易得{}n a 是递增数列,11n a a =…,故ln 1n n a a +…,所以2121n n a a ++…,B 正确.易知{}n a 是递增数列,所以11n a a =…,则()1ln 11,2ln 1121n n n n n a a a a a ++=+++厖,则()1121n n a a +++…,即1121n n a a +++…,所以11212111211n n n n n a a a a a a −−−−++⋅⋅++…,即()111212n n n a a −++=…,所以1112n n a +…,所以2111111111221111222212n n n ni i a =⎛⎫− ⎪⎝⎭+++==−<+−∑…,而当2n …时,则有11211131114ni i a a a =+=+++∑…,C 正确. 令函数()12ln g x x x x =−+,则()222212110x x g x x x x−+−=−−='…,所以()g x 在()0,∞+上单调递减,所以当1x …时,()()10g x g =…,则11ln 2x x x ⎛⎫− ⎪⎝⎭…, 所以211121122n n n n n n a a a a a a +⎡⎤⎛⎫−++=+⎢⎥ ⎪⎢⎥⎝⎭⎣⎦…,()()()()()()()()()211121211ln 1ln 1ln 1ln 111,2,2ln 1ln 1ln 1ln 1n n n n n n n n n a a a a a a a a a a +−−+−−++++++⋅⋅⋅++++剟?,()()111ln 12ln 12ln2n n n a a −−++=…,所以())()11ln 1(122ln221ln2nn n i i a −=++++=−∑…,D 正确.故选:BCD. 【点睛】本题关键点在于B 选项通过构造函数()ln 1f x x x =−−进行放缩得到ln 1n n a a +…,结合()12ln 11n n n a a a +=++即可判断;C 选项由ln 11n a +…放缩得到121n n a a ++…,D 选项构造函数()12ln g x x x x=−+得到212n nn a a a ++…,再结合累乘法和求和公式进行判断. 27.(2022·福建南平·三模)如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n =⋅⋅⋅⋅⋅⋅且,i i x y ∈Z .记n n n a x y =+,如()11,0A 记为11a =,()21,1A −记为20a =,()30,1A −记为31,a =−⋅⋅⋅,以此类推;设数列{}n a 的前n 项和为n S .则( )A .202242a =B .202287S =−C .82n a n =D .()245312n n n n S ++=【答案】ABD 【解析】 【分析】由图观察可知第n 圈的8n 个点对应的这8n 项的和为0,则2440n n S +=,同时第n 圈的最后一个点对应坐标为(),n n ,设2022a 在第k 圈,则k 圈共有()41k k +个数,可判断前22圈共有2024个数,2024a 所在点的坐标为()22,22,向前推导,则可判断A ,B 选项;当2n =时,16a 所在点的坐标为()2,2−−,即可判断C 选项;借助2440n n S +=与图可知22222244144245454544n n n n n nn n n n n n S S S aaa++++++++=−=+++,即n 项之和,对应点的坐标为()1,+n n ,()1,1n n +−,…,()1,1n +,即可求解判断D 选项.【详解】由题,第一圈从点()1,0到点()1,1共8个点,由对称性可知81280S a a a =+++=;第二圈从点()2,1到点()2,2共16个点,由对称性可知248910240S S a a a −=+++=,即 240S =,以此类推,可得第n 圈的8n 个点对应的这8n 项的和为0,即()214482n nn n SS ++⨯==,设2022a 在第k 圈,则()()888168412k k k kk ++++==+,由此可知前22圈共有2024个数,故20240S =,则()2022202420242023S S a a =−+,2024a 所在点的坐标为()22,22,则2024222244a =+=,2023a 所在点的坐标为()21,22,则2023212243a =+=,2022a 所在点的坐标为()20,22,则2022202242a =+=,故A 正确;()()20222024202420230444387S S a a =−+=−+=−,故B 正确;8a 所在点的坐标为()1,1,则8112a =+=,16a 所在点的坐标为()2,2−−,则16224a =−−=−,故C 错误;22222244144245454544n n n n n nn n n n n n S S S aaa++++++++=−=+++,对应点的坐标为()1,+n n ,()1,1n n +−,…,()1,1n +,所以()()()()()245111112122n n S n n n n n n n n +=+++++−++++=+++++()()2123122n n n n n ++++==,故D 正确.故选:ABD 【点睛】关键点点睛:观察图形,利用对称性求解问题,对D 选项,考虑已知的前n 项和与所求的关系,结合图形,可适当先列举找到规律,再求解.28.(2022·辽宁·东北育才学校二模)如图所示,正五边形ABCDE 的边长为1a ,正五边形11111A B C D E 的边长为2a ,正五边形22222A B C D E 的边长为3a ,……,依次下去,正五边形11111n n n n n A B C D E −−−−−的边长为n a ,记ACE α∠=,则下列结论中正确的是( )A.cos α=B .数列{}n aC .数列{}n a的等比数列D .对任意θ∈R ,cos cos(2)cos(4)cos(6)cos(8)1θθαθαθαθα++++++++= 【答案】AB 【解析】 【分析】根据正五边形的几何性质可知1111111,,,B EAC AE AC CE AB AE CB AB AE B E B C λ======,根据长度关系列方程解得λ=,再利用正弦定理可求得cos α,通过图形类比归纳的12211n n a a a a λ+==,对于D ,注意5πα=,利用诱导公式和两角和差公式化简计算. 【详解】在△ACE ,2CAE AEC α∠=∠=,设1AC CE AE a λλ=== 易知△ACE ∽△1B AE ,则111B E a λ=,11AB AE a ==1ACE CAB ∠=∠,则111AB CB a ==∵11CB B E CE +=,即1111a a a λλ+=,解得λ=又∵AC AE λ=,由正弦定理得sin 2sin αλα=,即2sin cos sin ααλα=∴cos 2λα=,A 正确; 同理:△11B EC ∽△1B AE ,则111211B C B E AE λλ==即2121a a λ=,则2211a a λ==以此类推,1n n a a +={}n aB 正确,C 不正确;∵cos α=2cos 22cos 1αα=−=又∵5πα=,则可得: cos cos(2)cos(4)cos(6)cos(8)θθαθαθαθα++++++++[][][]cos cos(2)cos ()πcos ()πcos (2)2πθθαθαθαθα=+++−+++++−+cos cos(2)cos()cos()cos(2)θθαθαθαθα=++−−−++−()cos 2cos cos 22cos cos cos 12cos 22cos 0θθαθαθαα=+−=+−=D 不正确; 故选:AB .。

文科数学数列高考题及答案

文科数学数列高考题及答案

文科数学数列高考题及答案数列是数学中重要的知识点,它是指一个数字依次出现的有规律的序列,几何数列是按正确的顺序由若干数组成的一类数列。

在数学高考中,对数列的考查也是很重要的,下面就来看看数学高考几何数列题目及答案。

1、若等比数列{an}的前5项依次为3,-6,12,-24,48,则第6项的值为()A. -96B. -92C. 96D. 92答案:A. -96证明:由题意,可得等比数列an的前五项为3,-6,12,-24,48,该数列的公比为$q=\frac{-6}{3}=-2$,故题中第六项的值为:$a_6=a_5\times q^2=48\times(-2)^2=-96$。

所以选项A为正确答案。

2、若复数等比数列{z1,z2,z3,…}的前两项为z1=1+2i,z2=2+i,则第五项的共轭复数z5?()A. 2-3iB. -2+3iC. -2-3iD. 2+3i答案:C. -2-3i证明:由题意可知,等比数列的公比$q=\frac{z2}{z1}=\frac{2+i}{1+2i}=\frac{2-i}{1-2i}=-2-i$,故第五项的值为:$z_5=z_1\times(q)^4=(1+2i)\times(-2-i)^4=-2-3i$,该数列的共轭复数为$\overline{z_5}=-2+3i$。

所以正确答案为C。

3、已知等腰三角形的两条直角边分别为x,y,若直角边x,y成等比数列,则该数列的公比的值是()A. $\frac{1}{2}$B. $\frac{-1}{2}$C. $\frac{2}{3}$D. $\frac{2}{1}$答案:B. $\frac{-1}{2}$证明:由直角边构成的等腰三角形,有$y=\frac{1}{2}x$,故x、y构成的等比数列公比为$q=\frac{y}{x}=\frac{\frac{1}{2}x}{x}=\frac{1}{2}$。

由于x、y是等比数列,故公比$q$为负数,即$q=-\frac{1}{2}$。

高考数学压轴专题最新备战高考《数列》知识点总复习含答案

高考数学压轴专题最新备战高考《数列》知识点总复习含答案

新高中数学《数列》专题解析一、选择题1.已知{}n a 为等差数列,135105a a a ++=,24699a a a ++=,则20a 等于( ).A .1-B .1C .3D .7【答案】B 【解析】 【分析】利用等差数列的通项公式,列出方程组,求出首项和公差,由此能求出20a . 【详解】解:{}n a Q 为等差数列,135105a a a ++=,24699a a a ++=, 13533105a a a a ∴++==,2464399a a a a ++==, 335a ∴=,433a =,4333352d a a =-=-=-, 13235439a a d =-=+=, 20139391921a a d ∴=+=-⨯=.故选:B 【点睛】本题考查等差数列的第20项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.2.若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足2131n n A n B n -=+,则371159a a ab b +++的值为( )A .3944B .58C .1516D .1322【答案】C 【解析】 【分析】利用等差中项的性质将371159a a ab b +++化简为7732a b ,再利用数列求和公式求解即可. 【详解】11337117131135971313()3333213115213()22223131162a a a a a a A b b b b b B +++⨯-==⨯=⨯=⨯=++⨯+, 故选:C. 【点睛】本题考查了等差中项以及数列求和公式的性质运用,考查了推理能力与计算能力,属于中档题.3.若{}n a 为等差数列,n S 是其前n 项和,且11223S π=,则6tan()a 的值为( ) A .3 B .3-C .3 D .3-【答案】B 【解析】 【分析】由11162a a a +=,即可求出6a 进而求出答案. 【详解】 ∵()11111611221123a a S a π+===,∴623a π=,()62tan tan 33a π⎛⎫==- ⎪⎝⎭, 故选B. 【点睛】本题主要考查等差数列的性质,熟记等差数列的性质以及等差数列前n 项和性质即可,属于基础题型.4.执行下面程序框图输出S 的值为( )A .2542B .3764C .1730D .67【答案】A 【解析】【分析】模拟执行程序框图,依此写出每次循环得到的,S i 的值并判断5i >是否成立,发现当6i =,满足5i >,退出循环,输出运行的结果111111324354657S =++⨯⨯⨯⨯⨯++,利用裂项相消法即可求出S . 【详解】 由题意可知, 第1次循环时113S =⨯,2i =,否; 第2次循环111324S =+⨯⨯,3i =,否; 第3次循环时111132435S =++⨯⨯⨯,4i =,否; 第4次循环时111113243546S =++⨯⨯⨯⨯+,5i =,否;第5次循环时111111324354657S =+++⨯⨯⨯⨯⨯+,6i =,是; 故输出111111324354657S =++⨯⨯⨯⨯⨯++111111111112324354657⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦= 1111251226742⎛⎫=+--=⎪⎝⎭ 故选:A. 【点睛】本题主要考查程序框图中的循环结构,同时考查裂项相消法求和,属于基础题.5.已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差为( ) A .23B .32C .23-D .32-【答案】A 【解析】 【分析】根据等差数列的通项公式和前n 项和公式,列方程组求解即得. 【详解】设等差数列{}n a 的公差为d .101010,70a S ==Q ,1191010910702a d a d +=⎧⎪∴⎨⨯+=⎪⎩解得23d =. 故选:A . 【点睛】本题考查等差数列的通项公式和前n 项和公式,属于基础题.6.等差数列的首项为125,且从第10项开始为比1大的项,则公差d 的取值范围是( ) A .(0,)+∞ B .8,75⎛⎫+∞⎪⎝⎭C .83,7525⎛⎫⎪⎝⎭ D .83,7525⎛⎤⎥⎝⎦ 【答案】D 【解析】 【分析】根据题意可知101a >,91a ≤,把1a 的值代入列不等式解得即可. 【详解】由题意,设数列{}n a 的公差为d ,首项1125a =,则10911a a >⎧⎨≤⎩,即101919181a a d a a d =+>⎧⎨=+≤⎩,解得837525d <≤. 故选:D. 【点睛】本题主要考查了等差数列的通项公式的应用,要熟练记忆等差数列的通项公式.7.设{a n }为等比数列,{b n }为等差数列,且S n 为数列{b n }的前n 项和.若a 2=1,a 10=16且a 6=b 6,则S 11=( ) A .20 B .30C .44D .88【答案】C 【解析】 【分析】设等比数列{a n }的公比为q ,由a 2=1,a 10=16列式求得q 2,进一步求出a 6,可得b 6,再由等差数列的前n 项和公式求解S 11. 【详解】设等比数列{a n }的公比为q ,由a 2=1,a 10=16,得810216aqa==,得q2=2.∴4624a a q==,即a6=b6=4,又S n为等差数列{b n}的前n项和,∴()1111161111442b bS b+⨯===.故选:C.【点睛】本题考查等差数列与等比数列的通项公式及性质,训练了等差数列前n项和的求法,是中档题.8.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是().(取lg30.4771≈,lg20.3010≈)A.16 B.17 C.24 D.25【答案】D【解析】【分析】由折线长度变化规律可知“n次构造”后的折线长度为43na⎛⎫⎪⎝⎭,由此得到410003n⎛⎫≥⎪⎝⎭,利用运算法则可知32lg2lg3n≥⨯-,由此计算得到结果.【详解】记初始线段长度为a,则“一次构造”后的折线长度为43a,“二次构造”后的折线长度为24 3a⎛⎫ ⎪⎝⎭,以此类推,“n次构造”后的折线长度为43na⎛⎫⎪⎝⎭,若得到的折线长度为初始线段长度的1000倍,则410003na a⎛⎫≥⎪⎝⎭,即410003n⎛⎫≥⎪⎝⎭,()()44lg lg lg 4lg32lg 2lg3lg1000333nn n n ⎛⎫∴==-=-≥= ⎪⎝⎭,即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造.故选:D . 【点睛】本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.9.已知数列{}n a 的前n 项和()2*23n S n n n N=+∈,则{}na 的通项公式为( )A .21n a n =+B .21n a n =-C .41n a n =+D .41n a n =-【答案】C 【解析】 【分析】首先根据223n S n n =+求出首项1a 的值,然后利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】因为223n S n n =+,所以,当2n ≥时,22123[2(1)3(1)]41n n n a S S n n n n n -=-=+--+-=+,当1n =时,11235==+=a S ,上式也成立, 所以41n a n =+, 故选C. 【点睛】该题考查的是有关数列的通项公式的求解问题涉及到的知识点有数列的项与和的关系,即11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,算出之后再判断1n =时对应的式子是否成立,最后求得结果.10.已知{}n a 是单调递增的等比数列,满足352616,17a a a a ⋅=+=,则数列{}n a 的前n 项和n S = A .122n+ B .122n- C .1122n -+D .1122n -- 【答案】D 【解析】【分析】由等比数列的性质和韦达定理可得26a a , 为方程217160x x -+= 的实根,解方程可得q 和a 1,代入求和公式计算可得. 【详解】∵352616,17a a a a ⋅=+=,∴由等比数列的性质可得26261617a a a a ⋅=+=, ,26a a , 为方程217160x x -+= 的实根解方程可得2626116161a a a a ====,,或, , ∵等比数列{a n }单调递增,∴26116a a ==,,∴1122q a ,== ,∴()1112122122nn n S ----== 故选D . 【点睛】本题考查等比数列的求和公式,涉及等比数列的性质和一元二次方程的解法,属中档题.11.已知数列{}n a 的前n 项和为212343n S n n =++(*N n ∈),则下列结论正确的是( )A .数列{}n a 是等差数列B .数列{}n a 是递增数列C .1a ,5a ,9a 成等差数列D .63S S -,96S S -,129S S -成等差数列【答案】D 【解析】 【分析】由2*123()43n S n n n N =++∈,2n …时,1n n n a S S -=-.1n =时,11a S =.进而判断出正误. 【详解】解:由2*123()43n S n n n N =++∈,2n ∴…时,2211212153[(1)(1)3]4343212n n n a S S n n n n n -=-=++--+-+=+.1n =时,114712a S ==,1n =时,15212n a n =+,不成立.∴数列{}n a 不是等差数列.21a a <,因此数列{}n a 不是单调递增数列.5191547154322(5)(9)021*******a a a --=⨯⨯+--⨯+=-≠,因此1a ,5a ,9a 不成等差数列.631535(456)32124S S -=⨯+++⨯=.961553(789)32124S S -=⨯+++⨯=.1291571(101112)32124S S -=⨯+++⨯=.Q53235710444⨯--=, 63S S ∴-,96S S -,129S S -成等差数列.故选:D . 【点睛】本题考查了等差数列的通项公式与求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.12.在数列{}n a 中,1112,1n na a a +=-=-,则2016a 的值为A .-2B .13 C .12 D .32【答案】B 【解析】由111n na a +=-,得2111111111n n n na a a a ++=-=-=--. 所以32111111n n n na a a a ++=-=-=-. 即数列{}n a 以3为周期的周期数列. 所以2016311113a a a ===-. 故选B.点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项,本题是通过迭代得到了数列的周期性.13.在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,则17S 的值是( )A .41B .51C .61D .68【答案】B 【解析】 【分析】由韦达定理得3156a a +=,由等差数列的性质得117315a a a a +=+,再根据等差数列的前n 项和公式求17S . 【详解】在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,3156a a ∴+=.()()11731517171717651222a a a a S ++⨯∴====. 故选:B . 【点睛】本题考查等差数列的性质和前n 项和公式,属于基础题.14.一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为( ) A .17(1)a r + B .17[(1)(1)]ar r r +-+C .18(1)a r +D .18[(1)(1)]ar r r+-+【答案】D 【解析】 【分析】由题意可得:孩子18岁生日时将所有存款(含利息)全部取回,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,再由等比数列前n 项和公式求解即可. 【详解】 解:根据题意,当孩子18岁生日时,孩子在一周岁生日时存入的a 元产生的本利合计为17(1)a r +, 同理:孩子在2周岁生日时存入的a 元产生的本利合计为16(1)a r +, 孩子在3周岁生日时存入的a 元产生的本利合计为15(1)a r +,⋯⋯孩子在17周岁生日时存入的a 元产生的本利合计为(1)a r +,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和, 此时将存款(含利息)全部取回,则取回的钱的总数:17171618(1)[(1)1](1)(1)(1)[(1)(1)]11a r r aS a r a r a r r r r r++-=++++⋯⋯++==+-++-;故选:D . 【点睛】本题考查了不完全归纳法及等比数列前n 项和,属中档题.15.在递减等差数列{}n a 中,21324a a a =-.若113a =,则数列11{}n n a a +的前n 项和的最大值为 ( ) A .24143B .1143C .2413D .613【答案】D 【解析】设公差为,0d d < ,所以由21324a a a =-,113a =,得213(132)(13)42d d d +=+-⇒=- (正舍),即132(1)152n a n n =--=- , 因为111111()(152)(132)2215213n n a a n n n n +==----- ,所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和等于1111116()()213213213261313n --≤--=-⨯- ,选D. 点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(1)(3)n n ++或1(2)n n +.16.在等差数列{}n a 中,其前n 项和是n S ,若90S >,100S <,则在912129,,,S S S a a a ⋯中最大的是( ) A .11S a B .88S a C .55S a D .99S a 【答案】C 【解析】 【分析】由题意知5600a a >,< .由此可知569121256900...0,0,...0S S S S Sa a a a a ,,,>>><<,所以在912129...S S S a a a ,,,中最大的是55S a . 【详解】 由于191109510569()10()9050222a a a a S a S a a ++====+>,()< , 所以可得5600a a >,<. 这样569121256900...0,0,...0S S S S S a a a a a ,,,>>><<, 而125125S S S a a a ⋯⋯<<<,>>>>0, , 所以在912129...S S S a a a ,,,中最大的是55S a . 故选C .【点睛】本题考查等数列的性质和应用,解题时要认真审题,仔细解答.属中档题.17.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则2020a =( )A .1-B .1 CD .2 【答案】B【解析】【分析】根据可导函数在极值点处的导数值为0,得出140396a a =,再由等比数列的性质可得.【详解】解:依题意1a 、4039a 是函数()3214633f x x x x =-+-的极值点,也就是()2860f x x x '=-+=的两个根∴140396a a =又{}n a是正项等比数列,所以2020a =∴20201a ==.故选:B【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.18.等差数列{}n a 中,1599a a a ++=,它的前21项的平均值是15,现从中抽走1项,余下的20项的平均值仍然是15,则抽走的项是( )A .11aB .12aC .13aD .14a【答案】A【解析】【分析】 由等差数列的性质可知5113,15a a ==,再根据前21项的均值和抽取一项后的均值可知抽取的一项的大小为15,故可确定抽走的是哪一项.【详解】因为1952a a a +=,所以539a =即53a =. 有211521S =得1115a =, 设抽去一项后余下的项的和为S ,则2015300S =⨯=,故抽取的一项的大小为11, 所以抽走的项为11a ,故选A.【点睛】一般地,如果{}n a 为等差数列,n S 为其前n 项和,则有性质:(1)若,,,*,m n p q N m n p q ∈+=+,则m n p q a a a a +=+;(2)()1,1,2,,2k n k n n a a S k n +-+==L 且()2121n n S n a -=- ; (3)2n S An Bn =+且n S n ⎧⎫⎨⎬⎩⎭为等差数列; (4)232,,,n n n n n S S S S S --L 为等差数列.19.根据下面的程序框图,输出的S 的值为( )A .1007B .1009C .0D .-1【答案】A【解析】【分析】按照程序框图模拟运行即可得解.【详解】1i =,1112x ==--,0(1)1S =+-=-;2i =,111(1)2x ==--, 11122S =-+=-;3i =,12112x ==-, 13222S =-+=;4i =,1112x ==--, 31(1)22S =+-=,…, 由此可知,运行程序过程中,x 呈周期性变化,且周期为3, 所以输出112672110072S ⎛⎫=-++⨯-= ⎪⎝⎭. 故选A【点睛】本题主要考查程序框图和数列的周期性,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.等比数列{}n a 共有21n +项,其中11a =,偶数项和为170,奇数项和为341,则n =( )A .3B .4C .7D .9 【答案】B【解析】由题意知1321...341n a a a ++++= ,可得3211...341340n a a a +++=-=,又因为242...170,n a a a +++= 所以321242...3402 (170)n n a a q a a a +++===+++ ,21211234117051112n n S ++-==+=- ,解得4n = ,故选B.。

2020学年高考文科数学复习-数列含答案

2020学年高考文科数学复习-数列含答案

1. 已知数列{}()n a n N *∈是等比数列,且130,2,8.n a a a >==(1)求数列{}n a 的通项公式; (2)求证:11111321<++++na a a a Λ; (3)设1log 22+=n n ab ,求数列{}n b 的前100项和.2.数列{a n }中,18a =,42a =,且满足21n n a a ++-=常数C (1)求常数C 和数列的通项公式; (2)设201220||||||T a a a =+++L , (3) 12||||||n n T a a a =+++L ,n N +∈3. 已知数列n n 2,n a =2n 1,n ⎧⎨⎩为奇数;-为偶数; , 求2n S4 .已知数列{}n a 的相邻两项1,+n n a a 是关于x 的方程022=+-n n b x x ∈n (N )*的两根,且11=a .(1) 求证: 数列⎭⎬⎫⎩⎨⎧⨯-n n a 231是等比数列;(2) 求数列{}n b 的前n 项和n S .5.某种汽车购车费用10万元,每年应交保险费、养路费及汽油费合计9千元,汽车的维修费平均为第一年2千元,第二年4千元,第三年6千元,…,各年的维修费平均数组成等差数列,问这种汽车使用多少年报废最合算(即使用多少年时,年平均费用最少)?6. 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展1,旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少5本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,1.预计今后的旅游业收入每年会比上年增加4(1)设n年内(本年度为第一年)总投入为a n万元,旅游业总收入为b n万元,写出a n,b n的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入?7. 在等比数列{a n}(n∈N*)中,已知a1>1,q>0.设b n=log2a n,且b1+b3+b5=6,b1b3b5=0.(1)求数列{a n}、{b n}的通项公式a n、b n;(2)若数列{b n}的前n项和为S n,试比较S n与a n的大小.8. 已知数列{a n}的前n项和为S n,且a n是S n与2的等差中项,数列{b n}中,b1=1,点P(b n,b n+1)在直线x-y+2=0上。

高考数学数列复习 题集附答案

高考数学数列复习 题集附答案

高考数学数列复习题集附答案高考数学数列复习题集附答案1. 数列基本概念数列是数学中重要的概念之一,在高考数学中也占有重要的地位。

数列是按照一定的规律排列的一系列数的集合。

在数列中,每个数称为该数列的项,而规律则决定了数列的特征。

在高考中,数列的考查形式多样,掌握数列的基本概念对于解题至关重要。

2. 等差数列等差数列是一种常见的数列形式,在解题中经常出现。

等差数列的特点是每一项与前一项之差都相等。

假设等差数列的首项为a₁,公差为d,第n项为aₙ,则数列的通项公式是aₙ = a₁ + (n-1)d。

在考试中,理解等差数列的通项公式以及应用等差数列的性质解题是必要的。

3. 等比数列等比数列是另一种常见的数列形式,也经常出现在高考数学试题中。

等比数列的特点是每一项与前一项之比都相等。

假设等比数列的首项为a₁,公比为q,第n项为aₙ,则数列的通项公式是aₙ = a₁ * q^(n-1)。

了解等比数列的通项公式、性质以及应用等比数列解题的方法对于解答高考试题非常关键。

4. 递推数列递推数列是数列中常见的一种类型,其中每一项通过前一项计算得出。

递推数列的求解常常需要列出前几项进行观察。

在解题时,可以通过观察数列的规律,推导出数列的通项公式,从而求解特定项。

练习题:1. 给定等差数列的首项a₁ = 3,公差d = 2,求该等差数列的第10项。

答:根据等差数列的通项公式,第10项的计算公式为 a₁₀ = a₁ + (n-1)d = 3 + (10-1)2 = 21。

2. 给定等比数列的首项a₁ = 2,公比q = 3,求该等比数列的第5项。

答:根据等比数列的通项公式,第5项的计算公式为 a₅ = a₁ *q^(n-1) = 2 * 3^(5-1) = 162。

3. 已知递推数列的前两项分别为a₁ = 1,a₂ = 2,且每一项都等于前两项之和,求该递推数列的第6项。

答:观察数列的前几项,发现每一项都等于前两项的和,即aₙ =aₙ₋₁ + aₙ₋₂。

2024年高考真题汇总 数列(解析版)

2024年高考真题汇总 数列(解析版)

专题数列一、单选题1(全国甲卷数学(文))等差数列a n 的前n 项和为S n ,若S 9=1,a 3+a 7=()A.-2B.73C.1D.29【答案】D【分析】可以根据等差数列的基本量,即将题目条件全转化成a 1和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【详解】方法一:利用等差数列的基本量由S 9=1,根据等差数列的求和公式,S 9=9a 1+9×82d =1⇔9a 1+36d =1,又a 3+a 7=a 1+2d +a 1+6d =2a 1+8d =29(9a 1+36d )=29.故选:D 方法二:利用等差数列的性质根据等差数列的性质,a 1+a 9=a 3+a 7,由S 9=1,根据等差数列的求和公式,S 9=9(a 1+a 9)2=9(a 3+a 7)2=1,故a 3+a 7=29.故选:D 方法三:特殊值法不妨取等差数列公差d =0,则S 9=1=9a 1⇒a 1=19,则a 3+a 7=2a 1=29.故选:D2(全国甲卷数学(理))等差数列a n 的前n 项和为S n ,若S 5=S 10,a 5=1,则a 1=()A.-2B.73C.1D.2【答案】B【分析】由S 5=S 10结合等差中项的性质可得a 8=0,即可计算出公差,即可得a 1的值.【详解】由S 10-S 5=a 6+a 7+a 8+a 9+a 10=5a 8=0,则a 8=0,则等差数列a n 的公差d =a 8-a 53=-13,故a 1=a 5-4d =1-4×-13 =73.故选:B .3(新高考北京卷)记水的质量为d =S -1ln n,并且d 越大,水质量越好.若S 不变,且d 1=2.1,d 2=2.2,则n 1与n 2的关系为()A.n 1<n 2B.n 1>n 2C.若S <1,则n 1<n 2;若S >1,则n 1>n 2;D.若S <1,则n 1>n 2;若S >1,则n 1<n 2;【答案】C2024年高考真题【分析】根据题意分析可得n 1=eS -12.1n 2=eS -12.2,讨论S 与1的大小关系,结合指数函数单调性分析判断.【详解】由题意可得d 1=S -1ln n 1=2.1d 2=S -1ln n 2=2.2 ,解得n 1=e S -12.1n 2=e S -12.2,若S >1,则S -12.1>S -12.2,可得e S -12.1>e S -12.2,即n 1>n 2;若S =1,则S -12.1=S -12.2=0,可得n 1=n 2=1;若S <1,则S -12.1<S -12.2,可得e S -1 2.1<e S -12.2,即n 1<n 2;结合选项可知C 正确,ABD 错误;故选:C .二、填空题4(新课标全国Ⅱ卷)记S n 为等差数列{a n }的前n 项和,若a 3+a 4=7,3a 2+a 5=5,则S 10=.【答案】95【分析】利用等差数列通项公式得到方程组,解出a 1,d ,再利用等差数列的求和公式节即可得到答案.【详解】因为数列a n 为等差数列,则由题意得a 1+2d +a 1+3d =73a 1+d +a 1+4d =5,解得a 1=-4d =3 ,则S 10=10a 1+10×92d =10×-4 +45×3=95.故答案为:95.5(新高考上海卷)无穷等比数列a n 满足首项a 1>0,q >1,记I n =x -y x ,y ∈a 1,a 2 ∪a n ,a n +1 ,若对任意正整数n 集合I n 是闭区间,则q 的取值范围是.【答案】q ≥2【分析】当n ≥2时,不妨设x ≥y ,则x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,结合I n 为闭区间可得q -2≥-1q n -2对任意的n ≥2恒成立,故可求q 的取值范围.【详解】由题设有a n =a 1q n -1,因为a 1>0,q >1,故a n +1>a n ,故a n ,a n +1 =a 1q n -1,a 1q n ,当n =1时,x ,y ∈a 1,a 2 ,故x -y ∈a 1-a 2,a 2-a 1 ,此时I 1为闭区间,当n ≥2时,不妨设x ≥y ,若x ,y ∈a 1,a 2 ,则x -y ∈0,a 2-a 1 ,若y ∈a 1,a 2 ,x ∈a n ,a n +1 ,则x -y ∈a n -a 2,a n +1-a 1 ,若x ,y ∈a n ,a n +1 ,则x -y ∈0,a n +1-a n ,综上,x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,又I n 为闭区间等价于0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n 为闭区间,而a n +1-a 1>a n +1-a n >a 2-a 1,故a n +1-a n ≥a n -a 2对任意n ≥2恒成立,故a n +1-2a n +a 2≥0即a 1q n -1q -2 +a 2≥0,故q n -2q -2 +1≥0,故q -2≥-1qn -2对任意的n ≥2恒成立,因q >1,故当n →+∞时,-1q n -2→0,故q -2≥0即q ≥2.故答案为:q ≥2.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.三、解答题6(新课标全国Ⅰ卷)设m 为正整数,数列a 1,a 2,...,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j 后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,...,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使数列a 1,a 2,...,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,...,a 4m +2是2,13 -可分数列;(3)从1,2,...,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,...,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.【答案】(1)1,2 ,1,6 ,5,6 (2)证明见解析(3)证明见解析【分析】(1)直接根据i ,j -可分数列的定义即可;(2)根据i ,j -可分数列的定义即可验证结论;(3)证明使得原数列是i ,j -可分数列的i ,j 至少有m +1 2-m 个,再使用概率的定义.【详解】(1)首先,我们设数列a 1,a 2,...,a 4m +2的公差为d ,则d ≠0.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形a k =a k -a 1d+1k =1,2,...,4m +2 ,得到新数列a k =k k =1,2,...,4m +2 ,然后对a 1,a 2,...,a 4m +2进行相应的讨论即可.换言之,我们可以不妨设a k =k k =1,2,...,4m +2 ,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和j i <j ,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的i ,j 就是1,2 ,1,6 ,5,6 .(2)由于从数列1,2,...,4m +2中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①1,4,7,10 ,3,6,9,12 ,5,8,11,14 ,共3组;②15,16,17,18 ,19,20,21,22 ,...,4m -1,4m ,4m +1,4m +2 ,共m -3组.(如果m -3=0,则忽略②)故数列1,2,...,4m +2是2,13 -可分数列.(3)定义集合A =4k +1 k =0,1,2,...,m =1,5,9,13,...,4m +1 ,B =4k +2 k =0,1,2,...,m =2,6,10,14,...,4m +2 .下面证明,对1≤i <j ≤4m +2,如果下面两个命题同时成立,则数列1,2,...,4m +2一定是i ,j -可分数列:命题1:i ∈A ,j ∈B 或i ∈B ,j ∈A ;命题2:j -i ≠3.我们分两种情况证明这个结论.第一种情况:如果i ∈A ,j ∈B ,且j -i ≠3.此时设i =4k 1+1,j =4k 2+2,k 1,k 2∈0,1,2,...,m .则由i <j 可知4k 1+1<4k 2+2,即k 2-k 1>-14,故k 2≥k 1.此时,由于从数列1,2,...,4m +2中取出i =4k 1+1和j =4k 2+2后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①1,2,3,4 ,5,6,7,8 ,...,4k 1-3,4k 1-2,4k 1-1,4k 1 ,共k 1组;②4k 1+2,4k 1+3,4k 1+4,4k 1+5 ,4k 1+6,4k 1+7,4k 1+8,4k 1+9 ,...,4k 2-2,4k 2-1,4k 2,4k 2+1 ,共k 2-k 1组;③4k 2+3,4k 2+4,4k 2+5,4k 2+6 ,4k 2+7,4k 2+8,4k 2+9,4k 2+10 ,...,4m -1,4m ,4m +1,4m +2 ,共m -k 2组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,4m +2是i ,j -可分数列.第二种情况:如果i ∈B ,j ∈A ,且j -i ≠3.此时设i =4k 1+2,j =4k 2+1,k 1,k 2∈0,1,2,...,m .则由i <j 可知4k 1+2<4k 2+1,即k 2-k 1>14,故k 2>k 1.由于j -i ≠3,故4k 2+1 -4k 1+2 ≠3,从而k 2-k 1≠1,这就意味着k 2-k 1≥2.此时,由于从数列1,2,...,4m +2中取出i =4k 1+2和j =4k 2+1后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①1,2,3,4 ,5,6,7,8 ,...,4k 1-3,4k 1-2,4k 1-1,4k 1 ,共k 1组;②4k 1+1,3k 1+k 2+1,2k 1+2k 2+1,k 1+3k 2+1 ,3k 1+k 2+2,2k 1+2k 2+2,k 1+3k 2+2,4k 2+2 ,共2组;③全体4k 1+p ,3k 1+k 2+p ,2k 1+2k 2+p ,k 1+3k 2+p ,其中p =3,4,...,k 2-k 1,共k 2-k 1-2组;④4k 2+3,4k 2+4,4k 2+5,4k 2+6 ,4k 2+7,4k 2+8,4k 2+9,4k 2+10 ,...,4m -1,4m ,4m +1,4m +2 ,共m -k 2组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含k 2-k 1-2个行,4个列的数表以后,4个列分别是下面这些数:4k 1+3,4k 1+4,...,3k 1+k 2 ,3k 1+k 2+3,3k 1+k 2+4,...,2k 1+2k 2 ,2k 1+2k 2+3,2k 1+2k 2+3,...,k 1+3k 2 ,k 1+3k 2+3,k 1+3k 2+4,...,4k 2 .可以看出每列都是连续的若干个整数,它们再取并以后,将取遍4k 1+1,4k 1+2,...,4k 2+2 中除开五个集合4k 1+1,4k 1+2 ,3k 1+k 2+1,3k 1+k 2+2 ,2k 1+2k 2+1,2k 1+2k 2+2 ,k 1+3k 2+1,k 1+3k 2+2 ,4k 2+1,4k 2+2 中的十个元素以外的所有数.而这十个数中,除开已经去掉的4k 1+2和4k 2+1以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,4m +2是i ,j -可分数列.至此,我们证明了:对1≤i <j ≤4m +2,如果前述命题1和命题2同时成立,则数列1,2,...,4m +2一定是i ,j -可分数列.然后我们来考虑这样的i ,j 的个数.首先,由于A ∩B =∅,A 和B 各有m +1个元素,故满足命题1的i ,j 总共有m +1 2个;而如果j -i =3,假设i ∈A ,j ∈B ,则可设i =4k 1+1,j =4k 2+2,代入得4k 2+2 -4k 1+1 =3.但这导致k 2-k 1=12,矛盾,所以i ∈B ,j ∈A .设i =4k 1+2,j =4k 2+1,k 1,k 2∈0,1,2,...,m ,则4k 2+1 -4k 1+2 =3,即k 2-k 1=1.所以可能的k 1,k 2 恰好就是0,1 ,1,2 ,...,m -1,m ,对应的i ,j 分别是2,5 ,6,9 ,...,4m -2,4m +1 ,总共m 个.所以这m +1 2个满足命题1的i ,j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的i ,j 的个数为m +1 2-m .当我们从1,2,...,4m+2中一次任取两个数i和j i<j时,总的选取方式的个数等于4m+24m+12=2m+14m+1.而根据之前的结论,使得数列a1,a2,...,a4m+2是i,j-可分数列的i,j至少有m+12-m个.所以数列a1,a2,...,a4m+2是i,j-可分数列的概率P m一定满足P m≥m+12-m2m+14m+1=m2+m+12m+14m+1>m2+m+142m+14m+2=m+12222m+12m+1=18.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.7(新课标全国Ⅱ卷)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...,过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n.(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意的正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出P2的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明S n的取值为与n无关的定值即可.思路二:使用等差数列工具,证明S n的取值为与n无关的定值即可.【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x =2k y n -kx n 1-k 2-x n =2ky n -x n -k 2x n1-k 2,相应的y =k x -x n +y n =y n +k 2y n -2kx n1-k 2.所以该直线与C 的不同于P n 的交点为Q n 2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV ⋅UW 1-UV ⋅UW UV ⋅UW2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2 c 2+d 2 -ac +bd 2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc 2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k m x n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n=921-k 1+k m -1+k 1-k m.而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1=12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1=12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k -921-k 1+k 2-1+k 1-k 2 .这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k 2x n +y n=1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n -121+k 1-k m x n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m.这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k =x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.8(全国甲卷数学(文))已知等比数列a n 的前n 项和为S n ,且2S n =3a n +1-3.(1)求a n 的通项公式;(2)求数列S n 的通项公式.【答案】(1)a n =53n -1(2)3253 n -32【分析】(1)利用退位法可求公比,再求出首项后可求通项;(2)利用等比数列的求和公式可求S n .【详解】(1)因为2S n =3a n +1-3,故2S n -1=3a n -3,所以2a n =3a n +1-3a n n ≥2 即5a n =3a n +1故等比数列的公比为q =53,故2a 1=3a 2-3=3a 1×53-3=5a 1-3,故a 1=1,故a n =53n -1.(2)由等比数列求和公式得S n =1×1-53 n1-53=3253 n -32.9(全国甲卷数学(理))记S n 为数列a n 的前n 项和,且4S n =3a n +4.(1)求a n 的通项公式;(2)设b n =(-1)n -1na n ,求数列b n 的前n 项和为T n .【答案】(1)a n =4⋅(-3)n -1(2)T n =(2n -1)⋅3n +1【分析】(1)利用退位法可求a n 的通项公式.(2)利用错位相减法可求T n .【详解】(1)当n =1时,4S 1=4a 1=3a 1+4,解得a 1=4.当n ≥2时,4S n -1=3a n -1+4,所以4S n -4S n -1=4a n =3a n -3a n -1即a n =-3a n -1,而a 1=4≠0,故a n ≠0,故an a n -1=-3,∴数列a n 是以4为首项,-3为公比的等比数列,所以a n =4⋅-3 n -1.(2)b n =(-1)n -1⋅n ⋅4⋅(-3)n -1=4n ⋅3n -1,所以T n =b 1+b 2+b 3+⋯+b n =4⋅30+8⋅31+12⋅32+⋯+4n ⋅3n -1故3T n =4⋅31+8⋅32+12⋅33+⋯+4n ⋅3n所以-2T n =4+4⋅31+4⋅32+⋯+4⋅3n -1-4n ⋅3n=4+4⋅31-3n -11-3-4n ⋅3n =4+2⋅3⋅3n -1-1 -4n ⋅3n=(2-4n )⋅3n -2,∴T n =(2n -1)⋅3n +1.10(新高考北京卷)设集合M =i ,j ,s ,t i ∈1,2 ,j ∈3,4 ,s ∈5,6 ,t ∈7,8 ,2i +j +s +t .对于给定有穷数列A :a n 1≤n ≤8 ,及序列Ω:ω1,ω2,...,ωs ,ωk =i k ,j k ,s k ,t k ∈M ,定义变换T :将数列A 的第i 1,j 1,s 1,t 1项加1,得到数列T 1A ;将数列T 1A 的第i 2,j 2,s 2,t 2列加1,得到数列T 2T 1A ⋯;重复上述操作,得到数列T s ...T 2T 1A ,记为ΩA .(1)给定数列A :1,3,2,4,6,3,1,9和序列Ω:1,3,5,7 ,2,4,6,8 ,1,3,5,7 ,写出ΩA ;(2)是否存在序列Ω,使得ΩA 为a 1+2,a 2+6,a 3+4,a 4+2,a 5+8,a 6+2,a 7+4,a 8+4,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且a 1+a 3+a 5+a 7为偶数,证明:“存在序列Ω,使得ΩA 为常数列”的充要条件为“a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8”.【答案】(1)ΩA :3,4,4,5,8,4,3,10(2)不存在符合条件的Ω,理由见解析(3)证明见解析【分析】(1)直接按照ΩA 的定义写出ΩA 即可;(2)利用反证法,假设存在符合条件的Ω,由此列出方程组,进一步说明方程组无解即可;(3)分充分性和必要性两方面论证.【详解】(1)由题意得ΩA :3,4,4,5,8,4,3,10;(2)假设存在符合条件的Ω,可知ΩA 的第1,2项之和为a 1+a 2+s ,第3,4项之和为a 3+a 4+s ,则a 1+2 +a 2+6 =a 1+a 2+sa 3+4 +a 4+2 =a 3+a 4+s,而该方程组无解,故假设不成立,故不存在符合条件的Ω;(3)我们设序列T k ...T 2T 1A 为a k ,n 1≤n ≤8 ,特别规定a 0,n =a n 1≤n ≤8 .必要性:若存在序列Ω:ω1,ω2,...,ωs ,使得ΩA 为常数列.则a s ,1=a s ,2=a s ,3=a s ,4=a s ,5=a s ,6=a s ,7=a s ,8,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.根据T k ...T 2T 1A 的定义,显然有a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....所以不断使用该式就得到,a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,必要性得证.充分性:若a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8.由已知,a 1+a 3+a 5+a 7为偶数,而a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,所以a 2+a 4+a 6+a 8=4a 1+a 2 -a 1+a 3+a 5+a 7 也是偶数.我们设T s ...T 2T 1A 是通过合法的序列Ω的变换能得到的所有可能的数列ΩA 中,使得a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 最小的一个.上面已经证明a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....从而由a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8可得a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.同时,由于i k +j k +s k +t k 总是偶数,所以a k ,1+a k ,3+a k ,5+a k ,7和a k ,2+a k ,4+a k ,6+a k ,8的奇偶性保持不变,从而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数.下面证明不存在j =1,2,3,4使得a s ,2j -1-a s ,2j ≥2.假设存在,根据对称性,不妨设j =1,a s ,2j -1-a s ,2j ≥2,即a s ,1-a s ,2≥2.情况1:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 =0,则由a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,知a s ,1-a s ,2≥4.对该数列连续作四次变换2,3,5,8 ,2,4,6,8 ,2,3,6,7 ,2,4,5,7 后,新的a s +4,1-a s +4,2 +a s +4,3-a s +4,4 +a s +4,5-a s +4,6 +a s +4,7-a s +4,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 减少4,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 >0,不妨设a s ,3-a s ,4 >0.情况2-1:如果a s ,3-a s ,4≥1,则对该数列连续作两次变换2,4,5,7 ,2,4,6,8 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2-2:如果a s ,4-a s ,3≥1,则对该数列连续作两次变换2,3,5,8 ,2,3,6,7 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.这就说明无论如何都会导致矛盾,所以对任意的j =1,2,3,4都有a s ,2j -1-a s ,2j ≤1.假设存在j =1,2,3,4使得a s ,2j -1-a s ,2j =1,则a s ,2j -1+a s ,2j 是奇数,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8都是奇数,设为2N +1.则此时对任意j =1,2,3,4,由a s ,2j -1-a s ,2j ≤1可知必有a s ,2j -1,a s ,2j =N ,N +1 .而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,故集合m a s ,m =N 中的四个元素i ,j ,s ,t 之和为偶数,对该数列进行一次变换i ,j ,s ,t ,则该数列成为常数列,新的a s +1,1-a s +1,2 +a s +1,3-a s +1,4 +a s +1,5-a s +1,6 +a s +1,7-a s +1,8 等于零,比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 更小,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.综上,只可能a s ,2j -1-a s ,2j =0j =1,2,3,4 ,而a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8,故a s ,n =ΩA 是常数列,充分性得证.【点睛】关键点点睛:本题第三问的关键在于对新定义的理解,以及对其本质的分析.11(新高考天津卷)已知数列a n 是公比大于0的等比数列.其前n 项和为S n .若a 1=1,S 2=a 3-1.(1)求数列a n 前n 项和S n ;(2)设b n =k ,n =a kb n -1+2k ,a k <n <a k +1,b 1=1,其中k 是大于1的正整数.(ⅰ)当n =a k +1时,求证:b n -1≥a k ⋅b n ;(ⅱ)求S ni =1b i .【答案】(1)S n =2n -1(2)①证明见详解;②S ni =1b i =3n -1 4n+19【分析】(1)设等比数列a n 的公比为q >0,根据题意结合等比数列通项公式求q ,再结合等比数列求和公式分析求解;(2)①根据题意分析可知a k =2k -1,b n =k +1,b n -1=k 2k -1 ,利用作差法分析证明;②根据题意结合等差数列求和公式可得∑2k -1i =2k -1b i =193k -1 4k -3k -4 4k -1,再结合裂项相消法分析求解.【详解】(1)设等比数列a n 的公比为q >0,因为a 1=1,S 2=a 3-1,即a 1+a 2=a 3-1,可得1+q =q 2-1,整理得q 2-q -2=0,解得q =2或q =-1(舍去),所以S n =1-2n1-2=2n -1.(2)(i )由(1)可知a n =2n -1,且k ∈N *,k ≥2,当n =a k +1=2k≥4时,则a k =2k -1<2k -1=n -1n -1=a k +1-1<a k +1 ,即a k <n -1<a k +1可知a k =2k -1,b n =k +1,b n -1=b a k+a k +1-a k -1 ⋅2k =k +2k 2k -1-1 =k 2k -1 ,可得b n -1-a k ⋅b n =k 2k -1 -k +1 2k -1=k -1 2k -1-k ≥2k -1 -k =k -2≥0,当且仅当k =2时,等号成立,所以b n -1≥a k ⋅b n ;(ii )由(1)可知:S n =2n -1=a n +1-1,若n =1,则S 1=1,b 1=1;若n ≥2,则a k +1-a k =2k -1,当2k -1<i ≤2k -1时,b i -b i -1=2k ,可知b i 为等差数列,可得∑2k -1i =2k -1b i =k ⋅2k -1+2k 2k -12k -1-1 2=k ⋅4k -1=193k -1 4k -3k -4 4k -1 ,所以∑S ni =1b i =1+195×42-2×4+8×43-5×42+⋅⋅⋅+3n -1 4n -3n -4 4n -1=3n -1 4n+19,且n =1,符合上式,综上所述:∑Sni =1b i =3n -1 4n +19.【点睛】关键点点睛:1.分析可知当2k -1<i ≤2k -1时,b i -b i -1=2k ,可知b i 为等差数列;2.根据等差数列求和分析可得∑2k -1i =2k -1b i =193k -1 4k -3k -4 4k -1.12(新高考上海卷)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.【答案】(1)x |1<x <2 (2)a >1【分析】(1)求出底数a ,再根据对数函数的单调性可求不等式的解;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列等价于a 2=21x +342-18在0,+∞ 上有解,利用换元法结合二次函数的性质可求a 的取值范围.【详解】(1)因为y =f x 的图象过4,2 ,故log a 4=2,故a 2=4即a =2(负的舍去),而f x =log 2x 在0,+∞ 上为增函数,故f 2x -2 <f x ,故0<2x -2<x 即1<x <2,故f 2x -2 <f x 的解集为x |1<x <2 .(2)因为存在x 使得f x +1 、f ax 、f x +2 成等差数列,故2f ax =f x +1 +f x +2 有解,故2log a ax =log a x +1 +log a x +2 ,因为a >0,a ≠1,故x >0,故a 2x 2=x +1 x +2 在0,+∞ 上有解,由a 2=x 2+3x +2x 2=1+3x +2x 2=21x +34 2-18在0,+∞ 上有解,令t =1x ∈0,+∞ ,而y =2t +34 2-18在0,+∞ 上的值域为1,+∞ ,故a 2>1即a >1.一、单选题1(2024·重庆·三模)已知数列a n 的前n 项和为S n ,a 1=1,S n +S n +1=n 2+1n ∈N ∗ ,S 24=()A.276B.272C.268D.266【答案】A【分析】令n =1得S 2=1,当n ≥2时,结合题干作差得S n +1-S n -1=2n -1,从而利用累加法求解S 24=即可.【详解】∵a 1=S 1=1,又∵S n +S n +1=n 2+1,当n =1时,S 1+S 2=12+1=2,解得S 2=1;当n ≥2时,S n -1+S n =(n -1)2+1,作差得S n +1-S n -1=2n -1,∴S 24=S 24-S 22 +S 22-S 20 +⋯+S 4-S 2 +S 2=223+21+⋯+3 -11+1=276.故选:A2(2024·河北张家口·三模)已知数列a n的前n项和为S n,且满足a1=1,a n+1=a n+1,n为奇数2a n,n为偶数,则S100=()A.3×251-156B.3×251-103C.3×250-156D.3×250-103【答案】A【分析】分奇数项和偶数项求递推关系,然后记b n=a2n+a2n-1,n≥1,利用构造法求得b n=6×2n-1-3,然后分组求和可得.【详解】因为a1=1,a n+1=a n+1,n为奇数2a n,n为偶数 ,所以a2k+2=a2k+1+1=2a2k+1,a2k+1=2a2k=2a2k-1+2,k∈N*,且a2=2,所以a2k+2+a2k+1=2a2k+a2k-1+3,记b n=a2n+a2n-1,n≥1,则b n+1=2b n+3,所以b n+1+3=2b n+3,所以b n+3是以b1+3=a1+a2+3=6为首项,2为公比的等比数列,所以b n+3=6×2n-1,b n=6×2n-1-3,记b n的前n项和为T n,则S100=T50=6×20+6×21+6×22+⋅⋅⋅+6×249-3×50=3×251-156.故选:A【点睛】关键点点睛:本题解题关键在于先分奇数项和偶数项求递推公式,然后再并项得b n的递推公式,利用构造法求通项,将问题转化为求b n的前50项和.3(2024·山东日照·三模)设等差数列b n的前n项和为S n,若b3=2,b7=6,则S9=()A.-36B.36C.-18D.18【答案】B【分析】利用等差数列的前n项和公式,结合等差数列的性质求解.【详解】解:S9=b1+b9×92=b3+b7×92=36,故选:B.4(2024·湖北武汉·二模)已知等差数列a n的前n项和为S n,若S3=9,S9=81,则S12=() A.288 B.144 C.96 D.25【答案】B【分析】利用等差数列的前n项和列方程组求出a1,d,进而即可求解S12.【详解】由题意S3=3a1+3×22d=9S9=9a1+9×82d=81,即a1+d=3a1+4d=9,解得a1=1d=2.于是S12=12×1+12×112×2=144.故选:B.5(2024·江西赣州·二模)在等差数列a n中,a2,a5是方程x2-8x+m=0的两根,则a n的前6项和为()A.48B.24C.12D.8【答案】B【分析】利用韦达定理确定a2+a5=8,根据等差数列性质有a2+a5=a1+a6=8,在应用等差数列前n项和公式即可求解.【详解】因为a 2,a 5是方程x 2-8x +m =0的两根,所以a 2+a 5=8,又因为a n 是等差数列,根据等差数列的性质有:a 2+a 5=a 1+a 6=8,设a n 的前6项和为S 6,则S 6=a 1+a 6 ×62=3×8=24.故选:B6(2024·湖南永州·三模)已知非零数列a n 满足2n a n +1-2n +2a n =0,则a 2024a 2021=()A.8B.16C.32D.64【答案】D【分析】根据题意,由条件可得a n +1=4a n ,再由等比数列的定义即可得到结果.【详解】由2n a n +1-2n +2a n =0可得a n +1=4a n ,则a 2024a 2021=4×4×4a 2021a 2021=64.故选:D7(2024·浙江绍兴·二模)汉诺塔(Tower of Hanoi ),是一个源于印度古老传说的益智玩具. 如图所示,有三根相邻的标号分别为A 、B 、C 的柱子,A 柱子从下到上按金字塔状叠放着n 个不同大小的圆盘,要把所有盘子一个一个移动到柱子B 上,并且每次移动时,同一根柱子上都不能出现大盘子在小盘子的上方,请问至少需要移动多少次?记至少移动次数为H n ,例如:H (1)=1,H (2)=3,则下列说法正确的是()A.H (3)=5B.H (n ) 为等差数列C.H (n )+1 为等比数列D.H 7 <100【答案】C【分析】由题意可得H (3)=7,判断A ;归纳得到H n =2n -1,结合等差数列以及等比数列的概念可判断B ,C ;求出H 7 ,判断D .【详解】由题意知若有1个圆盘,则需移动一次:若有2个圆盘,则移动情况为:A →C ,A →B ,C →B ,需移动3次;若有3个圆盘,则移动情况如下:A →B ,A →C ,B →C ,A →B ,C →A ,C →B ,A →B ,共7次,故H (3)=7,A 错误;由此可知若有n 个圆盘,设至少移动a n 次,则a n =2a n -1+1,所以a n +1=2a n -1+1 ,而a 1+1=1+1=2≠0,故a n +1 为等比数列,故a n =2n -1即H n =2n -1,该式不是n 的一次函数,则H (n ) 不为等差数列,B 错误;又H n =2n -1,则H n +1=2n ,H n +1 +1H n +1=2,则H (n )+1 为等比数列,C 正确,H 7 =27-1=127>100,D 错误,故选:C8(2024·云南曲靖·二模)已知S n 是等比数列a n 的前n 项和,若a 3=3,S 3=9,则数列a n 的公比是()A.-12或1 B.12或1 C.-12D.12【答案】A【分析】分别利用等比数列的通项公式和前n 项和公式,解方程组可得q =1或q =-12.【详解】设等比数列a n 的首项为a 1,公比为q ,依题意得a 3=a 1q 2=3S 3=a 1+a 2+a 3=a 1+a 1q +a 1q 2=9 ,解得q =1或q =-12.故选:A .9(2024·四川·模拟预测)已知数列a n 为等差数列,且a 1+2a 4+3a 9=24,则S 11=()A.33B.44C.66D.88【答案】B【分析】将a 1,a 4,a 9用a 1和d 表示,计算出a 6的值,再由S 11=11a 6得S 11的值.【详解】依题意,a n 是等差数列,设其公差为d ,由a 1+2a 4+3a 9=24,所以a 1+2a 1+3d +3a 1+8d =6a 1+30d =6a 6=24,即a 6=4,S 11=11a 1+10×112d =11a 1+5d =11a 6=11×4=44,故选:B .10(2024·北京东城·二模)设无穷正数数列a n ,如果对任意的正整数n ,都存在唯一的正整数m ,使得a m =a 1+a 2+a 3+⋯+a n ,那么称a n 为内和数列,并令b n =m ,称b n 为a n 的伴随数列,则()A.若a n 为等差数列,则a n 为内和数列B.若a n 为等比数列,则a n 为内和数列C.若内和数列a n 为递增数列,则其伴随数列b n 为递增数列D.若内和数列a n 的伴随数列b n 为递增数列,则a n 为递增数列【答案】C【分析】对于ABD :举反例说明即可;对于C :根据题意分析可得a m 2>a m 1,结合单调性可得m 2>m 1,即可得结果.【详解】对于选项AB :例题a n =1,可知a n 即为等差数列也为等比数列,则a 1+a 2=2,但不存在m ∈N *,使得a m =2,所以a n 不为内和数列,故AB 错误;对于选项C :因为a n >0,对任意n 1,n 2∈N *,n 1<n 2,可知存在m 1,m 2∈N *,使得a m 1=a 1+a 2+a 3+⋯+a n 1,a m 2=a 1+a 2+a 3+⋯+a n 2,则a m 2-a m 1=a n 1+1+a n 1+2+⋯+a n 2>0,即a m 2>a m 1,且内和数列a n 为递增数列,可知m 2>m 1,所以其伴随数列b n 为递增数列,故C 正确;对于选项D :例如2,1,3,4,5,⋅⋅⋅,显然a n 是所有正整数的排列,可知a n 为内和数列,且a n 的伴随数列为递增数列,但an 不是递增数列,故D 错误;故选:C.【点睛】方法点睛:对于新定义问题,要充分理解定义,把定义转化为已经学过的内容,简化理解和运算.11(2024·广东茂名·一模)已知T n为正项数列a n的前n项的乘积,且a1=2,T2n=a n+1n,则a5=() A.16 B.32 C.64 D.128【答案】B【分析】利用给定的递推公式,结合对数运算变形,再构造常数列求出通项即可得解.【详解】由T2n=a n+1n,得T2n+1=a n+2n+1,于是a2n+1=T2n+1T2n=a n+2n+1a n+1n,则a n n+1=a n+1n,两边取对数得n lg a n+1=(n+1)lg a n,因此lg a n+1n+1=lg a nn,数列lg a nn是常数列,则lg a nn=lg a11=lg2,即lg a n=n lg2=lg2n,所以a n=2n,a5=32.故选:B12(2024·湖南常德·一模)已知等比数列a n中,a3⋅a10=1,a6=2,则公比q为()A.12B.2 C.14D.4【答案】C【分析】直接使用已知条件及公比的性质得到结论.【详解】q=1q3⋅q4=a3a6⋅a10a6=a3⋅a10a26=122=14.故选:C.二、多选题13(2024·湖南长沙·三模)设无穷数列a n的前n项和为S n,且a n+a n+2=2a n+1,若存在k∈N∗,使S k+1 >S k+2>S k成立,则()A.a n≤a k+1B.S n≤S k+1C.不等式S n<0的解集为n∈N∗∣n≥2k+3D.对任意给定的实数p,总存在n0∈N∗,当n>n0时,a n<p【答案】BCD【分析】根据题意,得到a k+2<0,a k+1>0,a k+1+a k+2>0且a n是递减数列,结合等差数列的性质以及等差数列的求和公式,逐项判定,即可求解.【详解】由S k+1>S k+2>S k,可得a k+2=S k+2-S k+1<0,a k+1=S k+1-S k>0,且a k+1+a k+2=S k+2-S k>0,即a k+2<0,a k+1>0,a k+1+a k+2>0又由a n+a n+2=2a n+1,可得数列a n是等差数列,公差d=a k+2-a k+1<0,所以a n是递减数列,所以a1是最大项,且随着n的增加,a n无限减小,即a n≤a1,所以A错误、D正确;因为当n≤k+1时,a n>0;当n≥k+2时,a n<0,所以S n的最大值为S k+1,所以B正确;因为S2k+1=(2k+1)(a1+a2k+1)2=(2k+1)a k+1>0,S2k+3=(2k+3)a k+2<0,且S 2k +2=a 1+a 2k +22×2k +2 =k +1 ⋅a k +1+a k +2 >0,所以当n ≤2k +2时,S n >0;当n ≥2k +3时,S n <0,所以C 正确.故选:BCD .14(2024·山东泰安·模拟预测)已知数列a n 的通项公式为a n =92n -7n ∈N *,前n 项和为S n ,则下列说法正确的是()A.数列a n 有最大项a 4B.使a n ∈Z 的项共有4项C.满足a n a n +1a n +2<0的n 值共有2个D.使S n 取得最小值的n 值为4【答案】AC【分析】根据数列的通项公式,作差判断函数的单调性及项的正负判断A ,根据通项公式由整除可判断B ,根据项的正负及不等式判断C ,根据数列项的符号判断D .【详解】对于A :因为a n =92n -7n ∈N *,所以a n +1-a n =92n -5-92n -7=-182n -5 2n -7,令a n +1-a n >0,即2n -5 2n -7 <0,解得52<n <72,又n ∈N *,所以当n =3时a n +1-a n >0,则当1≤n ≤2或n ≥4时,a n +1-a n <0,令a n =92n -7>0,解得n >72,所以a 1=-95>a 2=-3>a 3=-9,a 4>a 5>a 6>⋯>0,所以数列a n 有最大项a 4=9,故A 正确;对于B :由a n ∈Z ,则92n -7∈Z 又n ∈N *,所以n =2或n =3或n =4或n =5或n =8,所以使a n ∈Z 的项共有5项.故B 不正确;对于C :要使a n a n +1a n +2<0,又a n ≠0,所以a n 、a n +1、a n +2中有1个为负值或3个为负值,所以n =1或n =3,故满足a n a n +1a n +2<0的n 的值共有2个,故C 正确;对于D :因为n ≤3时a n <0,n ≥4时a n >0,所以当n =3时S n 取得最小值,故D 不正确.故选:AC .15(2024·山东临沂·二模)已知a n 是等差数列,S n 是其前n 项和,则下列命题为真命题的是()A.若a 3+a 4=9,a 7+a 8=18,则a 1+a 2=5B.若a 2+a 13=4,则S 14=28C.若S 15<0,则S 7>S 8D.若a n 和a n ⋅a n +1 都为递增数列,则a n >0【答案】BC【分析】根据题意,求得d =98,结合a 1+a 2=a 3+a 4 -4d ,可判定A 错误;根据数列的求和公式和等差数列的性质,可判定B 正确;由S 15<0,求得a 8<0,可判定C 正确;根据题意,求得任意的n ≥2,a n >0,结合a 1的正负不确定,可判定D 错误.【详解】对于A 中,由a 3+a 4=9,a 7+a 8=18,可得a 7+a 8 -a 3+a 4 =8d =9,所以d =98,又由a 1+a 2=a 3+a 4 -4d =9-4×98=92,所以A 错误;对于B 中,由S 14=14a 1+a 14 2=14a 2+a 132=28,所以B 正确;对于C 中,由S 15=15(a 1+a 15)2=15a 8<0,所以a 8<0,又因为S 8-S 7=a 8<0,则S 7>S 8,所以C 正确;对于D 中,因为a n 为递增数列,可得公差d >0,因为a n a n +1 为递增数列,可得a n +2a n +1-a n a n +1=a n +1⋅2d >0,所以对任意的n ≥2,a n >0,但a 1的正负不确定,所以D 错误.故选:BC .16(2024·山东泰安·二模)已知等差数列a n 的前n 项和为S n ,a 2=4,S 7=42,则下列说法正确的是()A.a 5=4B.S n =12n 2+52n C.a nn为递减数列 D.1a n a n +1 的前5项和为421【答案】BC【分析】根据给定条件,利用等差数列的性质求出公差d ,再逐项求解判断即可.【详解】等差数列a n 中,S 7=7(a 1+a 7)2=7a 4=42,解得a 4=6,而a 2=4,因此公差d =a 4-a 24-2=1,通项a n =a 2+(n -2)d =n +2,对于A ,a 5=7,A 错误;对于B ,S n =n (3+n +2)2=12n 2+52n ,B 正确;对于C ,a n n =1+2n ,a n n 为递减数列,C 正确;对于D ,1a n a n +1=1(n +2)(n +3)=1n +2-1n +3,所以1a n a n +1 的前5项和为13-14+14-15+⋯+17-18=13-18=524,D 错误.故选:BC17(2024·江西·三模)已知数列a n 满足a 1=1,a n +1=2a n +1,则()A.数列a n 是等比数列B.数列log 2a n +1 是等差数列C.数列a n 的前n 项和为2n +1-n -2D.a 20能被3整除【答案】BCD【分析】利用构造法得到数列a n +1 是等比数列,从而求得通项,就可以判断选项,对于数列求和,可以用分组求和法,等比数列公式求和完成,对于幂的整除性问题可以转化为用二项式定理展开后,再加以证明.【详解】由a n +1=2a n +1可得:a n +1+1=2a n +1 ,所以数列a n +1 是等比数列,即a n =2n -1,则a 1=1,a 2=3,a 3=7,显然有a 1⋅a 3≠a 22,所以a 1,a 2,a 3不成等比数列,故选项A 是错误的;由数列a n +1 是等比数列可得:a n +1=2n ,即log 2a n +1 =log 22n =n ,故选项B 是正确的;由a n =2n -1可得:前n 项和S n =21-1+22-1+23-1+⋅⋅⋅+2n-1=21-2n 1-2-n =2n +1-n -2,故选项C是正确的;由a 20=220-1=3-1 20-1=C 020320+C 120319⋅-1 +C 220318⋅-1 2+⋅⋅⋅+C 19203⋅-1 19+C 2020-1 20-1=3×C 020319+C 120318⋅-1 +C 220317⋅-1 2+⋅⋅⋅+C 1920-1 19 ,故选项D 是正确的;方法二:由210=1024,1024除以3余数是1,所以10242除以3的余数还是1,从而可得220-1能补3整除,故选项D 是正确的;故选:BCD .18(2024·湖北·二模)无穷等比数列a n 的首项为a 1公比为q ,下列条件能使a n 既有最大值,又有最小值的有()A.a 1>0,0<q <1B.a 1>0,-1<q <0C.a 1<0,q =-1D.a 1<0,q <-1【答案】BC【分析】结合选项,利用等比数列单调性分析判断即可.【详解】a 1>0,0<q <1时,等比数列a n 单调递减,故a n 只有最大值a 1,没有最小值;a 1>0,-1<q <0时,等比数列a n 为摆动数列,此时a 1为大值,a 2为最小值;a 1<0,q =-1时,奇数项都相等且小于零,偶数项都相等且大于零,所以等比数列a n 有最大值,也有最小值;a 1<0,q <-1时,因为q >1,所以a n 无最大值,奇数项为负无最小值,偶数项为正无最大值.故选:BC 三、填空题19(2024·山东济南·三模)数列a n 满足a n +2-a n =2,若a 1=1,a 4=4,则数列a n 的前20项的和为.【答案】210【分析】数列a n 的奇数项、偶数项都是等差数列,结合等差数列求和公式、分组求和法即可得解.【详解】数列a n 满足a n +2-a n =2,若a 1=1,a 4=4,则a 2=a 4-2=4-2=2,所以数列a n 的奇数项、偶数项分别构成以1,2为首项,公差均为2的等差数列所以数列a n 的前20项的和为a 1+a 2+⋯+a 20=a 1+a 3+⋯+a 19 +a 2+a 4+⋯+a 20=10×1+10×92×2+10×2+10×92×2=210.故答案为:210.20(2024·云南·二模)记数列a n 的前n 项和为S n ,若a 1=2,2a n +1-3a n =2n ,则a 82+S 8=.【答案】12/0.5【分析】构造得a n +12n -1-4=34a n2n -2-4,从而得到a n 2n -2=4,则a n =2n ,再利用等比数列求和公式代入计算即可.【详解】由2a n +1-3a n =2n ,得a n +12n -1=34×a n 2n -2+1,则a n +12n -1-4=34a n2n -2-4,又a 12-1-4=0,则a n 2n -2=4,则a n =2n ,a 8=28,S 8=21-28 1-2=29-2,a 82+S 8=2829=12,故答案为:12.21(2024·上海·三模)数列a n 满足a n +1=2a n (n 为正整数),且a 2与a 4的等差中项是5,则首项a 1=。

高考数学压轴专题专题备战高考《数列》难题汇编附答案解析

高考数学压轴专题专题备战高考《数列》难题汇编附答案解析

高中数学《数列》期末考知识点一、选择题1.等比数列{}n a 的前n 项和为n S ,若32S =,618S =,则106S S 等于( ) A .-3 B .5C .-31D .33【答案】D 【解析】 【分析】先由题设条件结合等比数列的前n 项和公式,求得公比q ,再利用等比数列的前n 项和公式,即可求解106S S 的值,得到答案.【详解】由题意,等比数列{}n a 中32S =,618S =,可得313366316(1)1121(1)11181a q S q q a q S q q q ---====--+-,解得2q =, 所以101105105516(1)11133(1)11a q S q q q a q S q q---===+=---. 故选:D . 【点睛】本题主要考查了等比数列的前n 项和公式的应用,其中解答中熟记等比数列的前n 项和公式,准确计算是解答的关键,着重考查了推理与计算能力.2.数列{}n a :1,1,2,3,5,8,13,21,34,…,称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.即:21n n n a a a ++=+.记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .201920202S a =+B .201920212S a =+C .201920201S a =-D .201920211S a =-【答案】D 【解析】 【分析】根据递推关系利用裂项相消法探求和项与通项关系,即得结果. 【详解】因为1233243546521()()()()()n n n n S a a a a a a a a a a a a a a ++=++++=-+-+-+-+-L L 2221n n a a a ++=-=-,所以201920211S a =-,选D. 【点睛】本题考查裂项相消法,考查基本分析判断能力,属中档题.3.数列{}n a 满足12a =,对于任意的*n N ∈,111n na a +=-,则2018a =( ) A .-1 B .12C .2D .3【答案】A 【解析】 【分析】先通过递推公式111n na a +=-,找出此周期数列的周期,再计算2018a 的值. 【详解】111n na a +=-Q ,2111111111n n n na a a a ++∴===----, 32111111n nn n a a a a ++∴===-⎛⎫-- ⎪⎝⎭,故有3n n a a +=,则20183672221111a a a a ⨯+====-- 故选:A 【点睛】本题考查根据数列递推公式求数列各项的值,属于中档题.4.函数()f x 对任意正整数,a b 满足条件()()()f a b f a f b +=⋅,且()12f =,(2)(4)(6)(2018)(1)(3)(5)(2017)f f f f f f f f ++++L 的值是( )A .1008B .1009C .2016D .2018【答案】D 【解析】 【分析】由题意结合()()()f a b f a f b +=⋅求解()()()()()()()()24620181352017f f f f f f f f ++++L 的值即可.【详解】在等式()()()f a b f a f b +=⋅中,令1b =可得:()()()()112f a f a f f a +==, 则()()12f a f a +=,据此可知: ()()()()()()()()24620181352017f f f f f f f f ++++L 2222210092018=++++=⨯=L .本题选择D 选项. 【点睛】本题主要考查抽象函数的性质,函数的求值方法等知识,意在考查学生的转化能力和计算求解能力.5.数列{a n },满足对任意的n ∈N +,均有a n +a n +1+a n +2为定值.若a 7=2,a 9=3,a 98=4,则数列{a n }的前100项的和S 100=( ) A .132 B .299C .68D .99【答案】B 【解析】 【分析】由12n n n a a a ++++为定值,可得3n n a a +=,则{}n a 是以3为周期的数列,求出123,,a a a ,即求100S . 【详解】对任意的n ∈+N ,均有12n n n a a a ++++为定值,()()123120n n n n n n a a a a a a +++++∴++-++=,故3n n a a +=,{}n a ∴是以3为周期的数列,故17298392,4,3a a a a a a ======,()()()100123979899100123133S a a a a a a a a a a a ∴=+++++++=+++L ()332432299=+++=.故选:B . 【点睛】本题考查周期数列求和,属于中档题.6.已知等比数列{a n },a n >0,a 1=256,S 3=448,T n 为数列{a n }的前n 项乘积,则当T n 取得最大值时,n =( )A .8B .9C .8或9D .8.5【答案】C 【解析】 【分析】设等比数列{a n }的公比为q ,由a n >0,可得q >0.根据a 1=256,S 3=448,可得256(1+q +q 2)=448,解得q .可得a n ,T n ,利用二次函数的单调性即可得出. 【详解】设等比数列{a n }的公比为q ,∵a n >0,∴q >0. ∵a 1=256,S 3=448, ∴256(1+q +q 2)=448, 解得q 12=. ∴a n =25611()2n -⨯=29﹣n .T n =28•27•……•29﹣n=28+7+…+9﹣n()217289[)89242222n n n ⎛⎤--- ⎥+-⎝⎦==.∴当n =8或9时,T n 取得最大值时, 故选C . 【点睛】本题考查了等比数列的通项公式与求和公式及其性质、二次函数的单调性,考查了推理能力与计算能力,属于中档题.7.如果等差数列128,,,a a a L 的各项都大于零,公差0d ≠,则正确的关系为( ) A .1845a a a a > B .1845a a a a < C .1845a a a a +>+ D .1845a a a a =【答案】B 【解析】 【分析】先根据等差中项的性质,可排除C ,再利用作差比较,即可得到答案. 【详解】根据等差数列的性质,可得1845a a a a +=+,所以C 不正确;又由218451111(7)(3)(4)120a a a a a a d a d a d d -=+-++=-<,所以1845a a a a <.故选B . 【点睛】本题主要考查了等差数列的性质,等差数列的通项公式,以及作差比较法的应用,着重考查了推理与运算能力.8.将正整数20分解成两个正整数的乘积有120⨯,210⨯,45⨯三种,其中45⨯是这三种分解中两数差的绝对值最小的,我们称45⨯为20的最佳分解.当p q ⨯(p q ≤且*,p q ∈N )是正整数n 的最佳分解时我们定义函数()f n q p =-,则数列(){}5nf ()*n N ∈的前2020项的和为( )A .101051+B .1010514-C .1010512-D .101051-【答案】D 【解析】 【分析】首先利用信息的应用求出关系式的结果,进一步利用求和公式的应用求出结果. 【详解】解:依题意,当n 为偶数时,22(5)550nnn f =-=; 当n 为奇数时,111222(5)5545n n n n f +--=-=⨯,所以01100920204(555)S =++⋯+,101051451-=-g ,101051=-.故选:D 【点睛】本题考查的知识要点:信息题的应用,数列的求和的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.9.已知单调递增的等比数列{}n a 中,2616a a ⋅=,3510a a +=,则数列{}n a 的前n 项和n S =( ) A .2124n -- B .1122n -- C .21n - D .122n +-【答案】B 【解析】 【分析】由等比数列的性质,可得到35,a a 是方程210160x x -+=的实数根,求得1,a q ,再结合等比数列的求和公式,即可求解. 【详解】由题意,等比数列{}n a 中,2616a a ⋅=,3510a a +=, 根据等比数列的性质,可得3516a a ⋅=,3510a a +=,所以35,a a 是方程210160x x -+=的实数根,解得352,8a a ==或358,2a a ==, 又因为等比数列{}n a 为单调递增数列,所以352,8a a ==,设等比数列{}n a 的首项为1a ,公比为(1)q q >可得214128a q a q ⎧=⎨=⎩,解得11,22a q ==,所以数列{}n a 的前n 项和11(12)122122nn n S --==--. 故选:B . 【点睛】本题主要考查了等比数列的通项公式的基本量的运算,以及等比数列的前n 项和公式的应用,着重考查了推理与运算能力.10.已知数列{}n a 是等比数列,前n 项和为n S ,则“3152a a a >+”是“210n S -<”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】根据等比数列的通项公式与求和公式,即可判断命题间的关系. 【详解】因为数列{}n a 是等比数列,前n 项和为n S 若3152a a a >+,由等比数列的通项公式可得111242a a q a q >+,化简后可得()21210q a -<.因为()2210q -≥所以不等式的解集为10a < 若210n S -<当公比1q ≠±时, 210n S -<则10a <,可得3152a a a >+ 当公比1q =±时, 由210n S -<则10a <,可得3152a a a =+ 综上可知, “3152a a a >+”是“210n S -<”的充分不必要条件 故选:B 【点睛】本题考查了等比数列的通项公式与求和公式的应用,在应用等比数列求和公式时,需记得讨论公比是否为1的情况,属于中档题.11.已知数列{a n }的前n 项和为S n ,且a n +1=a n +a (n ∈N *,a 为常数),若平面内的三个不共线的非零向量OAOB OC u u u r u u u r u u u r,,满足10051006OC a OA a OB =+u u u r u u u r u u u r ,A ,B ,C 三点共线且该直线不过O 点,则S 2010等于( ) A .1005 B .1006C .2010D .2012【答案】A 【解析】 【分析】根据a n +1=a n +a ,可判断数列{a n }为等差数列,而根据10051006OC a OA a OB =+u u u r u u u r u u u r,及三点A ,B ,C 共线即可得出a 1+a 2010=1,从而根据等差数列的前n 项和公式即可求出S 2010的值. 【详解】由a n +1=a n +a ,得,a n +1﹣a n =a ; ∴{a n }为等差数列;由10051006OC a OA a OB =+u u u r u u u r u u u r, 所以A ,B ,C 三点共线; ∴a 1005+a 1006=a 1+a 2010=1, ∴S 2010()12010201020101100522a a +⨯===. 故选:A. 【点睛】本题主要考查等差数列的定义,其前n 项和公式以及共线向量定理,还考查运算求解的能力,属于中档题.12.已知首项为1的正项等比数列{}n a 的前n 项和为n S ,4a -、3a 、5a 成等差数列,则2020S 与2020a 的关系是( )A .2020202021S a =+B .2020202021S a =-C .2020202041S a =+D .2020202043S a =-【答案】B 【解析】 【分析】求出等比数列{}n a 的公比q ,然后求出2020S 和2020a ,由此可得出结论. 【详解】设等比数列{}n a 的公比为q ,则0q >,4a -Q 、3a 、5a 成等差数列,3542a a a ∴=-,所以,220q q --=,0q >Q ,解得2q =,20192019202012a a q∴==,()20201202020201211a q S q-==--,因此,2020202021S a =-. 故选:B. 【点睛】本题考查等比数列求和公式以及通项公式的应用,涉及等差中项的应用,考查计算能力,属于中等题.13.等差数列{}n a 中,n S 为它的前n 项和,若10a >,200S >,210S <,则当n =( )时,n S 最大. A .8 B .9C .10D .11【答案】C 【解析】 【分析】根据等差数列的前n 项和公式与项的性质,得出100a >且110a <,由此求出数列{}n a 的前n 项和n S 最大时n 的值. 【详解】等差数列{}n a 中,前n 项和为n S ,且200S >,210S <, 即()()120201*********a a S a a +==+>,10110a a ∴+>,()1212111212102a a S a +==<,所以,110a <,则100a >,因此,当10n =时,n S 最大. 故选:C. 【点睛】本题考查了等差数列的性质和前n 项和最值问题,考查等差数列基本性质的应用,是中等题.14.在正整数数列中,由1开始依次按如下规则,将某些数取出.先取1;再取1后面两个偶数2,4;再取4后面最邻近的3个连续奇数5,7,9;再取9后面的最邻近的4个连续偶数10,12,14,16;再取此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直取下去,得到一个新数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个新数列中,由1开始的第2 019个数是( ) A .3 971 B .3 972C .3 973D .3 974【答案】D 【解析】 【分析】先对数据进行处理能力再归纳推理出第n 组有n 个数且最后一个数为n 2,则前n 组共1+2+3+…+n ()12n n +=个数,运算即可得解.【详解】解:将新数列1,2,4,5,7,9,10,12,14,16,17,…,分组为(1),(2,4),(5,7,9,),(10,12,14,16),(17,19,21,23,25)… 则第n 组有n 个数且最后一个数为n 2, 则前n 组共1+2+3+…+n ()12n n +=个数,设第2019个数在第n 组中,则()()120192120192n n n n ⎧+≥⎪⎪⎨-⎪⎪⎩<,解得n =64,即第2019个数在第64组中,则第63组最后一个数为632=3969,前63组共1+2+3+…+63=2016个数,接着往后找第三个偶数则由1开始的第2019个数是3974, 故选:D . 【点睛】本题考查了对数据的处理能力及归纳推理能力,考查等差数列前n 项和公式,属中档题.15.执行如图所示的程序框图,若输出的S 为154,则输入的n 为( )A .18B .19C .20D .21【答案】B 【解析】 【分析】找到输出的S 的规律为等差数列求和,即可算出i ,从而求出n . 【详解】由框图可知,()101231154S i =+++++⋯+-= , 即()1231153i +++⋯+-=,所以()11532i i -=,解得18i =,故最后一次对条件进行判断时18119i =+=,所以19n =. 故选:B【点睛】本题考查程序框图,要理解循环结构的程序框图的运行,考查学生的逻辑推理能力.属于简单题目.16.一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为( ) A .17(1)a r + B .17[(1)(1)]ar r r +-+C .18(1)a r +D .18[(1)(1)]ar r r+-+【答案】D 【解析】 【分析】由题意可得:孩子18岁生日时将所有存款(含利息)全部取回,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,再由等比数列前n 项和公式求解即可. 【详解】 解:根据题意,当孩子18岁生日时,孩子在一周岁生日时存入的a 元产生的本利合计为17(1)a r +, 同理:孩子在2周岁生日时存入的a 元产生的本利合计为16(1)a r +, 孩子在3周岁生日时存入的a 元产生的本利合计为15(1)a r +,⋯⋯孩子在17周岁生日时存入的a 元产生的本利合计为(1)a r +,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和, 此时将存款(含利息)全部取回, 则取回的钱的总数:17171618(1)[(1)1](1)(1)(1)[(1)(1)]11a r r aS a r a r a r r r r r++-=++++⋯⋯++==+-++-;故选:D . 【点睛】本题考查了不完全归纳法及等比数列前n 项和,属中档题.17.已知等差数列{}n a 的前n 项和为n S ,若816S =,61a =,则数列{}n a 的公差为( ) A .32B .32-C .23D .23-【答案】D【解析】【分析】根据等差数列公式直接计算得到答案.【详解】依题意,()()183********a a a a S ++===,故364a a +=,故33a =,故63233a a d -==-,故选:D . 【点睛】 本题考查了等差数列的计算,意在考查学生的计算能力.18.已知{}n a 是各项都为正数的等比数列,n S 是它的前n 项和,若47S =,821S =,则16S =( )A .48B .90C .105D .106【答案】C【解析】【分析】根据4841281612,,,S S S S S S S ---成等比数列即可求出16S .【详解】由等比数列的性质得4841281612,,,S S S S S S S ---成等比数列,所以1216127,14,21,S S S --成等比数列,所以121216162128,49,4956,105S S S S -=∴=∴-=∴=.故选:C【点睛】本题主要考查等比数列的性质,意在考查学生对这些知识的理解掌握水平.19.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a n +=++,则122016111a a a +++=L ( ) A .20152016B .40322017C .40342017D .20162017【答案】B【解析】【分析】 首先根据题设条件,由11n n a a n +=++,可得到递推关系为11n n a a n +-=+;接下来利用累加法可求得()12n n n a +=,从而()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,由此就可求得122016111a a a +++L 的值. 【详解】因为111n n n a a a n a n +=++=++,所以11n n a a n +-=+,用累加法求数列{}n a 的通项得:()()1211n n n a a a a a a -=+-+⋯+-()1122n n n +=++⋯+=, 所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭, 于是1232016111111111212222320162017a a a a ⎛⎫⎛⎫⎛⎫ +++⋯+=-+-+⋯+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121201*********⎛⎫==- ⎪⎝⎭. 故选:B.【点睛】本题是一道考查数列的题目,掌握数列的递推关系以及求解前n 项和的方法是解答本题的关键,属于常考题.20.已知数列11n a ⎧⎫-⎨⎬⎩⎭是公比为13的等比数列,且10a >,若数列{}n a 是递增数列,则1a 的取值范围为( )A .(1,2)B .(0,3)C .(0,2)D .(0,1)【答案】D【解析】【分析】先根据已知条件求解出{}n a 的通项公式,然后根据{}n a 的单调性以及10a >得到1a 满足的不等关系,由此求解出1a 的取值范围.【详解】 由已知得11111113n n a a -⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,则11111113n n a a -=⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭.因为10a >,数列{}n a 是单调递增数列,所以10n n a a +>>,则111111*********n n a a ->⎛⎫⎛⎫⎛⎫⎛⎫-+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 化简得111110113a a ⎛⎫<-<- ⎪⎝⎭,所以101a <<. 故选:D.【点睛】本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据1,n n a a +之间的大小关系分析问题.。

高考文科数学数列专题复习题及答案

高考文科数学数列专题复习题及答案

高考文科数学数列专题复习题及答案专题复习题可以很好地巩固学生对高考文科数学的知识储备。

下面是店铺为大家整理的高考文科数学数列专题复习题,希望对大家有所帮助!高考文科数学数列专题复习习题及答案:一、选择题1.等比数列{an}的前n项和为Sn,已知S3=a2+10a1,a5=9,则a1等于 ( ).A.13B.-13C.19D.-19解析设等比数列{an}的公比为q,由S3=a2+10a1得a1+a2+a3=a2+10a1,即a3=9a1,q2=9,又a5=a1q4=9,所以a1=19.答案 C2.在等差数列{an}中,若a2+a3=4,a4+a5=6,则a9+a10等于( ).A.9B.10C.11D.12解析设等差数列{an}的公差为d,则有(a4+a5)-(a2+a3)=4d=2,所以d=12.又(a9+a10)-(a4+a5)=10d=5,所以a9+a10=(a4+a5)+5=11.答案 C3.在正项等比数列{an}中,3a1,12a3,2a2成等差数列,则a2013+a2014a2011+a2012等于 ( ).A.3或-1B.9或1C.1D.9解析依题意,有3a1+2a2=a3,即3a1+2a1q=a1q2,解得q=3,q=-1(舍去),a2013+a2014a2011+a2012=a1q2012+a1q2013a1q2010+a1q20 11=q2+q31+q=9.答案 D4.(2014•郑州模拟)在等比数列{an}中,若a4,a8是方程x2-4x+3=0的两根,则a6的值是 ( ).A.3B.-3C.±3D.±3解析依题意得,a4+a8=4,a4a8=3,故a4>0,a8>0,因此a6>0(注:在一个实数等比数列中,奇数项的符号相同,偶数项的符号相同),a6=a4a8=3.答案 A5.(2014•济南模拟)在等差数列{an}中,a1=-2 014,其前n项和为Sn,若S1212-S1010=2,则S2 014的值等于 ( ).A.-2 011B.-2 012C.-2 014D.-2 013解析根据等差数列的性质,得数列Snn也是等差数列,根据已知可得这个数列的首项S11=a1=-2 014,公差d=1,故S2 0142 014=-2 014+(2 014-1)×1=-1,所以S2 014=-2 014.答案 C6.(2013•辽宁卷)下面是关于公差d>0的等差数列{an}的四个命题:p1:数列{an}是递增数列;p2:数列{nan}是递增数列;p3:数列ann是递增数列;p4:数列{an+3nd}是递增数列.其中的真命题为 ( ).A.p1,p2B.p3,p4C.p2,p3D.p1,p4解析设an=a1+(n-1)d=dn+a1-d,它是递增数列,所以p1为真命题;若an=3n-12,则满足已知,但nan=3n2-12n并非递增数列,所以p2为假命题;若an=n+1,则满足已知,但ann=1+1n是递减数列,所以p3为假命题;设an+3nd=4dn+a1-d,它是递增数列,所以p4为真命题.答案 D7.(2013•新课标全国Ⅰ卷)设等差数列{an}的前n项和为Sn,Sm-1=-2,Sm=0,Sm+1=3,则m等于 ( ).A.3B.4C.5D.6解析由Sm-1=-2,Sm=0,Sm+1=3,得am=2,am+1=3,所以d=1,因为Sm=0,故ma1+m(m-1)2d=0,故a1=-m-12,因为am+am+1=5,故am+am+1=2a1+(2m-1)d=-(m-1)+2m-1=5,即m=5.答案 C高考文科数学数列专题复习习题及答案:二、填空题8.(2013•新课标全国Ⅰ卷)若数列{an}的前n项和为Sn=23an+13,则数列{an}的通项公式是an=________.解析当n=1时,a1=1;当n≥2时,an=Sn-Sn-1=23an-23an-1,所以anan-1=-2,∴{an}是以1为首项,-2为公比的等比数列,故an=(-2)n-1.答案(-2)n-19.(2013•北京卷)若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q=________;前n项和Sn=________.解析由题意q=a3+a5a2+a4=2,又a2+a4=20,故a1q+a1q3=20,解得a1=2,所以Sn=2n+1-2.答案 2 2n+1-210.(2014•新课标全国Ⅱ卷)数列{an}满足an+1=11-an,a8=2,则a1=________.解析先求出数列的周期,再进一步求解首项,∵an+1=11-an,∴an+1=11-an=11-11-an-1=1-an-11-an-1-1=1-an-1-an-1=1-1an-1=1-111-an-2=1-(1-an-2)=an-2,∴周期T=(n+1)-(n-2)=3.∴a8=a3×2+2=a2=2.而a2=11-a1,∴a1=12.答案1211.设数列{an}是公差不为0的等差数列,a1=1且a1,a3,a6成等比数列,则数列{an}的前n项和Sn=________.解析设公差为d,由a1,a3,a6成等比数列,可得(1+2d)2=1×(1+5d),解得d=14,所以Sn=n+n(n-1)2×14=18n2+78n.答案18n2+78n12.(2014•天津卷)设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n项和.若S1,S2,S4成等比数列,则a1的值为________.解析根据等差数列的前n项和公式求出S1,S2,S4的表达式,然后利用等比数列的性质求解.等差数列{an}的前n项和为Sn=na1+n(n-1)2d,所以S1,S2,S4分别为a1,2a1-1,4a1-6.因为S1,S2,S4成等比数列,所以(2a1-1)2=a1•(4a1-6),解方程得a1=-12.答案-12高考文科数学数列专题复习习题及答案:三、解答题13.(2014•北京卷)已知{an}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn-an}为等比数列.(1)求数列{an}和{bn}的通项公式;(2)求数列{bn}的前n项和.解(1)设等差数列{an}的公差为d,由题意得d=a4-a13=12-33=3,所以an=a1+(n-1)d=3n(n=1,2,…).设等比数列{bn-an}的公比为q,由题意得q3=b4-a4b1-a1=20-124-3=8,解得q=2.所以bn-an=(b1-a1)qn-1=2n-1.从而bn=3n+2n-1(n=1,2,…).(2)由(1)知bn=3n+2n-1(n=1,2,…).数列{3n}的前n项和为32n(n+1),数列{2n-1}的前n项和为1-2n1-2=2n-1.所以,数列{bn}的前n项和为32n(n+1)+2n-1.14.(2013•浙江卷)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(1)求d,an;(2)若d<0,求|a1|+|a2|+…+|an|.解(1)由题意得5a3•a1=(2a2+2)2,即d2-3d-4=0.故d=-1或d=4.所以an=-n+11,n∈N*或an=4n+6,n∈N*.(2)设数列{an}的前n项和为Sn.因为d<0,由(1)得d=-1,an=-n+11.当n≤11时,|a1|+|a2|+|a3|+…+|an|=Sn=-12n2+212n.当n≥12时,|a1|+|a2|+|a3|+…+|an|=-Sn+2S11=12n2-212n+110.综上所述,|a1|+|a2|+|a3|+…+|an|=-12n2+212n,n≤11,12n2-212n+110,n≥12.15.(2014•杭州模拟)已知数列{an}是首项为133,公比为133的等比数列,设bn+15log3an=t,常数t∈N*.(1)求证:{bn}为等差数列;(2)设数列{cn}满足cn=anbn,是否存在正整数k,使ck,ck+1,ck+2按某种次序排列后成等比数列?若存在,求k,t的值;若不存在,请说明理由.(1)证明an=3-n3,bn+1-bn=-15log3an+1an=5,∴{bn}是首项为b1=t+5,公差为5的等差数列.(2)解cn=(5n+t) •3-n3,则ck=(5k+t)•3-k3,令5k+t=x(x>0),则ck=x•3-k3,ck+1=(x+5)•3-k+13,ck+2=(x+10)•3-k+23.①若c2k=ck+1ck+2,则x•3-k32=(x+5)•3-k+13•(x+10)•3-k+23.化简得2x2-15x-50=0,解得x=10,x=-52(舍去);进而求得k=1,t=5;②若c2k+1=ckck+2,同理可得(x+5)2=x(x+10),显然无解;③若c2k+2=ckck+1,同理可得13(x+10)2=x(x+5),方程无整数根.综上所述,存在k=1,t=5适合题意.。

2024年高考数学总复习第六章《数列》测试卷及答案解析

2024年高考数学总复习第六章《数列》测试卷及答案解析

2024年高考数学总复习第六章《数列》测试卷及答案(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知等差数列{a n }的公差为2,前n 项和为S n ,且S 10=100,则a 7的值为()A .11B .12C .13D .14答案C解析由S 10=100及公差为2,得10a 1+10×(10-1)2×2=100,所以a 1=1.所以a n =2n -1,故a 7=13.故选C.2.若等差数列{a n }的公差d ≠0且a 1,a 3,a 7成等比数列,则a2a 1等于()A.32B.23C.12D .2答案A解析设等差数列的首项为a 1,公差为d ,则a 3=a 1+2d ,a 7=a 1+6d .因为a 1,a 3,a 7成等比数列,所以(a 1+2d )2=a 1(a 1+6d ),解得a 1=2d .所以a 2a 1=2d +d 2d=32.故选A.3.已知等差数列{a n }的前n 项和为S n ,若S 6=30,S 10=10,则S 16等于()A .-160B .-80C .20D .40答案B解析a 1+15d =30,a 1+45d =10,解得a 1=10,d =-2,故S 16=16a 1+120d =16×10+120×(-2)=-80,故选B.4.记等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5等于()A .-3B .5C .-31D .33答案D解析由题意知公比q ≠1,S 6S 3=a 1(1-q 6)1-qa 1(1-q 3)1-q =1+q 3=9,∴q =2,S 10S 5=a 1(1-q 10)1-qa 1(1-q 5)1-q=1+q 5=1+25=33.5.(2019·湖南五市十校联考)已知数列{a n }满足2a n =a n -1+a n +1(n ≥2),a 2+a 4+a 6=12,a 1+a 3+a 5=9,则a 1+a 6等于()A .6B .7C .8D .9答案B解析由数列{a n }满足2a n =a n -1+a n +1(n ≥2)得数列{a n }为等差数列,所以a 2+a 4+a 6=3a 4=12,即a 4=4,同理a 1+a 3+a 5=3a 3=9,即a 3=3,所以a 1+a 6=a 3+a 4=7.6.(2019·新乡模拟)为了参加冬季运动会的5000m 长跑比赛,某同学给自己制定了7天的训练计划:第1天跑5000m ,以后每天比前1天多跑200m ,则这个同学7天一共将跑()A .39200mB .39300mC .39400mD .39500m答案A解析依题意可知,这个同学第1天,第2天,…跑的路程依次成首项为5000,公差为200的等差数列,则这个同学7天一共将跑5000×7+7×62×200=39200(m).故选A.7.等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m 等于()A .38B .20C .10D .9答案C解析因为{a n }是等差数列,所以a m -1+a m +1=2a m ,由a m -1+a m +1-a 2m =0,得2a m -a 2m =0,由S 2m -1=38知a m ≠0,所以a m =2,又S 2m -1=38,即(2m -1)(a 1+a 2m -1)2=38,即(2m -1)×2=38,解得m =10,故选C.8.(2019·青岛调研)已知各项均不相等的等比数列{a n },若3a 2,2a 3,a 4成等差数列,设S n 为数列{a n }的前n 项和,则S 3a 3等于()A.139B.79C .3D .1答案A解析设等比数列{a n }的公比为q ,∵3a 2,2a 3,a 4成等差数列,∴2×2a 3=3a 2+a 4,∴4a 2q =3a 2+a 2q 2,化为q 2-4q +3=0,解得q =1或3.又数列的各项均不相等,∴q ≠1,当q =3时,S 3a 3=a 1(33-1)3-1a 1×9=139.故选A.9.(2019·广东六校联考)将正奇数数列1,3,5,7,9,…依次按两项、三项分组,得到分组序列如下:(1,3),(5,7,9),(11,13),(15,17,19),…,称(1,3)为第1组,(5,7,9)为第2组,依此类推,则原数列中的2019位于分组序列中的()A .第404组B .第405组C .第808组D .第809组答案A解析正奇数数列1,3,5,7,9,…的通项公式为a n =2n -1,则2019为第1010个奇数,因为按两项、三项分组,故按5个一组分组是有202组,故原数列中的2019位于分组序列中的第404组,故选A.10.(2019·新疆昌吉教育共同体月考)在数列{a n }中,a 1=2,其前n 项和为S n .在直线y =2x -1上,则a 9等于()A .1290B .1280C .1281D .1821答案C解析由已知可得S n +1n +1-1=又S11-1=a 1-1=1,1,公比为2的等比数列,所以Sn n -1=2n -1,得S n =n (1+2n -1),当n ≥2时,a n =S n -S n -1=(n +1)2n -2+1,故a 9=10×128+1=1281.11.(2019·长沙长郡中学调研)已知数列{a n }的前n 项和为S n ,且S n =n 2+4n ,若首项为13的数列{b n }满足1b n +1-1b n =a n ,则数列{b n }的前10项和为()A.175264B.3988C.173264D.181264答案A解析由S n =n 2+4n ,可得a n =2n +3,根据1b n +1-1b n=a n =2n +3,结合题设条件,应用累加法可求得1b n n 2+2n ,所以b n =1n 2+2n =1n (n +2)=所以数列{b n }的前n项和为T n -13+12-14+…+1n --1n +1-所以T 10-111-=175264,故选A.12.已知数列{a n }的通项a n =nx(x +1)(2x +1)…(nx +1),n ∈N *,若a 1+a 2+a 3+…+a 2018<1,则实数x 可以等于()A .-23B .-512C .-1348D .-1160答案B 解析∵a n =nx(x +1)(2x +1)…(nx +1)=1(x +1)(2x +1)…[n (x -1)+1]-1(x +1)(2x +1)…(nx +1)(n ≥2),∴a 1+a 2+…+a 2018=x x +1+1x +1-1(x +1)(2x +1)…(2018x +1)=1-1(x +1)(2x +1)…(2018x +1),当x =-23x +1>0,nx +1<0(2≤n ≤2018,n ∈N *),此时1-1(x +1)(2x +1)…(2018x +1)>1.当x =-512时,x +1>0,x +2>0,nx +1<0(3≤n ≤2018,n ∈N *),此时1-1(x +1)(2x +1)…(2018x +1)<1;当x =-1348时,x +1>0,x +2>0,x +3>0,nx +1<0(4≤n ≤2018,n ∈N *),此时1-1(x +1)(2x +1)…(2018x +1)>1;当x =-1160时,x +1>0,x +2>0,x +3>0,x +4>0,x +5>0,nx +1<0(6≤n ≤2018,n ∈N *),此时1-1(x +1)(2x +1)…(2018x +1)>1.故选B.二、填空题(本大题共4小题,每小题5分,共20分)13.设等差数列{a n }的公差为d ,其前n 项和为S n ,若a 4+a 10=0,2S 12=S 2+10,则d 的值为________.答案-10解析由a 4+a 10=0,2S 12=S 2+10,1+3d +a 1+9d =0,a 1+12×112d2a 1+d +10,解得d =-10.14.(2019·沈阳东北育才中学模拟)等差数列{a n },{b n }的前n 项和分别为S n 和T n ,若Sn T n =2n +13n +2,则a 3+a 11+a 19b 7+b 15=________.答案129130解析原式=3a 112b 11=32·2a 112b 11=32·a 1+a 21b 1+b 21=32·S 21T 21=32·2×21+13×21+2=129130.15.(2019·荆州质检)已知数列{a n }的前n 项和为S n ,若a n =(2n -2则S 2019=________.答案2020解析∵a n =(2n -2=(1-2n )sinn π2,∴a 1,a 2,…,a n 分别为-1,0,5,0,-9,0,13,0,-17,0,21,0,…,归纳可得,每相邻四项和为4,∴S 2019=504×4+a 2017+a 2018+a 2019=2016+[(1-2×2017)+0+(2×2019-1)]=2016+4=2020.16.(2019·长沙长郡中学调研)已知点列P 1(1,y 1),P 2(2,y 2),P 3(3,y 3),…,P n +1(n +1,y n +1)在x 轴上的投影为Q 1,Q 2,…,Q n +1,且点P n +1满足y 1=1,直线P n P n +1的斜率1n n P P k +=2n .则多边形P 1Q 1Q n +1P n +1的面积为________.答案3×2n -n -3解析根据题意可得y n +1-y n =2n ,结合y 1=1,应用累加法,可以求得y n +1=2n +1-1,根据题意可以将该多边形分成n 个直角梯形计算,且从左往右,第n 个梯形的面积为S n =y n +y n +12=3×2n -1-1,总的面积应用分组求和法,可求得多边形的面积为S =3(2n -1)-n =3×2n -n -3.三、解答题(本大题共70分)17.(10分)已知{a n }是以a 为首项,q 为公比的等比数列,S n 为它的前n 项和.(1)当S 1,S 3,S 4成等差数列时,求q 的值;(2)当S m ,S n ,S l 成等差数列时,求证:对任意自然数k ,a m +k ,a n +k ,a l +k 也成等差数列.(1)解由已知,得a n =aq n -1,因此S 1=a ,S 3=a (1+q +q 2),S 4=a (1+q +q 2+q 3).当S 1,S 3,S 4成等差数列时,S 4-S 3=S 3-S 1,可得aq 3=aq +aq 2,化简得q 2-q -1=0.解得q =1±52.(2)证明若q =1,则{a n }的各项均为a ,此时a m +k ,a n +k ,a l +k 显然成等差数列.若q ≠1,由S m ,S n ,S l 成等差数列可得S m +S l =2S n ,即a (q m -1)q -1+a (q l -1)q -1=2a (q n -1)q -1,整理得q m +q l =2q n .因此a m +k +a l +k =aq k -1(q m +q l )=2aq n+k -1=2a n +k ,所以a m +k ,a n +k ,a l +k 成等差数列.18.(12分)(2019·安徽皖南八校联考)数列{a n }的前n 项和记为S n ,且4S n =5a n -5,数列{b n }满足b n =log 5a n .(1)求数列{a n },{b n }的通项公式;(2)设c n =1b n b n +1,数列{c n }的前n 项和为T n ,证明T n <1.(1)解∵4S n =5a n -5,∴4a 1=5a 1-5,∴a 1=5.当n ≥2时,4S n -1=5a n -1-5,∴4a n =5a n -5a n -1,∴a n =5a n -1,∴{a n }是以5为首项,5为公比的等比数列,∴a n =5·5n -1=5n .∴b n =log 55n =n .(2)证明∵c n =1n (n +1)=1n -1n +1,∴T n…=1-1n +1<1.19.(12分)(2019·安徽皖中名校联考)已知数列{a n }满足:a n +1=2a n -n +1,a 1=3.(1)设数列{b n }满足:b n =a n -n ,求证:数列{b n }是等比数列;(2)求出数列{a n }的通项公式和前n 项和S n .(1)证明b n +1b n =a n +1-(n +1)a n -n =2a n -n +1-(n +1)a n -n=2(a n -n )a n -n =2,又b 1=a 1-1=3-1=2,∴{b n }是以2为首项,2为公比的等比数列.(2)解由(1)得b n =2n ,∴a n =2n +n ,∴S n =(21+1)+(22+2)+…+(2n +n )=(21+22+…+2n )+(1+2+3+…+n )=2(1-2n )1-2+n (n +1)2=2n +1-2+n (n +1)2.20.(12分)(2019·湖南衡阳八中月考)已知数列{a n }的前n 项和为S n ,且S n =2a n -n (n ∈N *).(1)证明:{a n +1}是等比数列;(2)若数列b n =log 2(a n +1)n 项和T n .(1)证明当n =1时,S 1=2a 1-1,∴a 1=1.∵S n =2a n -n ,∴S n +1=2a n +1-(n +1),∴a n +1=2a n +1,∴a n +1+1=2(a n +1),∴{a n +1}是以a 1+1=2为首项,2为公比的等比数列.(2)解由(1)得a n +1=2n ,∴b n =log 22n =n ,∴1b 2n -1·b 2n +1=1(2n -1)(2n +1)=∴T n -13+13-15+…+12n -1-=n 2n +1.21.(12分)(2019·青岛调研)已知数列{a n }的各项均为正数,其前n 项和为S n .(1)若对任意n ∈N *,S n =n 2+n +12都成立,求a n ;(2)若a 1=1,a 2=2,b n =a 2n -1+a 2n ,且数列{b n }是公比为3的等比数列,求S 2n .解(1)由S n =n 2+n +12,得S n -1=(n -1)2+n2,n ≥2,两式相减得a n =n ,n ≥2,又a 1=S 1=32,不满足a n =n ,∴a n n =1,n ≥2.(2)S 2n =a 1+a 2+…+a 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 2+…+b n ,∵b 1=a 1+a 2=3,{b n }是公比为3的等比数列,∴S 2n =b 1+b 2+…+b n =3(1-3n )1-3=32(3n-1).22.(12分)(2019·湖南岳阳一中质检)已知数列{a n }的前n 项和为S n ,S n =2a n -2.(1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,b 1=1,点(T n +1,T n )在直线x n +1-y n =12上,若存在n ∈N *,使不等式2b 1a 1+2b 2a 2+…+2b na n≥m 成立,求实数m 的最大值.解(1)∵S n =2a n -2,①∴S n +1=2a n +1-2,②∴②-①得a n +1=2a n +1-2a n (n ≥1),∴a n +1=2a n ,即a n +1a n=2,∴{a n }是首项为2,公比为2的等比数列.∴a n =2n .(2)由题意得,T n +1n +1-T n n =12,成等差数列,公差为12.首项T 11=b11=1,∴T n n =1+12(n -1)=n +12,T n =n (n +1)2,当n ≥2时,b n =T n -T n -1=n (n +1)2-n (n -1)2=n ,当n =1时,b 1=1成立,∴b n =n .∴2b n a n =2n2n =n 2n -1=-1,令M n =2b 1a 1+2b 2a 2+…+2b na n,只需(M n )max ≥m .∴M n =1+2×12+3+…+n -1,③12M n =12+2+3+…+n ,④③-④得,12M n =1+12++…-1-n 1-12n=2-(n +,∴M n =4-(n +-1.∵M n +1-M n =4-(n +-4+(n +-1=n +12n>0.∴{M n }为递增数列,且(n +-1>0,∴M n <4.∴m ≤4,实数m 的最大值为4.。

统编教材部编版人教版高考数学复习专题04 数 列(新高考地区专用)(原卷版附解析答案)

统编教材部编版人教版高考数学复习专题04  数 列(新高考地区专用)(原卷版附解析答案)

专题04 数 列一.等比数列前n 项和规律n n n n 11111n n a (1q )a a q a a S q S =A-Aq 1q 1q 1q 1q --===-⇔----简记:,指数次数只能为n 次方常数与指数函数的系数成相反数二.单一条件口算结果-----实质考查等比或等差中项1.无论是等差还是等比数列,如果只知道一个条件是取法确定具体的数列,那么可以处理为非0的常数数列,因为非0的常数数列即是等差也是等比数列。

(常数数列:每一项都是相同的){}{}n n n n 12n 12n-1n n n n 12n 12n-1n n n m n n n n-12.a n S ,b n ,(a a )(2n 1)S 2a a S An B a A(2n 1)B 2(1)=(2)(b b )(2n 1)T 2b b T Cn D b C(2m 1)D2S An B An B kn=n T Cn D Cn D knS An B kn S [A --+-+-+====+-+-+++=⇒++=+=等差数列的前项和等差数列的前项和T 则()推导:等差数列的前项和为无常数的二次函数()()n n m m a k[A(2n 1)B](n 1)B]kn a A(2n 1)Bb k[A(2m 1)B]b C(2m 1)D⎧⎪−−−→=-+⎨-+⎪⎩-+=-+∴=-+相减同理可得 三.公式法口算通项----a n =S n -S n-1(n ≥2)21122n-11n -n n n 2(1)(2)n 1⇔⇔⎧⎪≥⎨⎪⎩-≥=∴n n n 模型1:无常数项的二次函数S =An +Bn a =2An+(B-A)系数2倍,常数后前推导过程:=1时,S =A+B 即a =A+BS =An +Bn(1)时,S =A(n-1)+B(n-1)(2)得a =2An+(B-A)(n 2)令时,a =A+B a =2An+(B-A)21122n-11+ n=1n +n +n +n 2+(1)(2)n 1+ n=1⎧⎪⇔⇔⎨≥⎪⎩⎧⎪≥⎨⎪⎩-≥=∴n n n A+B C 模型2:有常数项的二次函数S =An +Bn C a =2An+(B-A) n 2推导过程:=1时,S =A+B+C 即a =A+B CS =An +Bn C(1)时,S =A(n-1)+B(n-1)C(2)得a =2An+(B-A)(n 2)令时,a =A+B A+B C a =2An+(⎧⎪⎨≥⎪⎩B-A) n 2nn n 111nn 1n-1n 11n 1n=1A B A n n A Bn 2A B(1)(2)A 1n 1 n=1A ----⎧⎪⇔+⇔⎨≥⎪⎩⎧+⎪≥⎨+⎪⎩-≥⇒=∴n n n k(A-1)模型3:指数型函数S =k a =k(A-1) n 2推导过程:=1时,S =A+B 即a =A+BS =k (1)时,S =k (2)得a =k(A-1)(n 2)指数函数的次数减令时,a =k(A-1)k(A-1)a =k(A-1) ⎧⎪⇒⎨≥⎪⎩当分段两者n=1结果相同时,合并为一式n 2{}n 1n n 111n n n-1n 1n n n 1n+1n 1n 1n 11k a B ()1k k 1n a B 1ka Bn 2a Ba k (1)(2)a a =a k+1a k 1=a kka k 1=a q 1k -----⇔+⇔⋅--+-+⎧⎪≥⎨+⎪⎩⎧⎪-⇔⎨-⎪⎩∴-∴⋅=-n n n n B 模型4:指数型函数S =k a =推导过程:B=1时,S =k 即a =S =k (1)时,S =k (2)不是固定的,右边的k 与下标同步得a =k -k 即a 是以首项,公比为的等比数列B a n 1k ()k 1-⋅-记得检验首项四.口算错位相减法的结果nn n 1n (1)a (dn t)q 2n d A 1q S Bq (An B)q A t B 1q +⎧⎪=+⇒⎨⎪⎩⎧=⎪-⎪∴=-+⇔⎨+⎪=⎪-⎩乘法模型,除的话改成乘法通项公式:()指数函数的指数为,非n 变成n五.斐波那数列---黄金分割数列---nn 1a 0.618a +≈n n-1n-2n n n n n 21. a =a +a 112.a [((]5223.:S a 1+≥≥+-=-=-特征:F(n)=F(n-1)+F(n-2) n 3或n 3通项:规律4. 数列特点:0 1 1 2 3 5 8 13 21 34...三个数据为一组,第一数据为偶数,第二、三个数据为奇数技巧1 等比数列前n 项和规律【例1】(2020·福建省厦门第六中学)已知等比数列{}n a 的前n 项和()232nn S λλ=+-⋅(λ为常数),则λ=( ) A .2- B .1-C .1D .2【举一反三】1.(2020·安徽含山(理))已知等比数列{a n }的前n 项和S n =3n +2+3t ,则t =( ) A .1 B .﹣1 C .﹣3 D .﹣92.(2020·安徽屯溪一中)已知等比数列{}n a 的前n 项和为1136n n S x -=⋅-,则x 的值为( ) A .13B .13-C .12D .12-技巧2 单一条件口算结果【例2-1】(1)(2020·宁夏高三其他(文))n S 为等差数列{}n a 的前n 项和,若150S =,则8a =( ). A .-1B .0C .1D .2(2)(2020·山西省长治市第二中学校高三月考(理))已知各项为正数的等比数列{}n a 满足2589a a a =﹐则3334353637log log log log log a a a a a ++++的值为( ) A .73B .83C .3D .103【例2-2】(2020·河南)已知等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且521n n S n T n +=-,则76a b =( ) A .67B .1211C .1825D .1621【举一反三】1.设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S = A .5 B .7C .9D .112.(2020·广东云浮·)在正项等比数列{}n a 中,若63a =,则313233311log log log log a a a a ++++=( ).A .5B .6C .10D .113.(2020·浙江宁波)已知数列{}n a 是等差数列,数列{}n b 是等比数列,若26102a a a π++=,2588b b b =,则4837sina ab b +的值是( ) A .12B .12-CD.4.(2020·全国高三其他(理))已知数列{}n a ,{}n b 为等差数列,其前n 项和分别为n S ,n T ,422n n S n T n +=+,则59a b =( ) A .3811B .109C .1110D .2技巧3 公式法口算通项【例3】(2020·南京市秦淮中学高三其他)已知数列{}n a 的前n 项和223n S n n =-+,则数列{}n a 的通项公式为______.【举一反三】1.(2020·湖南湘潭·高考模拟(文))已知数列{}n a 的前n 项和公式为221n S n n =-+,则数列{}n a 的通项公式为___.2.(2020·山西大同·高三一模(文))已知n S 为数列{}n a 的前n 项和,若111,23+==+n n a a S ,则数列{}n a 的通项公式为___________.技巧4 错位相减法口算结果【例4】(2020·江西东湖·南昌二中高三其他(文))已知数列{}n a 的前n 项和为n S ,点(n ,*)()n S n N ∈在函数2y x 的图象上,数列{}n b 满足1110,363n n b b b +==+, (1)求{}n a 的通项公式;(2)若(3)n n n c a b =-,求数列{}n c 的前n 项和n T .【举一反三】1.(2020·河南高三其他(文))已知数列{}n a 的前n 项和为n S ,且(1)2n n n n S a --=. (1)求数列{}n a 的通项公式; (2)如果数列12n n b -=,求数列{}n n a b 的前n 项和n T .2.(2019·甘肃天水·高考模拟(文))在正项等比数列{n a }中,11a =且3542,,3a a a 成等差数列.(1)求数列的通项公式; (2)若数列{n b }满足n nnb a =,求数列{n b }的前n 项和n S .技巧5 斐波那数列【例5】(2020·吉林前郭尔罗斯县第五中学)“斐波那契”数列是由十三世纪意大利数学家斐波那契发现的.数列中的一系列数字常被人们称为神奇数.具体数列为:1,1,2,3,5,8,13,…,即从该数列的第三项开始,每个数字都等于前两个相邻数字之和.已知数列{}n a 为“斐波那契”数列,n S 为数列{}n a 的前n 项和,若2020a m =,则2018S =( ) A .2mB .212m - C .1m - D .1m +【举一反三】1.(2020·河北高三月考)数列1、1、2、3、5、8、13、21、34、称为斐波那契数列,是意大利著名数学家斐波那契于1202年在他撰写的《算盘全书》中提出的,该数列的特点是:从第三项起,每一项都等于它前面两项的和.在该数列的前2020项中,偶数的个数为( ) A .505 B .673C .674D .10102.(2019·福建高三(理))斐波那契螺旋线,也称“黄金螺旋线”.如图,矩形ABCD 是以斐波那契数为边长的正方形拼接而成的,在每个正方形中作一个圆心角为90︒的圆弧,这些圆弧所连成的弧线就是斐波那契螺旋线的一部分.在矩形ABCD 内任取一点,该点取自阴影部分的概率为( )A .8πB .4π C .14D .341.(2020·湖北黄州·黄冈中学高三其他(理))已知数列{}n a 为等差数列,n S 为其前n 项和,6353a a a +-=,则7S =( ) A .42 B .21 C .7D .32.(2020·甘肃高三其他(文))已知等比数列{}n a 的前n 项和为2n n S a =+,则a=( )A .0B .2-C .1-D .13.(2020·辽源市田家炳高级中学校高二期末(理))斐波那契螺旋线,也称“黄金螺旋线”,是根据斐波那契数列1,1,2,3,5,画出来的螺旋曲线.如图,白色小圆内切于边长为1的正方形,黑色曲线就是斐波那契螺旋线,它是依次在以1,2,3,5为边长的正方形中画一个圆心角为90︒的扇形,将其圆弧连接起来得到的.若在矩形 ABCD 内随机取一点,则此点取自阴影部分的概率是( )A .191160π+ B .192160π+ C .19180π+ D .19280π+4.(2020·安徽高三月考(理))裴波那契数列(Fibonacci sequence )又称黄金分割数列,因为数学家列昂纳多·裴波那契以兔子繁殖为例子引入,故又称为“兔子数列”,在数学上裴波那契数列被以下递推方法定义:数列{}n a 满足:121a a ==,21++=+n n n a a a ,现从该数列的前40项中随机抽取一项,则能被3整除的概率是( ) A .14B .13C .12D .235.(2020·黑龙江哈尔滨市第六中学校高三(文))意大利数学家斐波那契的《算经》中记载了一个有趣的问题:已知一对兔子每个月可以生一对兔子,而一对兔子出生后在第二个月就开始生小兔子.假如没有发生死亡现象,那么兔子对数依次为:1,1,2,3,5,8,13,21,34,55,89,144……,这就是著名的斐波那契数列,它的递推公式是12(3,Ν)n n n a a a n n *--=+≥∈,其中11a =,21a =.若从该数列的前100项中随机地抽取一个数,则这个数是偶数的概率为( ) A .13B .33100C .12D .671008.(2020·江西高三(文))意大利数学家斐波那契的《算经》中记载了一个有趣的问题:已知一对兔子每个月可以生一对兔子,而一对兔子出生后在第二个月就开始生小兔子.假如没有发生死亡现象,那么兔子对数依次为:1,1,2,3,5,8,13,21,34,55,89,144……,这就是著名的斐波那契数列,它的递推公式是()*123,n n n a a a n n N--=+≥∈,其中11a =,21a =.若从该数列的前120项中随机地抽取一个数,则这个数是奇数的概率为( )A .13B .23C .12D .347.(2020·嘉祥县第一中学高三其他)设数列{}n a ,{}n b 均为等差数列,它们的前n 项和分别为n S ,n T ,若2334n n S n T n -=+,则55a b =( ) A .719 B .1531C .1734D .19378.(2020·合肥一六八中学高三其他(理))已知数列{}n a 为等差数列,且满足251115a a a ++=,则数列{}n a 的前11项和为( )A .40B .45C .50D .559.(2019·河南高二月考)两等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,且12n n S n T n+=,则85(a b = ) A .45B .67C .89D .210.(多选)(2020·福建省永泰县第一中学高三月考)斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n nF n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()1122n nF n ⎡⎤⎛⎫⎛⎫⎥=- ⎪ ⎪ ⎪ ⎪⎥⎝⎭⎝⎭⎦D .()1122n nF n ⎡⎤⎛⎛⎫⎥=+ ⎪ ⎪⎥⎝⎭⎝⎭⎦12.(2020·福建漳州·高三其他(文))若n S 是等差数列{}n a 的前n 项和,且918S =,则5a =__________.13.(2020·陕西渭南·(理))已知数列{a n }的前n 项和S n =n (n +1)+2,其中*n N ∈,则a n =_____.14.(2020·湖北高三月考(理))设n S 为数列{}n a 的前n 项和,若257n n S a =-,则n a =____15.(2020·浙江高三其他)已知数列{}n a 的前n 项和()2*21n S n n n N=+-∈,则1a=____________;数列{}n a 的通项公式为n a =____________.16.(2020·浙江高三月考)十三世纪意大利数学家列昂纳多·斐波那契从兔子繁殖规律中发现了“斐波那契数列”,斐波那契数列{}n a 满足以下关系:11a =,21a =,()123--=+≥∈*n n n a a a n ,n N ,记其前n 项和为n S ,设2020a m =(m 为常数),则20182020S a -=______;1352019+++⋅⋅⋅+=a a a a ______.17.(2020·陕西西安中学)斐波那契数列(Fibonaccisequence),又称黄金分割数列,因数学家列昂纳多斐波那契(LeonardodaFibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”.它是这样一个数列:1,1,2,3,5,8,13,21,34,55……在数学上,斐波那契数列以如下递推的方法定义:a 1=1,a 2=1,n n 1n 2a a a --=+(n ≥3,n ∈N *),记其前n 项和为S n ,设a 2019=t (t 为常数),则2017201620152014S S S S +--=________(用t 表示),20172019S a -=________(用常数表示).18.(2020·全国高三其他(理))已知数列{}n a 的前n 项和为n S ,且21nn S =+.(1)求{}n a 的通项公式;(2)若()21n n b n a =-,求数列{}n b 的前n 项和n T .19.(2020·河南高二其他(文))设等差数列{}n a 的前n 项和为n S ,且424S S =,2121a a =+.(1)求数列{}n a 的通项公式; (2)设数列{}n b 满足()214n n na b -=, 求数列{}n b 的前n 项和n R .专题04 数 列二.等比数列前n 项和规律n n n n 11111n n a (1q )a a q a a S q S =A-Aq 1q 1q 1q 1q --===-⇔----简记:,指数次数只能为n 次方常数与指数函数的系数成相反数二.单一条件口算结果-----实质考查等比或等差中项1.无论是等差还是等比数列,如果只知道一个条件是取法确定具体的数列,那么可以处理为非0的常数数列,因为非0的常数数列即是等差也是等比数列。

高中文科数列部分知识整理有答案

高中文科数列部分知识整理有答案

高中文科数列部分知识整理数列(一)等差数列1.等差数列的概念:若数列{a n }从第二项起,每一项与它的前一项的差等于同一个常数,则数列{a n }叫等差数列.常数叫做公差。

2.等差中项:若a 、b 、c 成等差数列,则b 称a 与c 的等差中项,且 a 、b 、c 成等差数列是2b =a +c 的充要条件.3.通项公式:a n =a 1+(n -1)d ,推广:a n =a m +(n -m )d .变式:a 1=a n -(n -1)d ,d =1-a a n ,d =mn a a mn --.4.前n n ·a n -21(n -1)nd .变式:21n a a +=n S n =na a a n +⋅⋅⋅++21=a 1+(n -1)·2d =a n +(n -1)·(-2d).【练习】1.等差数列{a n }中,已知a 1=31,a 2+a 5=4,a n =33,则n 是 ( ) A.48B.49C.50D.512.在等差数列{a n }中,公差为21,且a 1+a 3+a 5+…+a 99=60,则a 2+a 4+a 6+…+a 100=_________.3.已知{a n }为等差数列,前10项的和S 10=100,前100项的和S 100=10,求前110项的和S 110.解:设{a n }的首项为a 1,公差为d ,则4.等差数列{a n }的前n 项和为S n ,已知a 10=30,a 20=50.(1)求通项{a n }; (2)若S n =242,求n .6.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列{nSn }的前n项和,求T n .数列(二)等比数列1.定义数列{a n }从第2项起,每一项与它前一项的比等于同一个常数的数列称作等比数列.常数叫公比.2.等比中项:若a 、b 、c 成等比数列,则b 为a 、c 的等比中项,且b =±ac .3.通项公式:a n =a 1q n -1,推广形式:a n =a m q n -m .4.前n5.证明等比数列的方法:(1)用定义:只需证nn a a 1+=常数; (2)用中项性质:只需a n +12=a n ·a n +2或n n a a 1+=12++n n a a . 【例题】1.已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项a n =___________________.2.数列{a n }中,a 1=1,a n =21a n -1+1(n ≥2),求通项公式a n . 数列(三)差比数列知识点归纳一、等差数列1、等差数列及等差中项定义注:根据定义,当我们看到形如:d a a n n =--1、d a a n n =--212、d a a n n =--1、d a a n n =--111、211-++=n n n a a a 、d S S n n =--1时,应能从中得到相应的等差数列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。

下列数中及时三角形数又是正方形数的是A.289B.1024C.1225D.13787.(宁夏海南卷)等差数列a n 的前n 项和为S n ,已知 2a 1 a 1 a 0,S2m 1 38,则m m mm(A)38 (B)20 (C)10 (D)98.(重庆卷)设a n 是公差不为0 的等差数列,a1 2且a1,a3 ,a6 成等比数列,则a n 的前n项和S n =A .2 7n n4 4B.2 5n n3 3C.2 3n n2 4D. 2n n第2页/共8页9.(四川卷)等差数列{ a n }的公差不为零,首项 a 1 =1, a 2 是a 1 和 a 5 的等比中项,则数列的前 10 项之和是 A. 90B. 100C. 145D. 190二、填空题1(浙江)设等比数列{ a } 的公比 n1q ,前 n项和为 S n ,则2S 4 a4.2.(浙江)设等差数列{ a n } 的前 n 项和为 S n ,则 S 4 , S 8 S 4 ,S 12 S 8 , S 16 S 12 成等差数列.类比以上结论有:设等比数列{b n } 的前 n项积为T n ,则T 4 , ,,T16T12成等比数列.3.( 山东卷 ) 在等差数列 { a n } 中, a 37,a 5 a 2 6,则 a 6 ____________ .4.(宁夏海南卷) 等比数列 { a n }的公比 q0, 已知 a 2 =1, a n2a n 1 6a n ,则{ a n } 的前 4项和 S4 =三.解答题1.( 广东卷文 ) (本小题满分 14 分)已知点( 1, 13x)是函数 f (x) a (a 0,且 a 1)的图象上一点,等比数列{a } 的前 n 项和为 f (n) c ,数列 {b n } (b n0) 的首项为 c ,且前 n 项和nS 满足 S n - S n 1 = S n + S n 1 ( n 2 ).(1)求数列 {a n } 和{b n } 的通项公式; (2)若数n1列{} b n bn 1前n 项和为 T ,问 T n > n10002009的最小正整数 n是多少?第3页/ 共8页2(浙江文)(本题满分14 分)设S n 为数列{a n} 的前n项和, 2S kn n,n*n N ,其中k是常数.(I)求a1及a n ;(II )若对于任意的*m N ,a m ,a2m ,a4m 成等比数列,求k 的值.3(. 北京文)(本小题共13 分)设数列{a n} 的通项公式为a n pn q(n N ,P0). 数列{b n} 定义如下:对于正整数m,b是使得不等式a n m成立的所有n 中的最小值. (Ⅰ)若m1 1,p q ,求b3 ;2 3(Ⅱ)若p 2,q 1,求数列{b } 的前2m 项和公式;(Ⅲ)是否存在p 和q,使得mb 3m 2(m N ) 如果存在,求p 和q 的取值范围;如果不存在,请说明理由.m参考答案:一、选择题1【. 答案】B【解析】设公比为q,由已知得22 8 4a1q a1q 2 a1q ,即2 2q ,又因为等比数列{a n }a 的公比为正数,所以q 2,故 2a1q 1 222,选B10.【解析】∵a1a3a5105即3a3105∴a335同理可得a433∴公差d a4a32∴a20a4(204)d1.选B。

【答案】 B11.答案:C 【解析】由2a a a 得4 3 72(a 3d) (a 2d)( a 6d) 得2a1 3d 0 , 再由1 1 156S 8a d 32 得2a1 7d 8 则d 2, a1 3 , 所以8 1290S 10a d 60 ,.故选 C1 0 127(a a ) 7(a a ) 7(3 11)12.解: 1 7 2 6S 49.故选C.72 2 2第4页/ 共8页或由a a d 3 a 12 1 1, a7 1 6 2 13.a a 5d 11 d 26 1所以7( a a ) 7(1 13)1 7S 49.故选 C. 72 213.【解析】a7-2a4=a3+4d-2(a 3+d) =2d=-1 d =-12【答案】B2 d14.【答案】B【解析】设公差为 d ,则(1 d) 1 (1 4 ) .∵d ≠0,解得 d =2,∴S10 =10015.【答案】B【解析】可分别求得515122,51[]12.则等比数列性质易得三者构成等比数列.n n16.【答案】C【解析】由图形可得三角形数构成的数列通项a(n1),同理可得正方形数2构成的数列通项2b n,则由nn n2b n(n N)可排除 A 、D,又由a(n1)知a n必n2为奇数,故选 C.17.【答案】C【解析】因为a n 是等差数列,所以,a m 1 a m 1 2a m ,由 2a 1 a 1 a 0,m m m得:2 a m - 2a =0,所以,a m =2,又m S2m 1 38 ,即(2m 1)( a1 a2m1)2=38,即(2m-1)×2=38,解得m=10,故选.C。

18.【答案】A 解析设数列{a n} 的公差为 d ,则根据题意得(2 2d )2 2 (2 5d) ,解得1d 或d 0 (舍去),所以数列{ a n} 的前n项和2S 2nn2n(n 1) 1 n 7n2 2 4 4 2 d19.【答案】B【解析】设公差为 d ,则(1 d) 1 (1 4 ) .∵d ≠0,解得d =2,∴S10 =100.二、填空题5.【命题意图】此题主要考查了数列中的等比数列的通项和求和公式,通过对数列知识点的考查充分体现了通项公式和前n项和的知识联系.第5页/ 共8页【解析】对于4 4a (1 q ) s 1 q1 3 4s ,a a q , 15 4 4 1 31 q a q (1 q)420.答案:T T8 12,T T4 8【命题意图】此题是一个数列与类比推理结合的问题,既考查了数列中等差数列和等比数列的知识,也考查了通过已知条件进行类比推理的方法和能力21.【解析】:设等差数列{a n} 的公差为 d ,则由已知得a1 a14d2da17d解得6a1 3d 2,所以a a d .6 1 5 13答案:13.【命题立意】:本题考查等差数列的通项公式以及基本计算.22.【答案】152【解析】由a 2 a 1 6a 得:n n nn 1 q n 6q n 12 qq ,即q 6 0,q 0 ,解得:q=2,又1a =1,所以,a1 ,221 4(1 2 )2S =41 2152。

三、解答题6.【解析】(1)1Q f 1 a ,3f x13x 1a f 1 c c , a2 f 2 c f 1 c 132a f 3 c f 2 c .327 2 9 ,又数列 a 成等比数列,n42a 2 1812a c12 3 3a327,所以 c 1;又公比q a2a113,所以ann 1 n2 1 123 3 3*n N ;Q S S S S S S S S n 2 n n 1 n n 1 n n 1 n n 1又b 0 , S 0,n n S S 1 1;n n数列S n 构成一个首相为 1 公差为 1 的等差数列,S n 1 n 1 1 n , 2S nn第6页/ 共8页当n 2 ,22b S S 1 n n 1 2n 1 ;n n nb 2n 1( n*n N );(2)Tn1 1 1 1Lb b b b b b b b1 2 2 3 3 4 n n 11 1 1 1K1 3 3 5 5 7 (2n 1) 2n 11 1 1 1 1 1 1 1 1 1 11 K2 3 2 3 5 2 5 7 2n 2 n1 2 11 1 n12 2n 1 2n 1;由Tnn 10002n 1 2009得1000n ,满足91000T 的最小正整数为112.n200923.解析:(Ⅰ)当n 1, a1 S1 k 1,n 2 22,a S S 1 kn n [k(n 1) (n 1)] 2kn k 1n ()n n经验,n 1,()式成立,a n 2kn k 12(Ⅱ)a m ,a2m ,a4m成等比数列,a2m a m .a4m ,2 km k km k即( 4km k 1) (2 1)(8 1) ,整理得:mk(k 1) 0 ,对任意的m N 成立,k 0或k 124.(Ⅰ)由题意,得1 1a n ,解n2 31 1n 3,得2 320n .3∴1 1n 3成立的所有n 中的最小整数为7,即2 3b3 7 .(Ⅱ)由题意,得 a 2n 1,对于正整数,由n a m,得nm 1n .2* *根据b m 的定义可知当m 2k 1时,b k k N ;当m 2k 时,b k k N .1 m m∴b b b b b b b b b1 2 2m 1 3 2m 1 2 4 2 m1 2 3 m 2 3 4 m 1m m 1 m m 32 22m 2m .第7页/ 共8页(Ⅲ)假设存在p 和q 满足条件,由不等式pn q m 及p 0得n mqp.∵b 3m 2(m N ), 根据b m 的定义可知,对于任意的正整数m 都有mm q3m 1 3m 2p,即2p q 3p 1 m p q 对任意的正整数m 都成立.当3p 1 0 (或3p 1 0 )时,得mp q3p 1(或m2 p q3p 1),这与上述结论矛盾!当3p 1 0 ,即1p 时,得32 1q 0 q ,解得3 32 1q .3 3∴存在p 和q,使得b 3m 2(m N ) ;mp 和q 的取值范围分别是1p ,32 1q .3 3第8页/ 共8页。

相关文档
最新文档