(2021年整理)重庆中考数学考纲

合集下载

重庆市2021年中考数学试卷(B卷)及解析

重庆市2021年中考数学试卷(B卷)及解析

2021年重庆市中考数学试卷(B卷)一.选择题(共12小题)1.5的倒数是()A.5B.C.﹣5D.﹣2.围成下列立体图形的各个面中,每个面都是平的是()A.长方体B.圆柱体C.球体D.圆锥体3.计算a•a2结果正确的是()A.a B.a2C.a3D.a44.如图,AB是⊙O的切线,A为切点,连接OA,OB.若∠B=35°,则∠AOB的度数为()A.65°B.55°C.45°D.35°5.已知a+b=4,则代数式1++的值为()A.3B.1C.0D.﹣16.如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC与△DEF的面积比为()A.1:2B.1:3C.1:4D.1:57.小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为()A.5B.4C.3D.28.下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑥个图形中实心圆点的个数为()A.18B.19C.20D.219.如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处,某测量员从山脚C点出发沿水平方向前行78米到D点(点A,B,C在同一直线上),再沿斜坡DE 方向前行78米到E点(点A,B,C,D,E在同一平面内),在点E处测得5G信号塔顶端A的仰角为43°,悬崖BC的高为144.5米,斜坡DE的坡度(或坡比)i=1:2.4,则信号塔AB的高度约为()(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)A.23米B.24米C.24.5米D.25米10.若关于x的一元一次不等式组的解集为x≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为()A.﹣1B.﹣2C.﹣3D.011.如图,在△ABC中,AC=2,∠ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E,连接BE,则线段BE的长为()A.B.3C.2D.412.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(﹣2,3),AD=5,若反比例函数y=(k>0,x>0)的图象经过点B,则k的值为()A.B.8C.10D.二.填空题(共6小题)13.计算:()﹣1﹣=.14.经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人.请把数94000000用科学记数法表示为.15.盒子里有3张形状、大小、质地完全相同的卡片,上面分别标着数字1,2,3,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为奇数的概率是.16.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=120°,AB=2,以点O为圆心,OB长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)17.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚分钟到达B地.18.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为元.三.解答题19.计算:(1)(x+y)2+y(3x﹣y);(2)(+a)÷.20.如图,在平行四边形ABCD中,AE,CF分别平分∠BAD和∠DCB,交对角线BD于点E,F.(1)若∠BCF=60°,求∠ABC的度数;(2)求证:BE=DF.21.每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.七、八年级抽取的学生的竞赛成绩统计表年级七年级八年级平均数7.47.4中位数a b众数7c合格率85%90%根据以上信息,解答下列问题:(1)填空:a=,b=,c=;(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.22.在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数﹣﹣“好数”.定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.23.探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数y=﹣的图象并探究该函数的性质.x…﹣4﹣3﹣2﹣101234…y…﹣a﹣2﹣4b﹣4﹣2﹣﹣…(1)列表,写出表中a,b的值:a=,b=;描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数y=﹣的图象关于y轴对称;②当x=0时,函数y=﹣有最小值,最小值为﹣6;③在自变量的取值范围内函数y的值随自变量x的增大而减小.(3)已知函数y=﹣x﹣的图象如图所示,结合你所画的函数图象,直接写出不等式﹣<﹣x﹣的解集.24.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A,B两个玉米品种进行实验种植对比研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均为2.4元/kg,且B品种的平均亩产量比A品种高100千克,A、B两个品种全部售出后总收入为21600元.(1)求A、B两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持不变,A、B两个品种全部售出后总收入将增加a%.求a的值.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(﹣,0),直线BC的解析式为y=﹣x+2.(1)求抛物线的解析式;(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;(3)将抛物线y=ax2+bx+2(a≠0)向左平移个单位,已知点M为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.26.△ABC为等边三角形,AB=8,AD⊥BC于点D,E为线段AD上一点,AE=2.以AE为边在直线AD右侧构造等边三角形AEF,连接CE,N为CE的中点.(1)如图1,EF与AC交于点G,连接NG,求线段NG的长;(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α,M为线段EF的中点,连接DN,MN.当30°<α<120°时,猜想∠DNM的大小是否为定值,并证明你的结论;(3)连接BN,在△AEF绕点A逆时针旋转过程中,当线段BN最大时,请直接写出△ADN的面积.2021年重庆市中考数学试卷(B卷)参考答案与试题解析一.选择题(共12小题)1.5的倒数是()A.5B.C.﹣5D.﹣【分析】根据倒数的定义,可得答案.【解答】解:5得倒数是,故选:B.2.围成下列立体图形的各个面中,每个面都是平的是()A.长方体B.圆柱体C.球体D.圆锥体【分析】根据平面与曲面的概念判断即可.【解答】解:A、六个面都是平面,故本选项正确;B、侧面不是平面,故本选项错误;C、球面不是平面,故本选项错误;D、侧面不是平面,故本选项错误;故选:A.3.计算a•a2结果正确的是()A.a B.a2C.a3D.a4【分析】根据同底数幂的乘法法则计算即可.【解答】解:a•a2=a1+2=a3.故选:C.4.如图,AB是⊙O的切线,A为切点,连接OA,OB.若∠B=35°,则∠AOB的度数为()A.65°B.55°C.45°D.35°【分析】根据切线的性质得到∠OAB=90°,根据直角三角形的两锐角互余计算即可.【解答】解:∵AB是⊙O的切线,∴OA⊥AB,∴∠OAB=90°,∴∠AOB=90°﹣∠B=55°,故选:B.5.已知a+b=4,则代数式1++的值为()A.3B.1C.0D.﹣1【分析】将a+b的值代入原式=1+(a+b)计算可得.【解答】解:当a+b=4时,原式=1+(a+b)=1+×4=1+2=3,故选:A.6.如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC与△DEF的面积比为()A.1:2B.1:3C.1:4D.1:5【分析】根据位似图形的概念求出△ABC与△DEF的相似比,根据相似三角形的性质计算即可.【解答】解:∵△ABC与△DEF是位似图形,OA:OD=1:2,∴△ABC与△DEF的位似比是1:2.∴△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的面积比为1:4,故选:C.7.小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为()A.5B.4C.3D.2【分析】设还可以买x个作业本,根据总价=单价×数量结合总价不超过40元,即可得出关系x的一元一次不等式,解之取其中的最大整数值即可得出结论.【解答】解:设还可以买x个作业本,依题意,得:2.2×7+6x≤40,解得:x≤4.又∵x为正整数,∴x的最大值为4.故选:B.8.下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑥个图形中实心圆点的个数为()A.18B.19C.20D.21【分析】根据已知图形中实心圆点的个数得出规律:第n个图形中实心圆点的个数为2n+n+2,据此求解可得.【解答】解:∵第①个图形中实心圆点的个数5=2×1+3,第②个图形中实心圆点的个数8=2×2+4,第③个图形中实心圆点的个数11=2×3+5,……∴第⑥个图形中实心圆点的个数为2×6+8=20,故选:C.9.如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处,某测量员从山脚C点出发沿水平方向前行78米到D点(点A,B,C在同一直线上),再沿斜坡DE 方向前行78米到E点(点A,B,C,D,E在同一平面内),在点E处测得5G信号塔顶端A的仰角为43°,悬崖BC的高为144.5米,斜坡DE的坡度(或坡比)i=1:2.4,则信号塔AB的高度约为()(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)A.23米B.24米C.24.5米D.25米【分析】过点E作EF⊥DC交DC的延长线于点F,过点E作EM⊥AC于点M,根据斜坡DE的坡度(或坡比)i=1:2.4可设EF=x,则DF=2.4x,利用勾股定理求出x的值,进而可得出EF与DF的长,故可得出CF的长.由矩形的判定定理得出四边形EFCM是矩形,故可得出EM=FC,CM=EF,再由锐角三角函数的定义求出AM的长,进而可得出答案.【解答】解:过点E作EF⊥DC交DC的延长线于点F,过点E作EM⊥AC于点M,∵斜坡DE的坡度(或坡比)i=1:2.4,BE=CD=78米,∴设EF=x,则DF=2.4x.在Rt△DEF中,∵EF2+DF2=DE2,即x2+(2.4x)2=782,解得x=30,∴EF=30米,DF=72米,∴CF=DF+DC=72+78=150米.∵EM⊥AC,AC⊥CD,EF⊥CD,∴四边形EFCM是矩形,∴EM=CF=150米,CM=EF=30米.在Rt△AEM中,∵∠AEM=43°,∴AM=EM•tan43°≈150×0.93=139.5米,∴AC=AM+CM=139.5+30=169.5米.∴AB=AC﹣BC=169.5﹣144.5=25米.故选:D.10.若关于x的一元一次不等式组的解集为x≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为()A.﹣1B.﹣2C.﹣3D.0【分析】不等式组整理后,根据已知解集确定出a的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a的值,求出之和即可.【解答】解:不等式组整理得:,由解集为x≥5,得到2+a≤5,即a≤3,分式方程去分母得:y﹣a=﹣y+2,即2y﹣2=a,解得:y=+1,由y为非负整数,且y≠2,得到a=0,﹣2,之和为﹣2,故选:B.11.如图,在△ABC中,AC=2,∠ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E,连接BE,则线段BE的长为()A.B.3C.2D.4【分析】延长BC交AE于H,由折叠的性质∠DAC=∠BAC=15°,∠ADC=∠ABC=45°,∠ACB=∠ACD=120°,由外角的性质可求∠AED=∠EAC,可得AC=EC,由“SAS”可证△ABC≌△EBC,可得AB=BE,∠ABC=∠EBC=45°,利用等腰直角三角形的性质和直角三角形的性质可求解.【解答】解:如图,延长BC交AE于H,∵∠ABC=45°,∠BAC=15°,∴∠ACB=120°,∵将△ACB沿直线AC翻折,∴∠DAC=∠BAC=15°,∠ADC=∠ABC=45°,∠ACB=∠ACD=120°,∵∠DAE=∠DAC,∴∠DAE=∠DAC=15°,∴∠CAE=30°,∵∠ADC=∠DAE+∠AED,∴∠AED=45°﹣15°=30°,∴∠AED=∠EAC,∴AC=EC,又∵∠BCE=360°﹣∠ACB﹣∠ACE=120°=∠ACB,BC=BC,∴△ABC≌△EBC(SAS),∴AB=BE,∠ABC=∠EBC=45°,∴∠ABE=90°,∵AB=BE,∠ABC=∠EBC,∴AH=EH,BH⊥AE,∵∠CAE=30°,∴CH=AC=,AH=CH=,∴AE=2,∵AB=BE,∠ABE=90°,∴BE==2,故选:C.12.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(﹣2,3),AD=5,若反比例函数y=(k>0,x>0)的图象经过点B,则k的值为()A.B.8C.10D.【分析】过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y轴,得到∠BHC=90°,根据勾股定理得到AE==4,根据矩形的性质得到AD=BC,根据全等三角形的性质得到BH=AE=4,求得AF=2,根据相似三角形的性质即可得到结论.【解答】解:过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y轴,∴∠BHC=90°,∵点D(﹣2,3),AD=5,∴DE=3,∴AE==4,∵四边形ABCD是矩形,∴AD=BC,∴∠BCD=∠ADC=90°,∴∠DCP+∠BCH=∠BCH+∠CBH=90°,∴∠CBH=∠DCH,∵∠DCG+∠CPD=∠APO+∠DAE=90°,∠CPD=∠APO,∴∠DCP=∠DAE,∴∠CBH=∠DAE,∵∠AED=∠BHC=90°,∴△ADE≌△BCH(AAS),∴BH=AE=4,∵OE=2,∴OA=2,∴AF=2,∵∠APO+∠P AO=∠BAF+∠P AO=90°,∴∠APO=∠BAF,∴△APO∽△BAF,∴,∴=,∴BF=,∴B(4,),∴k=,故选:D.二.填空题(共6小题)13.计算:()﹣1﹣=3.【分析】先计算负整数指数幂和算术平方根,再计算加减可得.【解答】解:原式=5﹣2=3,故答案为:3.14.经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人.请把数94000000用科学记数法表示为9.4×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:94000000=9.4×107,故答案为:9.4×107.15.盒子里有3张形状、大小、质地完全相同的卡片,上面分别标着数字1,2,3,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为奇数的概率是.【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:列表如下123134235345由表可知,共有6种等可能结果,其中两次抽出的卡片上的数字之和为奇数的有4种结果,所以两次抽出的卡片上的数字之和为奇数的概率为=,故答案为:.16.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=120°,AB=2,以点O为圆心,OB长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为3﹣π.(结果保留π)【分析】由菱形的性质可得AC⊥BD,BO=DO,OA=OC,AB=AD,∠DAB=60°,可证△BEO,△DFO是等边三角形,由等边三角形的性质可求∠EOF=60°,由扇形的面积公式和面积和差关系可求解.【解答】解:如图,设连接以点O为圆心,OB长为半径画弧,分别与AB,AD相交于E,F,连接EO,FO,∵四边形ABCD是菱形,∠ABC=120°,∴AC⊥BD,BO=DO,OA=OC,AB=AD,∠DAB=60°,∴△ABD是等边三角形,∴AB=BD=2,∠ABD=∠ADB=60°,∴BO=DO=,∵以点O为圆心,OB长为半径画弧,∴BO=OE=OD=OF,∴△BEO,△DFO是等边三角形,∴∠DOF=∠BOE=60°,∴∠EOF=60°,∴阴影部分的面积=2×(S△ABD﹣S△DFO﹣S△BEO﹣S扇形OEF)=2×(×12﹣×3﹣×3﹣)=3﹣π,故答案为:3﹣π.17.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚12分钟到达B地.【分析】首先确定甲乙两人的速度,求出总里程,再求出甲到达B地时,乙离B地的距离即可解决问题.【解答】解:由题意乙的速度为1500÷5=300(米/分),设甲的速度为x米/分.则有:7500﹣20x=2500,解得x=250,25分钟后甲的速度为250×=400(米/分).由题意总里程=250×20+61×400=29400(米),86分钟乙的路程为86×300=25800(米),∴=12(分钟).故答案为12.18.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为1230元.【分析】设第一时段摸到红球x次,摸到黄球y次,摸到绿球z次,(x,y,z均为非负整数),则第一时段返现(50x+30y+10z),根据“第三时段返现金额比第一时段多420元”,得出z=42﹣9y,进而确定出y≤,再根据“三个时段返现总金额为2510元”,得出25x=42y﹣43,进而得出≤y≤,再将满足题意的y的知代入④,计算x,进而得出x,z,即可得出结论.【解答】解:设第一时段摸到红球x次,摸到黄球y次,摸到绿球z次,(x,y,z均为非负整数),则第一时段返现金额为(50x+30y+10z),第二时段摸到红球3x次,摸到黄球2y次,摸到绿球4z次,则第二时段返现金额为(50×3x+30×2y+10×4z),第三时段摸到红球x次,摸到黄球4y次,摸到绿球2z次,则第三时段返现金额为(50x+30×4y+10×2z),∵第三时段返现金额比第一时段多420元,∴(50x+30×4y+10×2z)﹣(50x+30y+10z)=420,∴z=42﹣9y①,∵z为非负整数,∴42﹣9y≥0,∴y≤,∵三个时段返现总金额为2510元,∴(50x+30y+10z)+(50x+30×4y+10×2z)+(50x+30×4y+10×2z)=2510,∴25x+21y+7z=251②,将①代入②中,化简整理得,25x=42y﹣43,∴x=④,∵x为非负整数,∴≥0,∴y≥,∴≤y≤,∵y为非负整数,∴y=2,34,当y=2时,x=,不符合题意,当y=3时,x=,不符合题意,当y=4时,x=5,则z=6,∴第二时段返现金额为50×3x+30×2y+10×4z=10(15×5+6×4+4×6)=1230(元),故答案为:1230.三.解答题19.计算:(1)(x+y)2+y(3x﹣y);(2)(+a)÷.【考点】4A:单项式乘多项式;4C:完全平方公式;6C:分式的混合运算.【专题】512:整式;513:分式;66:运算能力;69:应用意识.【分析】(1)利用完全平方公式和多项式的乘法,进行计算即可;(2)根据分式的四则计算的法则进行计算即可,【解答】解:(1)(x+y)2+y(3x﹣y),=x2+2xy+y2+3xy﹣y2,=x2+5xy;(2)(+a)÷,=(+)×,=×,=﹣.20.如图,在平行四边形ABCD中,AE,CF分别平分∠BAD和∠DCB,交对角线BD于点E,F.(1)若∠BCF=60°,求∠ABC的度数;(2)求证:BE=DF.【考点】KD:全等三角形的判定与性质;L5:平行四边形的性质.【专题】555:多边形与平行四边形;67:推理能力.【分析】(1)根据平行四边形的性质得到AB∥CD,根据平行线的性质得到∠ABC+∠BCD =180°,根据角平分线的定义得到∠BCD=2∠BCF,于是得到结论;(2)根据平行四边形的性质得到AB∥CD,AB=CD,∠BAD=∠DCB,求得∠ABE=∠CDF,根据角平分线的定义得到∠BAE=∠DCE,根据全等三角形的性质即可得到结论.【解答】解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABC+∠BCD=180°,∵CF平分∠DCB,∴∠BCD=2∠BCF,∵∠BCF=60°,∴∠BCD=120°,∴∠ABC=180°﹣120°=60°;(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠BAD=∠DCB,∴∠ABE=∠CDF,∵AE,CF分别平分∠BAD和∠DCB,∴∠BAE=,∠DCF=,∴∠BAE=∠DCE,∴△ABE≌△CDF(ASA),∴BE=CF.21.每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.七、八年级抽取的学生的竞赛成绩统计表年级七年级八年级平均数7.47.4中位数a b众数7c合格率85%90%根据以上信息,解答下列问题:(1)填空:a=7.5,b=8,c=8;(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.【考点】V5:用样本估计总体;W4:中位数;W5:众数.【专题】542:统计的应用;69:应用意识.【分析】(1)由图表可求解;(2)利用样本估计总体思想求解可得;(3)由八年级的合格率高于七年级的合格率,可得八年级“国家安全法”知识竞赛的学生成绩更优异.【解答】解:(1)由图表可得:a==7.5,b==8,c=8,故答案为:7.5,8,8;(2)该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数=800×=200(人),答:该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数为200人;(3)∵八年级的合格率高于七年级的合格率,∴八年级“国家安全法”知识竞赛的学生成绩更优异.22.在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数﹣﹣“好数”.定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.【考点】#3:数的整除性.【专题】32:分类讨论;66:运算能力.【分析】(1)根据“好数”的意义,判断即可得出结论;(2)设十位数数字为a,则百位数字为a+5(0<a≤4的整数),得出百位数字和十位数字的和为2a+5,再分别取a=1,2,3,4,计算判断即可得出结论.【解答】解:(1)312是“好数”,因为3,1,2都不为0,且3+1=4,6能被2整除,675不是“好数”,因为6+7=13,13不能被5整除;(2)611,617,721,723,729,831,941共7个,理由:设十位数数字为a,则百位数字为a+5(0<a≤4的整数),∴a+a+5=2a+5,当a=1时,2a+5=7,∴7能被1,7整除,∴满足条件的三位数有611,617,当a=2时,2a+5=9,∴9能被1,3,9整除,∴满足条件的三位数有721,723,729,当a=3时,2a+5=11,∴11能被1整除,∴满足条件的三位数有831,当a=4时,2a+5=13,∴13能被1整除,∴满足条件的三位数有941,即满足条件的三位自然数为611,617,721,723,729,831,941共7个.23.探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数y=﹣的图象并探究该函数的性质.x…﹣4﹣3﹣2﹣101234…y…﹣a﹣2﹣4b﹣4﹣2﹣﹣…(1)列表,写出表中a,b的值:a=﹣,b=﹣6;描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数y=﹣的图象关于y轴对称;②当x=0时,函数y=﹣有最小值,最小值为﹣6;③在自变量的取值范围内函数y的值随自变量x的增大而减小.(3)已知函数y=﹣x﹣的图象如图所示,结合你所画的函数图象,直接写出不等式﹣<﹣x﹣的解集.【考点】F3:一次函数的图象;F5:一次函数的性质;FD:一次函数与一元一次不等式;P5:关于x轴、y轴对称的点的坐标.【专题】533:一次函数及其应用;64:几何直观.【分析】(1)将x=﹣3,0分别代入解析式即可得y的值,再画出函数的图象;(2)结合图象可从函数的增减性及对称性进行判断;(3)根据图象求得即可.【解答】解:(1)x=﹣3、0分别代入y=﹣,得a=﹣=﹣,b=﹣=﹣6,故答案为﹣,﹣6;画出函数的图象如图:,故答案为﹣,﹣6;(2)根据函数图象:①函数y=﹣的图象关于y轴对称,说法正确;②当x=0时,函数y=﹣有最小值,最小值为﹣6,说法正确;③在自变量的取值范围内函数y的值随自变量x的增大而减小,说法错误.(3)由图象可知:不等式﹣<﹣x﹣的解集为x<﹣4或﹣2<x<1.24.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A,B两个玉米品种进行实验种植对比研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均为2.4元/kg,且B品种的平均亩产量比A品种高100千克,A、B两个品种全部售出后总收入为21600元.(1)求A、B两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持不变,A、B两个品种全部售出后总收入将增加a%.求a的值.【考点】9A:二元一次方程组的应用;AD:一元二次方程的应用.【专题】523:一元二次方程及应用;69:应用意识.【分析】(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意列方程组即可得到结论;(2)根据题意列方程即可得到结论.【解答】解:(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意得,,解得:,答:A、B两个品种去年平均亩产量分别是400千克和500千克;(2)2.4×400×10(1+a%)+2.4(1+a%)×500×10(1+2a%)=21600(1+a%),解得:a=10,答:a的值为10.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(﹣,0),直线BC的解析式为y=﹣x+2.(1)求抛物线的解析式;(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;(3)将抛物线y=ax2+bx+2(a≠0)向左平移个单位,已知点M为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;32:分类讨论;65:数据分析观念.【分析】(1)利用直线BC的解析式求出点B、C的坐标,则y=ax2+bx+2=a(x+)(x﹣3)=ax2﹣2a﹣6a,即﹣6a=2,解得:a=,即可求解;(2)四边形BECD的面积S=S△BCE+S△BCD=×EF×OB+×(x D﹣x C)×BH,即可求解;(3)分AE是平行四边形的边、AE是平行四边形的对角线两种情况,分别求解即可.【解答】解:(1)直线BC的解析式为y=﹣x+2,令y=0,则x=3,令x=0,则y=2,故点B、C的坐标分别为(3,0)、(0,2);则y=ax2+bx+2=a(x+)(x﹣3)=a(x2﹣2x﹣6)=ax2﹣2a﹣6a,即﹣6a=2,解得:a=,故抛物线的表达式为:y=﹣x2+x+2①;。

2021年重庆市中考数学真题与答案解析

2021年重庆市中考数学真题与答案解析

重庆市2021年初中学业水平暨高中招生考试数学试题(A 卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.2的相反数是A.﹣2B.2C.D. 1212-2.计算的结果是63a a ÷A.B.C.D. 63a 52a 62a 53a 3.不等式在数轴上表示正确的是2x ≤A B C D4.如图,△ABC 与△BEF 位似,点O 是它们的位似中心,其中OE=2OB ,则△ABC 与△DEF 的周长之比是A.1:2B.1:4C.1:3D.1:95.如图,四边形ABCD 内接于☉O ,若∠A=80°,则∠C 的度数是A.80° B.100° C.110° D.120°6.-A.7B.C. D. 7.如图,点B ,F ,C ,E 共线,∠B=∠E ,BF=EC ,添加一个条件,不等判断△ABC ≌△DEF 的是A.AB=DEB.∠A=∠DC.AC=DFD.AC ∥FD8.甲无人机从地面起飞,乙无人机从距离地面20m 高的楼顶起飞,两架无人机同时匀速上升10s 。

甲、乙两架无人机所在的位置距离地面的高度y (单位:m )与无人机上升的时间x (单位:s )之间的关系如图所示.下列说法正确的是A.5s 时,两架无人机都上升了40mB.10s 时,两架无人机的高度差为20mC.乙无人机上升的速度为8m/sD.10s 时,甲无人机距离地面的高度是60m9.如图,正方形ABCD 的对角线AC ,BD 交于点O ,M 是边AD 上一点,连接OM ,多点O 做ON ⊥OM ,交CD 于点N.若四边形MOND 的面积是1,则AB 的长为A.1 C.2 D. 10.如图,相邻两个山坡上,分别有垂直于水平面的通信基站MA 和ND.甲在山脚点C 处测得通信基站顶端M 的仰角为60°,测得点C 距离通信基站MA 的水平距离CB 为30m ;乙在另一座山脚点F处测得点F 距离通信基站ND 的水平距离FE 为50m ,测得山坡DF 的坡度i=1:1.25.若,58ND DE =点C ,B ,E ,F 在同一水平线上,则两个通信基站顶端M 与顶端N 的高度差为(参考数据:)1.73≈≈A.9.0m B.12.8m C.13.1m D.22.7m11.若关于x 的一元一次不等式组的解集为,且关于y 的分式方程()322225x x a x -≥+⎧⎪⎨-<-⎪⎩6x ≥的解是正整数,则所有满足条件的整数a 的值之和是238211y a y y y+-+=--A.5 B.8 C.12 D.1512.如图,在平面直角坐标系中,菱形ABCD 的顶点D 在第二象限,其余顶点都在第一象限,AB ∥X 轴,AO ⊥AD ,AO=AD.过点A 作AE ⊥CD,垂足为E ,DE=4CE.反比例函数的()0ky x x=>图象经过点E ,与边AB 交于点F ,连接OE ,OF ,EF.若,则k 的值为118EOF S = A. B. C.7 D. 73214212二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.计算:。

2021年重庆中考数学试题

2021年重庆中考数学试题

重庆市2021年初中毕业暨高中招生考试 题号一 二 三 四 五 总分 总分人 得分参考公式:抛物线y =ax 2+bx +c (a ≠0)的顶点坐标为〔—b 2a ,4ac —b 4a 〕,对称轴公式为x =—b 2a .一、选择题:〔本大题共10个小题,每题4分,共40分〕在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案中,其中只有一个是正确的,请将正确答案的代号填表在题后的括号中.1.3的倒数是〔〕A .13B .— 13C .3D .—32.计算2x 3·x 2的结果是〔〕A .2xB .2x 5C .2x 6D .x 53.不等式组⎩⎨⎧>≤-62,31x x 的解集为〔〕A .x >3B .x ≤4C .3<x <4D .3<x ≤44.如图,点B 是△ADC 的边AD 的延长线上一点,DE ∥BC ,假设∠C =50°,∠BDE =60°,那么∠CDB 的度数等于〔〕A .70°B .100°C .110°D .120°5.以下调查中,适宜采用全面调查〔普查〕方式的是〔〕A .对全国中学生心理健康现状的调查B .对冷饮市场上冰淇淋质量情况的调查C .对我市市民实施低碳生活情况的调查D .以我国首架大型民用直升机各零部件的检查6.如图,△ABC 是⊙O 的内接三角形,假设∠ABC =70°,那么∠AOC 的度数等于〔〕A .140°B .130°C .120°D .110°7.由四个大小相同的正方体组成的几何体如下图,那么它的俯视图是〔〕8.有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,……,那么第10次旋转后得到的图形与图①~④中相同的是〔〕A .图①B .图②C .图③D .图④9.小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家。

重庆市a卷2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

重庆市a卷2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

重庆市A卷2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.因式分解的应用(共1小题)1.(2021•重庆)如果一个自然数M的个位数字不为0,且能分解成A×B,其中A与B都是两位数,A与B的十位数字相同,个位数字之和为10,则称数M为“合和数”,并把数M分解成M=A×B的过程,称为“合分解”.例如∵609=21×29,21和29的十位数字相同,个位数字之和为10,∴609是“合和数”.又如∵234=18×13,18和13的十位数字相同,但个位数字之和不等于10,∴234不是“合和数”.(1)判断168,621是否是“合和数”?并说明理由;(2)把一个四位“合和数”M进行“合分解”,即M=A×B.A的各个数位数字之和与B 的各个数位数字之和的和记为P(M);A的各个数位数字之和与B的各个数位数字之和的差的绝对值记为Q(M).令G(M)=,当G(M)能被4整除时,求出所有满足条件的M.二.反比例函数与一次函数的交点问题(共1小题)2.(2022•重庆)已知一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象相交于点A(1,m),B(n,﹣2).(1)求一次函数的表达式,并在图中画出这个一次函数的图象;(2)根据函数图象,直接写出不等式kx+b>的解集;(3)若点C是点B关于y轴的对称点,连接AC,BC,求△ABC的面积.三.二次函数综合题(共3小题)3.(2021•重庆)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过A(0,﹣1),B(4,1).直线AB交x轴于点C,P是直线AB下方抛物线上的一个动点.过点P作PD⊥AB,垂足为D,PE∥x轴,交AB于点E.(1)求抛物线的函数表达式;(2)当△PDE的周长取得最大值时,求点P的坐标和△PDE周长的最大值;(3)把抛物线y=x2+bx+c平移,使得新抛物线的顶点为(2)中求得的点P.M是新抛物线上一点,N是新抛物线对称轴上一点,直接写出所有使得以点A,B,M,N为顶点的四边形是平行四边形的点M的坐标,并把求其中一个点M的坐标的过程写出来.4.(2023•重庆)如图,在平面直角坐标系中,抛物线y=ax2+bx+2过点(1,3),且交x轴于点A(﹣1,0),B两点,交y轴于点C.(1)求抛物线的表达式;(2)点P是直线BC上方抛物线上的一动点,过点P作PD⊥BC于点D,过点P作y轴的平行线交直线BC于点E,求△PDE周长的最大值及此时点P的坐标;(3)在(2)中△PDE周长取得最大值的条件下,将该抛物线沿射线CB方向平移个单位长度,点M为平移后的抛物线的对称轴上一点.在平面内确定一点N,使得以点A,P,M,N为顶点的四边形是菱形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.5.(2022•重庆)如图,在平面直角坐标系中,抛物线y=x2+bx+c与直线AB交于点A (0,﹣4),B(4,0).(1)求该抛物线的函数表达式;(2)点P是直线AB下方抛物线上的一动点,过点P作x轴的平行线交AB于点C,过点P作y轴的平行线交x轴于点D,求PC+PD的最大值及此时点P的坐标;(3)在(2)中PC+PD取得最大值的条件下,将该抛物线沿水平方向向左平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,M为平移后的抛物线的对称轴上一点.在平移后的抛物线上确定一点N,使得以点E,F,M,N为顶点的四边形是平行四边形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.Ⅷ四.作图—复杂作图(共1小题)6.(2022•重庆)在学习矩形的过程中,小明遇到了一个问题:在矩形ABCD中,E是AD 边上的一点,试说明△BCE的面积与矩形ABCD的面积之间的关系.他的思路是:首先过点E作BC的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作BC的垂线EF,垂足为F(只保留作图痕迹).在△BAE和△EFB中,∵EF⊥BC,∴∠EFB=90°.又∠A=90°,∴ ①∵AD∥BC,∴ ②又 ③∴△BAE≌△EFB(AAS).同理可得 ④∴S△BCE=S△EFB+S△EFC=S矩形ABFE+S矩形EFCD=S矩形ABCD.五.几何变换综合题(共2小题)7.(2022•重庆)如图,在锐角△ABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想;(3)若AB=AC,且BD=AE,将△ABC沿直线AB翻折至△ABC所在平面内得到△ABP,点H是AP的中点,点K是线段PF上一点,将△PHK沿直线HK翻折至△PHK 所在平面内得到△QHK,连接PQ.在点D,E运动过程中,当线段PF取得最小值,且QK⊥PF时,请直接写出的值.8.(2021•重庆)在△ABC中,AB=AC,D是边BC上一动点,连接AD,将AD绕点A逆时针旋转至AE的位置,使得∠DAE+∠BAC=180°.(1)如图1,当∠BAC=90°时,连接BE,交AC于点F.若BE平分∠ABC,BD=2,求AF的长;(2)如图2,连接BE,取BE的中点G,连接AG.猜想AG与CD存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接DG,CE.若∠BAC=120°,当BD>CD,∠AEC=150°时,请直接写出的值.六.相似形综合题(共1小题)9.(2023•重庆)在Rt△ABC中,∠ACB=90°,∠B=60°,点D为线段AB上一动点,连接CD.(1)如图1,若AC=9,BD=,求线段AD的长;(2)如图2,以CD为边在CD上方作等边△CDE,点F是DE的中点,连接BF并延长,交CD的延长线于点G.若∠G=∠BCE,求证:GF=BF+BE;(3)在CD取得最小值的条件下,以CD为边在CD右侧作等边△CDE.点M为CD所在直线上一点,将△BEM沿BM所在直线翻折至△ABC所在平面内得到△BNM.连接AN,点P为AN的中点,连接CP,当CP取最大值时,连接BP,将△BCP沿BC所在直线翻折至△ABC所在平面内得到△BCQ,请直接写出此时的值.七.解直角三角形的应用-方向角问题(共1小题)10.(2023•重庆)为了满足市民的需求,我市在一条小河AB两侧开辟了两条长跑锻炼线路,如图:①A﹣D﹣C﹣B;②A﹣E﹣B.经勘测,点B在点A的正东方,点C在点B的正北方10千米处,点D在点C的正西方14千米处,点D在点A的北偏东45°方向,点E 在点A的正南方,点E在点B的南偏西60°方向.(参考数据:≈1.41,≈1.73)(1)求AD的长度.(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?八.频数(率)分布直方图(共1小题)11.(2023•重庆)为了解A、B两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A、B两款智能玩具飞机各10架,记录下它们运行的最长时间(分钟),并对数据进行整理、描述和分析(运行最长时间用x表示,共分为三组:合格60≤x<70,中等70≤x<80,优等x≥80),下面给出了部分信息:A款智能玩具飞机10架一次充满电后运行最长时间是:60,64,67,69,71,71,72,72,72,82.B款智能玩具飞机10架一次充满电后运行最长时间属于中等的数据是:70,71,72,72,73.两款智能玩具飞机运行最长时间统计表类别A B平均数7070中位数71b众数a67方差30.426.6根据以上信息,解答下列问题:(1)上述图表中a= ,b= ,m= ;(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由(写出一条理由即可);(3)若某玩具仓库有A款智能玩具飞机200架、B款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?九.整数问题的综合运用(共1小题)12.(2022•重庆)若一个四位数M的个位数字与十位数字的平方和恰好是M去掉个位与十位数字后得到的两位数,则这个四位数M为“勾股和数”.例如:M=2543,∵32+42=25,∴2543是“勾股和数”;又如:M=4325,∵52+22=29,29≠43,∴4325不是“勾股和数”.(1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为数时,求出所有满足条件的M.重庆市A卷2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.因式分解的应用(共1小题)1.(2021•重庆)如果一个自然数M的个位数字不为0,且能分解成A×B,其中A与B都是两位数,A与B的十位数字相同,个位数字之和为10,则称数M为“合和数”,并把数M分解成M=A×B的过程,称为“合分解”.例如∵609=21×29,21和29的十位数字相同,个位数字之和为10,∴609是“合和数”.又如∵234=18×13,18和13的十位数字相同,但个位数字之和不等于10,∴234不是“合和数”.(1)判断168,621是否是“合和数”?并说明理由;(2)把一个四位“合和数”M进行“合分解”,即M=A×B.A的各个数位数字之和与B 的各个数位数字之和的和记为P(M);A的各个数位数字之和与B的各个数位数字之和的差的绝对值记为Q(M).令G(M)=,当G(M)能被4整除时,求出所有满足条件的M.【答案】(1)168不是“合和数”,621是“合和数”.(2)1224,1221,5624,5616.【解答】解:(1)∵168=12×14,∵12和14十位数字相同,但个位数字2+4≠10,∴168不是“合和数”.∵621=23×27,23和27十位数字相同,且个位数字3+7=10,∴621是“合和数”.(2)设A的十位数字为m,个位数字为n,∵M的个位数字不为0,且M是一个四位“和合数”,∴3≤m≤9,1≤n≤9,则A=10m+n,B=10m+10﹣n,∴P(M)=m+n+m+10﹣n=2m+10,Q(M)=|(m+n)﹣(m+10﹣n)|=|2n﹣10|.∴G(M)====4k(k是整数).∵3≤m≤9,∴8≤m+5≤14,∵k是整数,∴m+5=8或m+5=12,①当m+5=8时,或,∴当m=3时,n=6或4,当m=3时,n=7或3,∴M=A×B=(10m+n)(10m+10﹣n)=36×34=1224或M=A×B=(10m+n)(10m+10﹣n)=37×33=1221,②当m+5=12时,或,∴当m=7时,n=6或4,当m=7时,n=8或2,∴M=A×B=(10m+n)(10m+10﹣n)=76×74=5624或M=A×B=(10m+n)(10m+10﹣n)=78×72=5616.综上,满足条件的M有:1224,1221,5624,5616.二.反比例函数与一次函数的交点问题(共1小题)2.(2022•重庆)已知一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象相交于点A(1,m),B(n,﹣2).(1)求一次函数的表达式,并在图中画出这个一次函数的图象;(2)根据函数图象,直接写出不等式kx+b>的解集;(3)若点C是点B关于y轴的对称点,连接AC,BC,求△ABC的面积.【答案】(1)y=2x+2,作图见解答过程;(2)﹣2<x<0或x>1;(3)12.【解答】解:(1)∵反比例函数y=的图象过点A(1,m),B(n,﹣2),∴,n=,解得m=4,n=﹣2,∴A(1,4),B(﹣2,﹣2),∵一次函数y=kx+b(k≠0)的图象过A点和B点,∴,解得,∴一次函数的表达式为y=2x+2,描点作图如下:(2)由(1)中的图象可得,不等式kx+b>的解集为:﹣2<x<0或x>1;(3)由题意作图如下:由图知△ABC中BC边上的高为6,BC=4,∴S△ABC==12.三.二次函数综合题(共3小题)3.(2021•重庆)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过A(0,﹣1),B(4,1).直线AB交x轴于点C,P是直线AB下方抛物线上的一个动点.过点P作PD⊥AB,垂足为D,PE∥x轴,交AB于点E.(1)求抛物线的函数表达式;(2)当△PDE的周长取得最大值时,求点P的坐标和△PDE周长的最大值;(3)把抛物线y=x2+bx+c平移,使得新抛物线的顶点为(2)中求得的点P.M是新抛物线上一点,N是新抛物线对称轴上一点,直接写出所有使得以点A,B,M,N为顶点的四边形是平行四边形的点M的坐标,并把求其中一个点M的坐标的过程写出来.【答案】(1)y=x2﹣x﹣1;(2)点P的坐标为(2,﹣4),△PDE周长最大值为+8.(3)点M的坐标为(2,﹣4)或(﹣2,12)或(6,12).【解答】解:(1)∵抛物线y=x2+bx+c经过A(0,﹣1),B(4,1),∴,解得:,∴该抛物线的函数表达式为y=x2﹣x﹣1;(2)如图1,设直线AB的函数表达式为y=kx+n,∵A(0,﹣1),B(4,1),∴,解得:,∴直线AB的函数表达式为y=x﹣1,令y=0,得x﹣1=0,解得:x=2,∴C(2,0),设P(t,t2﹣t﹣1),其中0<t<4,∵点E在直线y=x﹣1上,PE∥x轴,∴t2﹣t﹣1=x﹣1,∴x=2t2﹣7t,∴E(2t2﹣7t,t2﹣t﹣1),∴PE=t﹣(2t2﹣7t)=﹣2t2+8t=﹣2(t﹣2)2+8,∵PD⊥AB,∴∠AOC=∠PDE=90°,又∵PE∥x轴,∴∠OCA=∠PED,∴△PDE∽△AOC,∵AO=1,OC=2,∴AC=,∴△AOC的周长为3+,令△PDE的周长为l,则=,∴l=•[﹣2(t﹣2)2+8]=﹣(t﹣2)2++8,∴当t=2时,△PDE周长取得最大值,最大值为+8.此时,点P的坐标为(2,﹣4).(3)如图2,满足条件的点M坐标为(2,﹣4),(6,12),(﹣2,12).由题意可知,平移后抛物线的函数表达式为y=x2﹣4x,对称轴为直线x=2,①若AB是平行四边形的对角线,当MN与AB互相平分时,四边形ANBM是平行四边形,即MN经过AB的中点C(2,0),∵点N的横坐标为2,∴点M的横坐标为2,∴点M的坐标为(2,﹣4),②若AB是平行四边形的边,Ⅰ.当MN∥AB且MN=AB时,四边形ABNM是平行四边形,∵A(0,﹣1),B(4,1),点N的横坐标为2,∴点M的横坐标为2﹣4=﹣2,∴点M的坐标为(﹣2,12);Ⅱ.当NM∥AB且NM=AB时,四边形ABMN是平行四边形,∵A(0,﹣1),B(4,1),点N的横坐标为2,∴点M的横坐标为2+4=6,∴点M的坐标为(6,12);综上所述,点M的坐标为(2,﹣4)或(﹣2,12)或(6,12).4.(2023•重庆)如图,在平面直角坐标系中,抛物线y=ax2+bx+2过点(1,3),且交x轴于点A(﹣1,0),B两点,交y轴于点C.(1)求抛物线的表达式;(2)点P是直线BC上方抛物线上的一动点,过点P作PD⊥BC于点D,过点P作y轴的平行线交直线BC于点E,求△PDE周长的最大值及此时点P的坐标;(3)在(2)中△PDE周长取得最大值的条件下,将该抛物线沿射线CB方向平移个单位长度,点M为平移后的抛物线的对称轴上一点.在平面内确定一点N,使得以点A,P,M,N为顶点的四边形是菱形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.【答案】(1)y=﹣x2+x+2;(2)△PDE周长的最大值为,点P(2,3);(3)点N的坐标为:(,﹣)或(,)或(﹣,).【解答】解:(1)由题意得:,解得:,则抛物线的表达式为:y=﹣x2+x+2;(2)令y=﹣x2+x+2=0,解得:x=4或﹣1,即点B(4,0),∵PE∥y轴,则∠PED=∠OCB,则tan∠PED=tan∠OCB=2,则sin∠PED=,cos∠PED=,由点B、C的坐标得,直线BC的表达式为:y=﹣x+2,则PE=﹣x2+x+2+x﹣2=﹣(x﹣2)2+2≤2,即PE的最大值为2,此时,点P(2,3),则△PDE周长的最大值=PE(1+sin∠PED+cos∠PED)=(1++)PE=,即△PDE周长的最大值为,点P(2,3);(3)抛物线沿射线CB方向平移个单位长度,相当于向右平移2个单位向下平移1个单位,则平移后抛物线的对称轴为x=,设点M(,m),点N(s,t),由点A、P的坐标得,AP2=18,当AP是对角线时,由中点坐标公式和AM=AN得:,解得:,即点N的坐标为:(﹣,);当AM或AN是对角线时,由中点坐标公式和AN=AP或AM=AP得:或,解得:(不合题意的值已舍去),即点N的坐标为:(,);综上,点N的坐标为:(,﹣)或(,)或(﹣,).5.(2022•重庆)如图,在平面直角坐标系中,抛物线y=x2+bx+c与直线AB交于点A(0,﹣4),B(4,0).(1)求该抛物线的函数表达式;(2)点P是直线AB下方抛物线上的一动点,过点P作x轴的平行线交AB于点C,过点P作y轴的平行线交x轴于点D,求PC+PD的最大值及此时点P的坐标;(3)在(2)中PC+PD取得最大值的条件下,将该抛物线沿水平方向向左平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,M为平移后的抛物线的对称轴上一点.在平移后的抛物线上确定一点N,使得以点E,F,M,N为顶点的四边形是平行四边形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.Ⅷ【答案】(1)y=x2﹣x﹣4;(2)PC+PD的最大值为,此时点P的坐标是(,﹣);(3)N的坐标为:(,)或(﹣,)或(﹣,).【解答】解:(1)把A(0,﹣4),B(4,0)代入y=x2+bx+c得:,解得,∴抛物线的函数表达式为y=x2﹣x﹣4;(2)设直线AB解析式为y=kx+t,把A(0,﹣4),B(4,0)代入得:,∴直线AB解析式为y=x﹣4,设P(m,m2﹣m﹣4),则PD=﹣m2+m+4,在y=x﹣4中,令y=m2﹣m﹣4得x=m2﹣m,∴C(m2﹣m,m2﹣m﹣4),∴PC=m﹣(m2﹣m)=﹣m2+2m,∴PC+PD=﹣m2+2m﹣m2+m+4=﹣m2+3m+4=﹣(m﹣)2+,∵﹣1<0,∴当m=时,PC+PD取最大值,此时m2﹣m﹣4=×()2﹣﹣4=﹣,∴P(,﹣);答:PC+PD的最大值为,此时点P的坐标是(,﹣);(3)∵将抛物线y=x2﹣x﹣4向左平移5个单位得抛物线y=(x+5)2﹣(x+5)﹣4=x2+4x+,∴新抛物线对称轴是直线x=﹣=﹣4,在y=x2+4x+中,令x=0得y=,∴F(0,),将P(,﹣)向左平移5个单位得E(﹣,﹣),设M(﹣4,n),N(r,r2+4r+),①当EF、MN为对角线时,EF、MN的中点重合,∴,∴r2+4r+=×()2+4×+=,∴N(,);②当FM、EN为对角线时,FM、EN的中点重合,∴,解得r=﹣,∴r2+4r+=×(﹣)2+4×(﹣)+=,∴N(﹣,);③当FN、EM为对角线时,FN、EM的中点重合,∴,解得r=﹣,∴r2+4r+=×(﹣)2+4×(﹣)+=,∴N(﹣,);综上所述,N的坐标为:(,)或(﹣,)或(﹣,).四.作图—复杂作图(共1小题)6.(2022•重庆)在学习矩形的过程中,小明遇到了一个问题:在矩形ABCD中,E是AD 边上的一点,试说明△BCE的面积与矩形ABCD的面积之间的关系.他的思路是:首先过点E作BC的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作BC的垂线EF,垂足为F(只保留作图痕迹).在△BAE和△EFB中,∵EF⊥BC,∴∠EFB=90°.又∠A=90°,∴ ∠A=∠EFB, ①∵AD∥BC,∴ ∠AEB=∠FBE, ②又 BE=EB, ③∴△BAE≌△EFB(AAS).同理可得 △EDC≌△CFE(AAS), ④∴S△BCE=S△EFB+S△EFC=S矩形ABFE+S矩形EFCD=S矩形ABCD.【答案】①∠A=∠EFB,②∠AEB=∠FBE,③BE=EB,④△EDC≌△CFE(AAS).【解答】解:根据题意作图如下:由题知,在△BAE和△EFB中,∵EF⊥BC,∴∠EFB=90°.又∠A=90°,∴∠A=∠EFB,①∵AD∥BC,∴∠AEB=∠FBE,②又BE=EB,③∴△BAE≌△EFB(AAS).同理可得△EDC≌△CFE(AAS),④∴S△BCE=S△EFB+S△EFC=S矩形ABFE+S矩形EFCD=S矩形ABCD,故答案为:①∠A=∠EFB,②∠AEB=∠FBE,③BE=EB,④△EDC≌△CFE (AAS).五.几何变换综合题(共2小题)7.(2022•重庆)如图,在锐角△ABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想;(3)若AB=AC,且BD=AE,将△ABC沿直线AB翻折至△ABC所在平面内得到△ABP,点H是AP的中点,点K是线段PF上一点,将△PHK沿直线HK翻折至△PHK 所在平面内得到△QHK,连接PQ.在点D,E运动过程中,当线段PF取得最小值,且QK⊥PF时,请直接写出的值.【答案】(1)60°;(2)结论:BF+CF=2CN.(3).【解答】解:(1)如图1中,在射线CD上取一点K,使得CK=BE,在△BCE和△CBK中,,∴△BCE≌△CBK(SAS),∴BK=CE,∠BEC=∠BKD,∵CE=BD,∴BD=BK,∴∠BKD=∠BDK=∠ADC=∠CEB,∵∠BEC+∠AEF=180°,∴∠ADF+∠AEF=180°,∴∠A+∠EFD=180°,∵∠A=60°,∴∠EFD=120°,∴∠CFE=180°﹣120°=60°;(2)结论:BF+CF=2CN.理由:如图2中,∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴AB=CB,∠A=∠CBD=60°,∵AE=BD,∴△ABE≌△BCD(SAS),∴∠BCF=∠ABE,∴∠FBC+∠BCF=60°,∴∠BFC=120°,如图2﹣1中,延长CN到Q,使得NQ=CN,连接FQ,∵NM=NF,∠CNM=∠FNQ,CN=NQ,∴△CNM≌△QNF(SAS),∴FQ=CM=BC,延长CF到P,使得PF=BF,则△PBF是等边三角形,∴∠PBC+∠PCB=∠PCB+∠FCM=120°,∴∠PFQ=∠FCM=∠PBC,∵PB=PF,∴△PFQ≌△PBC(SAS),∴PQ=PC,∠CPB=∠QPF=60°,∴△PCQ是等边三角形,∴BF+CF=PC=QC=2CN.证法二:延长MC到P,使得CP=CM,连接PB,PF,延长FC到Q,使得CQ=BF.∵FN=MN,CP=CM,∴PF=2CN,∵CB=CM=CP,∠BCP=180°﹣60°﹣60°=60°,∴△BCP是等边三角形,∴∠BPC+∠BFC=180°,∴∠PBF+∠PCF=180°,∵∠PCQ+∠PCF=180°,∴∠PBF=∠PCQ,∴PB=PC,BF=CQ,∴△PBF≌△PCQ(SAS),∴PF=PQ,∠BPF=∠QPC,∴∠QPF=∠BPC=60°,∴△PQF是等边三角形,∴FQ=CF+CQ=CF+BF=2CN;(3)由(2)可知∠BFC=120°,∴点F的运动轨迹为红色圆弧(如图3﹣1中),∴P,F,O三点共线时,PF的值最小,此时tan∠APK==,∴∠HPK>45°,∵QK⊥PF,∴∠PKH=∠QKH=45°,如图3﹣2中,过点H作HL⊥PK于点L,设PQ交KH题意点J,设HL=LK=2,PL=,PH=,KH=2,∵S△PHK=•PK•HL=•KH•PJ,∴PQ=2PJ=2×=2+∴==.8.(2021•重庆)在△ABC中,AB=AC,D是边BC上一动点,连接AD,将AD绕点A逆时针旋转至AE的位置,使得∠DAE+∠BAC=180°.(1)如图1,当∠BAC=90°时,连接BE,交AC于点F.若BE平分∠ABC,BD=2,求AF的长;(2)如图2,连接BE,取BE的中点G,连接AG.猜想AG与CD存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接DG,CE.若∠BAC=120°,当BD>CD,∠AEC=150°时,请直接写出的值.【答案】(1);(2)AG=CD,证明过程见解答部分;(3).【解答】解:(1)连接CE,过点F作FQ⊥BC于Q,∵BE平分∠ABC,∠BAC=90°,∴FA=FQ,∵AB=AC,∴∠ABC=∠ACB=45°,∴FQ=CF,∵∠BAC+∠DAE=180°,∴∠DAE=∠BAC=90°,∴∠BAD=∠CAE,由旋转知,AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE=2,∠ABD=∠ACE=45°,∴∠BCE=90°,∴∠CBF+∠BEC=90°,∵BE平分∠ABC,∴∠ABF=∠CBF,∴∠ABF+∠BEC=90°,∵∠BAC=90°,∴∠ABF+∠AFB=90°,∴∠AFB=∠BEC,∵∠AFB=∠CFE,∴∠BEC=∠CFE,∴CF=CE=2,∴AF=FQ=CF=;(2)AG=CD,理由:延长BA至点M,使AM=AB,连接EM,∵G是BE的中点,∴AG=ME,∵∠BAC+∠DAE=∠BAC+∠CAM=180°,∴∠DAE=∠CAM,∴∠DAC=∠EAM,∵AB=AM,AB=AC,∴AC=AM,∵AD=AE,∴△ADC≌△AEM(SAS),∴CD=EM,∴AG=CD;(3)如图3,连接DE,AD与BE的交点记作点N,∵∠BAC+∠DAE=180°,∠BAC=120°,∴∠DAE=60°,∵AD=AE,∴△ADE是等边三角形,∴AE=DE,∠ADE=∠AED=60°,∵∠AEC=150°,∴∠DEC=∠AEC﹣∠AED=90°,在△ABC中,AB=AC,∠BAC=120°,∴∠ACB=∠ABC=30°,∵∠AEC=150°,∴∠ABC+∠AEC=180°,∴点A,B,C,E四点共圆,∴∠BEC=∠BAC=120°,∴∠BED=∠BEC﹣∠DEC=30°,∴∠DNE=180°﹣∠BED﹣∠ADE=90°,∵AE=DE,∴AN=DN,∴BE是AD的垂直平分线,∴AG=DG,BA=BD=AC,∴∠ABE=∠DBE=∠ABC=15°,∴∠ACE=∠ABE=15°,∴∠DCE=45°,∵∠DEC=90°,∴∠EDC=45°=∠DCE,∴DE=CE,∴AD=DE,设AG=a,则DG=a,由(2)知,AG=CD,∴CD=2AG=2a,∴CE=DE=CD=a,∴AD=a,∴DN=AD=a,过点D作DH⊥AC于H,在Rt△DHC中,∠ACB=30°,CD=2a,∴DH=a,根据勾股定理得,CH=a,在Rt△AHD中,根据勾股定理得,AH==a,∴AC=AH+CH=a+a,∴BD=a+a,∴==.六.相似形综合题(共1小题)9.(2023•重庆)在Rt△ABC中,∠ACB=90°,∠B=60°,点D为线段AB上一动点,连接CD.(1)如图1,若AC=9,BD=,求线段AD的长;(2)如图2,以CD为边在CD上方作等边△CDE,点F是DE的中点,连接BF并延长,交CD的延长线于点G.若∠G=∠BCE,求证:GF=BF+BE;(3)在CD取得最小值的条件下,以CD为边在CD右侧作等边△CDE.点M为CD所在直线上一点,将△BEM沿BM所在直线翻折至△ABC所在平面内得到△BNM.连接AN,点P为AN的中点,连接CP,当CP取最大值时,连接BP,将△BCP沿BC所在直线翻折至△ABC所在平面内得到△BCQ,请直接写出此时的值.【答案】(1)AD=5;(2)证明见解答过程;(3).【解答】(1)解:在Rt△ABC中,∠ACB=90°,∵∠B=60°,AC=9,∴BC==3,AB=2BC=6∵BD=,∴AD=AB﹣BD=5;(2)证明:取AB的中点O,连接OC,如图:在Rt△ABC中,点O为斜边AB的中点,∴OC=OB,∵∠ABC=60°,∴△BOC为等边三角形,∴CO=CB,∠OCB=∠BOC=60°,∴∠DOC=120°,∵△CDE为等边三角形,∴CD=CE,∠DCE=60°,∴∠DCE=∠OCB=60°,即∠OCD+∠OCE=∠OCE+∠BCE,∴∠OCD=∠BCE,在△OCD和△BCE中,,∴△OCD≌△BCE(SAS),∴∠EBC=∠DOC=120°,∴∠OCB+∠EBC=180°,∴OC∥BE,在GF上截取HF=BF,连接DH,∵点F是DE的中点,∴FE=FD.在△BEF和△HDF中,,∴△BEF≌△HDF(SAS),∴BE=HD,∠BEF=∠HDF,∴DH∥BE,∴DH∥OC,∴∠HDG=∠OCD,又∠G=∠BCE,∴∠G=∠HDG,∴HG=HD,∴HG=BE,∴GF=HG+FH=BE+BF;(3)解:取AB的中点S,连接PS,如图:在CD取得最小值时,CD⊥AB,设AB=4a,则BC=2a,AC=2a,∵2S△ABC=AC•BC=AB•CD,∴CD==a,BD=BC=a,∵△CDE是等边三角形,∴∠DCE=60°,CD=CE,∴∠BCE=∠DCE﹣∠DCB=60°﹣30°=30°=∠DCB,∵BC=BC,∴△BCD≌△BCE(SAS),∴BD=BE=a,∵将△BEM沿BM所在直线翻折至△ABC所在平面内得到△BNM,∴BE=BN=a,∴N的运动轨迹是以B为圆心,a为半径的圆,∵点P为AN的中点,S为AB的中点,∴PS=BN=a,∴P的运动轨迹是以S为圆心,a为半径的圆,当CP最大时,C,P,S三点共线,过P作PT⊥AC于T,过N作NR⊥AC于R,如图:∵S是AB中点,∴BS=AS=CS=AB=2a,∵∠ABC=60°,∴△BSC是等边三角形,∴∠PCB=60°,BC=CS=2a,∴∠PCA=30°,∵CP=CS+PS=2a+a=a,∴PT=CP=a,CT=PT=a,∴AT=AC﹣CT=a,连接PQ交NR于W,如图:∵将△BCP沿BC所在直线翻折至△ABC所在平面内得到△BCQ,∴PQ⊥BC,∵AC⊥BC,∴PQ∥AC,即PW∥AR,∵P为AN中点,∴PW是△ANR的中位线,∴NW=RW=NR,同理可得PT是△ANR的中位线,∴PT=NR,∴PT=NW=RW=a,PW=AR=AT=a,∵将△BCP沿BC所在直线翻折至△ABC所在平面内得到△BCQ,∴∠QCB=∠PCB=60°,CP=CQ,∴∠QCP=120°,∴PQ=CP=a,∴WQ=PQ﹣PW=a﹣a=a,∴NQ===a,∴==.七.解直角三角形的应用-方向角问题(共1小题)10.(2023•重庆)为了满足市民的需求,我市在一条小河AB两侧开辟了两条长跑锻炼线路,如图:①A﹣D﹣C﹣B;②A﹣E﹣B.经勘测,点B在点A的正东方,点C在点B的正北方10千米处,点D在点C的正西方14千米处,点D在点A的北偏东45°方向,点E在点A的正南方,点E在点B的南偏西60°方向.(参考数据:≈1.41,≈1.73)(1)求AD的长度.(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?【答案】(1)AD的长度约为14千米;(2)小明应该选择线路①,理由见解析.【解答】解:(1)过D作DF⊥AE,垂足为F,由题意得:四边形ABCF是矩形,∴AF=BC=10千米,在Rt△ADF中,∠DAF=45°,∴AD===10≈10×1.41≈14(千米).∴AD的长度约为14千米;(2)小明应该选择线路①,理由:在Rt△ADF中,∠DAF=45°,AF=10千米,∴∠ADF=45°=∠DAF,∴DF=AF=10千米,在Rt△ABE中,∠ABE=90°﹣60°=30°,AB=DF+CD=24千米,∴AE=AB•tan30°=24×=8(千米),EB=2AE=16千米,按路线①A﹣D﹣C﹣B走的路程为AD+DC+CB=14+14+10=38(千米)按路线②A﹣E﹣B走的路程为AE+EB=8+16≈24×1.73=41.52(千米)∵38千米<41.52千米,∴小明应该选择线路①.八.频数(率)分布直方图(共1小题)11.(2023•重庆)为了解A、B两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A、B两款智能玩具飞机各10架,记录下它们运行的最长时间(分钟),并对数据进行整理、描述和分析(运行最长时间用x表示,共分为三组:合格60≤x<70,中等70≤x<80,优等x≥80),下面给出了部分信息:A款智能玩具飞机10架一次充满电后运行最长时间是:60,64,67,69,71,71,72,72,72,82.B款智能玩具飞机10架一次充满电后运行最长时间属于中等的数据是:70,71,72,72,73.两款智能玩具飞机运行最长时间统计表类别A B平均数7070中位数71b众数a67方差30.426.6根据以上信息,解答下列问题:(1)上述图表中a= 72 ,b= 70.5 ,m= 10 ;(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由(写出一条理由即可);(3)若某玩具仓库有A款智能玩具飞机200架、B款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?【答案】(1)72,70.5,10;(2)A款智能玩具飞机运行性能更好,理由见解答(答案不唯一);(3)192架.【解答】解:(1)A款智能玩具飞机10架一次充满电后运行最长时间中,72出现的次数最多,故众数a=72,把B款智能玩具飞机10架一次充满电后运行最长时间从小到大排列,排在中间的两个数是70和71,故中位数b==70.5,m%=1﹣50%﹣40%=10%,即m=10.故答案为:72,70.5,10;(2)A款智能玩具飞机运行性能更好,理由如下:虽然两款智能玩具飞机运行最长时间的平均数相同,但A款智能玩具飞机运行最长时间的中位数和众数均高于B款智能玩具飞机,所以A款智能玩具飞机运行性能更好;(答案不唯一);(3)200×+120×(1﹣40%)=120+72=192(架),答:估计两款智能玩具飞机运行性能在中等及以上的大约共有192架.九.整数问题的综合运用(共1小题)12.(2022•重庆)若一个四位数M的个位数字与十位数字的平方和恰好是M去掉个位与十位数字后得到的两位数,则这个四位数M为“勾股和数”.例如:M=2543,∵32+42=25,∴2543是“勾股和数”;又如:M=4325,∵52+22=29,29≠43,∴4325不是“勾股和数”.(1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记G(M)=,P(M)=.当G(M),P(M)均是整数时,求出所有满足条件的M.【答案】(1)2022 不是“勾股和数”,5055 是“勾股和数”;(2)8109或8190或4536或4563.【解答】解:(1)∵22+22=8,8≠20,∴2022 不是“勾股和数”,∵52+52=50,∴5055 是“勾股和数”;(2)∵M为“勾股和数”,∴10a+b=c2+d2,∴0<c2+d2<100,∵G(M)为整数,为整数,∴c+d=9,∴P(M)==为整数,∴c2+d2=81﹣2cd为3的倍数,∴cd为3的倍数.∴①c=0,d=9或c=9,d=0,此时M=8109或8190;②c=3,d=6或c=6,d=3,此时M=4536或4563.。

重庆市2021年中考数学(a卷)解析版(1)

重庆市2021年中考数学(a卷)解析版(1)

重庆市2020 年初中学业水平暨高中招生考试数学试题(A 卷)注意事项:(全卷共四个大题,满分150 分,考试时间120 分钟)1.试题的答案书写在答.题.卡.上,不得在试卷上直接作答;2.作答前认真阅读答.题.卡.上的注意事项;3.作图(包括辅助线)请一律用黑.色.2.B.铅笔完成;4.考试结束,由监考人员将试题卷和答.题.卡.一并收回.2 ⎛ b 4ac -b2 ⎫ b参考公式:抛物线y =ax +bx +c (a ≠0)的顶点坐标为 -,⎪,对称轴为x =-.⎝2a 4a ⎭2a一、选择题:(本大题共12小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D 的四个答案,其中只有一个是正确的,请将答.题.卡.上题号右侧正确答案所对应的方框涂黑.1.下列各数中,最小的数是A.-3【答案】A.B.0 C.1 D.2【解析】-3 < 0 < 1 < 2 ,故选A.2.下列图形是轴对称图形的是A. B. C.D.【答案】A.【解析】答案BCD 不是轴对称图形,故选A.3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”,其中数据26000用科学记数法表示为A.26 ⨯103【答案】C.B.2.6 ⨯103C.2.6 ⨯104D.0.26 ⨯105【解析】26000 = 2.6 ⨯104 ,故选C.4.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1 个黑色三角形,第②个图案中有3 个黑色三角形,第③个图案中有6 个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为A.10 B.15 C.18 D.21【答案】B.【解析】第①个图案有1个黑色三角形;第②个图案有1 + 2 = 3 个黑色三角形;第③个图案有51 +2 +3 = 6 黑色三角形;故第⑤个图案有1 + 2 + 3 +4 +5 = 15 个黑色三角形,故选 B .5.如图, AB 是 O 的切线, A 为切点,连接OA 、OB ,若∠B = 20︒ ,则∠AOB 的度数为A . 40︒B . 50︒C . 60︒D . 70︒【答案】D .【解析】由题, AB 是 O 的切线, A 为切点,故OA ⊥ AB ,在Rt △AOB 中,因为∠B = 20︒ , 所以 ∠AOB = 70︒ ,故选 D . 6.下列计算中,正确的是A . 2 + 3 = 5B . 2 + 2 = 2 2C . 2 ⨯ 3 = 【答案】C . 【解析】略.6 D . 2 3 - 2 = 37.解一元一次方程 1 (x + 1) = 1 - 1x 时,去分母正确的是2 3A . 3(x + 1) = 1 - 2x C . 2 (x + 1) = 6 - 3x 【答案】D . 【解析】略.B . 2 (x + 1) = 1 - 3x D .3(x + 1) = 6 - 2x 8.如图,在平面直角坐标系中,△ABC 的顶点坐标分别是 A (1, 2), B (1,1),C (3,1),以原点为位似中心,在原点的同侧画△DEF ,使△DEF 与△ABC 成位似图形,且相似比为 2 :1 ,则线段 DF 的长度为A .B . 2C . 4D . 2【答案】D .55 ⎨ ⎩ 【解析】在△ABC 中,由 A (1, 2),B (1,1),C (3,1),则 AB = 1 ,BC = 2 ,由勾股定理得 AC = ,又因为△DEF 与△ABC 相似比为 2 :1 ,则 DF = 2AC = 2 ,故选 D .9.如图,在距某居民楼 AB 楼底 B 点左侧水平距离60m 的C 点处有一个ft 坡,ft 坡CD 的坡度(或坡比) i = 1: 0.75 ,ft 坡坡底C 点到坡顶 D 点的距离CD = 45m ,在坡顶 D 点处测得居民楼楼顶 A 点的仰角为 28︒,居民楼 AB 与ft 坡CD 的剖面在同一平面内,则居民楼 AB 的高度约为 (参考数据: sin 28︒ ≈ 0.47 , cos 28︒ ≈ 0.88 , tan 28︒ ≈ 0.53 ) A . 76.9m B . 82.1m C . 94.8m D .112.6m【答案】B .【解析】如图,故点 D 作 DP ⊥ BC 交 BC 延长线与点 P , 过点 D 作 DQ ⊥ AB 交 AB 于点 Q , 因为ft 坡 CD 的坡度 i = 1: 0.75 ,且 CD = 45m ,故在 Rt △PCD 中, CP = 27 , QB = DP = 36 ,则 DQ = PB = PC + CB = 87 ;又在 Rt △ADQ中 , ∠ADQ = 28︒ , 故 tan 28︒ =AQ= 0.53 DQ, 所 以AQ ≈ 0.53DQ = 46.11 ,故 AB = AQ + QB = 82.11,故选 B .⎧3x -1≤ x + 310 . 若 关 于 x 的 一 元 一 次 不 等 式 组 ⎪2的 解 集 为 x ≤ a ; 且 关 于 y 的 分 式 方 程⎩⎪x ≤ ay - a + 3y - 4= 1有正整数解,则所有满足条件的整数 a 的值之积是 y - 2 y - 2A . 7B . -14【答案】A .C . 28D . -56【解析】解不等式组得 ⎧x ≤ 7 ,因为不等式组的解集为 x ≤ a ,所以 a ≤ 7 ;解分式方程得 y = 2 + a,⎨x ≤ a3因为 y ≠ 2 ,故 a ≠ 4 ,又分式方程有正整数解,故满足条件的整数 a 有7 ,1,因此所有满足条件的整数 a 的值之积是7 ⨯1 = 7 ,故选 A .11.如图,三角形纸片 ABC ,点 D 是 BC 边上一点,连接 AD ,把△ABD 沿着 AD 翻折,得到△AED ,DE 与 AC 交于点G ,连接 BE 交 AD 于点 F ,若 DG = GE , AF = 3 , BF = 2 ,△ADG 的面积 为 2,则点 F 到 BC 的距离为 A . 55 【答案】B .B . 2 55C . 4 55D . 4 33【解析】如图,过点 F 作 FH ⊥ BC 于点 H ,由翻折对称性可知 AD ⊥ BE ,且 AD 平分 BE ,因 此 EF = BF = 2 ,又因为 DG = GE ,△ADG 的面积为2,所以△ADE 的面积为 4 ,即 1AD ⋅ EF = 4 ,2552 55⎝⎭所以AD = 4 ,由AF = 3 ,则DF =1,所以BD =,故S△BDF=1BF ⋅DF =1BD ⋅FH2 2,解得FH =,故选B.12.如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE ,若AD 平分∠OAE ,反比例函数y =k (k > 0, x > 0)的图象经过AE 上的两点A 、xF ,且AF =EF ,△ABE 的面积是18,则k 的值为A.6 B.12 C.18 .24【答案】B.【解析】如图,连接BD ,过点A 作AM ⊥x 轴于M ,过点F 作FN ⊥x 轴于点N ,由AD 平分∠OAE ,则BD∥AE ,故S△AOE=S△ABE= 18 ,1 ⎛k ⎫因为AF =EF ,则SAMNF=S△AOF=2S△AOE= 9 ,不妨设点A a,a ⎪⎛k ⎫ 1 ⎛k k ⎫则A 2a,2a ⎪,故SAMNF=2 2a+a ⎪(2a -a )= 9 ,解得k = 12 ,⎝⎭⎝⎭故选B.二、填空题:(本大题共6小题,每小题4分,共24分)将每小题的答案直接填写在答题卡中对应的横线上.13.计算(π-1)0 +-2=.【答案】3.【解析】原式= 1 + 2 = 3 ,14.一个多边形的内角和等于它的外角和的2 倍,则这个多边形的边数是.【答案】6 .【解析】外角和为360︒,所以内角和为(n - 2) ⨯180︒= 720︒,故n = 6 .15.现有四张正面分别标有数字-1,1,2,3 的不透明卡片,它们除数字外其余完全相同,将他们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m ,n ,则点P (m, n)在第二象限的概率为.【答案】3.16【解析】共有(-1, -1) ,(-1,1) ,(-1, 2) ,(-1, 3) ,(1, -1) ,(1,1) ,(1, 2) ,(1, 3) ,(2, -1) ,(2,1) ,(2, 2) ,(2, 3) ,(3, -1) ,(3,1) ,(3, 2) ,(3, 3) 共16 种情况.其中在二象限的有(-1,1) ,(-1, 2) ,(-1, 3)共3种情况。

(2021年整理)中考数学知识点总结(推荐完整)

(2021年整理)中考数学知识点总结(推荐完整)

中考数学知识点总结(完整版)(推荐完整)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(中考数学知识点总结(完整版)(推荐完整))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为中考数学知识点总结(完整版)(推荐完整)的全部内容。

中考数学知识点总结(完整版)(推荐完整)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望中考数学知识点总结(完整版)(推荐完整)这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <中考数学知识点总结(完整版)(推荐完整)〉这篇文档的全部内容。

中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp 的形式,其中p 、q 是互质的整数,这是有理数的重要特征. 2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1。

101001000100001……;特定意义的数,如π、45sin °等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

重庆市a卷2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类

重庆市a卷2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类

重庆市A卷2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类一.规律型:图形的变化类(共2小题)1.(2023•重庆)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑧个图案用的木棍根数是( )A.39B.44C.49D.54 2.(2022•重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为( )A.32B.34C.37D.41二.整式的加减(共2小题)3.(2023•重庆)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是( )A.0B.1C.2D.34.(2022•重庆)在多项式x﹣y﹣z﹣m﹣n中任意加括号(x,y,z,m,n均不为零),加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x ﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,….下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是( )A.0B.1C.2D.3三.分式方程的解(共2小题)5.(2022•重庆)若关于x的一元一次不等式组的解集为x≤﹣2,且关于y的分式方程=﹣2的解是负整数,则所有满足条件的整数a的值之和是( )A.﹣26B.﹣24C.﹣15D.﹣13 6.(2021•重庆)若关于x的一元一次不等式组的解集为x≥6,且关于y的分式方程+=2的解是正整数,则所有满足条件的整数a的值之和是( )A.5B.8C.12D.15四.反比例函数系数k的几何意义(共1小题)7.(2021•重庆)如图,在平面直角坐标系中,菱形ABCD的顶点D在第二象限,其余顶点都在第一象限,AB∥x轴,AO⊥AD,AO=AD.过点A作AE⊥CD,垂足为E,DE=4CE.反比例函数y=(x>0)的图象经过点E,与边AB交于点F,连接OE,OF,EF.若S△EOF=,则k的值为( )A .B .C .7D .五.反比例函数图象上点的坐标特征(共1小题)8.(2023•重庆)反比例函数y =﹣的图象一定经过的点是( )A .(1,4)B .(﹣1,﹣4)C .(﹣2,2)D .(2,2)六.正方形的性质(共3小题)9.(2023•重庆)如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,连接AE ,AF ,EF ,∠EAF =45°.若∠BAE =α,则∠FEC 一定等于( )A .2αB .90°﹣2αC .45°﹣αD .90°﹣α10.(2022•重庆)如图,在正方形ABCD 中,AE 平分∠BAC 交BC 于点E ,点F 是边AB 上一点,连接DF ,若BE =AF ,则∠CDF 的度数为( )A .45°B .60°C .67.5°D .77.5°11.(2021•重庆)如图,正方形ABCD 的对角线AC ,BD 交于点O ,M 是边AD 上一点,连接OM ,过点O 作ON ⊥OM ,交CD 于点N .若四边形MOND 的面积是1,则AB 的长为( )A .1B .C .2D .2七.圆内接四边形的性质(共1小题)12.(2021•重庆)如图,四边形ABCD内接于⊙O,若∠A=80°,则∠C的度数是( )A.80°B.100°C.110°D.120°八.切线的性质(共1小题)13.(2022•重庆)如图,AB是⊙O的切线,B为切点,连接AO交⊙O于点C,延长AO交⊙O于点D,连接BD.若∠A=∠D,且AC=3,则AB的长度是( )A.3B.4C.3D.4重庆市A卷2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类参考答案与试题解析一.规律型:图形的变化类(共2小题)1.(2023•重庆)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑧个图案用的木棍根数是( )A.39B.44C.49D.54【答案】B【解答】解:由图可得,图案①有:4+5=9根小木棒,图案②有:4+5×2=14根小木棒,图案③有:4+5×3=19根小木棒,…,∴第n个图案有:(4+5n)根小木棒,∴第⑧个图案有:4+5×8=44根小木棒,故选:B.2.(2022•重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为( )A.32B.34C.37D.41【答案】C【解答】解:由题知,第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,…,第n个图案中有(4n+1)个正方形,∴第⑨个图案中正方形的个数为4×9+1=37,故选:C.二.整式的加减(共2小题)3.(2023•重庆)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是( )A.0B.1C.2D.3【答案】C【解答】解:|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,故说法①正确.若使其运算结果与原多项式之和为0,需出现﹣x,显然无论怎么添加绝对值,都无法使x的符号为负号,故说法②正确.当添加一个绝对值时,共有4种情况,分别是|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n;x﹣|y﹣z|﹣m﹣n=x﹣y+z﹣m﹣n;x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;x﹣y﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n.当添加两个绝对值时,共有3种情况,分别是|x﹣y|﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n;x﹣|y﹣z|﹣|m﹣n|=x﹣y+z﹣m+n.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C.4.(2022•重庆)在多项式x﹣y﹣z﹣m﹣n中任意加括号(x,y,z,m,n均不为零),加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x ﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,….下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是( )A.0B.1C.2D.3【答案】D【解答】解:①(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,与原式相等,故①正确;②∵在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,无法改变x,y的符号,故不存在任何“加算操作”,使其运算结果与原多项式之和为0;故②正确;③在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,加括号后只有加减两种运算,∴2×2×2=8种,所有可能的加括号的方法最多能得到8种不同的结果.故选:D.三.分式方程的解(共2小题)5.(2022•重庆)若关于x的一元一次不等式组的解集为x≤﹣2,且关于y的分式方程=﹣2的解是负整数,则所有满足条件的整数a的值之和是( )A.﹣26B.﹣24C.﹣15D.﹣13【答案】D【解答】解:解不等式组得:,∵不等式组的解集为x≤﹣2,∴>﹣2,∴a>﹣11,解分式方程=﹣2得:y=,∵y是负整数且y≠﹣1,∴是负整数且≠﹣1,∴a=﹣8或﹣5,∴所有满足条件的整数a的值之和是﹣8﹣5=﹣13,故选:D.6.(2021•重庆)若关于x的一元一次不等式组的解集为x≥6,且关于y的分式方程+=2的解是正整数,则所有满足条件的整数a的值之和是( )A.5B.8C.12D.15【答案】B【解答】解:,解不等式①得:x≥6,解不等式②得:x>,∵不等式组的解集为x≥6,∴6,∴a<7;分式方程两边都乘(y﹣1)得:y+2a﹣3y+8=2(y﹣1),解得:y=,∵方程的解是正整数,∴>0,∴a>﹣5;∵y﹣1≠0,∴1,∴a≠﹣3,∴﹣5<a<7,且a≠﹣3,∴能使是正整数的a是:﹣1,1,3,5,∴和为8,故选:B.四.反比例函数系数k的几何意义(共1小题)7.(2021•重庆)如图,在平面直角坐标系中,菱形ABCD的顶点D在第二象限,其余顶点都在第一象限,AB∥x轴,AO⊥AD,AO=AD.过点A作AE⊥CD,垂足为E,DE=4CE.反比例函数y=(x>0)的图象经过点E,与边AB交于点F,连接OE,OF,EF.若S△EOF=,则k的值为( )A.B.C.7D.【答案】A【解答】解:延长EA交x轴于点G,过点F作FH⊥x轴于点H,如图,∵AB∥x轴,AE⊥CD,AB∥CD,∴AG⊥x轴.∵AO⊥AD,∴∠DAE+∠OAG=90°.∵AE⊥CD,∴∠DAE+∠D=90°.∴∠D=∠OAG.在△DAE和△AOG中,.∴△DAE≌△AOG(AAS).∴DE=AG,AE=OG.∵四边形ABCD是菱形,DE=4CE,∴AD=CD=DE.设DE=4a,则AD=OA=5a.∴OG=AE=.∴EG=AE+AG=7a.∴E(3a,7a).∵反比例函数y=(x>0)的图象经过点E,∴k=21a2.∵AG⊥GH,FH⊥GH,AF⊥AG,∴四边形AGHF为矩形.∴HF=AG=4a.∵点F在反比例函数y=(x>0)的图象上,∴x=.∴F().∴OH=a,FH=4a.∴GH=OH﹣OG=.∵S△OEF=S△OEG+S梯形EGHF﹣S△OFH,S△EOF=,∴.××﹣=.解得:a2=.∴k=21a2=21×=.故选:A.五.反比例函数图象上点的坐标特征(共1小题)8.(2023•重庆)反比例函数y=﹣的图象一定经过的点是( )A.(1,4)B.(﹣1,﹣4)C.(﹣2,2)D.(2,2)【答案】C【解答】解:∵反比例函数y=﹣,∴k=﹣4,A、∵1×4=4≠﹣4,∴此点不在函数图象上,故本选项不合题意;B、∵﹣1×(﹣4)=4≠﹣4,∴此点不在函数图象上,故本选项不合题意;C、∵﹣2×2=﹣4,∴此点在函数图象上,故本选项符合题意;D、∵2×2=4≠﹣4,∴此点不在函数图象上,故本选项不合题意.故选:C.六.正方形的性质(共3小题)9.(2023•重庆)如图,在正方形ABCD中,点E,F分别在BC,CD上,连接AE,AF,EF,∠EAF=45°.若∠BAE=α,则∠FEC一定等于( )A.2αB.90°﹣2αC.45°﹣αD.90°﹣α【答案】A【解答】解:在正方形ABCD中,AD=AB,∠BAD=∠ABC=∠ADC=90°,将△ADF绕点A顺时针旋转90°,得△ABG,如图所示:则AF=AG,∠DAF=∠BAG,∵∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠GAE=∠FAE=45°,在△GAE和△FAE中,,∴△GAE≌△FAE(SAS),∴∠AEF=∠AEG,∵∠BAE=α,∴∠AEB=90°﹣α,∴∠AEF=∠AEB=90°﹣α,∴∠FEC=180°﹣∠AEF﹣∠AEB=180°﹣2×(90°﹣α)=2α,故选:A.10.(2022•重庆)如图,在正方形ABCD中,AE平分∠BAC交BC于点E,点F是边AB 上一点,连接DF,若BE=AF,则∠CDF的度数为( )A.45°B.60°C.67.5°D.77.5°【答案】C【解答】解:∵四边形ABCD是正方形,∴AD=BA,∠DAF=∠ABE=90°,在△DAF和△ABE中,,△DAF≌△ABE(SAS),∠ADF=∠BAE,∵AE平分∠BAC,四边形ABCD是正方形,∴∠BAE=∠BAC=22.5°,∠ADC=90°,∴∠ADF=22.5°,∴∠CDF=∠ADC﹣∠ADF=90°﹣22.5°=67.5°,故选:C.11.(2021•重庆)如图,正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O作ON⊥OM,交CD于点N.若四边形MOND的面积是1,则AB的长为( )A.1B.C.2D.2【答案】C【解答】解:∵四边形ABCD是正方形,∴∠MDO=∠NCO=45°,OD=OC,∠DOC=90°,∴∠DON+∠CON=90°,∵ON⊥OM,∴∠MON=90°,∴∠DON+∠DOM=90°,∴∠DOM=∠CON,在△DOM和△CON中,,∴△DOM≌△CON(ASA),∵四边形MOND的面积是1,四边形MOND的面积=△DOM的面积+△DON的面积,∴四边形MOND的面积=△CON的面积+△DON的面积=△DOC的面积,∴△DOC的面积是1,∴正方形ABCD的面积是4,∴AB2=4,∴AB=2,故选:C.七.圆内接四边形的性质(共1小题)12.(2021•重庆)如图,四边形ABCD内接于⊙O,若∠A=80°,则∠C的度数是( )A.80°B.100°C.110°D.120°【答案】B【解答】解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∵∠A=80°,∴∠C=100°,故选:B.八.切线的性质(共1小题)13.(2022•重庆)如图,AB是⊙O的切线,B为切点,连接AO交⊙O于点C,延长AO交⊙O于点D,连接BD.若∠A=∠D,且AC=3,则AB的长度是( )A.3B.4C.3D.4【答案】C【解答】解:如图,连接OB,∵AB是⊙O的切线,B为切点,∴OB⊥AB,∴AB2=OA2﹣OB2,∵OB和OD是半径,∴∠D=∠OBD,∵∠A=∠D,∴∠A=∠D=∠OBD,∴△OBD∽△BAD,AB=BD,∴OD:BD=BD:AD,∴BD2=OD•AD,即OA2﹣OB2=OD•AD,设OD=x,∵AC=3,∴AD=2x+3,OB=x,OA=x+3,∴(x+3)2﹣x2=x(2x+3),解得x=3(负值舍去),∴OA=6,OB=3,∴AB2=OA2﹣OB2=27,∴AB=3,故选:C.。

2021重庆市中考数学试题有答案(Word版)(共2套)

2021重庆市中考数学试题有答案(Word版)(共2套)

重庆市中考数学试题(一)(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,)24b ac b a a --(,对称轴为2b x a=-.一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,期中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。

1.在—4,0,—1,3这四个数中,最大的数是( ) A. —4 B. 0 C. —1 D. 3 2.下列图形是轴对称图形的是( )A .B .C .D 3.化简12的结果是( )A. 43B. 23C. 32D. 26 4.计算()32a b 的结果是( )A. 63a bB. 23a bC. 53a bD. 6a b5.下列调查中,最适合用普查方式的是( ) A. 调查一批电视机的使用寿命情况B. 调查某中学九年级一班学生视力情况C. 调查重庆市初中学生锻炼所用的时间情况D. 调查重庆市初中学生利用网络媒体自主学习的情况 6.如图,直线AB ∥CD ,直线EF 分别与直线AB,CD 相交于点G ,H 。

若∠1=135°,则∠2的度数为( ) A. 65° B. 55° C. 45° D. 35°7.在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为( )A.220B. 218C. 216D. 209 8.一元二次方程220x x -=的根是( ) A.120,2x x ==- B. 121,2x x == C. 121,2x x ==- D. 120,2x x == 9.如图,AB 是O 的直径,点C 在O 上,AE 是O 的切线,A 为切点,连接BC 并延长交AE 于点D ,若∠AOC=80°,则∠ADB 的度数为( )6题图9题图A. 40°B. 50°C. 60°D. 20°10.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中, 中途休息了一段时间,设他从山脚出发后所用的时间为t(分钟), 所走的路程为s(米),s与t之间的函数关系如图所示, 下列说法错误的是( ) A .小明中途休息用了20分钟B .小明休息前爬上的速度为每分钟70米C .小明在上述过程中所走的路程为6600米D .小明休息前爬山的平均速度大于休息后爬山的平均速度11.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,其中第②个图形中一共有9个小圆圈,其中第③个图形中一共有12个小圆圈,...,按此规律排列,则第⑦个图形中小圆圈的个数为( )① ② ③ A. 21 B. 24 C. 27 D. 3012.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A,B 两点的纵坐标分别为3,1,反比例函数3y x=的图像经过A,B 两点,则菱形对ABCD 的面积为( ) A. 2 B. 4 C. 22 D. 42二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上. 13.我国“南仓”级远洋综合补给舰满载排水量为37000吨,把数37000用科学记数法表示为 。

2024年重庆市中考数学试卷及解析

2024年重庆市中考数学试卷及解析

2024年重庆市中考数学真题试卷(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出代号为A,B,C,D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧确答案所对应的方框涂黑.1.下列四个数中,最小的数是()A.2- B.0C.3D.12-2.下列四种化学仪器的示意图中,是轴对称图形的是()A. B.C. D.3.已知点()3,2-在反比例函数()0ky k x=≠的图象上,则k 的值为()A.3- B.3C.6-D.64.如图,AB CD ∥,165∠=︒,则2∠的度数是()5.若两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是()A.1:3B.1:4C.1:6D.1:96.烷烃是一类由碳、氢元素组成的有机化合物质,下图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子.第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是()A.20B.22C.24D.267.已知m =,则实数m 的范围是()A.23m <<B.34m <<C.45m << D.56m <<8.如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点.若4=AD ,则图中阴影部分的面积为()A.328π-B.4πC.324π- D.8π9.如图,在正方形ABCD 的边CD 上有一点E ,连接AE ,把AE 绕点E 逆时针旋转90︒,得到FE ,连接CF 并延长与AB 的延长线交于点G .则FG CE的值为()C.322D.33210.已知整式1110:nn n n M a x a x a x a --++++ ,其中10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= .下列说法①满足条件的整式M 中有5个单项式②不存在任何一个n ,使得满足条件的整式M 有且只有3个③满足条件的整式M 共有16个.其中正确的个数是()A.0B.1C.2D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.计算:011(3)()2π--+=_____.12.如果一个多边形的每一个外角都是40︒,那么这个多边形的边数为______.13.重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A ,B ,C 三个景点中随机选择一个景点游览,甲、乙两人同时选择景点B 的概率为_____.14.随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是______.15.如图,在ABC ∆中,延长AC 至点D ,使CD CA =,过点D 作DE CB ∥,且DE DC =,连接AE 交BC 于点F .若CAB CFA ∠=∠,1CF =,则BF =______.16.若关于x 的不等式组()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y-=---的解为非负整数,则所有满足条件的整数a 的值之和为______.17.如图,以AB 为直径的O 与AC 相切于点A ,以AC 为边作平行四边形ACDE ,点D ,E 均在O 上,DE 与AB 交于点F ,连接CE ,与O 交于点G ,连接DG .若10,8AB DE ==,则AF =______.DG =______.18.我们规定:若一个正整数A 能写成2m n -,其中m 与n 都是两位数,且m 与n 的十位数字相同,个位数字之和为8,则称A 为“方减数”,并把A 分解成2m n -的过程,称为“方减分解”.例如:因为26022523=-,25与23的十位数字相同,个位数字5与3的和为8,所以602是“方减数”,602分解成26022523=-的过程就是“方减分解”.按照这个规定,最小的“方减数”是______.把一个“方减数”A 进行“方减分解”,即2A m n =-,将m 放在n 的左边组成一个新的四位数B ,若B 除以19余数为1,且22m n k +=(k 为整数),则满足条件的正整数A 为______.三、解答题:(本大题8个小题,第19题8分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算(1)()()22x x y x y -++(2)22111a a a a-⎛⎫+÷ ⎪+⎝⎭.20.为了解学生的安全知识掌握情况,某校举办了安全知识竞赛.现从七、八年级的学生中各随机抽取20名学生的竞赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x表示,共分成四组:A .6070x <≤;B .7080x <≤;C .8090x <≤;D .90100x <≤),下面给出了部分信息七年级20名学生的竞赛成绩为66,67,68,68,75,83,84,86,86,8686,87,87,89,95,95,96,98,98,100.八年级20名学生的竞赛成绩在C 组的数据是:81,82,84,87,88,89.七、八年级所抽学生的竞赛成绩统计表年级七年级八年级平均数8585中位数86b众数a79根据以上信息,解答下列问题(1)上述图表中=a ______,b =______,m =______(2)根据以上数据分析,你认为该校七、八年级中哪个年级学生的安全知识竞赛成绩较好?请说明理由(写出一条理由即可)(3)该校七年级有400名学生,八年级有500名学生参加了此次安全知识竞赛,估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数是多少?21.在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹)(2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形∴AB CD .∴①,OCF OAE ∠=∠.∵点O 是AC 的中点∴②.∴CFO AEO ≅△△(AAS ).∴③.又∵OA OC=∴四边形AECF 是平行四边形.∵EFAC⊥∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.22.为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?23.如图,在ABC 中,6AB =,8BC =,点P 为AB 上一点,过点P 作PQ BC ∥交AC 于点Q .设AP 的长度为x ,点P ,Q 的距离为1y ,ABC 的周长与APQ △的周长之比为2y .(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2)24.如图,甲、乙两艘货轮同时从A 港出发,分别向B ,D 两港运送物资,最后到达A 港正东方向的C 港装运新的物资.甲货轮沿A 港的东南方向航行40海里后到达B 港,再沿北偏东60︒方向航行一定距离到达C 港.乙货轮沿A 港的北偏东60︒方向航行一定距离到达D 港,再沿南偏东30︒方向航行一定距离到达C 港.(参考数1.41≈ 1.73≈2.45≈)(1)求A ,C 两港之间的距离(结果保留小数点后一位)(2)若甲、乙两艘货轮的速度相同(停靠B 、D 两港的时间相同),哪艘货轮先到达C 港?请通过计算说明.25.如图,在平面直角坐标系中,抛物线()240y ax bx a =++≠经过点()1,6-,与y 轴交于点C ,与x 轴交于A B ,两点(A 在B 的左侧),连接tan 4AC BC CBA ∠=,,.(1)求抛物线的表达式(2)点P 是射线CA 上方抛物线上的一动点,过点P 作PE x ⊥轴,垂足为E ,交AC 于点D .点M 是线段DE 上一动点,MN y ⊥轴,垂足为N ,点F 为线段BC 的中点,连接AM NF ,.当线段PD 长度取得最大值时,求AM MN NF ++的最小值(3)将该抛物线沿射线CA 方向平移,使得新抛物线经过(2)中线段PD 长度取得最大值时的点D ,且与直线AC 相交于另一点K .点Q 为新抛物线上的一个动点,当QDK ACB ∠∠=时,直接写出所有符合条件的点Q 的坐标.26.在ABC 中,AB AC =,点D 是BC 边上一点(点D 不与端点重合).点D 关于直线AB 的对称点为点E ,连接,AD DE .在直线AD 上取一点F ,使EFD BAC ∠∠=,直线EF 与直线AC 交于点G .(1)如图1,若60,,BAC BD CD BAD α∠=︒<∠=,求AGE ∠的度数(用含α的代数式表示)(2)如图1,若60,BAC BD CD ∠=︒<,用等式表示线段CG 与DE 之间的数量关系,并证明(3)如图2,若90BAC ∠=︒,点D 从点B 移动到点C 的过程中,连接AE ,当AEG △为等腰三角形时,请直接写出此时CG AG的值.2024年重庆市中考数学真题试卷(A 卷)答案解析一、选择题.1.A2.C 3.C 4.B 5.D 6.B 7.B 【解析】解:∵2733332312m =-=-==∵3124<<∴34m <<故选:B .8.D 【解析】解:连接AC根据题意可得28AC AD ==∵矩形ABCD ,∴4AD BC ==,90ABC ∠=︒在Rt ABC △中,2243AB AC BC =-=∴图中阴影部分的面积2904443238360ππ⨯=⨯⨯=.故选:D .9.A【解析】解:过点F 作DC 延长线的垂线,垂足为点H ,则90H ∠=︒由旋转得,90EA EF AEF =∠=︒∵四边形ABCD 是正方形∴90D Ð=°,DC AB ∥,DA DC BC ==,设1DA DC BC ===∴D H∠=∠∵12AEH AEF D∠=∠+∠=∠+∠∴12∠=∠∴ADE EHF≌∴DE HF =,1AD EH ==,设DE HF x==则1CE DC DE x=-=-∴()11CH EH EC x x=-=--=∴HF CH x ==,而90H ∠=︒∴45HCF ∠=︒∴2sin 45HF CF ==︒∵DC AB∥∴45HCF G ∠=∠=︒同理可求22CG BC ==∴)2221FG CG CF x x =-==-∴)2121x FG CE x-==-故选:A .10.D【解析】解:∵10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= ∴04n ≤≤当4n =时,则2104345a a a a a +++++=∴41a =,23100a a a a ====满足条件的整式有4x 当3n =时,则210335a a a a ++++=∴()()3210,,,2,0,0,0a a a a =,()1,1,0,0,()1,0,1,0,()1,0,0,1满足条件的整式有:32x ,32x x +,3x x +,31x +当2n =时,则21025a a a +++=∴()()210,,3,0,0a a a =,()2,1,0,()2,0,1,()1,2,0,()1,0,2,()1,1,1满足条件的整式有:23x ,22x x +,221x +,22x x +,22x +,21x x ++当1n =时,则1015a a ++=∴()()10,4,0a a =,()3,1,()1,3,()2,2满足条件的整式有:4x ,31x +,3x +,22x +当0n =时,005a +=满足条件的整式有:5∴满足条件的单项式有:4x ,32x ,23x ,4x ,5,故①符合题意不存在任何一个n ,使得满足条件的整式M 有且只有3个;故②符合题意满足条件的整式M 共有1464116++++=个.故③符合题意故选D二、填空题.11.312.913.19【解析】解:画树状图如下由图可知,共有9种等可能的情况,其中甲、乙两人同时选择景点B 的情况有1种∴甲、乙两人同时选择景点B 的的概率为19故答案为:19.14.10%【解析】解:设平均增长率为x ,由题意得()240148.4x +=解得:10.110%x ==,2 2.1x =-(不符合题意,舍去)故答案为:10%.15.3【解析】解:∵CD CA =,过点D 作DE CB ∥,CD CA =,DE DC =∴1FA CA FE CD ==,CD CA DE ==∴AF EF=∴22DE CD AC CF ====∴4AD AC CD =+=∵DE CB∥∴CFA E ∠∠=,ACB D∠∠=∵CAB CFA∠=∠∴CAB E∠∠=∵CD CA =,DE CD=∴CA DE=∴CAB DEA≌∴4BC AD ==∴3BF BC CF =-=故答案为:316.16【解析】解:()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩①②,解①得:4x <解②得:23a x -≥ 关于x 的一元一次不等式组至少有两个整数解∴223a -≤解得8a ≤解方程13211a y y -=---,得22a y -= 关于y 的分式方程的解为非负整数∴202a -≥且212a -≠,2a -是偶数解得2a ≥且4a ≠,a 是偶数∴28a ≤≤且4a ≠,a 是偶数则所有满足条件的整数a 的值之和是26816++=故答案为:16.17.①.8②.13【解析】解:连接DO 并延长,交O 于点H ,连接GH ,设CE ,AB 交于点M,如图所示∵以AB 为直径的O 与AC 相切于点A∴AB AC⊥∴90CAB ∠=︒∵四边形ACDE 为平行四边形∴∥DE AC ,8AC DE ==∴90BFD CAB ==︒∠∠∴AB DE⊥∴142DF EF DE ===∵10AB =∴152DO BO AO AB ====∴3OF ==∴538AF OA OF =+=+=∵∥DE AC∴EFM CAM∽∴EF FM AC AM=∴48FM AF FM=-即488FM FM=-解得:83FM =∴4133EM ===∵DH 为直径∴90DGH ∠=︒∴DGH EFM∠=∠∵ DGDG =∴DEG DHG=∠∠∴EFM HGD∽∴FM EM DG DH=即84133310DG =解得:201313DG =.故答案为:8;201313.18.①.82②.4564【解析】①设10m a b =+,则108n a b =+-(19a ≤≤,08b ≤≤)由题意得:()()2210108m n a b a b -=+-+-∵19a ≤≤,“方减数”最小∴1a =则10mb =+,18n b=-∴()()2222101810020188221m n b b b b b b b-=+--=++-+=++则当0b =时,2m n -最小,为82故答案为:82②设10m a b =+,则108n a b =+-(19a ≤≤,08b ≤≤)∴10001001081010998B a b a b a b =+++-=++∵B 除以19余数为1∴1010997a b ++能被19整除∴134********B a b a b -++=++为整数又22m n k +=(k 为整数)∴()210108308a b a b a b +++-=++是完全平方数∵19a ≤≤,08b ≤≤∴308a b ++最小为49,最大为256即716k ≤≤设34719a b t ++=,t 为正整数则13t ≤≤当1t =时,3412a b +=,则334b a =-,则330830384a b a a ++=+-+是完全平方数,又19a ≤≤,08b ≤≤,无整数解当2t =时,3431a b +=,则3134a b -=,则3133083084a a b a -++=++是完全平方数,又19a ≤≤,08b ≤≤,无整数解当3t =时,3450a b +=,则5034a b -=,则5033083084a ab a -++=++是完全平方数经检验,当6,8a b ==时,3473648757193a b ++=⨯+⨯+==⨯,23068819614⨯++==,3,14t k ==∴68,60m n ==∴268604564A =-=故答案为:82,4564.三、解答题.19.(1)222x y +(2)11a a +-.20.(1)86,87.5,40;(2)八年级学生竞赛成绩较好,理由见解析;(3)该校七、八年级参加此次安全知识竞赛成绩优秀的学生人数是320人.21.(1)见解析(2)①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形【小问1详解】解:如图所示,即为所求【小问2详解】证明:∵四边形ABCD 是矩形∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC=∴四边形AECF 是平行四边形.∵EF AC⊥∴四边形AECF 是菱形.猜想:过平行四边形的一条对角线的中点作这条对角线的垂线,与平行四边形两边相交的两点和这条对角线的两个端点构成的四边形是菱形证明:∵四边形ABCD 是平行四边形∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC=∴四边形AECF 是平行四边形.∵EF AC⊥∴四边形AECF 是菱形.故答案为:①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形.22.(1)该企业甲类生产线有10条,则乙类生产线各有20条(2)需要更新设备费用为1330万元【小问1详解】解:设该企业甲类生产线有x 条,则乙类生产线各有()30x -条,则()323070x x +-=解得:10x =则3020x -=答:该企业甲类生产线有10条,则乙类生产线各有20条【小问2详解】解:设购买更新1条甲类生产线的设备为m 万元,则购买更新1条乙类生产线的设备为()5m -万元,则2001805m m =-解得:50m =经检验:50m =是原方程的根,且符合题意则545m -=则还需要更新设备费用为10502045701330⨯+⨯-=(万元)23.(1)()()124606063y x x y x x=<≤=<≤,(2)函数图象见解析,1y 随x 增大而增大,2y 随x 增大而减小(3)2.26x <≤【小问1详解】解:∵PQ BC∥∴APQ ABC∽∴APQABC C PQ AP C BC AB==△△∴12686y x AB y AP x ===∴()()124606063y x x y x x =<≤=<≤,【小问2详解】解:如图所示,即为所求由函数图象可知,1y 随x 增大而增大,2y 随x 增大而减小【小问3详解】解:由函数图象可知,当12y y >时x 的取值范围2.26x <≤.24.(1)A ,C 两港之间的距离77.2海里(2)甲货轮先到达C 港.【小问1详解】如图,过B 作BE AC ⊥于点E∴90AEB CEB ∠=∠=︒由题意可知:45GAB ∠=︒,60EBC ∠=︒∴45BAE ∠=︒∴cos 40cos 45202AE AB BAE =∠=⨯︒=∴tan 260236CE BE EBC =∠=︒=⨯∴2026201.4120 2.4577.2AC AE CE =+=⨯+⨯≈(海里)∴A ,C 两港之间的距离77.2海里【小问2详解】由(1)得:45BAE ∠=︒,60EBC ∠=︒,77.2AC =∴sin 40sin 45202BE AB BAE =∠=⨯︒=∴20220256.41cos cos 602BE BC EBC ====≈∠︒由题意得:60ADF ∠=︒,30CDF ∠=︒∴90ADC ∠=︒∴1177.238.622CD AC ==⨯=, 1.73cos3077.266.82AD AC =︒=⨯≈(海里)∴甲行驶路程为:4056.496.4AB BC +=+=(海里),乙行驶路程为:66.838.6105.4AD CD +=+=(海里)∵96.4105.4<,且甲、乙速度相同∴甲货轮先到达C 港.25.(1)234y x x =--+(2)AM MN NF ++的最小值为4122+(3)符合条件的点Q 的坐标为()1,2--或1943,416⎛⎫-⎪⎝⎭.【小问1详解】解:令0x =,则4y =∴()0,4C ∴4OC =∵tan 4CBA ∠=∴4OC OB=∴1OB =∴()1,0B 将()1,0B 和()1,6-代入24y ax bx =++得6404a b a b =-+⎧⎨=++⎩解得13a b =-⎧⎨=-⎩∴抛物线的表达式为234y x x =--+【小问2详解】解:令0y =,则2034x x =--+解得4x =-或1x =∴()4,0A -设直线AC 的解析式为4y mx =+代入()4,0A -,得044m =-+解得1m =∴直线AC 的解析式为4y x =+设()2,34P p p p --+(40p -<<),则(),4D p p +∴()()2234424PD p p p p =--+-+=-++∵10-<∴当2p =-时,PD 最大,此时()2,6P -∴2AE =,2MN OE ==,()2,0E -∴AE MN =,AE MN∥连接EN∴四边形AMNE 是平行四边形∴AM EN=∴AM MN NF EN MN NF MN EF++=++≥+∴当E N F 、、共线时,EF 取最小值,即AM MN NF ++取最小值∵点F 为线段BC 的中点∴1,22F ⎛⎫ ⎪⎝⎭∴2EF ==∴AM MN NF ++的最小值为4122+【小问3详解】解:由(2)得点D 的横坐标为2-,代入4y x =+,得2y =∴()2,2D -∴新抛物线由234y x x =--+向左平移2个单位,向下平移2个单位得到∴()()222324278y x x x x =-+-++-=---'过点D 作1DQ BC ∥交抛物线y '于点1Q ∴1Q DK BCA∠=∠同理求得直线BC 的解析式为44y x =-+∵1DQ BC∥∴直线1DQ 的解析式为46y x =--联立得28476x x x =-----解得11x =-,22x =-当=1x -时,=2y -∴()11,2Q --作1DQ 关于直线AC 的对称线得2DQ 交抛物线y '于点2Q ∴21Q DK Q DK BCA∠=∠=∠设1DQ 交x 轴于点G由旋转的性质得到DG DG '=过点D 作DR x ∥轴,作DH x ⊥轴于点H ,作G H DR ''⊥于点H '当0y =时,046x =--解得32x =-∴3,02G ⎛⎫- ⎪⎝⎭∵()4,0A -,()0,4C ∴OA OC=∴45OAC OCA ∠=∠=︒∵DR x ∥轴∴45RDA DAH ADH ∠=∠=∠=︒∴G DH GDH''∠=∠∵90G H D GHD ∠=∠=''︒,DG DG '=∴GD H GDH''≌△△∴31222G H GH ''==-=,2DH DH '==∴54,2G ⎛⎫- ⎪⎝⎭'同理直线2DQ 的解析式为4213=-+y x 联立2134278x x x =--+--解得2x =-或194x =-当194x =-时,11934344216y ⎛⎫=-⨯-+= ⎪⎝⎭∴21943,416Q ⎛⎫- ⎪⎝⎭综上,符合条件的点Q 的坐标为()1,2--或1943,416⎛⎫-⎪⎝⎭.26.(1)60α︒+(2)CG =(3)12或352+【小问1详解】解:如图∵EFD BAC ∠∠=,60BAC ∠=︒∴60EFD ∠=︒∵11EFD BAD α∠=∠+∠=∠+∴160α∠=︒-∵1180AGE BAC ∠+∠+∠=︒∴1806011201AGE ∠=︒-︒-∠=︒-∠∴()1206060AGE αα∠=︒-︒-=︒+【小问2详解】解:CG =在CG 上截取CM BD =,连接,,BM BE AE ,BM 交AD 于点H ,∵,60AB AC BAC =∠=︒∴BCA V 为等边三角形∴60,ABC C BC AB ∠=∠=︒=∴ABD BCM△≌△∴3=4∠∠∵35AHM ∠=∠+∠∴4560AHM ∠=∠+∠=︒∵60EFD BAC ∠=∠=︒∴AHM EFD∠=∠∴EG BM∥∵点D 关于直线AB 的对称点为点E ∴,,60AE AD BE BD ABE ABC ==∠=∠=︒∴120EBC ∠=︒∴180EBC C ∠+∠=︒∴EB AC∥∴四边形EBMG 是平行四边形∴BE GM=∴BE GM BD CM ===∴2CG BD=记AB 与DE 的交点为点N 则由轴对称可知:DE AB ⊥,NE ND=∴Rt DNB 中,sin 2DN BD ABC =⋅∠=∴2DE DN ==∴CG DE ==∴CG =【小问3详解】解:连接BE ,记AB 与DE 的交点为点N∵,90AB AC EFD BAC =∠=∠=︒∴=45ABC ∠︒由轴对称知,45,,EAB DAB EBA DBA DE AB NE ND ∠=∠∠=∠=︒⊥=当点G 在边AC 上时,由于90EAG ∠>︒∴当AEG △为等腰三角形时,只能是AE AG =同(1)方法得BAD ∠=α,AGE α∠=∴EAB α∠=∴2∠=EAD α∵,AE AG EG AD=⊥∴2FAG EAD α∠=∠=∴Rt AFG △中,290αα+=︒,解得30α=︒∴60EAD ∠=︒,而AE AD =∴AED △为等边三角形∴AE ED=设AF x=∵60EAD ∠=︒∴2cos 60AF AG AE ED x ====︒∴DN x =∴在Rt DAN △中,tan DN AN DAB ===∠∵,45DE AB ABC ⊥∠=︒∴tan 45DN BN DN x ===︒∴AC AB x ==+∴)21CG AC AG x x x =-=+-=∴12CG AG -=当点G 在CA 延长线上时,只能是GE GA =,如图设BAD BAE β∠=∠=∴90DAC GAF β∠=∠=︒-,1802EAF β∠=︒-∴90GAE EAF GAF β∠=∠-∠=︒-∵GE GA=∴90GAE GEA β∠=∠=︒-∵90EFD BAC ∠=∠=︒∴在Rt AFE 中,90180290ββ︒-+︒-=︒解得60β=︒∴906030DAC GAF ∠=︒-︒=︒=∠设GF x =,则2AG GE x ==,AF =在Rt EFA △中,23EF x x x =+=,由勾股定理求得AE =在Rt EAN △中,cos60AN AE =⋅︒=,sin 603EN DN BN AE x ===⋅︒=∴3AB AC x ==∴(5CG AG AC x =+=+∴352CG AG +=综上所述:352CG AG +=或12.。

2021年重庆市初中毕业暨高中招生考试数学试卷及解析

2021年重庆市初中毕业暨高中招生考试数学试卷及解析

重庆市2021年初中毕业暨高中招生考试数学试题(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡(卷)上,不得在试卷上直接作答.2.作答前认真阅读答题卡(卷)上的注意事项.3.考试结束,由监考人员将试题和答题卡(卷)一并收回.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填人答题卷中对应的表格内)。

1.在一3,一1,0,2这四个数中,最小的数是( )A .一3B .一1C 。

0D 。

22.下列图形中,是轴对称图形的是( )3.计算()2ab 的结果是( ) A 。

2ab B 。

b a 2 C 。

22b a D 。

2ab 4.4。

已知:如图,OA ,OB 是⊙O 的两条半径,且OA ⊥OB ,点C 在⊙O 上则∠ACB 的度数为() A 。

45° B 。

35° C 。

25° D 。

20°5.下列调查中,适宜采用全面调查(普查)方式的是( )A 调查市场上老酸奶的质量情况B .调查某品牌圆珠笔芯的使用寿命C .调查乘坐飞机的旅客是否携带了危禁物品D .调查我市市民对伦敦奥运会吉祥物的知晓率6.已知:如图,BD 平分∠ABC ,点E 在BC 上,EF//AB .若∠CEF=100°,则∠ABD 的度数为() A 。

60°B 。

50°C 。

40°D 。

30°7.已知关于x 的方程2x+a 一9=0的解是x=2,则a 的值为( )A 。

2B 。

3C 。

4D 。

58。

2021年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t ,小丽与比赛现场的距离为S .下面能反映S 与t 的函数关系的大致图象是()9下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为( )10.已知二次函数)0(2≠++=a c bx ax y 的图象如图所示对称轴为21-=x 。

2021年重庆市中考数学试题(B卷)及参考答案

2021年重庆市中考数学试题(B卷)及参考答案

重庆市2021年初中学业水平暨高中招生考试数学试题(B 卷)(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡...上,不得在试题卷上直接作答;2.作答前认真阅读答题卡...上的注意事项; 3.作图(包括作辅助线)请一律用黑色..2B ..铅笔完成; 4.考试结束,由监考人员将试题卷和答题卡...一并收回. 参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,24b ac b aa ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =-. 一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑. 1.3的相反数是( ) A.3B.13C.3-D.13-2.不等式5x >的解集在数轴上表示正确的是( )A. B.C. D.3.计算4x x ÷结果正确的是( ) A.4xB.3xC.2xD.x4.如图,在平面直角坐标系中,将OAB △以原点O 为位似中心放大后得到OCD △,若()0,1B ,()0,3D ,则OAB △与OCD △的相似比是( )A.2:1B.1:2C.3:1D.1:35.如图,AB 是⊙O 的直径,AC ,BC 是⊙O 的弦,若20A ∠=︒,则B ∠的度数为( )A.70°B.90°C.40°D.60°6.下列计算中,正确的是( )A.21=B.2==3=7.小明从家出发沿笔直的公路去图书馆,在图书馆阅读书报后按原路回到家.如图,反映了小明离家的距离y (单位:km )与时间t (单位:h )之间的对应关系.下列描述错误..的是( )A.小明家距图书馆3kmB.小明在图书馆阅读时间为2hC.小明在图书馆阅读书报和往返总时间不足4hD.小明去图书馆的速度比回家时的速度快8.如图,在ABC △和DCB △中,ACB DBC ∠=∠ ,添加一个条件,不能..证明ABC △和DCB △全等的是( )A.ABC DCB ∠=∠B. AB DC =C.AC DB =D.A D ∠=∠9.如图,把含30°的直角三角板PMN 放置在正方形ABCD 中,30PMN ∠=︒,直角顶点P 在正方形ABCD 的对角线BD 上,点M ,N 分别在AB 和CD 边上,MN 与BD 交于点O ,且点O 为MN 的中点,则AMP ∠的度数为( )A. 60°B.65°C.75°D.80°10.如图,在建筑物AB 左侧距楼底B 点水平距离130米的C 处有一山坡,斜坡CD 的坡度(或坡比)为1:24i =,坡顶D 到BC 的垂直距离50DE =米(点A ,B ,C ,D ,E 在同一平面内),在点D 处测得建筑物顶A 点的仰角为50°,则建筑物AB 的高度约为(参考数据:sin500.77︒≈;cos500.64︒≈;tan50 1.19︒≈)A.692米B.731米C.800米D.857米11.关于x 的分式方程331122ax x x x --+=--的解为正数,且使关于y 的元一次不等式组32122y y y a-⎧≤-⎪⎨⎪+>⎩有解,则所有满足条件的整数a 的值之和是( ) A.5-B.4-C.3-D.2-12.如图,在平面直角坐标系中,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数(0,0)ky k x x=>>的图象经过顶点D ,分别与对角线AC ,边BC 交于点E ,F ,连接EF ,AF .若点E 为AC 的中点,AEF △的面积为1,则k 的值为( )A.125B.32C.2D.3二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上. 13.(1)π-=__________.14.不透明袋子中装有黑球1个、白球2个,这些球除了颜色外无其他差别.从袋子中随机摸出一个球,记下颜色后放回,将袋子中的球摇匀,再随机摸出一个球,记下颜色,前后两次摸出的球都是白球的概率是__________. 15.方程2(3)6x -=的解是__________.16.如图,在菱形ABCD 中,对角线12AC =,16BD =,分别以点A ,B ,C ,D 为圆心,AB 的长为半径画弧,与该菱形的边相交,则图中阴影部分的面积为__________.(结果保留π)17.如图,ABC △中,点D 为边BC 的中点,连接AD ,将ADC △沿直线AD 翻折至ABC △所在平面内,得ADC '△,连接CC ',分别与边AB 交于点E ,与AD 交于点O .若AE BE =,2BC '=,则AD 的长为__________.18.盲盒为消费市场注入了活力,既能够营造消费者购物过程中的趣味体验,也为商家实现销售额提升拓展了途径.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A ,B ,C 三种盲盒各一个,其中A 盒中有2个蓝牙耳机,3个多接口优盘,1个迷你音箱;B 盒中蓝牙耳机与迷你音箱的数量之和等于多接口优盘的数量,蓝牙耳机与迷你音箱的数量之比为3:2;C 盒中有1个蓝牙耳机,3个多接口优盘,2个迷你音箱.经核算,A 盒的成本为145元,B 盒的成本为245元(每种盲盒的成本为该盒中蓝牙耳机、多接口优盘、迷你音箱的成本之和),则C 盒的成本为__________元.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡...中对应的位置上. 19.计算:(1)2(23)()a a b a b ++-;(2)22293211x x x x x x ⎛⎫--÷+ ⎪+++⎝⎭.20.2021年是中国共产党建党100周年,某校开展了全校教师学习党史活动并进行了党史知识竞赛,从七、八年级中各随机抽取了20名教师,统计这部分教师的竞赛成绩(竞赛成绩均为整数,满分为10分,9分及以上为优秀).相关数据统计、整理如下: 抽取七年级教师的竞赛成绩(单位:分)6,7,7,8,8,8,8,8,8,8,8,9,9,9,9,10,10,10,10,10. 八年级教师竞赛成绩扇形统计图七、八年级教师竞赛成绩统计表根据以上信息,解答下列问题:(1)填空:a =__________,b =_________;(2)估计该校七年级20名教师中竞赛成绩达到8分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级教师学习党史的竞赛成绩谁更优异.21.如图,四边形ABCD 为平行四边形,连接AC ,且2AC AB =.请用尺规完成基本作图:作出BAC ∠的角平分线与BC 交于点E .连接BD 交AE 于点F ,交AC 于点O ,猜想线段BF 和线段DF 的数量关系,并证明你的猜想.(尺规作图保留作图痕迹,不写作法)22.探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程.以下是我们研究函数|26|y x x m =+-++性质及其应用的部分过程,请按要求完成下列各小题.b(1)写出函数关系式中m 及表格中a ,b 的值:m =________,a =_________,b =__________; (2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象,并根据图象写出该函数的一条性质:__________; (3)已知函数16y x =的图象如图所示,结合你所画的函数图象,直接写出不等式16|26|x x m x+-++>的解集.23.重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元. (1)求每份“堂食”小面和“生食”小面的价格分别是多少元?(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份,为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低3%4a .统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加5%2a ,这两种小面的总销售额在4月的基础上增加5%11a .求a 的值.24.对于任意一个四位数m ,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m 为“共生数”例如:3507m =,因为372(50)+=⨯+,所以3507是“共生数”:4135m =,因为452(13)+≠⨯+,所以4135不是“共生数”?并说明理由; (1)判断5313,6437是否为“共生数”?并说明理由;(2)对于“共生数”n ,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记()3nF n =.求满足()F n 各数位上的数字之和是偶数的所有n .25.如图,在平面直角坐标系中,抛物线24(0)y ax bx a =+-≠与x 轴交于点()1,0A -,()4,0B ,与y 轴交于点C .(1)求该抛物线的解析式;(2)直线l 为该抛物线的对称轴,点D 与点C 关于直线l 对称,点P 为直线AD 下方抛物线上一动点,连接P A ,PD ,求PAD △面积的最大值;(3)在(2)的条件下,将抛物线24(0)y ax bx a =+-≠沿射线AD 平移个单位,得到新的抛物线1y ,点E 为点P 的对应点,点F 为1y 的对称轴上任意一点,在1y 上确定一点G ,使得以点D ,E ,F ,G 为顶点的四边形是平行四边形,写出所有符合条件的点G 的坐标,并任选其中一个点的坐标,写出求解过程.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.26.在等边ABC △中,6AB =,BD AC ⊥ ,垂足为D ,点E 为AB 边上一点,点F 为直线BD 上一点,连接EF .(1)将线段EF 绕点E 逆时针旋转60°得到线段EG ,连接FG .①如图1,当点E 与点B 重合,且GF 的延长线过点C 时,连接DG ,求线段DG 的长;②如图2,点E 不与点A ,B 重合,GF 的延长线交BC 边于点H ,连接EH ,求证:BE BH +=;(2)如图3,当点E 为AB 中点时,点M 为BE 中点,点N 在边AC 上,且2DN NC =,点F 从BD 中点Q 沿射线QD 运动,将线段EF 绕点E 顺时针旋转60得到线段EP ,连接FP ,当12NP MP +最小时,直接写出DPN △的面积.重庆市2021年初中学业水平暨高中招生考试 数学试题(B 卷)参考答案与评分标准一、选择题:1.C2.A3.B4.D5.A6.C7.D8.B9.C 10.D 11.B 12.D 二、填空题: 13.2提示:根据算术平方根及零指数幂的意义. 14.49提示:所有可能共有9种:(黑,黑),(黑,白1),(黑,白2),(白1,黑),(白1,白1),⋯(白2,白2),两次都是白球的有4种. 15.x=6提示:根据一元一次方程的解法步骤. 16.96-25π提示:菱形面积减去一个圆的面积.答:96-25π 17.3提示:易得OD=1,O 为△ABC 三边中线的交点.答:3 18.155 提示:设B 盒中蓝牙耳机为3m 个,则迷你音箱为2m 个,多接口优盘为5m 个.由题意得2+3+1+3m+5m+2m+1+3+2=22,解得m=1,所以B 盒中蓝牙耳机为3个,多接口优盘为5个,迷你音箱为2个.设蓝牙耳机每个成本为x 元,多接口优盘每个成本y 元,迷你音箱每个成本z 元,由题意得{2x +3y +z =145 ①3x +5y +2z =245 ②,而C 盒的成本为(x+3y+2z)元.由方程组解得{x =45−yz =55−y ,代入x+3y+2z 化简即可.三、解答题:19.解:(1)原式=2a 2+3ab+a 2-2ab+b 2⋯⋯⋯(4分)=3a 2+ab+b 2; ⋯⋯⋯(5分) (2)原式= x 2−9x 2+2x+1÷x+3x+1⋯⋯⋯(8分)=(x+3)(x−3)(x+1)2×x+1x+3. ⋯⋯⋯(9分)=x−3x+1 . ⋯⋯⋯(10分)20.解:(1)七年级排在中间第10,第11的数都是8,所以中位数a=8八年级9分人数占40%最多,所以众数b=9 ⋯⋯⋯(4分)(2)该校七年级120名教师中竞赛成绩达到8分及以上的人数为 120×8+4+520=102(人) ⋯⋯⋯(7分)答:估计该校七年级120名教师中竞赛成绩达到8分及以上的人数为102人(3)七、八年级的平均数一样,但八年级的中位数,众数,优秀率均高于七年级,因此八年级教师学习党史的竞赛成绩更优异.(在中位数,众数,优秀率中选一个方面评价即可) ⋯⋯⋯(10分) 21.解:完成的基本作图,如图所示 ⋯⋯⋯(4分)猜想:DF=3BF ⋯⋯⋯(5分) 证明:∵四边形ABCD 是平行四边形, ∴OB=OD , OA=OC =12AC ,⋯⋯⋯(6分)∵AC=2AB ,∴OA=AB ⋯⋯⋯(7分)∵AF 平分∠BAO ,∴BF=OF (等腰三角形“三线合一”),⋯⋯⋯(9分)∴∴DF=3BF. ⋯⋯⋯(10分)22.解:(1)m=-2,a=3,b=4 ⋯⋯⋯(3分)(2)所画图象,如答图所示. ⋯⋯⋯(6分) 函数性质如下:(写出其中一条即可)①当x=3时,函数取最小值为1; ②当x>3时,y 随x 的增大而增大;当x<3时,y 随x 的增大而减小. ⋯⋯⋯(8分) (3)x<0或x>4. ⋯⋯⋯(10分)23.解:(1)设每份“堂食”小面和“生食”小面的价格分别是x 元,y 元,由题意得: {3x +2y =314x +y =33,解得{x =7y =5答:每份“堂食”小面和“生食”小面的价格分别是7元,5元. ⋯⋯⋯(4分)(2)根据题意得:4500×7+2500(1+52a%)×5(1−34a%)=(4500×7+2500×5)(1+511a%).⋯⋯⋯(7分)令a%=m ,方程可化为25m 2-2m=0, ⋯⋯⋯(8分) 解得m 1=0(不合题意,舍去),m 2= 225 所以a%= 225,∴a=8.答:a 的值是8. ⋯⋯⋯(10分) 24.解:(1)5313是“共生数”;6437不是“共生数” ⋯⋯⋯(2分) 理由如下:∵5+3=2×(3+1),∴5313是“共生数”; ⋯⋯⋯(3分) ∵6+7≠2×(4+3),∴6437不是“共生数” ⋯⋯⋯(4分)(2)设“共生数”n 的千位,百位,十位,个位上的数字分别是a ,b ,c ,d (其中1≤a ≤9,0≤b ≤9,0≤c ≤9,0≤d ≤9,a ,b ,c ,d 均为整数),则a+d=2(b+c)∵当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时 ∴当c=2a 时,b+d=9k (k 为0或1或2)当k=0时,由b+d=9k ,c=2a ,a+d=2(b+c)得a=b=c=d=0,不合理,应舍去;⋯⋯⋯(5分)当k=2时,由b+d=9k ,c=2a ,a+d=2(b+c)得b=d=9,a=-3,c=-6,不合理,应舍去;⋯⋯⋯(6分) 当k=1时,由b+d=9k ,c=2a ,a+d=2(b+c)得a+b=3,∴a 的值可取1,2,3. ⋯⋯⋯(7分) ①当a=1时,b=2,c=2,d=7,∴n=1227,F(1227)=12273=409,4+0+9=13不符合.②当a=2时,b=1,c=4,d=8,∴n=2148,F(2148)=21483=716,7+1+6=14符合,③当a=3时,b=0,c=6,d=9,∴n=3069,F(3069)=30693=1023,1+0+2+3=6符合⋯⋯⋯(9分)综上,满足条件的n为2148,3069. ⋯⋯⋯(10分)25.解:(1)∵抛物线y=ax2+bx-4(a≠0)经过A(-1,0),B(4,0),∴{a−b−4=016a+4b−4=0,解得{a=1b=−3.∴抛物线的解析式为y=x2-3x-4. ⋯⋯⋯(3分)(2)由(1)得抛物线的对称轴l为x=32,C(0,-4),∴D点坐标为(3,-4),⋯⋯⋯(4分)易求直线AD的解析式为y=-x-1.过P作y轴的平行线交AD于点H设P(x,x2-3x-4),则H(x,-x-1),∴PH=(-x-1)-(x2-3x-4)=-x2+2x+3,∴S△APD=12×[3-(-1)]×(-x2+2x+3)=-2x2+4x+6,∵-2<0∴当x=1,△PAD面积最大,其最大值为8. ⋯⋯⋯(7分)(3)满足条件的点G的坐标为(152,−254)或(152,−254)或(52,−54)注意AD与x轴夹角为45°,因此将抛物线y=ax2+bx-4(a≠0) 沿射线AD平移4√2个单位,即为向右平移4个单位,再向下平移4个单位.∴易求得平移后的新抛物线y1=x2-11x+20,其新的对称轴为x=112.又由(2)可得P(1,-6),∴E(5,-10),设F(112,f),G(x G,y G),又D(3,-4).当EF为平行四边形对角线时,如答图1所示,利用中点坐标公式,先求出G点的横坐标再代入新抛物线解析式求出G点的纵坐标答:(152,−254)当DF为平行四边形对角线时,如答图2所示,利用中点坐标公式,先求出G点的横坐标再代入新抛物线解析式求出G点的纵坐标答:(72,−254)26题答图1FGDC(E)BAK26题答图2H G F E DC BA当DE 为平行四边形对角线时,如答图3所示,由DE 中点横坐标为4,FG 的横坐标为12(112+x G ),根据平行四边形对角线互相平分,得12(112+x G )=4,解得x G =52,代入y 1=x 2-11x+20,可求得y G =−54,所以G 点坐标为(52,−54). ⋯⋯⋯(10分) 四、解答题:26.(1)①解:连接AG ,如答图1∵△ABC 和△BGF 都是等边三角形,BD ⊥AC , ∴∠BFG=60°,∠CBD=30°∴∠BCG=30°,∠ACG=30°,∠GBC=90° ∵AC=BC ,GC=GC ,∴△GAC ≌△GBC (SAS ) ∴∠GAC=∠GBC=90°,AG=BG , ∵AB=6,∴AC=AB=6,AD=3,AG=BG=2√3∴在Rt △ADG 中,DG=√AG 2+AD 2=√(2√3)2+32=√21. ⋯⋯⋯(3分)②证明:以点F 为圆心,FB 的长为半径画弧,与BH 的延长线交于点K ,连接FK ,如答图2所示.∵△ABC 和△EFG 都是等边三角形,∴∠ABC=60°,∠EFH=120°∴∠BEF+∠BHF==180°,又∠KHF+∠BHF==180°,∴∠BEF=∠KHF. 由辅助线得FB=FK ,且BD 是等边△ABC 的高,∴∠EBF=∠FBK=∠K∴△EBF ≌△HKF (AAS ),∴BE=KH ,∴BE+BH=BK. ∵FB=FK ,∠BFK=120°,∴BE+BH=BK=√3BF ,即BE+BH=√3BF ⋯⋯⋯(6分) (2)△DPN 的面积43√3. ⋯⋯⋯(8分)提示:①如图所示,易证△PEM ≌△FEQ (PE=FE ,∠PEM=∠FEQ ,EM=EQ )∴∠PME=∠FQE=90°(E 、Q 分别是AB 、BD 中点,EQ ∥AD )∴P 点在过M 与AB 垂直的直线上②过N 作AC 的垂线与过M 作BD 的垂线相交于点J ,如下图所示,过P PMI=30°,∴PI=12MP ,∴NP+12MP=NP+PI ≥NJ③ 如答图3,NJ 的长即为NP+12MP 的最小值.设MJ 与BD 交于点K 易得KJ=DN=2,NJ=BD-BK=3√3−34√3=94√3,MJ=MK+KJ=114,PJ=1112√3,∴NP=NJ-PJ=43√3,∴S△DPN=12×2×43√3=43√3∴△DPN的面积43√3.26题答图3。

重庆2021中考数学专题第3讲数据的分析与处理(无答案)

重庆2021中考数学专题第3讲数据的分析与处理(无答案)

第3讲数据的分析与处理典例剖析例1.每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.七、八年级抽取的学生的竞赛成绩统计表年级七年级八年级平均数7.47.4中位数a b众数7c合格率85%90%根据以上信息,解答下列问题:(1)填空:a=7.5,b=8,c=8;(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.例2.为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.八年级20名学生的测试成绩条形统计图如图:七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:年级平均数众数中位数8分及以上人数所占百分比七年级7.5a745%八年级7.58b c根据以上信息,解答下列问题:(1)直接写出上述表中的a,b,c的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃极分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?跟踪训练1.每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水•珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数9292中位数93b众数c100方差5250.4根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共720人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x ≥90)的学生人数是多少?2.为落实视力保护工作,某校组织七年级学生开展了视力保健活动.活动前随机测查了30名学生的视力,活动后再次测查这部分学生的视力.两次相关数据记录如下:活动前被测查学生视力数据:4.0 4.1 4.1 4.2 4.2 4.3 4.3 4.4 4.4 4.4 4.5 4.5 4.6 4.6 4.64.7 4.7 4.7 4.7 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.95.0 5.0 5.1活动后被测查学生视力数据:4.0 4.2 4.3 4.4 4.4 4.5 4.5 4.6 4.6 4.6 4.7 4.7 4.7 4.7 4.84.8 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.9 4.9 4.95.0 5.0 5.1 5.1活动后被测查学生视力频数分布表分组频数4.0≤x<4.214.2≤x<4.424.4≤x<4.6b4.6≤x<4.874.8≤x<5.0125.0≤x<5.24根据以上信息回答下列问题:(1)填空:a=5,b=4,活动前被测查学生视力样本数据的中位数是 4.65,活动后被测查学生视力样本数据的众数是 4.8;(2)若视力在4.8及以上为达标,估计七年级600名学生活动后视力达标的人数有多少?(3)分析活动前后相关数据,从一个方面评价学校开展视力保健活动的效果.过关精练1.红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:60708090100分数人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?2.某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:70 72 74 75 76 76 77 77 77 78 79c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有23人;(2)表中m的值为77.5;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.3.某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是(填“A”或“B”),理由是;(3)假设该年级学生都参加此次测试,估计A课程成绩超过75.8分的人数.4.某品牌服装为了解某件衣服的销售情况,对线上、线下两种销售模式进行了抽样调查,从线上、线下两种销售模式中分别随机抽取20个店,记录下某一周各自的销售情况(单位:件)如下:线上:76 88 93 65 78 99 89 68 95 5089 88 89 89 77 97 87 88 98 97线下:74 97 96 89 98 74 69 76 72 7899 72 97 76 99 74 99 73 98 74(1)整理、描述数据:对销售件数进行分组,各组的频数如下:销售件数50≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100线上123a6线下011018(2)分析数据:两组样本数据的平均数、中位数如下表所示:销售模式平均数中位数众数线上8588.5c线下84.2b74请根据以上信息,回答下列问题:(1)填空:a=,b=,c=.(2)线上,线下两种销售模式目前销售该品牌服装的店面共2000个(线上、线下的门店数差不多),估计该品牌服装每周销售的件数约为多少?(3)根据以上数据,你认为线上、线下两种销售该品牌服装的销售模式哪种情况比较好?并说明理由.5.为了让师生更规范地操作教室里的多媒体设备,重庆八中现教中心制作了“教室多媒体设备培训”视频,并在电视课期间进行播放.结束后为了解初高中各班电教委员对设备操作知识的掌握程度,现教中心对他们进行了相关的知识测试.现从初高中各随机抽取了15名电教委员的成绩,得分用x表示,共分成4组:A:60≤x<70,B:70≤x<80,C:80≤x<90,D:90≤x≤100,对得分进行整理分析,给出了下面部分信息:初中电教委员的测试成绩在C组中的数据为:81,85,88.高中电教委员的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.成绩统计表如下:学部平均数中位数最高分众数极差初中88a989832高中8886100b c(1)a=,b=,c=;(2)通过以上数据分析,你认为(填“初中”或“高中”)学部的电教委员对多媒体设备操作的知识掌握更好?请写出理由:.(3)若初高中共有240名电教委员,请估计此次测试成绩达到90分及以上的电教委员约有多少人?6.受到“新型肺炎”影响,全国中小学未能按时开学,为响应国家“停课不停学”的号召,重庆某重点中学组织全校师生开展线上教学活动,体育备课组也为同学们提出了每日锻炼建议.疫情过去开学后,体育组彭老师为检测同学们在家锻炼情况,在甲、乙两班同学中各随机抽取20名学生进行检测,并对数据进行了整理、分析.下面给出了部分信息:甲班:33,35,38,39,39,41,42,43,43,44,45,46,46,47,48,49,49,49,50,50乙班成绩在40≤x<45中的数据是41,43,41,44,42,40,43整理数据:30≤x<5035≤x<4040≤x<4545≤x≤50甲14a10乙1379分析数据:班级平均数中位数众数甲43.744.5b乙43.4c48根据以上信息,回答下列问题:(1)a=;b=;c=;(2)根据以上数据,你认为哪个班级在家体育锻炼的效果比较好,请说明理由(1条理由即可);(3)已知九年级共有2000名学生,请估计全年级体育成绩大于等于45分的学生有多少人?7.某校开展了一系列居家阅读活动.学生利用“宅家”时光,在书海中遨游,从阅读中获得精神慰藉和自我提升,为了解学生居家阅读的情况,学校从七、八两个年级各随机抽取50名学生,进行了居家阅读情况调查、下面给出了部分数据信息:【一】:两个年级学生平均每周阅读时长x(单位:小时)的频数分布直方图如图(数据分成4组:0≤x<3,3≤x<6,6≤x<9,9≤x≤12):【二】:七年级学生平均每周阅读时长在6≤x<9这一组的是:66777778888888888【三】:两个年级学生平均每周阅读时长的平均数、中位数、众数、方差如表:平均数中位数众数方差七年级 6.3m87.0八年级 6.077 6.3根据以上信息,回答下列问题:(1)补全图2;(2)写出表中m的值为;(3)请你结合数据进行判断,哪个年级的的居家阅读情况较好?请说明理由.8.刘老师最近在自己任教的甲乙两班进行了一次定时练习,为大致了解这次练习两个班学生的成绩状况,刘老师从甲、乙两班各随机抽取10名学生的成绩进行整理和分析(成绩用m表示),共分成四个组:A.80≤m<85,B.85≤m<90,C.90≤m<95,D.95≤m≤100.另外给出了部分信息如下:甲班10名学生的成绩:99,80,99,86,99,96,90,100,89,82.乙班10名学生的成绩在C组的数据:94,90,94.甲乙两班被抽取学生成绩统计表班级甲班乙班平均数9292中位数93a众数b100方差5250.4根据以上信息,解答下列问题:.(1)上面图表中的a=,b=,扇形统计图中“D组”所对应的圆心角的度数为度;(2)根据以上信息,你认为哪个班级的学生这次政治定时练习的成绩较好?说明理由.(3)甲乙两班共有120 名学生参加了此次定时练习,估计成绩为较好(90≤m<95)的学生有多少人?9.面对疫情,每个人都需要积极行动起来,做好预防工作.为此某校开展了“新型冠状病毒肺炎”防控知识竞赛.现从该校五、六年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:五年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82六年级10名学生的竞赛成绩在C组中的数据是:94,90,94五,六年级抽取的学生竞赛成绩统计表年级平均数中位数众数方差五年级9293c52六年级92b10050.4据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值:a=,b=,c=;(2)由以上数据,你认为该校五、六年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校五、六年级共1800人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≥90)的学生人数是多少?10.为了解九年级学生体育水平,学校对九年级全体学生进行了体育测试,并从甲、乙两班中各随机抽取20名学生成绩进行整理分析(成绩得分用x表示,共分成四组:A.30≤x <35;B.35≤x<40,C.40≤x<45,D.45≤x≤50)下面给出了部分信息:甲班20名学生体育成绩:33,35,36,39,40,41,42,43,44,45,45,46,47,47,48,48,48,49,50,50.乙班20名学生体育成绩在C组中的数据是;40,43,41,44,42,41.甲、乙两班被抽取学生体育成绩统计表:平均数中位数众数方差甲班43.845.5c24.85乙班42.5b4522.34根据以上信息,解答下列问题;(1)a=,b=,c=;(2)根据以上数据,你认为班(填“甲”或“乙”)体育水平更高,说明理由(两条理由):①;②.(3)学校九年级学生共1200人,估计全年级体育成绩优秀(x≥45)的学生人数是多少?。

中考数学试卷考纲考点分析

中考数学试卷考纲考点分析

中考数学试卷考纲考点分析中考数学试卷考纲考点分析基础数学的知识与运用是个人与团体生活中不可或缺的一部分。

其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。

从那时开始,其发展便持续不断地有小幅度的进展。

今天在这给大家整理了一些中考数学试卷考纲考点分析,我们一起来看看吧!中考数学试卷考纲考点分析对于任意一个实数x,都对应着的角(弧度制中等于这个实数),而这个角又对应着确定的余割值cscx与它对应,按照这个对应法则建立的函数称为余割函数。

记作f(x)=cscxf(x)=cscx=1/sinx相信同学们看过上述的初中数学余割函数的基础公式定理内容之后,有所感悟了吧。

其实和正弦型函数的解析式差不多,余弦型函数的解析式各常数值对函数图像的影响很大。

余弦型函数余弦型函数解析式:y=Acos(ωx+φ)+h各常数值对函数图像的影响:φ(初相位):决定波形与X轴位置关系或横向移动距离(左加右减)ω:决定周期(最小正周期T=2π/|ω|)A:决定峰值(即纵向拉伸压缩的倍数)h:表示波形在Y轴的位置关系或纵向移动距离(上加下减) 作图方法运用“五点法”作图“五点作图法”即取ωx+φ当分别取0,π/2,π,3π/2,2π时y的值.在考试当中,余弦型函数的解析式经常运用在函数的综合大题中,是拿分的关键。

在直角坐标系中定义的余弦函数图像,我们相对更容易分析其的对称性特点。

图象性质1)对称轴:关于直线x=kπ,k∈Z对称2)中心对称:关于点(π/2+kπ,0),k∈Z对称作法一、运用五点法做出图象。

二、利用正弦函数导出余弦函数。

①可以由诱导公式六:sin(π/2-α)=cosα导出y=cosx=sin(π/2+x)②因此,y=cosx的图像就相对sinx左移π/2个单位(上增下减是y值的变化,左增右减是x值的变化)初中数学余弦函数的图象的作法有上述两大要点,图像为解题提供了直观的思路。

性质(1)定义域:{x|x≠kπ,k∈Z}(2)值域:实数集R(3)奇偶性:奇函数,可由诱导公式cot(-x)=-cotx推出图像关于(kπ/2,0)k∈z对称,实际上所有的零点和使cotx无意义的点都是它的对称中心(4)周期性是周期函数,周期为kπ(k∈Z且k≠0),最小正周期T=π;(5)单调性在每一个开区间(kπ,(k+1)π),k∈Z上都是减函数,在整个定义域上不具有单调性。

2021年中考数学考试大纲(最新版)

2021年中考数学考试大纲(最新版)

2021年中考数学考试大纲(最新版)中考数学考试大纲考试目标数与代数】1.有理数有理数是指可以表示为两个整数的比的数,包括正有理数、负有理数和零。

我们可以用数轴上的点表示有理数,并且可以求出有理数的相反数和绝对值。

在运算方面,我们需要掌握有理数的加、减、乘、除、乘方运算及混合运算等基本操作。

2.实数实数包括有理数和无理数,其中无理数是不能表示为有理数的比的数。

我们需要掌握平方根、算术平方根、立方根和二次根式的概念,以及开方和乘方互为逆运算的关系。

同时,我们也需要了解实数与数轴上的点一一对应关系,以及对含有较大数字的信息作出合理的解释和推断等知识。

3.代数式代数式是用字母表示数的式子,可以表示简单问题的数量关系。

我们需要掌握用代数式表示数量关系的方法,以及求代数式的值、整数指数幂的意义和基本性质、科学记数法表示数、整式和分式的概念、简单的整式加减运算及乘法运算、平方差、完全平方公式的推导及运用、提取公因式法和公式法因式分解、运用分式基本性质进行约分和通分、简单的分式加减乘除运算等知识。

4.方程与方程组方程和方程组是用来表示数量关系的式子,我们需要掌握根据具体问题中的数量关系,列出方程或方程组的方法,以及解一元一次方程和二元一次方程组、解可化为一元一次方程的分式方程、用因式分解法、公式法和配方法解简单的数字系数的一元二次方程、用观察、画图或计算等方法估计方程的解、根据具体问题的实际意义,检验结果是否合理等知识。

5.不等式与不等式组不等式是用来表示大小关系的式子,我们需要掌握不等式的意义和基本性质,以及解一元一次不等式及由两个一元一次不等式组成的不等式组,并在数轴上表示出解集。

同时,我们也需要了解不等式与不等式组的简单应用。

6.函数函数是一种特殊的代数式,它表示两个变量之间的关系。

我们需要掌握常量、变量的意义,以及函数的定义、函数的图像、函数的性质、函数的运算等知识。

2.函数的实例例如,y = 2x + 1 就是一个函数的实例。

2021年九年级数学重庆中考23题阅读理解材料题专题(2)(无答案)

2021年九年级数学重庆中考23题阅读理解材料题专题(2)(无答案)

2021重庆年中考23阅读理解题材料题专题(2)1(巴蜀2021级初三上第一次月考)对于各位数字都不为0 的两位数m 和三位数n ,将m 中的任意一个数字作为一个新的两位数的十位数字,将n 的任意一个数字作为新的两位数的个位数字,按照这个方式产生的所有新的两位数的和几位F (m,n ),例如:F (12,345)=13+14+15+23+24+25=114.(1)填空:F (13,579)=(2)求证:当n 能被3整除,F (m ,n )一定能被6整除;2(重庆两江育才2021级九上第一次月考)对任意一个四位数n ,将这个四位数n 千位数字与十位数字对调,百位上数字与个位上数字对调后可以得到新的四位数m ,记F (n )=99n m -,例如n=1423,对调千位数字与十位数字及百位上数字与个位数字得到2314,所以F (n )=14232314=-999-,如果四位数n 满足千位数字与百位数字的和等于十位数字与个位数字的和,则称这个数为“平衡数”,例如:1423,因为1+4=2+3,多以1423是一个平衡数.(1)请计算F (8062),并证明:对于任意一个四位数n ,都有F (n )为整数;(2)若一个“平衡数”N 的十位数比百位数字的2倍少1,且这个“平衡数”能被同时被3和11整除,求F (N )的最小值。

3(重庆育才2021级九上第二次定时训练)中国古贤常说万物皆自然,而古希腊学者说万物皆数,小学我们就接触了自然数,在数得学习过程中,我们会对其中一些具有某些特性的自然数进行研究,比如奇数、偶数、质数、合数等,今天我们来研究另外一种特殊的自然数——“欢喜数”定义:对于一个各位不为0的自然数,如果它正好等于各个数为数字的和的整数倍,我们就说这个自然数是一个“欢喜数”,例如:24是一个欢喜数,因为24=4×(2+4);125不是一个“欢喜数”因为1+2+5=8,125不是8的整数倍.(1)判断28和135是否是“欢喜数”?请说明理由;(2)有一类“欢喜数”,它等于各位数数字之和的4倍,求所有这种“欢喜数”。

2021年重庆中考数学专题复习阅读材料题

2021年重庆中考数学专题复习阅读材料题

2021重庆中考数学专题复习阅读材料题1.阅读理解:把几个数用大括号括起来,中间用逗号断开,比如:{3,2},{−2,0,1,−1},我们称之为集合,其中大括号内的数称为该集合的元素.如果一个集合满足:只要其中有一个元素a,使得−2a+3也是这个集合的元素,我们把这样的集合称为自闭集合.例如:集合{−2,9,7},因为−2×(−2)+3=7,7恰好是这个集合的元素,所以{−2,9,7}是自闭集合.再如:集合{−1,3},因为−2×(−1)+3=5,而5不是这个集合的元素,且−2×3+3=−3,而−3也不是这个集合的元素,所以{−1,3}不是自闭集合.}______ 自闭集合;(选填“是”或“不是”)(1)判断:集合{2,4,−12(2)若集合{3,x}和集合{−y}都是自闭集合,求x+y的值.2.对于一列互不相同的整数:1,2,3,4,5,6,7,8,9.我们按以下规则进行操作:从这一列数中任意取走两个数,求出取走的这两个数的和或者差,把求得的和或者差连同余下的整数形成新的一列数.重复这样的操作,直到这一列数只剩下一个数为止,我们把最后剩下的数叫做“终止数”.(1)判断:6______ 这一列数的“终止数”;23______ 这一列数的“终止数”.(括号里填“是”或“不是”)(2)对这一列数进行多次重复操作,会得到不同的“终止数”,其中最大的“终止数”是______ ,这一列数一共能产生______ 个不同的“终止数”.(3)相同规则下,有这么一列互不相同的整数:2,11,3,7,a,b,c,13(a>b>c>0),如果这一列数的“终止数”中最大的一个为54,试求出abc的最大3.一个正整数的各位数字都相同,我们称这样的数为“称心数”,如5,44,666,2222,…对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和记为S(n),如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和S(123)=213+321+132=666,是一个“称心数”.(1)计算:S(432),S(617),并判断是否为“称心数”;(2)若“相异数”n=100+10p+q(其中正整数p,q满足1≤p≤9,1≤q≤9),且S(n)为最大的三位“称心数”,求n的值.4.若在一个三位自然数中,十位上的数字恰好等于百位与个位上的数字之和,则称这个三位数为“奇异数”.例如,在自然数132中,3=1+2,则132是“奇异数”;在自然数462中,6=4+2,则462是“奇异数”.(1)请你写出最大的“奇异数”,并证明:任意一个“奇异数”一定能被11整除.(2)若有“奇异数”能同时被3和7整除,求出这样的“奇异数”.5. 材料一:一个整数的各个数位上的数字之和能被9整除,则这个整数能被9整除.材料二:已知一个各位数字都不为零的四位数m =abcd −=1000a +100b +10c +d ,百位和十位上的数字之和是千位和个位上的数字之和的两倍,则称这个四位数为“双倍数”,将这个“双倍数”m 的各位数字颠倒过来就变成新的“双倍数”m′=dcba −,记F(m)=m+m′111,例如m =2461,4+6≠2×(1+2),所以2461不是“双倍数”,m =2685,6+8=2×(2+5),所以2685是“双倍数”,m′=5862,F(2685)=2685+5862111=77.(1)判断2997,6483是否为“双倍数”并说明理由;(2)若s ,t 均为“双倍数”,s 的千位数字是5,个位数字大于2,t 的百位数字是7,且s 能被9整除,4F(s)+F(t)是完全平方数,求t 的最大值.6. 对于一个非零整数a ,将其各个数位上的数字分别立方后取其个位数字,得到一个新数b ,称b 是a 的“荣耀数”例如:a =125,其各个数位上的数字分别立方后得到的数为1、8、125,则其个位数字分别为1、8、5,则a 的“荣耀数”b 为185.(1)18的“荣耀数”为______ ,2046的“荣耀数”为______ .(2)对于一个两位数m 和一个三位数n ,在m 的中间位插入一个一位数k ,得到一个新的三位数m′,若m′是m 的9倍,且n 是m′的“荣耀数”,求所有满足条件的n 的值.7. 一个三位正整数amb −各个数位上的数字均不为零.若amb −满足个位与百位上的数字互换位置后得到的三位数bma −能够被十位上的数字m 整除,商记为k ,我们就称此数amb −为“m 有缘牵手k 年好合数”.(1)若三位数6ma −是“m 有缘牵手213年好合数”,求m 的值;(2)若三位数5m4−是“m 有缘牵手k 年好合数”,求m 的值及对应k 的值.8. 对于正整数a ,如果存在正整数b ,c 使得a =bc ,则称b ,c 为a 的约数.比如36=4×9,所以4和9是36的约数.为了找出36的所有约数,我们可以把36继续分解,即36=2×2×3×3,进一步写成36=22×32,所以36的约数就可以表示成2α⋅3β的形式,其中α可取0、1、2,β可取0、1、2;这样我们就很快地得出36共有9(9=3×3)个约数,分别为1、3、9、2、6、18、4、12、36.以上方法我们称之为是对36进行“分解质因数”.其实不难发现,对于任意正整数m 都可以对其进行分解质因数,即m =P 1α1P 2α2…P n αn ,其中P 1,P 2,…,P n 是互不相等的质数,那么m 的所有约数n 就可表示为n =p 1β1p 2β2…p n βn (0≤β1≤α1,0≤β2≤α2,…0≤βn ≤αn 且β1,β2…,βn 都是整数),进而不难得出m 共有(a 1+1)(a 2+1)…(a n +1)个约数.特别的,如果m =n 2k (n 是正整数,k 为自然数),则称m 为完全平方数.(1)根据以上阅读材料,求出3000共有多少个约数?(2)请说明对任意的一个完全平方数的约数个数一定是奇数.9.阅读下列材料,回答问题:材料一:一个三位正整数M,若M的十位数字大于个位数字且M是一个正整数的完全平方数,则称M 为“中核完全平方数”.例如:三位数961,因为961=312,且6>1.所以961是“中核完全平方数”.三位数621,因为242<621<252,所以621不是“中核完全平方数”.材料二:一个三位正整数N=abc−(1≤a≤9,1≤b≤9,1≤c≤9,且a、b、c为整数),把这个三位数作变换得到6个两位数分别为:8a−,8b−,8c−,a8−,b8−,c8−,将这6个两位数加起来的和再除以11的商记作F(N).例如:三位数276,按照这种变换可以得到6个两位数分别为:82,87,86,28,78,68,=39.所以F(276)=82+87+86+28+78+6811(1)请分别判断121和921是否是“中核完全平方数”,并说明理由;(2)一个三位正整数N是一个小于500的“中核完全平方数”,求所有符合条件的F(N)的最大值.10.对于任意一个三位正整数,十位上的数字减去个位上的数字之差恰好等于百位上的数字,则称这个三位数为“极差数”.例如:对于三位数451,5−1=4,则451是“极差数”;对于三位数110,1−0=1,则110是“极差数”(1)求证:任意一个“极差数”一定能被11整除;(2)在一个“极差数”首位之前添加其十位的数字得到一个新的四位数M,在一个“极差数”末位之后添加数字1得到一个新的四位数N,若M−N能被12整除,求满足条件的“极差数”.11.阅读材料:对于一个三位自然数m,将各个数位上的数字分别3倍后取个位数字,得到三个新的数字x,y,z,我们对自然数m规定一个运算:F(m)=x2+y2+z2.例如:m=752,其各个数位上的数字分别3倍后再取个位数字分别是:1、5、6,则F(752)=12+52+62=62.(1)根据材料内容,求F(234)−F(567)的值;(2)已知两个三位数p=a3a−,q=3b3−(a,b为整数,且2≤a≤7,2≤b≤7),若p+q能被17整除,求F(p+q)的值.12.对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”.例如:2020是纯数,因为计算2020+2021+2022时,各数位都不产生进位.任意一个正整数m都可以表示为:m=a2b(a、b均为正整数),在m的所有表示结果中,当|a−b|最小时,规定:F(m)=2ab.例如:12=12×12=22×3,∵|1−12|>|2−3|,∴F(12)=12.(1)计算F(32)的值,并判断F(32)是否为纯数,说明理由;(2)若F(x)比最大的三位数纯数小310,求x.13. 若一个四位数的后两位数字组成的两位数是前两位数字组成的两位数的2倍,则称该数为“进步数”.如1326、2550都是进步数,对于任意自然数t ,各数位上的数字从左往右数,把所有奇数位上的数字之和与所有偶数位上的数字之和的平方差的绝对值记为F(t).例如:F(154)=|(1+4)2−52|=0,F(3154)=|(3+5)2−(1+4)2|=39.(1)若27mn −是一个进步数,求F(27mn −)的值;(2)求证:所有的进步数都能被6整除.14. 若一个三位数m =xyz −(其中x ,y ,z 不全相等且都不为0),现将各数位上的数字进行重排,将重排后得到的最大数与最小数之差称为原数的差数,记作M(m).例如435,重排后得到345,354,453,534,543,所以435的差数M(435)=543−345=198.(1)若一个三位数t =x2y −(其中x >y >2)的差数M(t)=594,且各数位上的数字之和能被5整除,求t 的值;(2)若一个三位数m ,十位数字为2,个位数字比百位数字大2,且m 被4除余1,求所有符合条件的M(m)的最小值.15.阅读材料:材料一:对实数a,b,定义T(a,b)的含义为,当a<b时T(a,b)=a+b;当a≥b时,T(a,b)=a−b 例如:T(1,3)=1+3=4:T(2,−1)=2−(−1)=3材料二:关于数学家高斯的故事,200多年前,高斯的算术老师提出了下面的问题:1+2+3+4+⋯+ 100=?据说,当其他同学忙于把100个数还项相加时,十岁的高斯却用下面的方法迅速算出了正确答案:(1+100)+(2+99)+⋯+(50+51)=101×50=5050也可以这样理解:令S=1+2+3+⋯+ 100,则S=100+99+⋯+3+2+1②①+②:2S=(1+100)+(2+99)+(3+98)+⋯+(100+1)100个=100×101=10100,=5050.即S=100×(1+100)2根据以上材料,回答下列问题:(1)已知x+y=10,且x>y,求T(5,x)−T(5,y)的值;(2)对于正数m,有T(m2+1,−1)=3,求T(1,m+99)+T(2,m+99)+T(3,m+99)+⋯+T(199,m+99)的值.16.求一组正整数的最小公倍数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求一组正整数最小公倍数的一种方法--少广术,术曰:“置全步及分母子,以最下分母遍乘诸分子及全步,各以其母除其子,置之于左.命通分者,又以分母遍乘诸分子及已通者,皆通而同之,并之为法.置所求步数,以全步积分乘之为实.实如法而一,得从步.”意思是说,要求一组正整数的最小公倍数,先将所给一组正整数分别变为其倒数,首项前增一项“1”,然后以最末项分母分别乘各项,并约分;再用最末项分数的分母分别乘各项,再约分,…;如此类推,直到各项都为整数止,则首项即为原组正整数之最小公倍数.例如:求6与9的最小公倍数.解:第一步:1,16,1 9;第二步:9,32,1:第三步:18,3,2所以,6与9的最小公倍数是18.请用以上方法解决下列问题:(1)求54与45的最小公倍数;(2)求三个数6,51,119的最小公倍数.17.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Napier,1550年−1617年),纳皮尔发明对数是在指数概念建立之前,直到18世纪瑞士数学家欧拉(Euler,1707年−1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),则x叫做以a为底N的对数,记作x=log a N.比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log(M⋅N)=log a M+log a N(a>0,a≠1,M>0,N>0).理由如下:设log a M=m,log a N=n,所以M=a m,N=a n,所以MN=a m a n=a m+n,由对数的定义得m+n=log a(M+N),又因为m+n=log a M+log a N,所以log a(MN)=log a M+log a N.解决以下问题:(1)将指数53=125转化为对数式:______.=log a M−log a N(a>0,a≠1,M>0,N>0).(2)仿照上面的材料,试证明:log a MN(3)拓展运用:计算log32+log318−log34=______.18.定义:将一个大于0的自然数,去掉其个位数字,再把剩下的数加上原数个位数字的4倍,如果得到的和能被13整除,则称这个数是“一刀两断”数,如果和太大无法直接观察出来,就再次重复这个过程继续计算.例如55263→5526+12=5538,5538→553+32=585,585→58+20=78,78÷13=6,所以55263是“一刀两断”数.3247→324+28=352,35+8=43,43÷13=3…4,所以3247不是“一刀两断”数.(1)判断5928是否为“一刀两断”数:______(填是或否),并证明任意一个能被13整除的数是“一刀两断”数;(2)对于一个“一刀两断”数m=1000a+100b+10c+d(1≤a≤9,0≤b≤9,0≤c≤9,0≤d≤9,a,|,若m的千位数满足1≤a≤4,千位数字与十位数字相同,b,c,d均为正整数),规定G(m)=|b2−ca−d且能被65整除,求出所有满足条件的四位数m中,G(m)的最大值.19.材料:对任意一个n位正整数M(n≥3),若M与它的十位数字的p倍的差能被整数q整除,则称这个=101;712也是“12阶10级数”,数为“p阶q级数”,例如:712是“5阶7级数”,因为712−5×17=70.因为712−12×110(1)若415是“5阶k级数”,且k<300,求k的最大值;(2)若一个四位数M的百位数字比个位数字大2,十位数字为1,且M既是“4阶13级数”又是“6阶5级数”,求这个四位数M.20.阅读下列材料,解答下列问题材料一:一个三位以上的自然数,如果该自然数的末三位表示的数与末三位之前的数字表示的数之差是11的倍数,我们称满足此特征的数叫“网红数”,如:65362,362−65=297=11×27,称65362是“网红数”.材料二:对任的自然数p均可分解为P=100x+10y+z(x≥0,0≤y≤9,0≤z≤9且x、y,z均为整数)如:5278=52×100+10×7+8,规定:G(P)=x2+x−z(1+x)+1.x−z(1)求证:任两个“网红数”之和一定能被11整除;(2)已知:S=300+10b+a,t=1000b+100a+1142(1≤a≤7,0≤b≤5,其a、b均为整数),当s+t为“网红数”时,求G(t)的最大值.21.我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.(1)另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a=2n+1,b= 2n2+2n,c=2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数.(2)然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a=12(m2−n2),b=mn,c=12(m2+n2)(m、n为正整数,m>n时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.。

最新重庆中考数学考纲

最新重庆中考数学考纲

(一)考试内容数学学业考试应以《数学课程标准》所规定的四大学习领域,即数与代数、空间与图形、统计与概率、实践与综合应用的内容为依据,主要考查基础知识、基本技能、基本体验和基本思想。

1.关注基础知识与基本技能了解数的意义,理解数和代数运算的算理和算法,能够合理地进行基本运算与估算;能够在实际情境中有效地使用代数运算、代数模型及相关概念解决问题。

能够借助不同的方法探索几何对象的有关性质;能够使用不同的方式表达几何对象的大小、位置与特征;能够在头脑里构建几何对象,进行几何图形的分解与组合,能够对某些图形进行简单的变换;能够借助数学证明的方法确认数学命题的正确性。

正确理解数据的含义,能够结合实际需要有效地表达数据特征,会根据数据结果做合理的预测;了解概率的含义,能够借助概率模型或通过设计活动解释事件发生的概率。

有条件的地区还应当考查学生能否使用计算器灵活地处理数值计算问题和从事有关探索规律的活动。

2. 关注“数学活动过程”包括数学活动过程中所表现出来的思维方式、思维水平,对活动对象、相关知识与方法的理解深度;从事探究的意识、能力和信心等。

也包括能否通过观察、实验、归纳、类比等活动获得数学猜想,并寻求证明猜想的合理性;能否使用恰当的语言有条理地表达数学的思考过程。

3.关注“数学思考”学生在数感与符号感、空间观念、统计意识、推理能力、应用数学的意识等方面的发展情况,其内容主要包括:能用数来表达和交流信息;能够使用符号表达数量关系,并借助符号转换获得对事物的理解;能够观察到现实生活中的基本几何现象;能够运用图形形象地表达问题、借助直观进行思考与推理;能意识到做一个合理的决策需要借助统计活动去收集信息;面对数据时能对它的来源、处理方法和由此而得到的推测性结论做合理的质疑;能正确地认识生活中的一些确定或不确定现象;能从事基本的观察、分析、实验、猜想和推理的活动,并能够有条理地、清晰地阐述自已的观点。

4.关注“解决问题能力”能从数学角度提出问题、理解问题、并综合运用数学知识解决问题;具有一定的解决问题的基本策略;能合乎逻辑地与他人交流;具有初步的反思意识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆中考数学考纲编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(重庆中考数学考纲)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为重庆中考数学考纲的全部内容。

(一)考试内容数学学业考试应以《数学课程标准》所规定的四大学习领域,即数与代数、空间与图形、统计与概率、实践与综合应用的内容为依据,主要考查基础知识、基本技能、基本体验和基本思想。

1.关注基础知识与基本技能了解数的意义,理解数和代数运算的算理和算法,能够合理地进行基本运算与估算;能够在实际情境中有效地使用代数运算、代数模型及相关概念解决问题。

能够借助不同的方法探索几何对象的有关性质;能够使用不同的方式表达几何对象的大小、位置与特征;能够在头脑里构建几何对象,进行几何图形的分解与组合,能够对某些图形进行简单的变换;能够借助数学证明的方法确认数学命题的正确性。

正确理解数据的含义,能够结合实际需要有效地表达数据特征,会根据数据结果做合理的预测;了解概率的含义,能够借助概率模型或通过设计活动解释事件发生的概率。

有条件的地区还应当考查学生能否使用计算器灵活地处理数值计算问题和从事有关探索规律的活动。

2。

关注“数学活动过程”包括数学活动过程中所表现出来的思维方式、思维水平,对活动对象、相关知识与方法的理解深度;从事探究的意识、能力和信心等。

也包括能否通过观察、实验、归纳、类比等活动获得数学猜想,并寻求证明猜想的合理性;能否使用恰当的语言有条理地表达数学的思考过程。

3.关注“数学思考”学生在数感与符号感、空间观念、统计意识、推理能力、应用数学的意识等方面的发展情况,其内容主要包括:能用数来表达和交流信息;能够使用符号表达数量关系,并借助符号转换获得对事物的理解;能够观察到现实生活中的基本几何现象;能够运用图形形象地表达问题、借助直观进行思考与推理;能意识到做一个合理的决策需要借助统计活动去收集信息;面对数据时能对它的来源、处理方法和由此而得到的推测性结论做合理的质疑;能正确地认识生活中的一些确定或不确定现象;能从事基本的观察、分析、实验、猜想和推理的活动,并能够有条理地、清晰地阐述自已的观点.4.关注“解决问题能力"能从数学角度提出问题、理解问题、并综合运用数学知识解决问题;具有一定的解决问题的基本策略;能合乎逻辑地与他人交流;具有初步的反思意识。

5.关注“对数学的基本认识”形成对数学内容统一性的认识(不同数学知识之间的联系、不同数学方法之间的相似性等);深化对数学与现实或其他学科知识之间联系的认识等等。

(二)考试要求1.《数学课程标准》规定了初中数学的教学要求(1)使学生获得适用未来社会生活和进一步发展所必需的重要数学知识,以及基本的数学思想方法和必要的应用技能;(2)初步学会运用数学的思维方式观察、分析现实社会,解决日常生活和其他学科学习中的问题,增强应用数学的意识;(3)体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心;(4)具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展。

2.《数学课程标准》阐述的教学要求具体分以下几个层次知识技能要求:(1)了解:能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象。

(2)理解:能描述对象特征和由来;能明确地阐述此对象与有关对象之间的区别和联系。

(3)掌握:能在理解的基础上,把对象运用到新的情境中去。

(4)运用:能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。

过程性要求:(5)经历(感受):在特定的数学活动中,获得一些初步的感受.(6)体验(体会):参与特定的数学活动,在具体情境中认识对象的特征,获得一些经验. (7)探索:主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或与其他对象的区别和联系。

这些要求从不同角度表明了数学学业考试要求的层次性.(三)具体内容与考试要求细目列表(表中“目标要求”栏中的序号和“(二)2。

”中的规定一致)具体内容知识技能要求过程性要求(1)(2)(3)(4)(5)(6) (7)数与式有理数的意义,用数轴上的点表示有理数√相反数、绝对值的意义√求相反数、绝对值,有理数的大小比较√乘方的意义√有理数加、减、乘、除、乘方及简单混合运算(三步为主),运用运算律进行简化运算√运用有理数的运算解决简单问题√对含有较大数字的信息作出合理解释√平方根、算术平方根、立方根的概念及其表示√用平方运算求某些非负数的平方根,用立方运算求某些数的立方根,用计算器求平方根与立方根√无理数与实数的概念,实数与数轴上的点的一一对应关系√用有理数估计一个无理数的大致范围√近似数与有效数字的概念√用计算器进行近似计算,并按问题的要求对结果取近似值√二次根式的概念及加、减、乘、除运算法则√实数的简单四则运算(不要求分母有理化) √用字母表示数,列代数式表示简单问题的数量关系√代数式的实际意义与几何背景√求代数式的值√整数指数幂及其性质√用科学记数法表示数(含计算器)√整式的概念(整式、单项式、多项式) √整式的加、减、乘(其中的多项式相乘仅指一次式相乘)运算√乘法公式及计算√因式分解的概念√用提公因式法、公式法(直接用公式不超过2次)进行因式分解√ 分式的概念√约分、通分√简单分式的运算(加、减、乘、除) √方程与不等式方程(组)的解的检验√估计方程的解√一元一次方程及解法√二元一次方程组及解法√可化为一元一次方程的分式方程(方程中分式不超过2个)及解法√ 一元二次方程及其解法√根据具体问题中的数量关系列方程(组)并解决实际问题√ √根据具体问题中的数量关系列不等式(组)并解决简单实际问题√ 不等式的基本性质√ √解一元一次不等式(组)√用数轴表示一元一次不等式(组)的解集√函数简单实际问题中的函数关系的分析√具体问题中的数量关系及变化规律√常量、变量的意义√函数的概念及三种表示法√简单函数及简单实际问题中的函数的自变量取值范围,函数值√ 使用适当的函数表示法,刻画实际问题中变量之间的关系√结合对函数关系的分析,预测变量的变化规律√一次函数及表达式√ √一次函数的图象及性质√ √正比例函数√用图象法求二元一次方程组的近似解√用一次函数解决实际问题√反比例函数及表达式√ √反比例函数的图象及性质√ √用反比例函数解决实际问题√二次函数及表达式√ √二次函数的图象及性质√确定二次函数图象的顶点、开口方向及其对称轴√用二次函数解决简单实际问题√用二次函数图象求一元二次方程的近似解√图形的认识点、线、面√角的大小比较、估计,角的和与差的计算√角的单位换算√角平分线及其性质√补角、余角、对顶角√垂直、垂线段概念及性质,点到直线的距离√ √ 线段垂直平分线及性质√平行线的性质√ √平行线间的距离√ √画平行线√三角形的有关概念√画任意三角形的角平分线、中线、高√三角形的稳定性√三角形中位线的性质√ √全等三角形的概念√两个三角形全等的条件√ √等腰三角形的有关概念√等腰三角形的性质及判定√ √等边三角形的性质及判定√直角三角形的概念√直角三角形的性质及判定√ √勾股定理及其逆定理的运用√ √多边形的内角和与外角和公式√ √正多边形的概念√平行四边形、矩形、菱形、正方形、梯形的概念√平行四边形的性质及判定√ √矩形、菱形、正方形的性质及判定√ √等腰梯形的有关性质和判定√ √线段、矩形、平行四边形、三角形的重心及其物理意义√ √平面图形的镶嵌,镶嵌的简单设计√ √图形的认识圆及其有关概念√弧、弦、圆心角的关系√点与圆、直线与圆、圆与圆的位置关系√ √圆的性质,圆周角与圆心角的关系、直径所对圆周角的特征√ √三角形的内心与外心√切线的概念√切线的性质与判定√ √弧长公式,扇形面积公式√圆锥的侧面积和全面积√基本作图√利用基本作图作三角形√过平面上的点作圆√ √尺规作图的步骤(已知、求作、作法) √图形与变换基本几何体的三视图√基本几何体与其三视图、展开图之间的关系√直棱柱、圆锥的侧面展开图√视点、视角及盲区的涵义,及其在简单的平面图和立体图中的表示√ 物体阴影的形成,根据光线的方向辨认实物的阴影√中心投影和平行投影√轴对称的基本性质√ √利用轴对称作图,简单图形间的轴对称关系√ √基本图形的轴对称性及其相关性质√ √轴对称图形的欣赏与设计√平移的概念,平移的基本性质√ √利用平移作图√旋转的概念,旋转的基本性质√ √平行四边形、圆的中心对称性√利用旋转作图√图形之间的变换关系(轴对称、平移与旋转)√平移、旋转在现实生活中的应用√ √具体内容知识技能要求过程性要求(1) (2) (3) (4)(5)(6) (7)用轴对称、平移和旋转的组合进行图案设计√比例的基本性质,线段的比,成比例线段,黄金分割√图形的相似√相似图形的性质√ √两个三角形相似的性质及判定,直角三角形相似的判定√ √位似及应用√相似的应用√锐角三角函数(正弦、余弦、正切)√)的︒、60︒、45︒特殊角(30三角函数值√使用计算器求已知锐角三角函数的值,由已知三角函数值求它对应的锐角√三角函数的简单应用√图形与坐标平面直角坐标系;在给定的直角坐标系中,根据坐标描出点的位置、由点的位置写出它的坐标√建立适当的直角坐标系描述物体的位置√图形的变换与坐标的变化√ √用不同的方式确定物体的位置√图形与证明证明的必要性√定义、命题、定理的含义,互逆命题的概念√反例的作用及反例的应用√反证法的含义√证明的格式及依据√全等三角形的性质定理和判定定理√平行线的性质定理和判定定理√三角形的内角和定理及推论√直角三角形全等的判定定理√角平分线性质定理及逆定理√垂直平分线性质定理及逆定理√三角形中位线定理√等腰三角形、等边三角形、直角三角形的性质和判定定理√平行四边形、矩形、菱形、正方形的性质和判定定理√等腰梯形的性质和判定定理√统计数据的收集、整理、描述和分析,用计算器处理较复杂的统计数据√总体、个体、样本的概念√ √扇形统计图√选择合适的统计量表示数据的集中程度√加权平均数√一组数据的离散程度的表示,极差和方差的计算√ √频数、频率的概念√列频数分布表,画频数分布直方图和频数折线图,并解决简单实际问题√频数分布的意义和作用√用样本估计总体的思想,用样本的平均数、方差估计总体的平均数和方差√ √根据统计结果作出合理的判断和预测,统计对决策的作用√ √应用统计知识与技能,解决简单的实际问题√概率概率的意义√用列举法求简单事件的概率√通过实验,获取事件发生的频率,大量重复实验时频率可作为事件发生概率的估计值√通过实验丰富对概率的认识,并解决一些实际问题√课题学习“问题情境——建立模型——求解—-解释与应用”的基本过程√数学知识之间的内在联系,对数学的整体认识√获得一些研究问题的方法和经验,数学知识在实际问题中的应用√通过获得成功的体验和克服困难的经历,增进应用数学的自信心√(一)试卷结构(1)填空题:8-10小题,占分比例约为20%;(2)选择题:8—10小题,占分比例约为20%;(3)解答题:8—10个小题,占分比例约为60%,解答题包括计算题、证明题、应用性问题、实践操作题、拓展探究题等不同形式。

相关文档
最新文档