液相色谱手性制备分离过程中的问题探讨

合集下载

手性分析之经验谈

手性分析之经验谈

手性分析经验谈关于手性化合物、手性分析、手性填料和手性柱,现在的理论很多,讲的也比较复杂,我看了很多也不是特别明白,做分析三年多,分过的手性化合物最少也有几千种,拿到手里的消旋体几乎没有分不开的,没用到什么理论,主要都是经验,这里还是拣最实用的来讲。

手性分析可以使用普通的色谱柱,需要流动相中添加手性分离试剂,也可以直接用固定相为手性填料的手性色谱柱,前者使用较少,大家更多的是使用商品化的手性色谱柱。

手性分析包括气相和液相两种,这个主要和样品的物理性质有关系,现在的手性化合物绝大多数都不能做气相,所以气相手性色谱柱无论从数量还是质量上来讲都不能与液相手性色谱柱相提并论。

一、手性柱手性分离最重要的是选择一根好的手性柱,说到手性柱就不得不提大赛璐,做手性分析的都知道,大赛璐的手性柱目前市场占有率最高,大家最熟悉的可能是OD- H,很多文献中都有报道。

大赛璐公司最初有四种填料,结构类似,对应的色谱柱分别是OD、AD、OJ和AS,粒径10um,后来填料粒径变为5um,就是卖的最多、使用范围最广的柱子,号称四大金刚,分别是OD-H、AD-H、OJ-H和AS-H,在柱子名称后边加“-H”,意思应该是高效,这些柱子都只能做正相使用,为了在反相色谱中使用开发的柱子在相应的色谱柱名称中添加了一个“R”,上述色谱柱都属于涂覆型填料,不耐溶剂,使用起来受样品溶解性的限制,最近又开发了键合相手性柱,可以使用几乎所有的常见溶剂做流动相,新的溶剂还提供了新的选择性,进而提升了色谱柱的分离能力,主要是IA、I B和IC,其中IA对应AD-H,IB对应OD-H,IC是新开发的填料。

和反相柱的发展趋势一样,大赛璐的手性柱也通过减小粒径来获得更高的柱效,最新的手性柱填料粒径是3um。

另外大赛璐还有其它一些手性色谱柱,但是远不及上述几种。

关于大赛璐手性柱的详细资料官方网站上讲的很详细,大家有兴趣可以去看,这里主要讲我的使用经验。

最近大赛璐公司的销售和技术曾经来过我们公司做讲座,因为我们先后买了他们三四十只手性柱,一直是自己摸索着使用,理论上的东西懂得很少,非常希望专家的能给我们提供指导,提升我们的技术水平,这个讲座的ppt网上流传的很多,对初学者来讲确实非常不错,但是专家的水平让我们实在不敢恭维。

手性药物的分离在色谱法中的应用

手性药物的分离在色谱法中的应用

手性药物的分离在色谱法中的应用手性药物是指具有手性结构的药物。

它们可以分为左旋和右旋两种类型,两者化学性质相同,但左右旋异构体对生物系统的影响却截然不同,这种现象被称为手性诱导失活效应。

因此,在制药过程中需要对手性药物进行分离,以确保药效和安全性。

色谱法是分离手性化合物的主要方法之一,其基本原理是利用不同化合物的物理、化学性质差异,通过分离柱将混合物中的目标物分离出来。

以下是一些色谱法在手性药物分离中的应用。

手性高效液相色谱法(HPLC)手性HPLC是目前最常用于手性药物分离的方法之一,它是利用手性固定相在悬浊液中对手性化合物进行分离。

具有手性结构的固定相与目标分子相互作用,从而实现分离。

手性HPLC可以分别采用手性固定相或手性混合物来进行分离。

此外,在手性HPLC中,主要可以采用簇列技术或化学反应转化手性方法来提高分离效率和选择性。

毛细管电泳(CE)毛细管电泳是一种基于电化学原理的分离技术,它利用电场将样品中的分子分离。

在毛细管电泳中,可以采用手性高分辨涂层来进行手性药物的分离。

在此基础上,还可以采用手性化合物作为毛细管填充剂,进一步提高分离效率和分离度。

气相色谱法(GC)气相色谱法是一种利用气体作为流动相的色谱法。

在处理手性药物时,通常需要使用手性柱和手性混合物。

与HPLC不同,该方法的分离依赖于分子间的“挤压”力。

因此,手性柱具有不同的式样,以保证灵敏度和选择性。

超临界流体色谱法(SFC)SFC是一种介于HPLC和GC之间的色谱法。

它使用超临界流体作为移动相,可以在温度和压力条件下实现高效率的手性药物分离。

通常使用手性柱和手性对映异构体混合物进行分离。

此外,还可以应用具有特定分子功能的催化剂来提高分离效率。

总之,手性药物分离是一项非常复杂的任务,需要使用不同的色谱技术和方法来实现。

无论是HPLC、CE、GC还是SFC,它们都有各自的优缺点和适用范围,因此在选择分离方法时需要综合考虑样品特性,实验设备和分离效率与成本等因素。

液相色谱手性物质分离工作总结

液相色谱手性物质分离工作总结
O O
O O
(rigid & linear)
O
O
O
O
O O
O
O
O
O
O O
(helical)
市售常用的手性色谱柱:
Daicel的“四大金刚”及新型的键合相系列,Phenomenex的Cellulose-1
柱型号
固定相,官能团
拆分化合物类型
Chiralpak OD Cellulose-1
(phenomenex)
手性固定相法拆分机理2
Dalgliesh三点作用模型

基体

(S)-选择子


基体
(S)-选择子

相互作用强,保 留长,后出峰
(R)-溶质 相互作用弱,保 留短,先出峰
(S)-溶质
手性分离效果是多种相互作用共同作用的 结果。这些相互作用通过影响包埋复合物 的形成,特殊位点与分析物的键合等而改 变手性分离结果。由于这种作用力较微弱, 因此需要仔细调节、优化流动相和温度以 达到最佳分离效果。
合。
不对称C原子数目(n)与立体异构体数之间的关系为2n
• 1966年 Lngold和V.Prelog分析讨论了旋光性与分子结构间的关系,建议将
分子本身与其镜像不能重合的分子,定义为手性分子。
如何判断:
分子的手性与处于手性部分的一个或一个 以上的特定原子有关,使分子具有手性的 几何因素有手性中心、手性轴和手性面。
3. 也可以先以少量DMSO,DMF,CHCl2溶解,然后再用 流动相稀释至不析出为止。
4. 如果样品紫外吸收很弱,则需加大样品浓度至10mg/ml. 5. 无紫外吸收,换检测器:ELSD或MS,或者让合成人员

手性药物的分离在色谱法中的应用

手性药物的分离在色谱法中的应用

手性药物的分离在色谱法中的应用一、手性药物的概念手性药物是指由手性分子组成的药物,其分子结构中存在手性中心。

手性中心是指分子中的一个碳原子与四个不同的基团连接而成的结构,使得该碳原子存在立体异构体。

手性药物的两种立体异构体分别为左旋体和右旋体,分子在空间构型上存在镜像对映关系,它们的生物活性和药理作用通常差异显著。

右旋非甾体类抗炎药布洛芬的镜像体左旋布洛芬具有更强的抗炎作用,而氨基酸赖氨酸的D-型和L-型对应两者的生理学作用亦有明显区别。

二、色谱法的基本原理色谱法是一种分离、检测和定量分析化合物的方法,其基本原理是利用不同物质在固定相和移动相之间的分配系数不同而实现分离。

色谱法在手性药物分离中的应用主要包括气相色谱法(GC)、液相色谱法(LC)和超临界流体色谱法(SFC)等。

在色谱分离中,手性药物通常需要使用手性固定相(手性色谱柱)进行分离。

手性色谱柱通常由手性固定相和手性移动相组成,能够有效地区分手性异构体。

1. 气相色谱法(GC)气相色谱法是一种常用的手性药物分离技术,其分离原理是将混合物在气相流动条件下通过手性固定相进行分离。

气相色谱法广泛应用于手性酯类、醇类、醚类、酮类、胺类和芳香类手性药物的分离。

在气相色谱分离中,手性色谱柱通常采用手性聚合物、手性配体和手性盐酸盐等手性固定相。

气相色谱法分离手性药物的优势在于操作简便、分离效率高、分析速度快,但也存在柱效验领域窄、结构分析不直观等问题。

3. 超临界流体色谱法(SFC)四、手性药物分离中的色谱法展望随着手性药物研究的不断深入,对手性药物分离技术的要求也越来越高。

色谱法在手性药物分离中的应用已经取得了显著的进展,但仍然存在一些挑战和问题。

柱效验领域窄、分离效率不高、分析速度慢等。

未来,需要进一步研究开发新型手性固定相,提高手性药物分离的效率和速度。

结合质谱、核磁共振等分析手段,实现对手性药物的全面分析和表征。

相信随着科学技术的不断发展,色谱法在手性药物分离领域的应用将会更加广泛和成熟,为手性药物研究和开发提供更有力的支持。

色谱分析中的手性分离技术

色谱分析中的手性分离技术

色谱分析中的手性分离技术色谱分析是一种常见的分离和检测技术,它可以通过不同成分在色谱柱上的运移速度差异,实现样品中组分的分离。

而手性分离技术则是其中一种具有广泛应用的技术。

手性分离技术又称拆分体分离技术,是指将具有手性的化合物分离成其对映异构体的过程。

手性分离技术主要有两种:手性凝胶色谱和手性高效液相色谱。

手性凝胶色谱是一种传统的手性分离技术,它利用具有手性结构的聚合物凝胶作为色谱填料,通过样品分子与凝胶之间的分子识别作用实现分离。

手性凝胶色谱是一种相对简单的手性分离技术,但是由于其分离程度较低,通常用于对手性分析的初步筛查。

手性高效液相色谱是一种高效手性分离技术,它基于手性色谱填料的表面手性区分作用和反相分离作用,实现对手性化合物的高效分离。

在手性高效液相色谱中,手性色谱柱成为关键的分离工具,色谱柱内填充了各种具有手性结构的填料,如纳米结构材料、束缚配体、离子交换树脂等。

手性高效液相色谱技术需要精密的操作和控制技术,同时对手性填料的选择和性能也十分关键。

常见的手性高效液相色谱模式包括正相模式、反相模式和杂相模式。

正相模式下,填料是手性站点,流动相是水/有机溶剂混合物,溶液的极性越强,分离能力越高;反相模式下,填料是非手性的,分离基于无手性分子和手性分子与填料的相互作用,流动相是弱极性有机溶剂/水混合物;杂相模式是正相和反相模式的结合。

手性高效液相色谱技术在制药、化妆品、食品、医疗诊断等领域得到了广泛应用。

例如,在药物研发中,手性高效液相色谱可以对药物的对映异构体进行分离和鉴定,以确定对映异构体的药效和安全性;在食品领域,手性高效液相色谱可以对添加的手性能呈现不同风味的香料成分的组成比例进行分离和鉴定。

当然,手性分离技术也存在一些困难和局限性。

一方面,手性化合物的对映异构体之间的物理和化学性质非常相似,因此分离困难。

另一方面,手性化合物的分离需要精密的手性填料和色谱柱控制技术,手性柱的制备和使用成本也较高。

手性药物的分离在色谱法中的应用

手性药物的分离在色谱法中的应用

手性药物的分离在色谱法中的应用【摘要】手性药物是指分子中存在手性中心使得其具有手性的药物,具有非对映体间药效和毒性的差异。

手性药物的分离常使用色谱法,包括手性色谱、液相色谱等技术。

色谱法在手性药物分离中具有高效、高选择性和分辨率等优势。

手性药物的药理作用和应用在药物研发中具有重要意义,而手性药物的分离技术则为深入研究和开发手性药物提供了有效手段。

未来,色谱法在手性药物分离中有望提高分离效率和降低成本,对医药行业的发展将产生积极影响。

色谱法在手性药物分离中的应用将会在未来发展中扮演重要角色,为医药行业的进步做出贡献。

【关键词】手性药物、分离、色谱法、药物研发、药理作用、优势、发展趋势、医药行业1. 引言1.1 手性药物的重要性手性药物是指具有手性结构的药物,即它们包含手性中心并存在两种镜像异构体。

这两种异构体可能在生物活性、药物代谢、副作用等方面表现出明显的差异,甚至可能导致完全不同的药理作用。

对手性药物的立体结构进行分离和研究至关重要。

1. 生物活性差异:手性药物的两个异构体可能对生物体的效应产生明显差异。

选用正确的手性异构体可以提高药物的疗效,减少不良反应。

2. 药代动力学差异:手性药物的两个异构体在体内的代谢速率和清除速率可能存在差异,影响药物的代谢和排泄过程。

3. 安全性:某些手性药物的镜像异构体可能会导致不良反应或毒性反应,因此对其分离研究尤为重要。

4. 法律规定:许多国家对手性药物的镜像异构体进行了严格的监管,要求药品中只含有特定的手性异构体。

手性药物的分离研究对药物研发、临床治疗以及药品监管具有重要意义。

色谱法在手性药物分离中的应用则是一种有效的手段,可以高效地对手性药物进行分离和检测。

1.2 手性药物的分离方法手性药物的分离是一项至关重要的工作,因为手性药物存在于自然界中的各种生物体内,而不同手性体可能具有完全不同的药理作用和毒性。

为了确保药物的疗效和安全性,必须对手性药物进行有效分离和纯化。

手性分离方法的优化和分离效率提高策略

手性分离方法的优化和分离效率提高策略

手性分离方法的优化和分离效率提高策略手性分离是一种重要的化学技术,在药物合成、农药研发、材料科学等领域中具有广泛的应用。

手性分离的目的是将混合物中的两种对映异构体分离开来,从而获取纯度较高的手性化合物。

然而,由于对映异构体的物理和化学性质的相似性,手性分离常常具有一定的难度。

因此,优化手性分离方法和提高分离效率成为迫切需要解决的问题。

一、使用手性分离剂手性分离剂是一种在手性分离过程中起作用的分子。

这些分子具有明显的手性结构,能够选择性地与其中一种对映异构体形成化学键。

通过与对映异构体形成复合物,可以实现分离和纯化的目的。

下面以手性分离剂佐剂为例,介绍其应用。

佐剂在手性分离中的应用已经被广泛研究。

在手性分离剂与对映异构体形成复合物的过程中,佐剂作为一种辅助剂,能够增加分离过程中的选择性和效率。

优化佐剂的选择和使用条件,可以提高手性分离的效果。

二、改进手性分离的操作条件手性分离的操作条件对于提高分离效率至关重要。

以下是一些改进操作条件的策略:1.温度调控:温度是影响手性分离效果的重要因素。

通过选择适宜的分离温度,可以调整物质在分离过程中的活性和选择性,提高分离效率。

2.溶剂选择:溶剂对于手性分离的效果有着显著影响。

选择合适的溶剂可以增加分离剂和对映异构体之间的相互作用,加快分离速率。

3.浓度调节:溶液中分离剂的浓度对于分离效果具有重要影响。

合理调节浓度可以达到最佳的分离效果。

4.反应时间:反应时间是控制手性分离的另一个关键因素。

通过合理控制反应时间,可以充分利用反应动力学的优势,提高分离效率。

三、进一步优化手性分离方法除了改进操作条件,进一步优化手性分离方法也是提高分离效率的重要策略。

以下是一些优化方法的介绍:1.色谱技术:色谱技术是手性分离的常用方法之一。

通过改变色谱柱材料、调节流动相成分和流速等因素,可以增加分离剂与对映异构体之间的相互作用,实现高效分离。

2.膜分离技术:膜分离技术是一种基于分子尺寸和手性识别的分离方法。

药物研究中手性分离分析方法及技巧

药物研究中手性分离分析方法及技巧

药物研究中手性分离分析方法及技巧药物研究中手性分离分析是指将手性药物中的手性异构体(也称为对映体)分离出来,并进行定量分析。

由于手性异构体具有不对称的结构,其物理化学性质和药理活性可能差异巨大,因此手性分离分析对于药物研究具有重要意义。

以下将介绍几种常用的手性分离分析方法及技巧。

1.气相色谱法(GC法):GC法是通过在手性固定相柱上进行气相色谱分析,分离手性异构体。

该方法基于手性碳氢化合物在手性固定相上的不同吸附能力来实现手性分离。

同时,通过合适的手性底物和手性固定相的选择,还可以更好地提高手性分离的选择性和灵敏度。

2.液相色谱法(HPLC法):HPLC法是手性分离分析中最常用的方法之一、常见的手性固定相有手性液相、手性离子对和手性硅胶等。

通过在手性固定相上进行液相色谱分析,利用手性化合物在固定相上的差异相互作用,实现手性分离。

此外,还可以结合负载式手性液相色谱法、手性离子对液相色谱法等技术,提高手性分离效果。

3.毛细管电泳法(CE法):CE法是一种高效、快速的分离技术,特别适用于分析手性药物。

通过在毛细管中施加电场,利用手性化合物在毛细管中的迁移速率差异实现分离。

此外,还可以通过改变运行缓冲液的组成、pH值等条件,调节手性分离的选择性和分离效果。

除了上述主要的手性分离分析方法外,还存在一些辅助技巧和方法,可以进一步提高手性分离的效果:1.共处理:将两个手性化合物混合在一起进行共处理,通过比较混合物中手性峰的相对峰度等信息,来判断手性分离的效果。

2.离子对调整:通过调整分析液中离子对的浓度和种类,来改变手性分离的效果。

一般来说,手性离子对可以提高手性分离的分辨率和选择性。

3.pH调控:通过改变液相色谱系统中溶液的pH值,可以影响毛细管电泳法和液相色谱法中手性分离效果。

pH值的改变可以调节化合物分子的电荷状态,从而影响手性分离的选择性。

总之,手性分离分析方法及技巧在药物研究中起着重要的作用。

通过合理选择合适的手性分离方法,并结合辅助技巧和方法,可以实现对手性异构体的高效、准确的分离和定量分析,从而为药物研究提供有价值的数据。

【现身说法】药品研发中手性分离要点难点解析记得

【现身说法】药品研发中手性分离要点难点解析记得

【现身说法】药品研发中手性分离要点难点解析,记得收藏手性药物是指药物分子结构中引入手性中心后,得到的一对互为实物与镜像的对映异构体。

液相色谱法成为目前手性药物分离测定的首选方法,根据实际工作中需要的手性分离问题,总结如下。

流动相手性分析很关键的一项是流动相的选择,手性分析一般都采用正相,使用最多的流动相是正己烷、正庚烷、乙醇和异丙醇这四种,其中起洗脱作用的流动相是乙醇和异丙醇,正己烷和正庚烷用来调节流动相的洗脱强度。

正己烷和正庚烷对于样品分离没有什么太大的影响,不会改变选择性和分离度,通常都可以混用,不过正庚烷比正己烷对人体的伤害要小很多,但价格是后者的一倍,所以欧美的很多大制药公司多使用正庚烷,而国内多使用正己烷。

乙醇和异丙醇对样品的分离起关键的作用,不同的醇有不同的选择性,改变醇的种类可以改变选择性,常用的醇类是乙醇和异丙醇,甲醇不能使用是因为它和正己烷、正庚烷不互溶,叔丁醇粘度太大,一般作为添加剂配合乙醇或者异丙醇少量使用,提供特殊的选择性,通常能起到意想不到的效果。

一般情况下分析手性样品,很多人推荐首选异丙醇,但是我喜欢首选乙醇,因为乙醇气味比异丙醇好一点,且乙醇做流动相压力要低一些,实际上二者差别不是太大。

流动相里经常需要添加酸或者是碱来调节峰形,常用的酸有三氟乙酸、乙酸和甲基磺酸,碱一般是二乙胺和三乙胺,也有用乙醇胺和异丁胺的,流动相里添加酸和碱的浓度一般要求控制在0.2%(体积比)以下,我们一般用0.1%,使用的原则一般是酸性样品加酸,碱性样品加碱,但实际上很多样品是即含酸性基团又含碱性基团,这就要看哪个基团作用强了,对于某些含氨基的两性样品,例如苯甘氨酸,甲基磺酸是一个非常好的选择,磺酸基能够抑制氨基的碱性,又能提供一个酸性的流动相环境,使样品既能得到很好的分离又能获得对称的峰形。

一般做纯度分析检测杂质含量时我们要求尽量的采用低波长来让尽可能多的杂质有紫外吸收,而做手性分析时我们需要采用尽可能高的波长来去除在低波长下才有吸收的杂质的干扰,一般原则还是尽量选择样品紫外吸收最好的地方来获得较高的灵敏度,但流动相里添加二乙胺会导致在低波长下基线波动变大,系统难以平衡,这种情况下一般要提高检测波长,实际操作过程中有些样品在高波长下吸收非常差,只能用低波长检测,这样的样品可以尝试在样品稀释的时候加入过量的二乙胺(但不宜太多),而流动相用中性,从而获得满意的分析结果。

手性药物的分离在色谱法中的应用

手性药物的分离在色谱法中的应用

手性药物的分离在色谱法中的应用手性药物是由手性分子组成的药物,它们的各种生物活性和药效是与它们的绝对构型直接相关的。

在许多情况下,手性药物的两种异构体(左手和右手)的活性和毒性可能截然不同。

因此,对这些药物分子的分离和纯化成为了化学、药物研究领域的一个重要问题。

高效液相色谱法(HPLC)是一种优秀的手性药物分离和纯化的方法,其领先的分辨能力和分离效率使其在药物研究领域崭露头角。

1. 手性药物分离的基本原理手性药物分离的基本原理是结合拥有不同手性的分离柱,例如手性固定相柱和手性选择相柱。

手性固定相柱的分离机理,与分子中原子的手性不同,能产生化学和物理相互作用,因此在不同的分离相互作用下,左手和右手异构体会被分离。

手性选择相柱的分离机理与样品和手性配体的互作用有关,通过配体的稳定性和与样品的选择性作用,达到左右异构体的选择级别不同的以分离目的。

(1)手性固定相柱分离法手性固定相柱分离法是一种基于手性固定相柱的手性药物分离方法,有机合成手法制备的手性固定相柱通常包括手性多醇、手性脂肪酸、手性聚醚和手性多肽等,选择手性固定相柱进行手性分离具有选择性强、效果稳定等特点。

此外,其中含有胆固醇和环糊精等手性结构的化合物也可以应用于该方法。

手性选择相柱从手性配体分离药物,它与手性固定相柱的分离原理有所不同。

手性选择相柱通常包括带有手性标识化合物的蛋白质和不带手性标识的蛋白质。

在hand选择相柱分离中,手性标识的配体与药物分子的性质相似,可以通过配体特异性识别挑选出最终形成单独的物质。

总之,手性药物分离是药物研究和生产中的重要问题。

色谱法是一种优秀的手性药物分离和纯化技术,因其分辨率和分离效率高,在手性药物的制备和应用中具有广泛的应用前景。

新型高效液相色谱手性固定相的制备及其拆分性能的研究的开题报告

新型高效液相色谱手性固定相的制备及其拆分性能的研究的开题报告

新型高效液相色谱手性固定相的制备及其拆分性能的研究的开题报告【标题】新型高效液相色谱手性固定相的制备及其拆分性能的研究【研究背景与意义】手性分离是现代分析化学和药物化学领域中至关重要的技术之一,它能够有效地分离和鉴定具有手性的化合物。

在手性分离技术中,手性固定相是最为关键的部分,它决定了手性分离的效率和选择性。

目前广泛使用的手性液相色谱手性固定相多为手性高聚物或手性小分子材料,但它们存在着稳定性差、分离效率低、催化剂寿命短等问题。

因此,研究新型高效液相色谱手性固定相的制备及其拆分性能对推进手性分离技术的发展具有重要意义。

【研究内容与方法】本课题旨在探究新型高效液相色谱手性固定相的制备方法及其拆分性能。

具体研究内容如下:(1)设计和合成新型高效液相色谱手性固定相材料;(2)采用液相色谱、核磁共振等技术对手性固定相进行表征;(3)研究手性固定相的手性识别、选择性及分离效率,并与传统手性固定相进行比较;(4)探究手性固定相的稳定性、再生性等性能;(5)利用手性固定相开展实际样品的手性拆分分析。

本课题将主要采用有机合成、分离纯化技术、液相色谱等方法进行实验研究。

【预期结果】通过本次研究,预期得出以下结果:(1)成功合成新型高效液相色谱手性固定相材料;(2)对新型手性固定相进行表征,确定其结构和手性性质;(3)研究手性固定相的手性识别、选择性及分离效率,与传统手性固定相进行比较,证实新型手性固定相的高效性和优越性;(4)探究手性固定相的稳定性、再生性等性能;(5)利用手性固定相开展实际样品的手性拆分分析,对手性纯度提高和手性杂质削减等目标进行实现。

【研究意义】本课题的研究结果将推动液相色谱手性固定相技术的发展,优化分离效率,提高分离选择性,促进手性分离技术在医药、化工等领域的应用。

同时,为有机合成、天然产物分析和药物合成等领域提供有力支持。

高效液相色谱法在手性药物对映异构体拆分中的应用

高效液相色谱法在手性药物对映异构体拆分中的应用

高效液相色谱法在手性药物对映异构体拆分中的应用随着不对称合成技术及手性拆分技术日趋成熟,手性药物研究已经成为新药研发的一大热点。

由于手性药物的对映体之间在药效学、药代动力学等方面存在较大差异,因此建立手性拆分的质量控制方法十分重要。

一、什么是手性异构和对映异构体当药物分子中碳原子上连接有4个不相同的基团时,该碳原子被称为不对称碳或手性碳(中心),会导致药物分子存在异构体,如果两个异构体之间的关系如同一个物体的立体结构在照镜子,这个立体结构和它在镜子中的像互为对映异构体(对映体)。

图1是手性对映异构体的图示。

图1手性对映异构体图示对映体具有相同的物理性质(如熔点,沸点,溶解度,折射率,酸性,密度等),热力学性质(如自由能,焓、熵等)和化学性质。

除非在手性环境(如手性试剂,手性溶剂)中才表现出差异。

对映体对偏振光的作用不同,它们的比旋光度数值相同,但方向相反。

对映体的生物活性不相同,化学反应中表现出等速率。

等量的左旋体与右旋体的混合物构成外消旋体。

从对映体中分离出单纯一个光学异构体的方法称手性拆分。

最普通的手性拆分方法是消旋旋体与光学活性相反的离子(称拆分剂)作用生成非对映体。

手性药物对映体拆分的方法主要有非色谱法和色谱法。

非色谱法(主要包括结晶法、微生物消化法等)耗时长,过程繁琐不能制备高纯度对映体,色谱法是基于把对映体的混合物转换成非对映异构体,然后利用它们在化学或物理性质上的差异进行分离。

主要包括气相色谱(GC)、超临界流体色谱(SFC)、毛细管电泳(CE)和毛细管电色谱(CEC)等。

表1罗列了色谱手性拆分的发展史。

其中高效液相色谱(HPLC)因其独特的优势成为手性分析领域最常用的一种技术。

表1色谱手性拆分发展史年份里程碑1939年Henderson和Rule在乳糖上色谱分离外消旋樟脑衍生物1984年Armstrong和DeMond:制备出硅胶键合环糊精固定相二、HPLC手性拆分方法手性药物拆分法通常分为直接法和间接法两大类。

手性药物的液相色谱分析

手性药物的液相色谱分析


该方法要求手性试剂及反应产物在化学性质上 和手性上很稳定, 在反应及色谱条件下 , 试剂、 手性药 物和反应产物不发生消旋化反应。手性试剂应具有 紫外或荧光吸收等敏感结构 , 使生成物具有良好的可 检测性。 本方法关键在于手性衍生试剂的选择上, 一个良 好的衍生试剂可改变对映体分子与固定相和流动相 之间的结合力 : 如氢键 , 偶极 - 偶极电荷转移和疏水 性等, 提高色谱系统的分离效率 , 从而使非对映体衍 生物具有良好的分离度 , 以及使衍生化反应有较高的 选择性。 手性衍生化试剂的种类及其应用见表 1 。
3


手性固定相在药物分析中的优点 是, 分离时 间 短 , 而手性选择性和拆分能力高 , 多数药物在分离前 都不需要进行衍生化反应 , 分离方法直接, 但色谱柱 价格昂贵, 部分固定相还存在稳定性差, 柱容量低, 柱 强度差等缺点, 且根据不同手性药物的性质不同 , 选 用的分析方法也不同。
参考文献 [ 1] 何煦昌 . 手性药物的进展 [ J]. 中国医药工业杂志 , 1997, 28( 11) : 519
等 ) 组成的高分子聚合物 , 可识别药物对映体在蛋白 质的结合位点而达到手性分离。商品化的手性蛋白 质键合固定相有两种: 一是将牛血清白蛋白 ( BSA )共 价键合到硅胶上, 用于氨基酸及其衍生物对映体的分 离 ; 二是通过离子键 ( 或共价键 ) 及蛋白交联作用将 - 酸性蛋白质固定于硅胶上 , 该类柱稳定性好, 柱 效高, 对许多药物对映体有良好的立体选择性 , 可直 接分离许多药物, 如硫喷妥因、 心得怡及、 阻滞剂等。 使用蛋白质手性固定相时, 一般用磷酸或硼酸缓冲溶 液加 0~ 5 % 的乙腈、 乙醇、 丙酮或醚类有机溶剂作流 # 63 #
( 上接第 42页 )

手性药物的制备和分离技术

手性药物的制备和分离技术

手性药物的制备和分离技术手性药物是指由手性分子构成的药物。

手性分子是指在空间构型上存在镜像对称的分子,即左旋和右旋异构体。

由于手性异构体之间的药物作用差异较大,因此,研究手性药物的制备和分离技术对于药物研发和生产至关重要。

一、手性药物的制备手性药物的制备分为对映选择性合成和手性分离两种方式。

对映选择性合成是指在化学反应过程中,通过调节反应条件,控制反应产物的手性形态,从而选取特定的对映异构体。

手性分离是指将手性混合物中的对映异构体分离出来。

对映选择性合成方法包括:1. 手性诱导剂合成法该方法是利用手性诱导剂将非手性反应物的手性信息“传递”到产物中,控制产物的手性。

目前广泛应用的手性诱导剂有葡萄糖、天然蛋白质等。

2. 催化剂合成法该方法是利用手性催化剂,使催化反应产生手性产物。

手性催化剂包括非对称合成、核磁共振催化等。

手性分离方法包括:1. 液相色谱法液相色谱法是通过改变手性固定相的化学性质或物理性质,控制手性药物在柱子中的分配行为。

常用的手性固定相有环糊精、聚乙烯亚胺等。

2. 粉末衍射分析法粉末衍射分析法是利用衍射图案分辨出手性分子的对映异构体,对于具有晶体结构的手性分子比较有效。

二、手性药物的分离和纯化手性药物的分离和纯化主要涉及手性液体-液体萃取、手性气相色谱和手性无机杂化材料等技术。

这些技术的实现原理基本上是通过利用手性相互作用,将手性分子与其它化合物区分开来。

手性液体-液体萃取法:手性药物在酸性或碱性条件下会形成盐,通过萃取可以实现手性药物的分离。

手性气相色谱法:利用手性固定相的化学性质实现手性药物分离纯化。

手性无机杂化材料:无机杂化材料具有良好的表面静电相互作用,可以用于分离手性药物。

总之,手性药物的制备和分离技术对于药物研发和生产具有重要的意义。

随着手性药物市场前景的不断扩大,手性药物的制备和分离技术也逐渐得到了广泛的应用。

高效液相色谱法拆分手性药物的开题报告

高效液相色谱法拆分手性药物的开题报告

高效液相色谱法拆分手性药物的开题报告一、选题背景与意义随着现代药学科学的不断发展和人们对健康的日益重视,手性药物的研究和应用越来越受到关注。

手性药物指的是具有手性结构的药物,即分子中含有手性中心(对称轴、平面或规矩中心),分子两侧的单元或官能团不对称。

因其分子具有对映异构体(左右手性)的性质而受到关注。

手性药物的两种对映体结构可能会导致它们在生物体内的药效学、代谢动力学、毒性等方面存在差异,对映异构体的药效学和毒理学作用甚至可以相反。

例如,西布曲明的左旋体是有效的抗抑郁药,而右旋体则具备升高血压等副作用,因此在制造和研究手性药物时必须选择正确的对映异构体。

此外,由于手性药物的停留时间和其他药效参数因其化学形式而异,生产和使用手性药物时,有必要对其对映异构体进行分离和鉴定。

高效液相色谱法是目前用于手性药物拆分的有效技术之一,曾在多项研究中得到了广泛应用。

基于此,本文拟通过对高效液相色谱法拆分手性药物的研究,探讨其对手性药物分离和鉴定的意义与价值,为手性药物研究提供一定的指导和借鉴。

二、研究目的本文旨在通过系统性地介绍高效液相色谱法的基本原理和主要步骤,并结合手性药物的拆分实验,从中探索其对手性药物分离和鉴定的作用和意义。

具体目的如下:1. 系统性地介绍高效液相色谱法的原理和步骤,明确其基本理论和具体操作方法,为后续的手性药物拆分工作提供有力支撑;2. 通过手性药物的实验拆分,探索高效液相色谱法用于手性药物分离和鉴定的技术难点和解决方法,并根据其应用效果,评估其在手性药物研究中的作用和价值;3. 以本次拆分实验为基础,分析高效液相色谱法的优势、局限性和未来发展方向,促进手性药物拆分技术和研究方法的创新。

三、研究内容和方法研究内容:本研究将围绕高效液相色谱法在手性药物拆分中的应用展开,包括以下方面:1. 高效液相色谱法的基础原理、分析模式和操作流程,包括流体驱动系统、样品制备、样品注入、色谱柱和检测器等各部分组成和功能;2. 手性药物的种类、结构和含量等特征,以及手性药物的选取和制备方法;3. 针对手性药物的特点,设计一定的操作流程和实验方案,结合高效液相色谱法从手性药物中拆分出其对映异构体;4. 结合实验结果,对高效液相色谱法用于手性药物分离和鉴定的优缺点以及未来发展趋势进行分析和总结。

手性药物高效液相色谱拆分方法研究进展

手性药物高效液相色谱拆分方法研究进展
手性药物高效液相色谱拆分方法研究进展
摘要】自然界很多药物是手性药物,手性药物的开发已成为制药领域的必然趋势,其分析测定方法也得到快速发展。高效液相色谱法作为经典实用的分析测定方法,得到了广泛的运用。本文综合国内外文献,综述了手性药物高效液相色谱拆分方法研究进展,为手性药物的含量测定和生物分析提供思路。【关键词】手性药物高效液相色谱法拆分手性是自然界的本质属性之一,作为生命活动重要基础的生物大分子和许多作用于受体的活性物质均具有手性特征。对手性药物而言,两个对映体并非具有相同的药效。HPLC分离药物对映体可分为间接法和直接法,前者又称为手性试剂衍生化(CDR)法,后者可分为手性流动相添加剂(CMPA子内,而CMPA法和CSP法则是将不对称中心引入分子间。1 CDR法CDR法是将药物对映体先与高光学纯度衍生化试剂(CDR)反应形成非对映异构体,再进行色谱分离测定,适用于不宜直接拆分的样品。该法的优点是衍生化后可用通用的非手性柱分离,无需使用价格昂贵的手性柱,而且可选择衍生化试剂引入发色团提高检测灵敏度。金银秀等[1]采用手性衍生化试剂GITC对美西律进行柱前手性衍生化,建立了美西律对映体在人血清白蛋白中的测定方法。2 CMPA法CMPA法是将手性选择剂添加到流动相中,利用手性选择剂与药物消旋体中各对映体结合的稳定常数不同,以及药物与结合物在固定相上分配的差异,实现对映体的分离。此法的优点在于:不需对样品进行衍生化,可采用普通的色谱柱,手性添加剂可流出,也可更换,同时添加物的可变范围较宽,使用比较方便。目前常用的手性流动相添加剂有:环糊精(CD)及其衍生物、配位基手性选择剂、手性离子对添加剂、蛋白质、大分子抗生素。2.1配体交换型手性添加剂此类添加剂多为氨基酸及其衍生物与二价金属离子铜、锌、镍等结合,以适当浓度分布于流动相中,然后外消旋体共同形成非对映的配位络合物进行拆分。2.2环糊精添加剂常用的环糊精主要为β-CD,β-CD络合的化学计量关系通常为1:1,但是其它比例也存在,在添加CD的RP色谱中,存在两个平衡流动相中游离溶质和CD络合物在固定相上的吸附平衡,其影响因素包括有机溶剂的用量及酸度等。如杨青等[2]以C18为分析柱,将β-CD、2,6-二甲基β-CD、2,3,6-三甲基β-CD分别作为手性流动相添加剂,系统地研究了酮基布洛芬对映体在HPLC系统中的拆分。2.3手性离子对添加剂此方法为对映体与手性离子对试剂形成非对映离子对,利用其在固定相和流动相之间不同的分配比来分离,手性离子对必须具有3点作用模式。3 CSP法手性固定相(CSP)是由具有光学活性的单体固定在硅胶或其它聚合物上制成的,在拆分中CSP直接与对映体相互作用,而其中一个生成具有不稳定的短暂的对映体复合物,造成在色谱柱内保留时间的不同,从而达到分离的目的。3.1天然高分子手性固定相这种固定相主要有蛋白质类、环糊精类、多糖及其衍生物类、冠醚等。其中,以环糊精类目前应用较多,同时CD分子上的手性中心也能选择性地与对映体作用。目前,以β-CD应用最多。不同的环糊精的空腔大小不同,α-CD适于分离小分子药物对映体,γ-CD适于分离大分子药物,β-CD对形成包合物有最佳大小的空腔,适用于大多数对映体的位阻和电子特征,如酮咯酸氨丁三醇盐对映体,佐匹克隆对映体,萘普生乙酯对映体的分离[3]。冠醚具有亲水性内腔和亲脂性外壳,可键合在硅胶或聚苯乙烯基质上制成手性固定相。根据主-客化学原理,用于含有能够质子化的伯胺功能团的药物对映体的分离,将(+)-18-冠醚-6-2,3,11,12-四羧酸键合至氨基丙基硅胶上作手性固定相,不仅可以分离具有伯氨基的药物对映体,如肌肉松弛药物氟喹酮、抗疟药伯氟喹等。3.1.1合成高分子固定相主要包括聚丙烯酞胺、聚甲基丙烯酸醋等含光学活性中心的高分子物质。运用较多的是交联聚酞胺,其分离机理一般认为是对映体与高分子聚合物本身的手性空间结合,同时还受到聚合物分子量,溶剂pH值等因素的影响。3.1.2氨基酸型手性固定相该固定相是以硅胶为起始原料,硅烷化成梭基型键合物,最后与有光学活性的氨基酸反应制得。其机理是对映体与固定相的氢键形成不同的非对映体络合物而分离。适于分离α-氨基酸衍生物、α-氨基烃基磷酸衍生物、二肽等,缺点是价格较贵。3.2配体交换型固定相该固定相是以某种聚合物,如交联的氯甲基苯乙烯与手性氨基酸结合而成,同时,还需过渡金属离子的参与,如Cu2+等。被拆分物质通过金属络合物与固定相上的配位基发生配体交换,络合在固定相上。由于这种络合是可逆的,因此这种方法的分离效果较好,一般用来分离各种氨基酸。3.3蛋白质类固定相AGP是一种键合的蛋白类手性柱,特别适用于阳离子型化合物,手性选择性强。蛋白质手性固定相主要靠氢键及范德华力维持其稳定,可以通过调节流动相缓冲液的组成、PH值和温度来改变手性选择性。蛋白质手性柱的最大优点在于,可使对映体在非衍生形式下得到分离,同时由于采用水相流动相,因此水相样品可直接注射,其中α1-AGP柱尤其适合于对映体药物的分离。傅强等[5]研究了在卵类糖蛋白手性柱上影响钙离子拮抗剂尼卡地平对映体拆分的主要因素,建立了尼卡地平对映体的拆分方法。大环抗生素是近年来比较流行的手性选择剂,大环抗生素具多个手性中心,多个官能团及特定的三维空间结构,它的手性识别机理结合了环糊精、蛋白质、多糖的性质,这类手性固定相拥有较大的对映体选择性,优异的拆分效率和较短的分析时间等优点,使之成为继环糊精之后的常规分析级手性固定相。参考文献[1]金银秀,曾苏.柱前衍生化RP-HPLC测定人血清白蛋白中美西律对映体[J].中国药学杂志, 2007, 42(11):860-862. [2]杨青,唐瑞仁,曾莎莎.高效液相色谱手性流动相法拆分酮基布洛芬对映体[J].分析试验室, 2007, 26(8):84-86. [3]刁全平,侯冬岩,回瑞华,等.高效液相色谱法拆分酮咯酸氨丁三醇盐对映体[J].鞍山师范学院学报, 2005, 7 ( 6) : 58- 60.

8-3 液相色谱与手性分离

8-3 液相色谱与手性分离

液相色谱与手性分离
手性分离•手性分离的关键是构建手性识别环境。

01流动相添加剂
将手性试剂作为添加剂加入到流动相体系中02
手性固定相
将手性分子通过
键合作用固载到固定相上
液相色谱手性分离-流动相添加剂
3
液相色谱手性分离-流动相添加剂方法优势:
1. 普通色谱可以实现分离,降低实验成本;
2. 无需进行衍生化反应;
3. 手性试剂选择范围宽泛
4. 分离后可以收集单一异构体
方法局限性:
1. 手性试剂消耗大
2. 建立方法困难,平衡时间长
3. 后续制备时需要分离手性添加剂
手性固定相识别原理-三点作用理论相互作用强,保留长,后出峰相互作用弱,保留短,先出峰
基体(S)-选择子(R)-溶质
②③①基体
(S)-溶质(S)-选择子①
②5
蛋白质CSP
•Chiral CBH column •
纤维二糖水解酶
辛福林
手性固定相(CSP)
大环抗生素类CSP
多糖类CSP。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

液相色谱手性制备分离过程中的问题探讨本文拟通过一些具体实例来介绍多糖类手性固定相在高效液相色谱法分离对映异构体中的应用。

对多糖类手性固定相类型、手性识别机理、影响手性拆分能力的因素以及制备分离过程中的样品溶解度问题等做了较为详实的阐述与讨论。

现实需求:手性药物的不同对映体往往显示出不同的药理学、毒理学及药代动力学性质,出于用药安全性考虑,药品监管部门要求对潜在手性药物的各自对映体必需进行分离和活性(毒性)测试。

因此,单一构型手性化合物的获得对于药理和毒理实验的开展是极其重要的。

一般可以通过手性合成和手性拆分两种途径来获取单一异构体。

各种手性拆分技术中,色谱法因其快速、高效、经济等优势而得到广泛应用。

(手性合成方面,请参考相关专著。

)案例分析:mg-50g级的单一构型手性化合物各自纯品(即两种构型都需要)。

其中之一很可能就是安全有效的候选药物。

为了尽快获得各异构体以尽早开展药理、毒理试验,药物发现阶段,许多制药公司都暂缓在不对称合成上的投入,而是敏锐快捷地转向手性色谱分离,迅速地从不太贵的消旋体混合物中分离出高纯度的对映体。

手性药物早期开发阶段,不差钱!这时候最要紧的是时间和对映体纯度。

时间就是金钱,早期占得先机,后来财源滚滚!解决方案:药物发现阶段,由于手性化合物需求量少(mg-50g级,相对于后期公斤级全面开发及吨位级生产来讲,小巫见大巫。

),为尽快尽早获得单一光学纯物质,采用手性色谱制备分离策略。

具体方法:拟采用多糖类手性固定相高效液相色谱法(PreparativeChiralHPLC)方法步骤:手性HPLC制备分离对映体,对于某一个具体样品,如何开始chiralHPLC方法建立?对映体在手头上已有商品柱上能否直接分离,是否可以放大等?对于液相色谱法手性制备拆分对映体,其步骤大致如下:1)、了解待分离化合物样品结构信息;2)、选择合适的手性固定相(手性分析柱);3)、对所选的分析柱进行筛选,优化色谱条件;4)将分析条件转移到制备柱上,并对放大分离条件做最后的调整(analyticalchiralHPLC→preparativechiralHPLC);5)、开始制备拆分,若条件允许的话,可以自动进样;6)去除溶剂,回收产品。

具体操作起来,可以这么考虑:1)、了解待分离化合物样品结构信息:手性方法建立的第一步为检查待测物的化学结构,尽可能地获取样品的如下信息——在不同溶剂中的溶解度(由于是制备分离,我们期望尽量多的样品溶于相对小的溶剂中。

除了分离选择性,样品溶解度通常是建立PreparativeChiralHPLC方法的主要障碍。

许多情况下,样品因在流动相中没有足够大的溶解度,因而影响单针上样量,更甚至于沉积于制备柱上而无法洗脱。

);形成氢键H-、π键或者偶极相互作用的能力;是否有极性官能团(是否含氨基NH2-、羧基-COOH 或者既含酸性基团又有碱性基团);手性中心附近有无大取代基;紫外光谱可否检测等。

诸如此类的样品结构信息对预判手性分离能力及手性固定相的选择有较大的帮助作用。

2)、怎样选择合适的手性柱:由于手性方法是用于制备分离,在选择手性柱时就应考虑柱容量(柱样品荷载量)。

从手性固定相通用性考虑,各商品化的手性柱通用性大致顺序为:多糖柱﹥蛋白柱﹥糖肽柱﹥配体交换柱。

多糖类手性固定相基于其独特的分子结构特征在手性分离方面显示出卓越的性能,已经广泛用于各种各样手性分子对映体的分析和制备分离。

所以,选定多糖柱作为制备分离用手性柱。

3)、手性色谱条件优化:手性液相色谱法,与普通液相色谱类似,方法建立时主要包括手性柱的筛选和流动相条件的优化两个方面。

手性柱筛选方面,即便是在选定多糖类手性柱的情况下,由于有多种柱型可供选择,以致于难于确定最好以哪一种柱子开始实验。

据已报导的大部分应用研究,Daicel公司“四大金刚”淀粉类ChiralpakAD-H、ChiralpakAS-H和纤维素类Chiralcel-OD-H、ChiralpakOJ-H联合使用可成功分离80%未知样品。

但依据个人经验,最英明神武的决策是重用“两大护法”-ChiralpakAD-H和Chiralcel-OD-H(或者新型共价键合手性柱ChiralpakIA和ChiralpakIC),这两者在多糖类手性柱中应用最为广泛,可用于多种结构类型样品的分离。

直链淀粉的螺旋结构和纤维素的线性结构,在对映体拆分方面具有手性分离互补特征,ChiralpakAD-H和Chiralcel-OD-H(或者ChiralpakIA和ChiralpakIC)配合使用,优势互补,珠联璧合,大大的好。

流动相条件的优化方面,多糖类手性柱大多在正相模式下分离。

方法建立初始阶段,首先尝试在ChiralpakAD-H柱(或ChiralpakIA柱)上,以无水乙醇/正己烷为流动相,通过调整流动相中醇的含量或者改变醇的种类来增强对映体分离选择性。

如果只有部分分离或者仍没有分离,可在流动相中添加有机酸、碱等改性剂来优化分离。

同时,可以考察柱温对分离的影响。

如果发现分离还不理想,再使用另一杀手锏,换用Chiralcel-OD-H(或ChiralpakIC)柱,重复考察前面的各影响因素。

若背,喝凉水都塞牙——使用多糖类手性柱未能获得满意的分离度,则另做打算尝试其他类型的手性柱。

手性色谱条件优化流程总结如下:4)、分析方法转移:一旦合适的分析条件被确定下来,手性制备分离的第一步旗开得胜,接下来的工作进展就相当地顺利了。

一般来说,用于制备分离的填料粒径(20um)要大于以分析为目的的手性固定相粒径(5um),同时色谱柱的尺寸也有所不同。

分析条件转换到半制备、制备规模上来,主要是流速和进样量的调整。

制备之前,最好先作“理论分析”(或者凭以往实战经验预判),接着做小批量的实验逐步证实,放大分离。

5)、制备分离:制备手性液相色谱(PreparativeChiralHPLC),除了在分析型AnalyticalHPLC上摸索分离条件之外,一般来讲,样品的溶解度非常重要。

若样品在流动相中没有足够大的溶解度,这使得样品浓度不高因而严重制约单针上样量。

多糖类手性柱大多在正相模式下分离,使用醇/正己烷作为流动相体系,等度洗脱。

实际应用中,越担心什么偏偏就发生什么,经常会纠结于正相分离模式下样品溶解度不够大的问题。

针对样品溶解度问题,具体问题具体分析,特殊情况特殊关照,想方设法提高样品的溶解度。

提高样品溶解度的策略:总体原则是——千方百计,想方设法增大样品溶解度,但不改变溶剂洗脱强度或者影响分离选择性。

策略一:从样品化合物结构自身入手,通过结构修饰,引入保护基做成衍生物来增强其在有机溶剂中的溶解度。

原则是通过衍生物使溶解性变好,且不影响对映体分离选择性或者提高其选择性,同时保护基容易引入和脱除。

比如某些类型的手性胺(伯胺和仲胺),加上一个Boc或者Cbz保护基,溶解性会戏剧性地变好,方便很好地进行分离。

策略二:若流动相不能溶解足够量样品,则可以探索不同于流动相的样品溶剂。

比如,先用能溶解更多样品的单一溶剂(诸如异丙醇或者无水乙醇)溶解待分离物,然后用流动相稀释,以不析出为度;或者根据样品化合物结构,通过调节pH值或者样品溶剂离子强度的变化来增加样品溶解度,比如溶解样品时,往溶剂中添加一定体积的有机酸(冰乙酸、三氟乙酸)、有机碱(二乙胺、三乙胺)、离子对试剂(甲基磺酸、乙基磺酸)等来助溶,但前提是以不影响化合物的稳定性和对映体色谱分离选择性为准。

样品溶剂对色谱分离的影响,可在分析型chiralHPLC上考察,然后转移到制备上。

策略三:巧用重迭进样(stackinjection)。

我们知道,在RP-HPLC梯度洗脱条件下,进样后,待测物必须完全流出色谱柱后才能进下一针,即进样是间歇式的。

但正相模式下的手性分离,等度洗脱,根据样品化合物出峰时间,可以有针对性地选择间歇式的单针进样还是重迭进样(即上一针还未洗脱下来,掐算好出峰时间,把握时机进下一针)。

重迭进样(stackinjection)省时增效、节能减排,绿色环保,符合建设资源节约型、环境友好型社会的时代要求。

比如某手性制备拆分,若单针进样的话,需要运行32min,两异构体在16.5-30min时间段出峰,前16min时间柱上分离近似于在走基线,同时留意到两个色谱峰16min内能完全流出色谱柱。

类似这种情况下,我们就可以考虑使用重迭进样的策略来缩短分离时间,节省溶剂消耗,降低废液排放。

6)、回收产品:去除溶剂,这一点与反相制备色谱类同,但手性制备分离是在正相模式等度洗脱条件下进行的,溶剂回收后可以循环再利用,继续用于该分离项目。

在实际工作中践行循环经济发展理念,建设生态文明社会。

如何确定所得两个异构体的立体构型,R-、S-型洗脱顺序怎样呢?这点可在除去溶剂后,旋光仪测定偏振光方向,正( )还是负(-),与文献报导值比对,即可确定R-、S-构型。

条件优越的话,可使用在线旋光检测器或者圆二色检测器跟踪对映体的洗脱顺序。

归纳总结:手性色谱法是最重要的手性分离技术之一,不仅可以快速地测定对映体纯度(对映体过量值),而且也可以用于制备拆分光学异构体。

在众多已商品化的手性固定相中,多糖类手性固定相因分离选择性好、柱容量大而被广泛使用。

本文探讨了多糖类手性固定相在制备分离中的应用,快速筛选手性固定相(手性柱)和优化流动相条件(醇等调节剂和改性剂)是成功的关键。

同时,样品溶解度是影响拆分速度的一个重要因素。

可以与其它较便宜的纯化方法(重结晶、化学拆分法)相结合以降低操作的总体成本。

相关文档
最新文档